in.c revision 1.185 1 /* $NetBSD: in.c,v 1.185 2016/09/29 15:18:18 roy Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1991, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)in.c 8.4 (Berkeley) 1/9/95
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: in.c,v 1.185 2016/09/29 15:18:18 roy Exp $");
95
96 #include "arp.h"
97
98 #ifdef _KERNEL_OPT
99 #include "opt_inet.h"
100 #include "opt_inet_conf.h"
101 #include "opt_mrouting.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/ioctl.h>
106 #include <sys/errno.h>
107 #include <sys/kernel.h>
108 #include <sys/malloc.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/sysctl.h>
112 #include <sys/systm.h>
113 #include <sys/proc.h>
114 #include <sys/syslog.h>
115 #include <sys/kauth.h>
116 #include <sys/kmem.h>
117
118 #include <sys/cprng.h>
119
120 #include <net/if.h>
121 #include <net/route.h>
122 #include <net/pfil.h>
123
124 #include <net/if_arp.h>
125 #include <net/if_ether.h>
126 #include <net/if_types.h>
127 #include <net/if_llatbl.h>
128 #include <net/if_dl.h>
129
130 #include <netinet/in_systm.h>
131 #include <netinet/in.h>
132 #include <netinet/in_var.h>
133 #include <netinet/ip.h>
134 #include <netinet/ip_var.h>
135 #include <netinet/in_ifattach.h>
136 #include <netinet/in_pcb.h>
137 #include <netinet/in_selsrc.h>
138 #include <netinet/if_inarp.h>
139 #include <netinet/ip_mroute.h>
140 #include <netinet/igmp_var.h>
141
142 #ifdef IPSELSRC
143 #include <netinet/in_selsrc.h>
144 #endif
145
146 static u_int in_mask2len(struct in_addr *);
147 static void in_len2mask(struct in_addr *, u_int);
148 static int in_lifaddr_ioctl(struct socket *, u_long, void *,
149 struct ifnet *);
150
151 static int in_addprefix(struct in_ifaddr *, int);
152 static void in_scrubaddr(struct in_ifaddr *);
153 static int in_scrubprefix(struct in_ifaddr *);
154 static void in_sysctl_init(struct sysctllog **);
155
156 #ifndef SUBNETSARELOCAL
157 #define SUBNETSARELOCAL 1
158 #endif
159
160 #ifndef HOSTZEROBROADCAST
161 #define HOSTZEROBROADCAST 0
162 #endif
163
164 /* Note: 61, 127, 251, 509, 1021, 2039 are good. */
165 #ifndef IN_MULTI_HASH_SIZE
166 #define IN_MULTI_HASH_SIZE 509
167 #endif
168
169 static int subnetsarelocal = SUBNETSARELOCAL;
170 static int hostzeroisbroadcast = HOSTZEROBROADCAST;
171
172 /*
173 * This list is used to keep track of in_multi chains which belong to
174 * deleted interface addresses. We use in_ifaddr so that a chain head
175 * won't be deallocated until all multicast address record are deleted.
176 */
177
178 LIST_HEAD(in_multihashhead, in_multi); /* Type of the hash head */
179
180 static struct pool inmulti_pool;
181 static u_int in_multientries;
182 static struct in_multihashhead *in_multihashtbl;
183 static u_long in_multihash;
184 static krwlock_t in_multilock;
185
186 #define IN_MULTI_HASH(x, ifp) \
187 (in_multihashtbl[(u_long)((x) ^ (ifp->if_index)) % IN_MULTI_HASH_SIZE])
188
189 /* XXX DEPRECATED. Keep them to avoid breaking kvm(3) users. */
190 struct in_ifaddrhashhead * in_ifaddrhashtbl;
191 u_long in_ifaddrhash;
192 struct in_ifaddrhead in_ifaddrhead;
193 static kmutex_t in_ifaddr_lock;
194
195 struct pslist_head * in_ifaddrhashtbl_pslist;
196 u_long in_ifaddrhash_pslist;
197 struct pslist_head in_ifaddrhead_pslist;
198
199 void
200 in_init(void)
201 {
202 pool_init(&inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl",
203 NULL, IPL_SOFTNET);
204 TAILQ_INIT(&in_ifaddrhead);
205 PSLIST_INIT(&in_ifaddrhead_pslist);
206
207 in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
208 &in_ifaddrhash);
209
210 in_ifaddrhashtbl_pslist = hashinit(IN_IFADDR_HASH_SIZE, HASH_PSLIST,
211 true, &in_ifaddrhash_pslist);
212 mutex_init(&in_ifaddr_lock, MUTEX_DEFAULT, IPL_NONE);
213
214 in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
215 &in_multihash);
216 rw_init(&in_multilock);
217
218 in_sysctl_init(NULL);
219 }
220
221 /*
222 * Return 1 if an internet address is for a ``local'' host
223 * (one to which we have a connection). If subnetsarelocal
224 * is true, this includes other subnets of the local net.
225 * Otherwise, it includes only the directly-connected (sub)nets.
226 */
227 int
228 in_localaddr(struct in_addr in)
229 {
230 struct in_ifaddr *ia;
231 int localaddr = 0;
232 int s = pserialize_read_enter();
233
234 if (subnetsarelocal) {
235 IN_ADDRLIST_READER_FOREACH(ia) {
236 if ((in.s_addr & ia->ia_netmask) == ia->ia_net) {
237 localaddr = 1;
238 break;
239 }
240 }
241 } else {
242 IN_ADDRLIST_READER_FOREACH(ia) {
243 if ((in.s_addr & ia->ia_subnetmask) == ia->ia_subnet) {
244 localaddr = 1;
245 break;
246 }
247 }
248 }
249 pserialize_read_exit(s);
250
251 return localaddr;
252 }
253
254 /*
255 * Determine whether an IP address is in a reserved set of addresses
256 * that may not be forwarded, or whether datagrams to that destination
257 * may be forwarded.
258 */
259 int
260 in_canforward(struct in_addr in)
261 {
262 u_int32_t net;
263
264 if (IN_EXPERIMENTAL(in.s_addr) || IN_MULTICAST(in.s_addr))
265 return (0);
266 if (IN_CLASSA(in.s_addr)) {
267 net = in.s_addr & IN_CLASSA_NET;
268 if (net == 0 || net == htonl(IN_LOOPBACKNET << IN_CLASSA_NSHIFT))
269 return (0);
270 }
271 return (1);
272 }
273
274 /*
275 * Trim a mask in a sockaddr
276 */
277 void
278 in_socktrim(struct sockaddr_in *ap)
279 {
280 char *cplim = (char *) &ap->sin_addr;
281 char *cp = (char *) (&ap->sin_addr + 1);
282
283 ap->sin_len = 0;
284 while (--cp >= cplim)
285 if (*cp) {
286 (ap)->sin_len = cp - (char *) (ap) + 1;
287 break;
288 }
289 }
290
291 /*
292 * Routine to take an Internet address and convert into a
293 * "dotted quad" representation for printing.
294 */
295 const char *
296 in_fmtaddr(struct in_addr addr)
297 {
298 static char buf[sizeof("123.456.789.123")];
299
300 addr.s_addr = ntohl(addr.s_addr);
301
302 snprintf(buf, sizeof(buf), "%d.%d.%d.%d",
303 (addr.s_addr >> 24) & 0xFF,
304 (addr.s_addr >> 16) & 0xFF,
305 (addr.s_addr >> 8) & 0xFF,
306 (addr.s_addr >> 0) & 0xFF);
307 return buf;
308 }
309
310 /*
311 * Maintain the "in_maxmtu" variable, which is the largest
312 * mtu for non-local interfaces with AF_INET addresses assigned
313 * to them that are up.
314 */
315 unsigned long in_maxmtu;
316
317 void
318 in_setmaxmtu(void)
319 {
320 struct in_ifaddr *ia;
321 struct ifnet *ifp;
322 unsigned long maxmtu = 0;
323 int s = pserialize_read_enter();
324
325 IN_ADDRLIST_READER_FOREACH(ia) {
326 if ((ifp = ia->ia_ifp) == 0)
327 continue;
328 if ((ifp->if_flags & (IFF_UP|IFF_LOOPBACK)) != IFF_UP)
329 continue;
330 if (ifp->if_mtu > maxmtu)
331 maxmtu = ifp->if_mtu;
332 }
333 if (maxmtu)
334 in_maxmtu = maxmtu;
335 pserialize_read_exit(s);
336 }
337
338 static u_int
339 in_mask2len(struct in_addr *mask)
340 {
341 u_int x, y;
342 u_char *p;
343
344 p = (u_char *)mask;
345 for (x = 0; x < sizeof(*mask); x++) {
346 if (p[x] != 0xff)
347 break;
348 }
349 y = 0;
350 if (x < sizeof(*mask)) {
351 for (y = 0; y < NBBY; y++) {
352 if ((p[x] & (0x80 >> y)) == 0)
353 break;
354 }
355 }
356 return x * NBBY + y;
357 }
358
359 static void
360 in_len2mask(struct in_addr *mask, u_int len)
361 {
362 u_int i;
363 u_char *p;
364
365 p = (u_char *)mask;
366 memset(mask, 0, sizeof(*mask));
367 for (i = 0; i < len / NBBY; i++)
368 p[i] = 0xff;
369 if (len % NBBY)
370 p[i] = (0xff00 >> (len % NBBY)) & 0xff;
371 }
372
373 /*
374 * Generic internet control operations (ioctl's).
375 * Ifp is 0 if not an interface-specific ioctl.
376 */
377 /* ARGSUSED */
378 static int
379 in_control0(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
380 {
381 struct ifreq *ifr = (struct ifreq *)data;
382 struct in_ifaddr *ia = NULL;
383 struct in_aliasreq *ifra = (struct in_aliasreq *)data;
384 struct sockaddr_in oldaddr, *new_dstaddr;
385 int error, hostIsNew, maskIsNew;
386 int newifaddr = 0;
387 bool run_hook = false;
388 bool need_reinsert = false;
389 struct psref psref;
390 int bound;
391
392 switch (cmd) {
393 case SIOCALIFADDR:
394 case SIOCDLIFADDR:
395 case SIOCGLIFADDR:
396 if (ifp == NULL)
397 return EINVAL;
398 return in_lifaddr_ioctl(so, cmd, data, ifp);
399 case SIOCGIFADDRPREF:
400 case SIOCSIFADDRPREF:
401 if (ifp == NULL)
402 return EINVAL;
403 return ifaddrpref_ioctl(so, cmd, data, ifp);
404 }
405
406 bound = curlwp_bind();
407 /*
408 * Find address for this interface, if it exists.
409 */
410 if (ifp != NULL)
411 ia = in_get_ia_from_ifp_psref(ifp, &psref);
412
413 hostIsNew = 1; /* moved here to appease gcc */
414 switch (cmd) {
415 case SIOCAIFADDR:
416 case SIOCDIFADDR:
417 case SIOCGIFALIAS:
418 case SIOCGIFAFLAG_IN:
419 if (ifra->ifra_addr.sin_family == AF_INET) {
420 int s;
421
422 if (ia != NULL)
423 ia4_release(ia, &psref);
424 s = pserialize_read_enter();
425 IN_ADDRHASH_READER_FOREACH(ia,
426 ifra->ifra_addr.sin_addr.s_addr) {
427 if (ia->ia_ifp == ifp &&
428 in_hosteq(ia->ia_addr.sin_addr,
429 ifra->ifra_addr.sin_addr))
430 break;
431 }
432 if (ia != NULL)
433 ia4_acquire(ia, &psref);
434 pserialize_read_exit(s);
435 }
436 if ((cmd == SIOCDIFADDR ||
437 cmd == SIOCGIFALIAS ||
438 cmd == SIOCGIFAFLAG_IN) &&
439 ia == NULL) {
440 error = EADDRNOTAVAIL;
441 goto out;
442 }
443
444 if (cmd == SIOCDIFADDR &&
445 ifra->ifra_addr.sin_family == AF_UNSPEC) {
446 ifra->ifra_addr.sin_family = AF_INET;
447 }
448 /* FALLTHROUGH */
449 case SIOCSIFADDR:
450 if (ia == NULL || ia->ia_addr.sin_family != AF_INET)
451 ;
452 else if (ifra->ifra_addr.sin_len == 0) {
453 ifra->ifra_addr = ia->ia_addr;
454 hostIsNew = 0;
455 } else if (in_hosteq(ia->ia_addr.sin_addr,
456 ifra->ifra_addr.sin_addr))
457 hostIsNew = 0;
458 /* FALLTHROUGH */
459 case SIOCSIFDSTADDR:
460 if (ifra->ifra_addr.sin_family != AF_INET) {
461 error = EAFNOSUPPORT;
462 goto out;
463 }
464 /* FALLTHROUGH */
465 case SIOCSIFNETMASK:
466 if (ifp == NULL)
467 panic("in_control");
468
469 if (cmd == SIOCGIFALIAS || cmd == SIOCGIFAFLAG_IN)
470 break;
471
472 if (ia == NULL &&
473 (cmd == SIOCSIFNETMASK || cmd == SIOCSIFDSTADDR)) {
474 error = EADDRNOTAVAIL;
475 goto out;
476 }
477
478 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
479 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
480 NULL) != 0) {
481 error = EPERM;
482 goto out;
483 }
484
485 if (ia == NULL) {
486 ia = malloc(sizeof(*ia), M_IFADDR, M_WAITOK|M_ZERO);
487 if (ia == NULL) {
488 error = ENOBUFS;
489 goto out;
490 }
491 ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
492 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
493 ia->ia_ifa.ifa_netmask = sintosa(&ia->ia_sockmask);
494 #ifdef IPSELSRC
495 ia->ia_ifa.ifa_getifa = in_getifa;
496 #else /* IPSELSRC */
497 ia->ia_ifa.ifa_getifa = NULL;
498 #endif /* IPSELSRC */
499 ia->ia_sockmask.sin_len = 8;
500 ia->ia_sockmask.sin_family = AF_INET;
501 if (ifp->if_flags & IFF_BROADCAST) {
502 ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr);
503 ia->ia_broadaddr.sin_family = AF_INET;
504 }
505 ia->ia_ifp = ifp;
506 ia->ia_idsalt = cprng_fast32() % 65535;
507 LIST_INIT(&ia->ia_multiaddrs);
508 IN_ADDRHASH_ENTRY_INIT(ia);
509 IN_ADDRLIST_ENTRY_INIT(ia);
510 ifa_psref_init(&ia->ia_ifa);
511
512 newifaddr = 1;
513 }
514 break;
515
516 case SIOCSIFBRDADDR:
517 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
518 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
519 NULL) != 0) {
520 error = EPERM;
521 goto out;
522 }
523 /* FALLTHROUGH */
524
525 case SIOCGIFADDR:
526 case SIOCGIFNETMASK:
527 case SIOCGIFDSTADDR:
528 case SIOCGIFBRDADDR:
529 if (ia == NULL) {
530 error = EADDRNOTAVAIL;
531 goto out;
532 }
533 break;
534 }
535 error = 0;
536 switch (cmd) {
537
538 case SIOCGIFADDR:
539 ifreq_setaddr(cmd, ifr, sintocsa(&ia->ia_addr));
540 break;
541
542 case SIOCGIFBRDADDR:
543 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
544 error = EINVAL;
545 goto out;
546 }
547 ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_broadaddr));
548 break;
549
550 case SIOCGIFDSTADDR:
551 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
552 error = EINVAL;
553 goto out;
554 }
555 ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_dstaddr));
556 break;
557
558 case SIOCGIFNETMASK:
559 /*
560 * We keep the number of trailing zero bytes the sin_len field
561 * of ia_sockmask, so we fix this before we pass it back to
562 * userland.
563 */
564 oldaddr = ia->ia_sockmask;
565 oldaddr.sin_len = sizeof(struct sockaddr_in);
566 ifreq_setaddr(cmd, ifr, (const void *)&oldaddr);
567 break;
568
569 case SIOCSIFDSTADDR:
570 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
571 error = EINVAL;
572 goto out;
573 }
574 oldaddr = ia->ia_dstaddr;
575 ia->ia_dstaddr = *satocsin(ifreq_getdstaddr(cmd, ifr));
576 if ((error = if_addr_init(ifp, &ia->ia_ifa, false)) != 0) {
577 ia->ia_dstaddr = oldaddr;
578 goto out;
579 }
580 if (ia->ia_flags & IFA_ROUTE) {
581 ia->ia_ifa.ifa_dstaddr = sintosa(&oldaddr);
582 rtinit(&ia->ia_ifa, RTM_DELETE, RTF_HOST);
583 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
584 rtinit(&ia->ia_ifa, RTM_ADD, RTF_HOST|RTF_UP);
585 }
586 break;
587
588 case SIOCSIFBRDADDR:
589 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
590 error = EINVAL;
591 goto out;
592 }
593 ia->ia_broadaddr = *satocsin(ifreq_getbroadaddr(cmd, ifr));
594 break;
595
596 case SIOCSIFADDR:
597 if (!newifaddr) {
598 mutex_enter(&in_ifaddr_lock);
599 LIST_REMOVE(ia, ia_hash);
600 IN_ADDRHASH_WRITER_REMOVE(ia);
601 mutex_exit(&in_ifaddr_lock);
602 need_reinsert = true;
603 }
604 error = in_ifinit(ifp, ia, satocsin(ifreq_getaddr(cmd, ifr)),
605 NULL, 1);
606
607 run_hook = true;
608 break;
609
610 case SIOCSIFNETMASK:
611 in_scrubprefix(ia);
612 ia->ia_sockmask = *satocsin(ifreq_getaddr(cmd, ifr));
613 ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr;
614 if (!newifaddr) {
615 mutex_enter(&in_ifaddr_lock);
616 LIST_REMOVE(ia, ia_hash);
617 IN_ADDRHASH_WRITER_REMOVE(ia);
618 mutex_exit(&in_ifaddr_lock);
619 need_reinsert = true;
620 }
621 error = in_ifinit(ifp, ia, NULL, NULL, 0);
622 break;
623
624 case SIOCAIFADDR:
625 maskIsNew = 0;
626 if (ifra->ifra_mask.sin_len) {
627 in_scrubprefix(ia);
628 ia->ia_sockmask = ifra->ifra_mask;
629 ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr;
630 maskIsNew = 1;
631 }
632 if ((ifp->if_flags & IFF_POINTOPOINT) &&
633 (ifra->ifra_dstaddr.sin_family == AF_INET)) {
634 new_dstaddr = &ifra->ifra_dstaddr;
635 maskIsNew = 1; /* We lie; but the effect's the same */
636 } else
637 new_dstaddr = NULL;
638 if (ifra->ifra_addr.sin_family == AF_INET &&
639 (hostIsNew || maskIsNew)) {
640 if (!newifaddr) {
641 mutex_enter(&in_ifaddr_lock);
642 LIST_REMOVE(ia, ia_hash);
643 IN_ADDRHASH_WRITER_REMOVE(ia);
644 mutex_exit(&in_ifaddr_lock);
645 need_reinsert = true;
646 }
647 error = in_ifinit(ifp, ia, &ifra->ifra_addr,
648 new_dstaddr, 0);
649 }
650 if ((ifp->if_flags & IFF_BROADCAST) &&
651 (ifra->ifra_broadaddr.sin_family == AF_INET))
652 ia->ia_broadaddr = ifra->ifra_broadaddr;
653 run_hook = true;
654 break;
655
656 case SIOCGIFALIAS:
657 ifra->ifra_mask = ia->ia_sockmask;
658 if ((ifp->if_flags & IFF_POINTOPOINT) &&
659 (ia->ia_dstaddr.sin_family == AF_INET))
660 ifra->ifra_dstaddr = ia->ia_dstaddr;
661 else if ((ifp->if_flags & IFF_BROADCAST) &&
662 (ia->ia_broadaddr.sin_family == AF_INET))
663 ifra->ifra_broadaddr = ia->ia_broadaddr;
664 else
665 memset(&ifra->ifra_broadaddr, 0,
666 sizeof(ifra->ifra_broadaddr));
667 break;
668
669 case SIOCGIFAFLAG_IN:
670 ifr->ifr_addrflags = ia->ia4_flags;
671 break;
672
673 case SIOCDIFADDR:
674 ia4_release(ia, &psref);
675 in_purgeaddr(&ia->ia_ifa);
676 ia = NULL;
677 run_hook = true;
678 break;
679
680 #ifdef MROUTING
681 case SIOCGETVIFCNT:
682 case SIOCGETSGCNT:
683 error = mrt_ioctl(so, cmd, data);
684 break;
685 #endif /* MROUTING */
686
687 default:
688 error = ENOTTY;
689 goto out;
690 }
691
692 /*
693 * XXX insert regardless of error to make in_purgeaddr below work.
694 * Need to improve.
695 */
696 if (newifaddr) {
697 ifaref(&ia->ia_ifa);
698 ifa_insert(ifp, &ia->ia_ifa);
699
700 mutex_enter(&in_ifaddr_lock);
701 TAILQ_INSERT_TAIL(&in_ifaddrhead, ia, ia_list);
702 IN_ADDRLIST_WRITER_INSERT_TAIL(ia);
703 LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr),
704 ia, ia_hash);
705 IN_ADDRHASH_WRITER_INSERT_HEAD(ia);
706 mutex_exit(&in_ifaddr_lock);
707 } else if (need_reinsert) {
708 mutex_enter(&in_ifaddr_lock);
709 LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr),
710 ia, ia_hash);
711 IN_ADDRHASH_WRITER_INSERT_HEAD(ia);
712 mutex_exit(&in_ifaddr_lock);
713 }
714
715 if (error == 0) {
716 if (run_hook)
717 (void)pfil_run_hooks(if_pfil,
718 (struct mbuf **)cmd, ifp, PFIL_IFADDR);
719 } else if (newifaddr) {
720 KASSERT(ia != NULL);
721 in_purgeaddr(&ia->ia_ifa);
722 ia = NULL;
723 }
724
725 out:
726 if (!newifaddr && ia != NULL)
727 ia4_release(ia, &psref);
728 curlwp_bindx(bound);
729 return error;
730 }
731
732 int
733 in_control(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
734 {
735 int error;
736
737 mutex_enter(softnet_lock);
738 error = in_control0(so, cmd, data, ifp);
739 mutex_exit(softnet_lock);
740
741 return error;
742 }
743
744 /* Add ownaddr as loopback rtentry. */
745 static void
746 in_ifaddlocal(struct ifaddr *ifa)
747 {
748 struct in_ifaddr *ia;
749
750 ia = (struct in_ifaddr *)ifa;
751 if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY ||
752 (ia->ia_ifp->if_flags & IFF_POINTOPOINT &&
753 in_hosteq(ia->ia_dstaddr.sin_addr, ia->ia_addr.sin_addr)))
754 {
755 rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
756 return;
757 }
758
759 rt_ifa_addlocal(ifa);
760 }
761
762 /* Remove loopback entry of ownaddr */
763 static void
764 in_ifremlocal(struct ifaddr *ifa)
765 {
766 struct in_ifaddr *ia, *p;
767 struct ifaddr *alt_ifa = NULL;
768 int ia_count = 0;
769 int s;
770 struct psref psref;
771 int bound = curlwp_bind();
772
773 ia = (struct in_ifaddr *)ifa;
774 /* Delete the entry if exactly one ifaddr matches the
775 * address, ifa->ifa_addr. */
776 s = pserialize_read_enter();
777 IN_ADDRLIST_READER_FOREACH(p) {
778 if (!in_hosteq(p->ia_addr.sin_addr, ia->ia_addr.sin_addr))
779 continue;
780 if (p->ia_ifp != ia->ia_ifp)
781 alt_ifa = &p->ia_ifa;
782 if (++ia_count > 1 && alt_ifa != NULL)
783 break;
784 }
785 if (alt_ifa != NULL && ia_count > 1)
786 ifa_acquire(alt_ifa, &psref);
787 pserialize_read_exit(s);
788
789 if (ia_count == 0)
790 goto out;
791
792 rt_ifa_remlocal(ifa, ia_count == 1 ? NULL : alt_ifa);
793 if (alt_ifa != NULL && ia_count > 1)
794 ifa_release(alt_ifa, &psref);
795 out:
796 curlwp_bindx(bound);
797 }
798
799 static void
800 in_scrubaddr(struct in_ifaddr *ia)
801 {
802
803 /* stop DAD processing */
804 if (ia->ia_dad_stop != NULL)
805 ia->ia_dad_stop(&ia->ia_ifa);
806
807 in_scrubprefix(ia);
808 in_ifremlocal(&ia->ia_ifa);
809
810 if (ia->ia_allhosts != NULL) {
811 in_delmulti(ia->ia_allhosts);
812 ia->ia_allhosts = NULL;
813 }
814 }
815
816 /*
817 * Depends on it isn't called in concurrent. It should be guaranteed
818 * by ifa->ifa_ifp's ioctl lock. The possible callers are in_control
819 * and if_purgeaddrs; the former is called iva ifa->ifa_ifp's ioctl
820 * and the latter is called via ifa->ifa_ifp's if_detach. The functions
821 * never be executed in concurrent.
822 */
823 void
824 in_purgeaddr(struct ifaddr *ifa)
825 {
826 struct in_ifaddr *ia = (void *) ifa;
827 struct ifnet *ifp = ifa->ifa_ifp;
828
829 KASSERT(!ifa_held(ifa));
830
831 in_scrubaddr(ia);
832
833 mutex_enter(&in_ifaddr_lock);
834 LIST_REMOVE(ia, ia_hash);
835 IN_ADDRHASH_WRITER_REMOVE(ia);
836 TAILQ_REMOVE(&in_ifaddrhead, ia, ia_list);
837 IN_ADDRLIST_WRITER_REMOVE(ia);
838 ifa_remove(ifp, &ia->ia_ifa);
839 mutex_exit(&in_ifaddr_lock);
840
841 IN_ADDRHASH_ENTRY_DESTROY(ia);
842 IN_ADDRLIST_ENTRY_DESTROY(ia);
843 ifafree(&ia->ia_ifa);
844 in_setmaxmtu();
845 }
846
847 void
848 in_purgeif(struct ifnet *ifp) /* MUST be called at splsoftnet() */
849 {
850 if_purgeaddrs(ifp, AF_INET, in_purgeaddr);
851 igmp_purgeif(ifp); /* manipulates pools */
852 #ifdef MROUTING
853 ip_mrouter_detach(ifp);
854 #endif
855 }
856
857 /*
858 * SIOC[GAD]LIFADDR.
859 * SIOCGLIFADDR: get first address. (???)
860 * SIOCGLIFADDR with IFLR_PREFIX:
861 * get first address that matches the specified prefix.
862 * SIOCALIFADDR: add the specified address.
863 * SIOCALIFADDR with IFLR_PREFIX:
864 * EINVAL since we can't deduce hostid part of the address.
865 * SIOCDLIFADDR: delete the specified address.
866 * SIOCDLIFADDR with IFLR_PREFIX:
867 * delete the first address that matches the specified prefix.
868 * return values:
869 * EINVAL on invalid parameters
870 * EADDRNOTAVAIL on prefix match failed/specified address not found
871 * other values may be returned from in_ioctl()
872 */
873 static int
874 in_lifaddr_ioctl(struct socket *so, u_long cmd, void *data,
875 struct ifnet *ifp)
876 {
877 struct if_laddrreq *iflr = (struct if_laddrreq *)data;
878 struct ifaddr *ifa;
879 struct sockaddr *sa;
880
881 /* sanity checks */
882 if (data == NULL || ifp == NULL) {
883 panic("invalid argument to in_lifaddr_ioctl");
884 /*NOTRECHED*/
885 }
886
887 switch (cmd) {
888 case SIOCGLIFADDR:
889 /* address must be specified on GET with IFLR_PREFIX */
890 if ((iflr->flags & IFLR_PREFIX) == 0)
891 break;
892 /*FALLTHROUGH*/
893 case SIOCALIFADDR:
894 case SIOCDLIFADDR:
895 /* address must be specified on ADD and DELETE */
896 sa = (struct sockaddr *)&iflr->addr;
897 if (sa->sa_family != AF_INET)
898 return EINVAL;
899 if (sa->sa_len != sizeof(struct sockaddr_in))
900 return EINVAL;
901 /* XXX need improvement */
902 sa = (struct sockaddr *)&iflr->dstaddr;
903 if (sa->sa_family != AF_UNSPEC && sa->sa_family != AF_INET)
904 return EINVAL;
905 if (sa->sa_len != 0 && sa->sa_len != sizeof(struct sockaddr_in))
906 return EINVAL;
907 break;
908 default: /*shouldn't happen*/
909 #if 0
910 panic("invalid cmd to in_lifaddr_ioctl");
911 /*NOTREACHED*/
912 #else
913 return EOPNOTSUPP;
914 #endif
915 }
916 if (sizeof(struct in_addr) * NBBY < iflr->prefixlen)
917 return EINVAL;
918
919 switch (cmd) {
920 case SIOCALIFADDR:
921 {
922 struct in_aliasreq ifra;
923
924 if (iflr->flags & IFLR_PREFIX)
925 return EINVAL;
926
927 /* copy args to in_aliasreq, perform ioctl(SIOCAIFADDR). */
928 memset(&ifra, 0, sizeof(ifra));
929 memcpy(ifra.ifra_name, iflr->iflr_name,
930 sizeof(ifra.ifra_name));
931
932 memcpy(&ifra.ifra_addr, &iflr->addr,
933 ((struct sockaddr *)&iflr->addr)->sa_len);
934
935 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/
936 memcpy(&ifra.ifra_dstaddr, &iflr->dstaddr,
937 ((struct sockaddr *)&iflr->dstaddr)->sa_len);
938 }
939
940 ifra.ifra_mask.sin_family = AF_INET;
941 ifra.ifra_mask.sin_len = sizeof(struct sockaddr_in);
942 in_len2mask(&ifra.ifra_mask.sin_addr, iflr->prefixlen);
943
944 return in_control(so, SIOCAIFADDR, &ifra, ifp);
945 }
946 case SIOCGLIFADDR:
947 case SIOCDLIFADDR:
948 {
949 struct in_ifaddr *ia;
950 struct in_addr mask, candidate, match;
951 struct sockaddr_in *sin;
952 int cmp, s;
953
954 memset(&mask, 0, sizeof(mask));
955 memset(&match, 0, sizeof(match)); /* XXX gcc */
956 if (iflr->flags & IFLR_PREFIX) {
957 /* lookup a prefix rather than address. */
958 in_len2mask(&mask, iflr->prefixlen);
959
960 sin = (struct sockaddr_in *)&iflr->addr;
961 match.s_addr = sin->sin_addr.s_addr;
962 match.s_addr &= mask.s_addr;
963
964 /* if you set extra bits, that's wrong */
965 if (match.s_addr != sin->sin_addr.s_addr)
966 return EINVAL;
967
968 cmp = 1;
969 } else {
970 if (cmd == SIOCGLIFADDR) {
971 /* on getting an address, take the 1st match */
972 cmp = 0; /*XXX*/
973 } else {
974 /* on deleting an address, do exact match */
975 in_len2mask(&mask, 32);
976 sin = (struct sockaddr_in *)&iflr->addr;
977 match.s_addr = sin->sin_addr.s_addr;
978
979 cmp = 1;
980 }
981 }
982
983 s = pserialize_read_enter();
984 IFADDR_READER_FOREACH(ifa, ifp) {
985 if (ifa->ifa_addr->sa_family != AF_INET)
986 continue;
987 if (cmp == 0)
988 break;
989 candidate.s_addr = ((struct sockaddr_in *)ifa->ifa_addr)->sin_addr.s_addr;
990 candidate.s_addr &= mask.s_addr;
991 if (candidate.s_addr == match.s_addr)
992 break;
993 }
994 if (ifa == NULL) {
995 pserialize_read_exit(s);
996 return EADDRNOTAVAIL;
997 }
998 ia = (struct in_ifaddr *)ifa;
999
1000 if (cmd == SIOCGLIFADDR) {
1001 /* fill in the if_laddrreq structure */
1002 memcpy(&iflr->addr, &ia->ia_addr, ia->ia_addr.sin_len);
1003
1004 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1005 memcpy(&iflr->dstaddr, &ia->ia_dstaddr,
1006 ia->ia_dstaddr.sin_len);
1007 } else
1008 memset(&iflr->dstaddr, 0, sizeof(iflr->dstaddr));
1009
1010 iflr->prefixlen =
1011 in_mask2len(&ia->ia_sockmask.sin_addr);
1012
1013 iflr->flags = 0; /*XXX*/
1014 pserialize_read_exit(s);
1015
1016 return 0;
1017 } else {
1018 struct in_aliasreq ifra;
1019
1020 /* fill in_aliasreq and do ioctl(SIOCDIFADDR) */
1021 memset(&ifra, 0, sizeof(ifra));
1022 memcpy(ifra.ifra_name, iflr->iflr_name,
1023 sizeof(ifra.ifra_name));
1024
1025 memcpy(&ifra.ifra_addr, &ia->ia_addr,
1026 ia->ia_addr.sin_len);
1027 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1028 memcpy(&ifra.ifra_dstaddr, &ia->ia_dstaddr,
1029 ia->ia_dstaddr.sin_len);
1030 }
1031 memcpy(&ifra.ifra_dstaddr, &ia->ia_sockmask,
1032 ia->ia_sockmask.sin_len);
1033 pserialize_read_exit(s);
1034
1035 return in_control(so, SIOCDIFADDR, &ifra, ifp);
1036 }
1037 }
1038 }
1039
1040 return EOPNOTSUPP; /*just for safety*/
1041 }
1042
1043 /*
1044 * Initialize an interface's internet address
1045 * and routing table entry.
1046 */
1047 int
1048 in_ifinit(struct ifnet *ifp, struct in_ifaddr *ia,
1049 const struct sockaddr_in *sin, const struct sockaddr_in *dst, int scrub)
1050 {
1051 u_int32_t i;
1052 struct sockaddr_in oldaddr, olddst;
1053 int s, oldflags, flags = RTF_UP, error, hostIsNew;
1054
1055 if (sin == NULL)
1056 sin = &ia->ia_addr;
1057 if (dst == NULL)
1058 dst = &ia->ia_dstaddr;
1059
1060 /*
1061 * Set up new addresses.
1062 */
1063 oldaddr = ia->ia_addr;
1064 olddst = ia->ia_dstaddr;
1065 oldflags = ia->ia4_flags;
1066 ia->ia_addr = *sin;
1067 ia->ia_dstaddr = *dst;
1068 hostIsNew = oldaddr.sin_family != AF_INET ||
1069 !in_hosteq(ia->ia_addr.sin_addr, oldaddr.sin_addr);
1070 if (!scrub)
1071 scrub = oldaddr.sin_family != ia->ia_dstaddr.sin_family ||
1072 !in_hosteq(ia->ia_dstaddr.sin_addr, olddst.sin_addr);
1073
1074 /*
1075 * Configure address flags.
1076 * We need to do this early because they maybe adjusted
1077 * by if_addr_init depending on the address.
1078 */
1079 if (ia->ia4_flags & IN_IFF_DUPLICATED) {
1080 ia->ia4_flags &= ~IN_IFF_DUPLICATED;
1081 hostIsNew = 1;
1082 }
1083 if (ifp->if_link_state == LINK_STATE_DOWN) {
1084 ia->ia4_flags |= IN_IFF_DETACHED;
1085 ia->ia4_flags &= ~IN_IFF_TENTATIVE;
1086 } else if (hostIsNew && if_do_dad(ifp))
1087 ia->ia4_flags |= IN_IFF_TRYTENTATIVE;
1088
1089 /*
1090 * Give the interface a chance to initialize
1091 * if this is its first address,
1092 * and to validate the address if necessary.
1093 */
1094 s = splnet();
1095 error = if_addr_init(ifp, &ia->ia_ifa, true);
1096 splx(s);
1097 /* Now clear the try tentative flag, it's job is done. */
1098 ia->ia4_flags &= ~IN_IFF_TRYTENTATIVE;
1099 if (error != 0) {
1100 ia->ia_addr = oldaddr;
1101 ia->ia_dstaddr = olddst;
1102 ia->ia4_flags = oldflags;
1103 return error;
1104 }
1105
1106 if (scrub || hostIsNew) {
1107 int newflags = ia->ia4_flags;
1108
1109 ia->ia_ifa.ifa_addr = sintosa(&oldaddr);
1110 ia->ia_ifa.ifa_dstaddr = sintosa(&olddst);
1111 ia->ia4_flags = oldflags;
1112 if (hostIsNew)
1113 in_scrubaddr(ia);
1114 else if (scrub)
1115 in_scrubprefix(ia);
1116 ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
1117 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
1118 ia->ia4_flags = newflags;
1119 }
1120
1121 /* Add the local route to the address */
1122 in_ifaddlocal(&ia->ia_ifa);
1123
1124 i = ia->ia_addr.sin_addr.s_addr;
1125 if (IN_CLASSA(i))
1126 ia->ia_netmask = IN_CLASSA_NET;
1127 else if (IN_CLASSB(i))
1128 ia->ia_netmask = IN_CLASSB_NET;
1129 else
1130 ia->ia_netmask = IN_CLASSC_NET;
1131 /*
1132 * The subnet mask usually includes at least the standard network part,
1133 * but may may be smaller in the case of supernetting.
1134 * If it is set, we believe it.
1135 */
1136 if (ia->ia_subnetmask == 0) {
1137 ia->ia_subnetmask = ia->ia_netmask;
1138 ia->ia_sockmask.sin_addr.s_addr = ia->ia_subnetmask;
1139 } else
1140 ia->ia_netmask &= ia->ia_subnetmask;
1141
1142 ia->ia_net = i & ia->ia_netmask;
1143 ia->ia_subnet = i & ia->ia_subnetmask;
1144 in_socktrim(&ia->ia_sockmask);
1145 /* re-calculate the "in_maxmtu" value */
1146 in_setmaxmtu();
1147 /*
1148 * Add route for the network.
1149 */
1150 ia->ia_ifa.ifa_metric = ifp->if_metric;
1151 if (ifp->if_flags & IFF_BROADCAST) {
1152 ia->ia_broadaddr.sin_addr.s_addr =
1153 ia->ia_subnet | ~ia->ia_subnetmask;
1154 ia->ia_netbroadcast.s_addr =
1155 ia->ia_net | ~ia->ia_netmask;
1156 } else if (ifp->if_flags & IFF_LOOPBACK) {
1157 ia->ia_dstaddr = ia->ia_addr;
1158 flags |= RTF_HOST;
1159 } else if (ifp->if_flags & IFF_POINTOPOINT) {
1160 if (ia->ia_dstaddr.sin_family != AF_INET)
1161 return (0);
1162 flags |= RTF_HOST;
1163 }
1164 error = in_addprefix(ia, flags);
1165 /*
1166 * If the interface supports multicast, join the "all hosts"
1167 * multicast group on that interface.
1168 */
1169 if ((ifp->if_flags & IFF_MULTICAST) != 0 && ia->ia_allhosts == NULL) {
1170 struct in_addr addr;
1171
1172 addr.s_addr = INADDR_ALLHOSTS_GROUP;
1173 ia->ia_allhosts = in_addmulti(&addr, ifp);
1174 }
1175
1176 if (hostIsNew &&
1177 ia->ia4_flags & IN_IFF_TENTATIVE &&
1178 if_do_dad(ifp))
1179 ia->ia_dad_start((struct ifaddr *)ia);
1180
1181 return error;
1182 }
1183
1184 #define rtinitflags(x) \
1185 ((((x)->ia_ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) != 0) \
1186 ? RTF_HOST : 0)
1187
1188 /*
1189 * add a route to prefix ("connected route" in cisco terminology).
1190 * does nothing if there's some interface address with the same prefix already.
1191 */
1192 static int
1193 in_addprefix(struct in_ifaddr *target, int flags)
1194 {
1195 struct in_ifaddr *ia;
1196 struct in_addr prefix, mask, p;
1197 int error;
1198 int s;
1199
1200 if ((flags & RTF_HOST) != 0)
1201 prefix = target->ia_dstaddr.sin_addr;
1202 else {
1203 prefix = target->ia_addr.sin_addr;
1204 mask = target->ia_sockmask.sin_addr;
1205 prefix.s_addr &= mask.s_addr;
1206 }
1207
1208 s = pserialize_read_enter();
1209 IN_ADDRLIST_READER_FOREACH(ia) {
1210 if (rtinitflags(ia))
1211 p = ia->ia_dstaddr.sin_addr;
1212 else {
1213 p = ia->ia_addr.sin_addr;
1214 p.s_addr &= ia->ia_sockmask.sin_addr.s_addr;
1215 }
1216
1217 if (prefix.s_addr != p.s_addr)
1218 continue;
1219
1220 /*
1221 * if we got a matching prefix route inserted by other
1222 * interface address, we don't need to bother
1223 *
1224 * XXX RADIX_MPATH implications here? -dyoung
1225 */
1226 if (ia->ia_flags & IFA_ROUTE) {
1227 pserialize_read_exit(s);
1228 return 0;
1229 }
1230 }
1231 pserialize_read_exit(s);
1232
1233 /*
1234 * noone seem to have prefix route. insert it.
1235 */
1236 error = rtinit(&target->ia_ifa, RTM_ADD, flags);
1237 if (error == 0)
1238 target->ia_flags |= IFA_ROUTE;
1239 else if (error == EEXIST) {
1240 /*
1241 * the fact the route already exists is not an error.
1242 */
1243 error = 0;
1244 }
1245 return error;
1246 }
1247
1248 /*
1249 * remove a route to prefix ("connected route" in cisco terminology).
1250 * re-installs the route by using another interface address, if there's one
1251 * with the same prefix (otherwise we lose the route mistakenly).
1252 */
1253 static int
1254 in_scrubprefix(struct in_ifaddr *target)
1255 {
1256 struct in_ifaddr *ia;
1257 struct in_addr prefix, mask, p;
1258 int error;
1259 int s;
1260
1261 /* If we don't have IFA_ROUTE we have nothing to do */
1262 if ((target->ia_flags & IFA_ROUTE) == 0)
1263 return 0;
1264
1265 if (rtinitflags(target))
1266 prefix = target->ia_dstaddr.sin_addr;
1267 else {
1268 prefix = target->ia_addr.sin_addr;
1269 mask = target->ia_sockmask.sin_addr;
1270 prefix.s_addr &= mask.s_addr;
1271 }
1272
1273 s = pserialize_read_enter();
1274 IN_ADDRLIST_READER_FOREACH(ia) {
1275 if (rtinitflags(ia))
1276 p = ia->ia_dstaddr.sin_addr;
1277 else {
1278 p = ia->ia_addr.sin_addr;
1279 p.s_addr &= ia->ia_sockmask.sin_addr.s_addr;
1280 }
1281
1282 if (prefix.s_addr != p.s_addr)
1283 continue;
1284
1285 /*
1286 * if we got a matching prefix route, move IFA_ROUTE to him
1287 */
1288 if ((ia->ia_flags & IFA_ROUTE) == 0) {
1289 struct psref psref;
1290 int bound = curlwp_bind();
1291
1292 ia4_acquire(ia, &psref);
1293 pserialize_read_exit(s);
1294
1295 rtinit(&target->ia_ifa, RTM_DELETE,
1296 rtinitflags(target));
1297 target->ia_flags &= ~IFA_ROUTE;
1298
1299 error = rtinit(&ia->ia_ifa, RTM_ADD,
1300 rtinitflags(ia) | RTF_UP);
1301 if (error == 0)
1302 ia->ia_flags |= IFA_ROUTE;
1303
1304 ia4_release(ia, &psref);
1305 curlwp_bindx(bound);
1306
1307 return error;
1308 }
1309 }
1310 pserialize_read_exit(s);
1311
1312 /*
1313 * noone seem to have prefix route. remove it.
1314 */
1315 rtinit(&target->ia_ifa, RTM_DELETE, rtinitflags(target));
1316 target->ia_flags &= ~IFA_ROUTE;
1317 return 0;
1318 }
1319
1320 #undef rtinitflags
1321
1322 /*
1323 * Return 1 if the address might be a local broadcast address.
1324 */
1325 int
1326 in_broadcast(struct in_addr in, struct ifnet *ifp)
1327 {
1328 struct ifaddr *ifa;
1329 int s;
1330
1331 KASSERT(ifp != NULL);
1332
1333 if (in.s_addr == INADDR_BROADCAST ||
1334 in_nullhost(in))
1335 return 1;
1336 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1337 return 0;
1338 /*
1339 * Look through the list of addresses for a match
1340 * with a broadcast address.
1341 */
1342 #define ia (ifatoia(ifa))
1343 s = pserialize_read_enter();
1344 IFADDR_READER_FOREACH(ifa, ifp) {
1345 if (ifa->ifa_addr->sa_family == AF_INET &&
1346 !in_hosteq(in, ia->ia_addr.sin_addr) &&
1347 (in_hosteq(in, ia->ia_broadaddr.sin_addr) ||
1348 in_hosteq(in, ia->ia_netbroadcast) ||
1349 (hostzeroisbroadcast &&
1350 /*
1351 * Check for old-style (host 0) broadcast.
1352 */
1353 (in.s_addr == ia->ia_subnet ||
1354 in.s_addr == ia->ia_net)))) {
1355 pserialize_read_exit(s);
1356 return 1;
1357 }
1358 }
1359 pserialize_read_exit(s);
1360 return (0);
1361 #undef ia
1362 }
1363
1364 /*
1365 * perform DAD when interface becomes IFF_UP.
1366 */
1367 void
1368 in_if_link_up(struct ifnet *ifp)
1369 {
1370 struct ifaddr *ifa;
1371 struct in_ifaddr *ia;
1372 int s, bound;
1373
1374 /* Ensure it's sane to run DAD */
1375 if (ifp->if_link_state == LINK_STATE_DOWN)
1376 return;
1377 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING))
1378 return;
1379
1380 bound = curlwp_bind();
1381 s = pserialize_read_enter();
1382 IFADDR_READER_FOREACH(ifa, ifp) {
1383 struct psref psref;
1384
1385 if (ifa->ifa_addr->sa_family != AF_INET)
1386 continue;
1387 ifa_acquire(ifa, &psref);
1388 pserialize_read_exit(s);
1389
1390 ia = (struct in_ifaddr *)ifa;
1391
1392 /* If detached then mark as tentative */
1393 if (ia->ia4_flags & IN_IFF_DETACHED) {
1394 ia->ia4_flags &= ~IN_IFF_DETACHED;
1395 if (if_do_dad(ifp) && ia->ia_dad_start != NULL)
1396 ia->ia4_flags |= IN_IFF_TENTATIVE;
1397 else if ((ia->ia4_flags & IN_IFF_TENTATIVE) == 0)
1398 rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
1399 }
1400
1401 if (ia->ia4_flags & IN_IFF_TENTATIVE) {
1402 /* Clear the duplicated flag as we're starting DAD. */
1403 ia->ia4_flags &= ~IN_IFF_DUPLICATED;
1404 ia->ia_dad_start(ifa);
1405 }
1406
1407 s = pserialize_read_enter();
1408 ifa_release(ifa, &psref);
1409 }
1410 pserialize_read_exit(s);
1411 curlwp_bindx(bound);
1412 }
1413
1414 void
1415 in_if_up(struct ifnet *ifp)
1416 {
1417
1418 /* interface may not support link state, so bring it up also */
1419 in_if_link_up(ifp);
1420 }
1421
1422 /*
1423 * Mark all addresses as detached.
1424 */
1425 void
1426 in_if_link_down(struct ifnet *ifp)
1427 {
1428 struct ifaddr *ifa;
1429 struct in_ifaddr *ia;
1430 int s, bound;
1431
1432 bound = curlwp_bind();
1433 s = pserialize_read_enter();
1434 IFADDR_READER_FOREACH(ifa, ifp) {
1435 struct psref psref;
1436
1437 if (ifa->ifa_addr->sa_family != AF_INET)
1438 continue;
1439 ifa_acquire(ifa, &psref);
1440 pserialize_read_exit(s);
1441
1442 ia = (struct in_ifaddr *)ifa;
1443
1444 /* Stop DAD processing */
1445 if (ia->ia_dad_stop != NULL)
1446 ia->ia_dad_stop(ifa);
1447
1448 /*
1449 * Mark the address as detached.
1450 */
1451 if (!(ia->ia4_flags & IN_IFF_DETACHED)) {
1452 ia->ia4_flags |= IN_IFF_DETACHED;
1453 ia->ia4_flags &=
1454 ~(IN_IFF_TENTATIVE | IN_IFF_DUPLICATED);
1455 rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
1456 }
1457
1458 s = pserialize_read_enter();
1459 ifa_release(ifa, &psref);
1460 }
1461 pserialize_read_exit(s);
1462 curlwp_bindx(bound);
1463 }
1464
1465 void
1466 in_if_down(struct ifnet *ifp)
1467 {
1468
1469 in_if_link_down(ifp);
1470 }
1471
1472 void
1473 in_if_link_state_change(struct ifnet *ifp, int link_state)
1474 {
1475
1476 switch (link_state) {
1477 case LINK_STATE_DOWN:
1478 in_if_link_down(ifp);
1479 break;
1480 case LINK_STATE_UP:
1481 in_if_link_up(ifp);
1482 break;
1483 }
1484 }
1485
1486 /*
1487 * in_lookup_multi: look up the in_multi record for a given IP
1488 * multicast address on a given interface. If no matching record is
1489 * found, return NULL.
1490 */
1491 struct in_multi *
1492 in_lookup_multi(struct in_addr addr, ifnet_t *ifp)
1493 {
1494 struct in_multi *inm;
1495
1496 KASSERT(rw_lock_held(&in_multilock));
1497
1498 LIST_FOREACH(inm, &IN_MULTI_HASH(addr.s_addr, ifp), inm_list) {
1499 if (in_hosteq(inm->inm_addr, addr) && inm->inm_ifp == ifp)
1500 break;
1501 }
1502 return inm;
1503 }
1504
1505 /*
1506 * in_multi_group: check whether the address belongs to an IP multicast
1507 * group we are joined on this interface. Returns true or false.
1508 */
1509 bool
1510 in_multi_group(struct in_addr addr, ifnet_t *ifp, int flags)
1511 {
1512 bool ingroup;
1513
1514 if (__predict_true(flags & IP_IGMP_MCAST) == 0) {
1515 rw_enter(&in_multilock, RW_READER);
1516 ingroup = in_lookup_multi(addr, ifp) != NULL;
1517 rw_exit(&in_multilock);
1518 } else {
1519 /* XXX Recursive call from ip_output(). */
1520 KASSERT(rw_lock_held(&in_multilock));
1521 ingroup = in_lookup_multi(addr, ifp) != NULL;
1522 }
1523 return ingroup;
1524 }
1525
1526 /*
1527 * Add an address to the list of IP multicast addresses for a given interface.
1528 */
1529 struct in_multi *
1530 in_addmulti(struct in_addr *ap, ifnet_t *ifp)
1531 {
1532 struct sockaddr_in sin;
1533 struct in_multi *inm;
1534
1535 /*
1536 * See if address already in list.
1537 */
1538 rw_enter(&in_multilock, RW_WRITER);
1539 inm = in_lookup_multi(*ap, ifp);
1540 if (inm != NULL) {
1541 /*
1542 * Found it; just increment the reference count.
1543 */
1544 inm->inm_refcount++;
1545 rw_exit(&in_multilock);
1546 return inm;
1547 }
1548
1549 /*
1550 * New address; allocate a new multicast record.
1551 */
1552 inm = pool_get(&inmulti_pool, PR_NOWAIT);
1553 if (inm == NULL) {
1554 rw_exit(&in_multilock);
1555 return NULL;
1556 }
1557 inm->inm_addr = *ap;
1558 inm->inm_ifp = ifp;
1559 inm->inm_refcount = 1;
1560
1561 /*
1562 * Ask the network driver to update its multicast reception
1563 * filter appropriately for the new address.
1564 */
1565 sockaddr_in_init(&sin, ap, 0);
1566 if (if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin)) != 0) {
1567 rw_exit(&in_multilock);
1568 pool_put(&inmulti_pool, inm);
1569 return NULL;
1570 }
1571
1572 /*
1573 * Let IGMP know that we have joined a new IP multicast group.
1574 */
1575 if (igmp_joingroup(inm) != 0) {
1576 rw_exit(&in_multilock);
1577 pool_put(&inmulti_pool, inm);
1578 return NULL;
1579 }
1580 LIST_INSERT_HEAD(
1581 &IN_MULTI_HASH(inm->inm_addr.s_addr, ifp),
1582 inm, inm_list);
1583 in_multientries++;
1584 rw_exit(&in_multilock);
1585
1586 return inm;
1587 }
1588
1589 /*
1590 * Delete a multicast address record.
1591 */
1592 void
1593 in_delmulti(struct in_multi *inm)
1594 {
1595 struct sockaddr_in sin;
1596
1597 rw_enter(&in_multilock, RW_WRITER);
1598 if (--inm->inm_refcount > 0) {
1599 rw_exit(&in_multilock);
1600 return;
1601 }
1602
1603 /*
1604 * No remaining claims to this record; let IGMP know that
1605 * we are leaving the multicast group.
1606 */
1607 igmp_leavegroup(inm);
1608
1609 /*
1610 * Notify the network driver to update its multicast reception
1611 * filter.
1612 */
1613 sockaddr_in_init(&sin, &inm->inm_addr, 0);
1614 if_mcast_op(inm->inm_ifp, SIOCDELMULTI, sintosa(&sin));
1615
1616 /*
1617 * Unlink from list.
1618 */
1619 LIST_REMOVE(inm, inm_list);
1620 in_multientries--;
1621 rw_exit(&in_multilock);
1622
1623 pool_put(&inmulti_pool, inm);
1624 }
1625
1626 /*
1627 * in_next_multi: step through all of the in_multi records, one at a time.
1628 * The current position is remembered in "step", which the caller must
1629 * provide. in_first_multi(), below, must be called to initialize "step"
1630 * and get the first record. Both macros return a NULL "inm" when there
1631 * are no remaining records.
1632 */
1633 struct in_multi *
1634 in_next_multi(struct in_multistep *step)
1635 {
1636 struct in_multi *inm;
1637
1638 KASSERT(rw_lock_held(&in_multilock));
1639
1640 while (step->i_inm == NULL && step->i_n < IN_MULTI_HASH_SIZE) {
1641 step->i_inm = LIST_FIRST(&in_multihashtbl[++step->i_n]);
1642 }
1643 if ((inm = step->i_inm) != NULL) {
1644 step->i_inm = LIST_NEXT(inm, inm_list);
1645 }
1646 return inm;
1647 }
1648
1649 struct in_multi *
1650 in_first_multi(struct in_multistep *step)
1651 {
1652 KASSERT(rw_lock_held(&in_multilock));
1653
1654 step->i_n = 0;
1655 step->i_inm = LIST_FIRST(&in_multihashtbl[0]);
1656 return in_next_multi(step);
1657 }
1658
1659 void
1660 in_multi_lock(int op)
1661 {
1662 rw_enter(&in_multilock, op);
1663 }
1664
1665 void
1666 in_multi_unlock(void)
1667 {
1668 rw_exit(&in_multilock);
1669 }
1670
1671 int
1672 in_multi_lock_held(void)
1673 {
1674 return rw_lock_held(&in_multilock);
1675 }
1676
1677 struct in_ifaddr *
1678 in_selectsrc(struct sockaddr_in *sin, struct route *ro,
1679 int soopts, struct ip_moptions *mopts, int *errorp, struct psref *psref)
1680 {
1681 struct rtentry *rt = NULL;
1682 struct in_ifaddr *ia = NULL;
1683
1684 KASSERT(ISSET(curlwp->l_pflag, LP_BOUND));
1685 /*
1686 * If route is known or can be allocated now, take the
1687 * source address from the interface. Otherwise, punt.
1688 */
1689 if ((soopts & SO_DONTROUTE) != 0)
1690 rtcache_free(ro);
1691 else {
1692 union {
1693 struct sockaddr dst;
1694 struct sockaddr_in dst4;
1695 } u;
1696
1697 sockaddr_in_init(&u.dst4, &sin->sin_addr, 0);
1698 rt = rtcache_lookup(ro, &u.dst);
1699 }
1700 /*
1701 * If we found a route, use the address
1702 * corresponding to the outgoing interface
1703 * unless it is the loopback (in case a route
1704 * to our address on another net goes to loopback).
1705 *
1706 * XXX Is this still true? Do we care?
1707 */
1708 if (rt != NULL && (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
1709 int s;
1710 struct ifaddr *ifa;
1711 /*
1712 * Just in case. May not need to do this workaround.
1713 * Revisit when working on rtentry MP-ification.
1714 */
1715 s = pserialize_read_enter();
1716 IFADDR_READER_FOREACH(ifa, rt->rt_ifp) {
1717 if (ifa == rt->rt_ifa)
1718 break;
1719 }
1720 if (ifa != NULL)
1721 ifa_acquire(ifa, psref);
1722 pserialize_read_exit(s);
1723
1724 ia = ifatoia(ifa);
1725 }
1726 if (ia == NULL) {
1727 u_int16_t fport = sin->sin_port;
1728 struct ifaddr *ifa;
1729 int s;
1730
1731 sin->sin_port = 0;
1732 ifa = ifa_ifwithladdr_psref(sintosa(sin), psref);
1733 sin->sin_port = fport;
1734 if (ifa == NULL) {
1735 /* Find 1st non-loopback AF_INET address */
1736 s = pserialize_read_enter();
1737 IN_ADDRLIST_READER_FOREACH(ia) {
1738 if (!(ia->ia_ifp->if_flags & IFF_LOOPBACK))
1739 break;
1740 }
1741 if (ia != NULL)
1742 ia4_acquire(ia, psref);
1743 pserialize_read_exit(s);
1744 } else {
1745 /* ia is already referenced by psref */
1746 ia = ifatoia(ifa);
1747 }
1748 if (ia == NULL) {
1749 *errorp = EADDRNOTAVAIL;
1750 return NULL;
1751 }
1752 }
1753 /*
1754 * If the destination address is multicast and an outgoing
1755 * interface has been set as a multicast option, use the
1756 * address of that interface as our source address.
1757 */
1758 if (IN_MULTICAST(sin->sin_addr.s_addr) && mopts != NULL) {
1759 struct ip_moptions *imo;
1760
1761 imo = mopts;
1762 if (imo->imo_multicast_if_index != 0) {
1763 struct ifnet *ifp;
1764 int s;
1765
1766 if (ia != NULL)
1767 ia4_release(ia, psref);
1768 s = pserialize_read_enter();
1769 ifp = if_byindex(imo->imo_multicast_if_index);
1770 if (ifp != NULL) {
1771 /* XXX */
1772 ia = in_get_ia_from_ifp_psref(ifp, psref);
1773 } else
1774 ia = NULL;
1775 if (ia == NULL || ia->ia4_flags & IN_IFF_NOTREADY) {
1776 pserialize_read_exit(s);
1777 if (ia != NULL)
1778 ia4_release(ia, psref);
1779 *errorp = EADDRNOTAVAIL;
1780 return NULL;
1781 }
1782 pserialize_read_exit(s);
1783 }
1784 }
1785 if (ia->ia_ifa.ifa_getifa != NULL) {
1786 ia = ifatoia((*ia->ia_ifa.ifa_getifa)(&ia->ia_ifa,
1787 sintosa(sin)));
1788 if (ia == NULL) {
1789 *errorp = EADDRNOTAVAIL;
1790 return NULL;
1791 }
1792 /* FIXME NOMPSAFE */
1793 ia4_acquire(ia, psref);
1794 }
1795 #ifdef GETIFA_DEBUG
1796 else
1797 printf("%s: missing ifa_getifa\n", __func__);
1798 #endif
1799 return ia;
1800 }
1801
1802 #if NARP > 0
1803
1804 struct in_llentry {
1805 struct llentry base;
1806 };
1807
1808 #define IN_LLTBL_DEFAULT_HSIZE 32
1809 #define IN_LLTBL_HASH(k, h) \
1810 (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1))
1811
1812 /*
1813 * Do actual deallocation of @lle.
1814 * Called by LLE_FREE_LOCKED when number of references
1815 * drops to zero.
1816 */
1817 static void
1818 in_lltable_destroy_lle(struct llentry *lle)
1819 {
1820
1821 LLE_WUNLOCK(lle);
1822 LLE_LOCK_DESTROY(lle);
1823 kmem_intr_free(lle, sizeof(*lle));
1824 }
1825
1826 static struct llentry *
1827 in_lltable_new(struct in_addr addr4, u_int flags)
1828 {
1829 struct in_llentry *lle;
1830
1831 lle = kmem_intr_zalloc(sizeof(*lle), KM_NOSLEEP);
1832 if (lle == NULL) /* NB: caller generates msg */
1833 return NULL;
1834
1835 /*
1836 * For IPv4 this will trigger "arpresolve" to generate
1837 * an ARP request.
1838 */
1839 lle->base.la_expire = time_uptime; /* mark expired */
1840 lle->base.r_l3addr.addr4 = addr4;
1841 lle->base.lle_refcnt = 1;
1842 lle->base.lle_free = in_lltable_destroy_lle;
1843 LLE_LOCK_INIT(&lle->base);
1844 callout_init(&lle->base.la_timer, CALLOUT_MPSAFE);
1845
1846 return (&lle->base);
1847 }
1848
1849 #define IN_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \
1850 (((ntohl((d).s_addr) ^ (a)->sin_addr.s_addr) & (m)->sin_addr.s_addr)) == 0 )
1851
1852 static int
1853 in_lltable_match_prefix(const struct sockaddr *prefix,
1854 const struct sockaddr *mask, u_int flags, struct llentry *lle)
1855 {
1856 const struct sockaddr_in *pfx = (const struct sockaddr_in *)prefix;
1857 const struct sockaddr_in *msk = (const struct sockaddr_in *)mask;
1858
1859 /*
1860 * (flags & LLE_STATIC) means deleting all entries
1861 * including static ARP entries.
1862 */
1863 if (IN_ARE_MASKED_ADDR_EQUAL(lle->r_l3addr.addr4, pfx, msk) &&
1864 ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC)))
1865 return (1);
1866
1867 return (0);
1868 }
1869
1870 static void
1871 in_lltable_free_entry(struct lltable *llt, struct llentry *lle)
1872 {
1873 struct ifnet *ifp __diagused;
1874 size_t pkts_dropped;
1875
1876 LLE_WLOCK_ASSERT(lle);
1877 KASSERT(llt != NULL);
1878
1879 /* Unlink entry from table if not already */
1880 if ((lle->la_flags & LLE_LINKED) != 0) {
1881 ifp = llt->llt_ifp;
1882 IF_AFDATA_WLOCK_ASSERT(ifp);
1883 lltable_unlink_entry(llt, lle);
1884 }
1885
1886 /* cancel timer */
1887 if (callout_halt(&lle->lle_timer, &lle->lle_lock))
1888 LLE_REMREF(lle);
1889
1890 /* Drop hold queue */
1891 pkts_dropped = llentry_free(lle);
1892 arp_stat_add(ARP_STAT_DFRDROPPED, (uint64_t)pkts_dropped);
1893 }
1894
1895 static int
1896 in_lltable_rtcheck(struct ifnet *ifp, u_int flags, const struct sockaddr *l3addr)
1897 {
1898 struct rtentry *rt;
1899 int error = EINVAL;
1900
1901 KASSERTMSG(l3addr->sa_family == AF_INET,
1902 "sin_family %d", l3addr->sa_family);
1903
1904 rt = rtalloc1(l3addr, 0);
1905 if (rt == NULL)
1906 return error;
1907
1908 /*
1909 * If the gateway for an existing host route matches the target L3
1910 * address, which is a special route inserted by some implementation
1911 * such as MANET, and the interface is of the correct type, then
1912 * allow for ARP to proceed.
1913 */
1914 if (rt->rt_flags & RTF_GATEWAY) {
1915 if (!(rt->rt_flags & RTF_HOST) || !rt->rt_ifp ||
1916 rt->rt_ifp->if_type != IFT_ETHER ||
1917 #ifdef __FreeBSD__
1918 (rt->rt_ifp->if_flags & (IFF_NOARP | IFF_STATICARP)) != 0 ||
1919 #else
1920 (rt->rt_ifp->if_flags & IFF_NOARP) != 0 ||
1921 #endif
1922 memcmp(rt->rt_gateway->sa_data, l3addr->sa_data,
1923 sizeof(in_addr_t)) != 0) {
1924 goto error;
1925 }
1926 }
1927
1928 /*
1929 * Make sure that at least the destination address is covered
1930 * by the route. This is for handling the case where 2 or more
1931 * interfaces have the same prefix. An incoming packet arrives
1932 * on one interface and the corresponding outgoing packet leaves
1933 * another interface.
1934 */
1935 if (!(rt->rt_flags & RTF_HOST) && rt->rt_ifp != ifp) {
1936 const char *sa, *mask, *addr, *lim;
1937 int len;
1938
1939 mask = (const char *)rt_mask(rt);
1940 /*
1941 * Just being extra cautious to avoid some custom
1942 * code getting into trouble.
1943 */
1944 if (mask == NULL)
1945 goto error;
1946
1947 sa = (const char *)rt_getkey(rt);
1948 addr = (const char *)l3addr;
1949 len = ((const struct sockaddr_in *)l3addr)->sin_len;
1950 lim = addr + len;
1951
1952 for ( ; addr < lim; sa++, mask++, addr++) {
1953 if ((*sa ^ *addr) & *mask) {
1954 #ifdef DIAGNOSTIC
1955 log(LOG_INFO, "IPv4 address: \"%s\" is not on the network\n",
1956 inet_ntoa(((const struct sockaddr_in *)l3addr)->sin_addr));
1957 #endif
1958 goto error;
1959 }
1960 }
1961 }
1962
1963 error = 0;
1964 error:
1965 rtfree(rt);
1966 return error;
1967 }
1968
1969 static inline uint32_t
1970 in_lltable_hash_dst(const struct in_addr dst, uint32_t hsize)
1971 {
1972
1973 return (IN_LLTBL_HASH(dst.s_addr, hsize));
1974 }
1975
1976 static uint32_t
1977 in_lltable_hash(const struct llentry *lle, uint32_t hsize)
1978 {
1979
1980 return (in_lltable_hash_dst(lle->r_l3addr.addr4, hsize));
1981 }
1982
1983 static void
1984 in_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa)
1985 {
1986 struct sockaddr_in *sin;
1987
1988 sin = (struct sockaddr_in *)sa;
1989 memset(sin, 0, sizeof(*sin));
1990 sin->sin_family = AF_INET;
1991 sin->sin_len = sizeof(*sin);
1992 sin->sin_addr = lle->r_l3addr.addr4;
1993 }
1994
1995 static inline struct llentry *
1996 in_lltable_find_dst(struct lltable *llt, struct in_addr dst)
1997 {
1998 struct llentry *lle;
1999 struct llentries *lleh;
2000 u_int hashidx;
2001
2002 hashidx = in_lltable_hash_dst(dst, llt->llt_hsize);
2003 lleh = &llt->lle_head[hashidx];
2004 LIST_FOREACH(lle, lleh, lle_next) {
2005 if (lle->la_flags & LLE_DELETED)
2006 continue;
2007 if (lle->r_l3addr.addr4.s_addr == dst.s_addr)
2008 break;
2009 }
2010
2011 return (lle);
2012 }
2013
2014 static int
2015 in_lltable_delete(struct lltable *llt, u_int flags,
2016 const struct sockaddr *l3addr)
2017 {
2018 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
2019 struct ifnet *ifp __diagused = llt->llt_ifp;
2020 struct llentry *lle;
2021
2022 IF_AFDATA_WLOCK_ASSERT(ifp);
2023 KASSERTMSG(l3addr->sa_family == AF_INET,
2024 "sin_family %d", l3addr->sa_family);
2025
2026 lle = in_lltable_find_dst(llt, sin->sin_addr);
2027 if (lle == NULL) {
2028 #ifdef DIAGNOSTIC
2029 log(LOG_INFO, "interface address is missing from cache = %p in delete\n", lle);
2030 #endif
2031 return (ENOENT);
2032 }
2033
2034 LLE_WLOCK(lle);
2035 lle->la_flags |= LLE_DELETED;
2036 #ifdef DIAGNOSTIC
2037 log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle);
2038 #endif
2039 if ((lle->la_flags & (LLE_STATIC | LLE_IFADDR)) == LLE_STATIC)
2040 llentry_free(lle);
2041 else
2042 LLE_WUNLOCK(lle);
2043
2044 return (0);
2045 }
2046
2047 static struct llentry *
2048 in_lltable_create(struct lltable *llt, u_int flags, const struct sockaddr *l3addr)
2049 {
2050 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
2051 struct ifnet *ifp = llt->llt_ifp;
2052 struct llentry *lle;
2053
2054 IF_AFDATA_WLOCK_ASSERT(ifp);
2055 KASSERTMSG(l3addr->sa_family == AF_INET,
2056 "sin_family %d", l3addr->sa_family);
2057
2058 lle = in_lltable_find_dst(llt, sin->sin_addr);
2059
2060 if (lle != NULL) {
2061 LLE_WLOCK(lle);
2062 return (lle);
2063 }
2064
2065 /* no existing record, we need to create new one */
2066
2067 /*
2068 * A route that covers the given address must have
2069 * been installed 1st because we are doing a resolution,
2070 * verify this.
2071 */
2072 if (!(flags & LLE_IFADDR) &&
2073 in_lltable_rtcheck(ifp, flags, l3addr) != 0)
2074 return (NULL);
2075
2076 lle = in_lltable_new(sin->sin_addr, flags);
2077 if (lle == NULL) {
2078 log(LOG_INFO, "lla_lookup: new lle malloc failed\n");
2079 return (NULL);
2080 }
2081 lle->la_flags = flags;
2082 if ((flags & LLE_IFADDR) == LLE_IFADDR) {
2083 memcpy(&lle->ll_addr, CLLADDR(ifp->if_sadl), ifp->if_addrlen);
2084 lle->la_flags |= (LLE_VALID | LLE_STATIC);
2085 }
2086
2087 lltable_link_entry(llt, lle);
2088 LLE_WLOCK(lle);
2089
2090 return (lle);
2091 }
2092
2093 /*
2094 * Return NULL if not found or marked for deletion.
2095 * If found return lle read locked.
2096 */
2097 static struct llentry *
2098 in_lltable_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr)
2099 {
2100 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
2101 struct llentry *lle;
2102
2103 IF_AFDATA_LOCK_ASSERT(llt->llt_ifp);
2104 KASSERTMSG(l3addr->sa_family == AF_INET,
2105 "sin_family %d", l3addr->sa_family);
2106
2107 lle = in_lltable_find_dst(llt, sin->sin_addr);
2108
2109 if (lle == NULL)
2110 return NULL;
2111
2112 if (flags & LLE_EXCLUSIVE)
2113 LLE_WLOCK(lle);
2114 else
2115 LLE_RLOCK(lle);
2116
2117 return lle;
2118 }
2119
2120 static int
2121 in_lltable_dump_entry(struct lltable *llt, struct llentry *lle,
2122 struct rt_walkarg *w)
2123 {
2124 struct sockaddr_in sin;
2125
2126 LLTABLE_LOCK_ASSERT();
2127
2128 /* skip deleted entries */
2129 if (lle->la_flags & LLE_DELETED)
2130 return 0;
2131
2132 sockaddr_in_init(&sin, &lle->r_l3addr.addr4, 0);
2133
2134 return lltable_dump_entry(llt, lle, w, sintosa(&sin));
2135 }
2136
2137 #endif /* NARP > 0 */
2138
2139 static int
2140 in_multicast_sysctl(SYSCTLFN_ARGS)
2141 {
2142 struct ifnet *ifp;
2143 struct ifaddr *ifa;
2144 struct in_ifaddr *ifa4;
2145 struct in_multi *inm;
2146 uint32_t tmp;
2147 int error;
2148 size_t written;
2149 struct psref psref;
2150 int bound;
2151
2152 if (namelen != 1)
2153 return EINVAL;
2154
2155 bound = curlwp_bind();
2156 ifp = if_get_byindex(name[0], &psref);
2157 if (ifp == NULL) {
2158 curlwp_bindx(bound);
2159 return ENODEV;
2160 }
2161
2162 if (oldp == NULL) {
2163 *oldlenp = 0;
2164 IFADDR_FOREACH(ifa, ifp) {
2165 if (ifa->ifa_addr->sa_family != AF_INET)
2166 continue;
2167 ifa4 = (void *)ifa;
2168 LIST_FOREACH(inm, &ifa4->ia_multiaddrs, inm_list) {
2169 *oldlenp += 2 * sizeof(struct in_addr) +
2170 sizeof(uint32_t);
2171 }
2172 }
2173 if_put(ifp, &psref);
2174 curlwp_bindx(bound);
2175 return 0;
2176 }
2177
2178 error = 0;
2179 written = 0;
2180 IFADDR_FOREACH(ifa, ifp) {
2181 if (ifa->ifa_addr->sa_family != AF_INET)
2182 continue;
2183 ifa4 = (void *)ifa;
2184 LIST_FOREACH(inm, &ifa4->ia_multiaddrs, inm_list) {
2185 if (written + 2 * sizeof(struct in_addr) +
2186 sizeof(uint32_t) > *oldlenp)
2187 goto done;
2188 error = sysctl_copyout(l, &ifa4->ia_addr.sin_addr,
2189 oldp, sizeof(struct in_addr));
2190 if (error)
2191 goto done;
2192 oldp = (char *)oldp + sizeof(struct in_addr);
2193 written += sizeof(struct in_addr);
2194 error = sysctl_copyout(l, &inm->inm_addr,
2195 oldp, sizeof(struct in_addr));
2196 if (error)
2197 goto done;
2198 oldp = (char *)oldp + sizeof(struct in_addr);
2199 written += sizeof(struct in_addr);
2200 tmp = inm->inm_refcount;
2201 error = sysctl_copyout(l, &tmp, oldp, sizeof(tmp));
2202 if (error)
2203 goto done;
2204 oldp = (char *)oldp + sizeof(tmp);
2205 written += sizeof(tmp);
2206 }
2207 }
2208 done:
2209 if_put(ifp, &psref);
2210 curlwp_bindx(bound);
2211 *oldlenp = written;
2212 return error;
2213 }
2214
2215 static void
2216 in_sysctl_init(struct sysctllog **clog)
2217 {
2218 sysctl_createv(clog, 0, NULL, NULL,
2219 CTLFLAG_PERMANENT,
2220 CTLTYPE_NODE, "inet",
2221 SYSCTL_DESCR("PF_INET related settings"),
2222 NULL, 0, NULL, 0,
2223 CTL_NET, PF_INET, CTL_EOL);
2224 sysctl_createv(clog, 0, NULL, NULL,
2225 CTLFLAG_PERMANENT,
2226 CTLTYPE_NODE, "multicast",
2227 SYSCTL_DESCR("Multicast information"),
2228 in_multicast_sysctl, 0, NULL, 0,
2229 CTL_NET, PF_INET, CTL_CREATE, CTL_EOL);
2230 sysctl_createv(clog, 0, NULL, NULL,
2231 CTLFLAG_PERMANENT,
2232 CTLTYPE_NODE, "ip",
2233 SYSCTL_DESCR("IPv4 related settings"),
2234 NULL, 0, NULL, 0,
2235 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2236
2237 sysctl_createv(clog, 0, NULL, NULL,
2238 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2239 CTLTYPE_INT, "subnetsarelocal",
2240 SYSCTL_DESCR("Whether logical subnets are considered "
2241 "local"),
2242 NULL, 0, &subnetsarelocal, 0,
2243 CTL_NET, PF_INET, IPPROTO_IP,
2244 IPCTL_SUBNETSARELOCAL, CTL_EOL);
2245 sysctl_createv(clog, 0, NULL, NULL,
2246 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2247 CTLTYPE_INT, "hostzerobroadcast",
2248 SYSCTL_DESCR("All zeroes address is broadcast address"),
2249 NULL, 0, &hostzeroisbroadcast, 0,
2250 CTL_NET, PF_INET, IPPROTO_IP,
2251 IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2252 }
2253
2254 #if NARP > 0
2255
2256 static struct lltable *
2257 in_lltattach(struct ifnet *ifp)
2258 {
2259 struct lltable *llt;
2260
2261 llt = lltable_allocate_htbl(IN_LLTBL_DEFAULT_HSIZE);
2262 llt->llt_af = AF_INET;
2263 llt->llt_ifp = ifp;
2264
2265 llt->llt_lookup = in_lltable_lookup;
2266 llt->llt_create = in_lltable_create;
2267 llt->llt_delete = in_lltable_delete;
2268 llt->llt_dump_entry = in_lltable_dump_entry;
2269 llt->llt_hash = in_lltable_hash;
2270 llt->llt_fill_sa_entry = in_lltable_fill_sa_entry;
2271 llt->llt_free_entry = in_lltable_free_entry;
2272 llt->llt_match_prefix = in_lltable_match_prefix;
2273 lltable_link(llt);
2274
2275 return (llt);
2276 }
2277
2278 #endif /* NARP > 0 */
2279
2280 void *
2281 in_domifattach(struct ifnet *ifp)
2282 {
2283 struct in_ifinfo *ii;
2284
2285 ii = kmem_zalloc(sizeof(struct in_ifinfo), KM_SLEEP);
2286 KASSERT(ii != NULL);
2287
2288 #if NARP > 0
2289 ii->ii_llt = in_lltattach(ifp);
2290 #endif
2291
2292 #ifdef IPSELSRC
2293 ii->ii_selsrc = in_selsrc_domifattach(ifp);
2294 KASSERT(ii->ii_selsrc != NULL);
2295 #endif
2296
2297 return ii;
2298 }
2299
2300 void
2301 in_domifdetach(struct ifnet *ifp, void *aux)
2302 {
2303 struct in_ifinfo *ii = aux;
2304
2305 #ifdef IPSELSRC
2306 in_selsrc_domifdetach(ifp, ii->ii_selsrc);
2307 #endif
2308 #if NARP > 0
2309 lltable_free(ii->ii_llt);
2310 #endif
2311 kmem_free(ii, sizeof(struct in_ifinfo));
2312 }
2313