in.c revision 1.189 1 /* $NetBSD: in.c,v 1.189 2016/12/06 07:01:47 knakahara Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1991, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)in.c 8.4 (Berkeley) 1/9/95
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: in.c,v 1.189 2016/12/06 07:01:47 knakahara Exp $");
95
96 #include "arp.h"
97
98 #ifdef _KERNEL_OPT
99 #include "opt_inet.h"
100 #include "opt_inet_conf.h"
101 #include "opt_mrouting.h"
102 #include "opt_net_mpsafe.h"
103 #endif
104
105 #include <sys/param.h>
106 #include <sys/ioctl.h>
107 #include <sys/errno.h>
108 #include <sys/kernel.h>
109 #include <sys/malloc.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/sysctl.h>
113 #include <sys/systm.h>
114 #include <sys/proc.h>
115 #include <sys/syslog.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118
119 #include <sys/cprng.h>
120
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124
125 #include <net/if_arp.h>
126 #include <net/if_ether.h>
127 #include <net/if_types.h>
128 #include <net/if_llatbl.h>
129 #include <net/if_dl.h>
130
131 #include <netinet/in_systm.h>
132 #include <netinet/in.h>
133 #include <netinet/in_var.h>
134 #include <netinet/ip.h>
135 #include <netinet/ip_var.h>
136 #include <netinet/in_ifattach.h>
137 #include <netinet/in_pcb.h>
138 #include <netinet/in_selsrc.h>
139 #include <netinet/if_inarp.h>
140 #include <netinet/ip_mroute.h>
141 #include <netinet/igmp_var.h>
142
143 #ifdef IPSELSRC
144 #include <netinet/in_selsrc.h>
145 #endif
146
147 static u_int in_mask2len(struct in_addr *);
148 static void in_len2mask(struct in_addr *, u_int);
149 static int in_lifaddr_ioctl(struct socket *, u_long, void *,
150 struct ifnet *);
151
152 static void in_addrhash_insert_locked(struct in_ifaddr *);
153 static void in_addrhash_remove_locked(struct in_ifaddr *);
154
155 static int in_addprefix(struct in_ifaddr *, int);
156 static void in_scrubaddr(struct in_ifaddr *);
157 static int in_scrubprefix(struct in_ifaddr *);
158 static void in_sysctl_init(struct sysctllog **);
159
160 #ifndef SUBNETSARELOCAL
161 #define SUBNETSARELOCAL 1
162 #endif
163
164 #ifndef HOSTZEROBROADCAST
165 #define HOSTZEROBROADCAST 0
166 #endif
167
168 /* Note: 61, 127, 251, 509, 1021, 2039 are good. */
169 #ifndef IN_MULTI_HASH_SIZE
170 #define IN_MULTI_HASH_SIZE 509
171 #endif
172
173 static int subnetsarelocal = SUBNETSARELOCAL;
174 static int hostzeroisbroadcast = HOSTZEROBROADCAST;
175
176 /*
177 * This list is used to keep track of in_multi chains which belong to
178 * deleted interface addresses. We use in_ifaddr so that a chain head
179 * won't be deallocated until all multicast address record are deleted.
180 */
181
182 LIST_HEAD(in_multihashhead, in_multi); /* Type of the hash head */
183
184 static struct pool inmulti_pool;
185 static u_int in_multientries;
186 static struct in_multihashhead *in_multihashtbl;
187 static u_long in_multihash;
188 static krwlock_t in_multilock;
189
190 #define IN_MULTI_HASH(x, ifp) \
191 (in_multihashtbl[(u_long)((x) ^ (ifp->if_index)) % IN_MULTI_HASH_SIZE])
192
193 /* XXX DEPRECATED. Keep them to avoid breaking kvm(3) users. */
194 struct in_ifaddrhashhead * in_ifaddrhashtbl;
195 u_long in_ifaddrhash;
196 struct in_ifaddrhead in_ifaddrhead;
197 static kmutex_t in_ifaddr_lock;
198
199 pserialize_t in_ifaddrhash_psz;
200 struct pslist_head * in_ifaddrhashtbl_pslist;
201 u_long in_ifaddrhash_pslist;
202 struct pslist_head in_ifaddrhead_pslist;
203
204 void
205 in_init(void)
206 {
207 pool_init(&inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl",
208 NULL, IPL_SOFTNET);
209 TAILQ_INIT(&in_ifaddrhead);
210 PSLIST_INIT(&in_ifaddrhead_pslist);
211
212 in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
213 &in_ifaddrhash);
214
215 in_ifaddrhash_psz = pserialize_create();
216 in_ifaddrhashtbl_pslist = hashinit(IN_IFADDR_HASH_SIZE, HASH_PSLIST,
217 true, &in_ifaddrhash_pslist);
218 mutex_init(&in_ifaddr_lock, MUTEX_DEFAULT, IPL_NONE);
219
220 in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
221 &in_multihash);
222 rw_init(&in_multilock);
223
224 in_sysctl_init(NULL);
225 }
226
227 /*
228 * Return 1 if an internet address is for a ``local'' host
229 * (one to which we have a connection). If subnetsarelocal
230 * is true, this includes other subnets of the local net.
231 * Otherwise, it includes only the directly-connected (sub)nets.
232 */
233 int
234 in_localaddr(struct in_addr in)
235 {
236 struct in_ifaddr *ia;
237 int localaddr = 0;
238 int s = pserialize_read_enter();
239
240 if (subnetsarelocal) {
241 IN_ADDRLIST_READER_FOREACH(ia) {
242 if ((in.s_addr & ia->ia_netmask) == ia->ia_net) {
243 localaddr = 1;
244 break;
245 }
246 }
247 } else {
248 IN_ADDRLIST_READER_FOREACH(ia) {
249 if ((in.s_addr & ia->ia_subnetmask) == ia->ia_subnet) {
250 localaddr = 1;
251 break;
252 }
253 }
254 }
255 pserialize_read_exit(s);
256
257 return localaddr;
258 }
259
260 /*
261 * Determine whether an IP address is in a reserved set of addresses
262 * that may not be forwarded, or whether datagrams to that destination
263 * may be forwarded.
264 */
265 int
266 in_canforward(struct in_addr in)
267 {
268 u_int32_t net;
269
270 if (IN_EXPERIMENTAL(in.s_addr) || IN_MULTICAST(in.s_addr))
271 return (0);
272 if (IN_CLASSA(in.s_addr)) {
273 net = in.s_addr & IN_CLASSA_NET;
274 if (net == 0 || net == htonl(IN_LOOPBACKNET << IN_CLASSA_NSHIFT))
275 return (0);
276 }
277 return (1);
278 }
279
280 /*
281 * Trim a mask in a sockaddr
282 */
283 void
284 in_socktrim(struct sockaddr_in *ap)
285 {
286 char *cplim = (char *) &ap->sin_addr;
287 char *cp = (char *) (&ap->sin_addr + 1);
288
289 ap->sin_len = 0;
290 while (--cp >= cplim)
291 if (*cp) {
292 (ap)->sin_len = cp - (char *) (ap) + 1;
293 break;
294 }
295 }
296
297 /*
298 * Routine to take an Internet address and convert into a
299 * "dotted quad" representation for printing.
300 */
301 const char *
302 in_fmtaddr(struct in_addr addr)
303 {
304 static char buf[sizeof("123.456.789.123")];
305
306 addr.s_addr = ntohl(addr.s_addr);
307
308 snprintf(buf, sizeof(buf), "%d.%d.%d.%d",
309 (addr.s_addr >> 24) & 0xFF,
310 (addr.s_addr >> 16) & 0xFF,
311 (addr.s_addr >> 8) & 0xFF,
312 (addr.s_addr >> 0) & 0xFF);
313 return buf;
314 }
315
316 /*
317 * Maintain the "in_maxmtu" variable, which is the largest
318 * mtu for non-local interfaces with AF_INET addresses assigned
319 * to them that are up.
320 */
321 unsigned long in_maxmtu;
322
323 void
324 in_setmaxmtu(void)
325 {
326 struct in_ifaddr *ia;
327 struct ifnet *ifp;
328 unsigned long maxmtu = 0;
329 int s = pserialize_read_enter();
330
331 IN_ADDRLIST_READER_FOREACH(ia) {
332 if ((ifp = ia->ia_ifp) == 0)
333 continue;
334 if ((ifp->if_flags & (IFF_UP|IFF_LOOPBACK)) != IFF_UP)
335 continue;
336 if (ifp->if_mtu > maxmtu)
337 maxmtu = ifp->if_mtu;
338 }
339 if (maxmtu)
340 in_maxmtu = maxmtu;
341 pserialize_read_exit(s);
342 }
343
344 static u_int
345 in_mask2len(struct in_addr *mask)
346 {
347 u_int x, y;
348 u_char *p;
349
350 p = (u_char *)mask;
351 for (x = 0; x < sizeof(*mask); x++) {
352 if (p[x] != 0xff)
353 break;
354 }
355 y = 0;
356 if (x < sizeof(*mask)) {
357 for (y = 0; y < NBBY; y++) {
358 if ((p[x] & (0x80 >> y)) == 0)
359 break;
360 }
361 }
362 return x * NBBY + y;
363 }
364
365 static void
366 in_len2mask(struct in_addr *mask, u_int len)
367 {
368 u_int i;
369 u_char *p;
370
371 p = (u_char *)mask;
372 memset(mask, 0, sizeof(*mask));
373 for (i = 0; i < len / NBBY; i++)
374 p[i] = 0xff;
375 if (len % NBBY)
376 p[i] = (0xff00 >> (len % NBBY)) & 0xff;
377 }
378
379 /*
380 * Generic internet control operations (ioctl's).
381 * Ifp is 0 if not an interface-specific ioctl.
382 */
383 /* ARGSUSED */
384 static int
385 in_control0(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
386 {
387 struct ifreq *ifr = (struct ifreq *)data;
388 struct in_ifaddr *ia = NULL;
389 struct in_aliasreq *ifra = (struct in_aliasreq *)data;
390 struct sockaddr_in oldaddr, *new_dstaddr;
391 int error, hostIsNew, maskIsNew;
392 int newifaddr = 0;
393 bool run_hook = false;
394 bool need_reinsert = false;
395 struct psref psref;
396 int bound;
397
398 switch (cmd) {
399 case SIOCALIFADDR:
400 case SIOCDLIFADDR:
401 case SIOCGLIFADDR:
402 if (ifp == NULL)
403 return EINVAL;
404 return in_lifaddr_ioctl(so, cmd, data, ifp);
405 case SIOCGIFADDRPREF:
406 case SIOCSIFADDRPREF:
407 if (ifp == NULL)
408 return EINVAL;
409 return ifaddrpref_ioctl(so, cmd, data, ifp);
410 }
411
412 bound = curlwp_bind();
413 /*
414 * Find address for this interface, if it exists.
415 */
416 if (ifp != NULL)
417 ia = in_get_ia_from_ifp_psref(ifp, &psref);
418
419 hostIsNew = 1; /* moved here to appease gcc */
420 switch (cmd) {
421 case SIOCAIFADDR:
422 case SIOCDIFADDR:
423 case SIOCGIFALIAS:
424 case SIOCGIFAFLAG_IN:
425 if (ifra->ifra_addr.sin_family == AF_INET) {
426 int s;
427
428 if (ia != NULL)
429 ia4_release(ia, &psref);
430 s = pserialize_read_enter();
431 IN_ADDRHASH_READER_FOREACH(ia,
432 ifra->ifra_addr.sin_addr.s_addr) {
433 if (ia->ia_ifp == ifp &&
434 in_hosteq(ia->ia_addr.sin_addr,
435 ifra->ifra_addr.sin_addr))
436 break;
437 }
438 if (ia != NULL)
439 ia4_acquire(ia, &psref);
440 pserialize_read_exit(s);
441 }
442 if ((cmd == SIOCDIFADDR ||
443 cmd == SIOCGIFALIAS ||
444 cmd == SIOCGIFAFLAG_IN) &&
445 ia == NULL) {
446 error = EADDRNOTAVAIL;
447 goto out;
448 }
449
450 if (cmd == SIOCDIFADDR &&
451 ifra->ifra_addr.sin_family == AF_UNSPEC) {
452 ifra->ifra_addr.sin_family = AF_INET;
453 }
454 /* FALLTHROUGH */
455 case SIOCSIFADDR:
456 if (ia == NULL || ia->ia_addr.sin_family != AF_INET)
457 ;
458 else if (ifra->ifra_addr.sin_len == 0) {
459 ifra->ifra_addr = ia->ia_addr;
460 hostIsNew = 0;
461 } else if (in_hosteq(ia->ia_addr.sin_addr,
462 ifra->ifra_addr.sin_addr))
463 hostIsNew = 0;
464 /* FALLTHROUGH */
465 case SIOCSIFDSTADDR:
466 if (ifra->ifra_addr.sin_family != AF_INET) {
467 error = EAFNOSUPPORT;
468 goto out;
469 }
470 /* FALLTHROUGH */
471 case SIOCSIFNETMASK:
472 if (ifp == NULL)
473 panic("in_control");
474
475 if (cmd == SIOCGIFALIAS || cmd == SIOCGIFAFLAG_IN)
476 break;
477
478 if (ia == NULL &&
479 (cmd == SIOCSIFNETMASK || cmd == SIOCSIFDSTADDR)) {
480 error = EADDRNOTAVAIL;
481 goto out;
482 }
483
484 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
485 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
486 NULL) != 0) {
487 error = EPERM;
488 goto out;
489 }
490
491 if (ia == NULL) {
492 ia = malloc(sizeof(*ia), M_IFADDR, M_WAITOK|M_ZERO);
493 if (ia == NULL) {
494 error = ENOBUFS;
495 goto out;
496 }
497 ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
498 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
499 ia->ia_ifa.ifa_netmask = sintosa(&ia->ia_sockmask);
500 #ifdef IPSELSRC
501 ia->ia_ifa.ifa_getifa = in_getifa;
502 #else /* IPSELSRC */
503 ia->ia_ifa.ifa_getifa = NULL;
504 #endif /* IPSELSRC */
505 ia->ia_sockmask.sin_len = 8;
506 ia->ia_sockmask.sin_family = AF_INET;
507 if (ifp->if_flags & IFF_BROADCAST) {
508 ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr);
509 ia->ia_broadaddr.sin_family = AF_INET;
510 }
511 ia->ia_ifp = ifp;
512 ia->ia_idsalt = cprng_fast32() % 65535;
513 LIST_INIT(&ia->ia_multiaddrs);
514 IN_ADDRHASH_ENTRY_INIT(ia);
515 IN_ADDRLIST_ENTRY_INIT(ia);
516 ifa_psref_init(&ia->ia_ifa);
517
518 newifaddr = 1;
519 }
520 break;
521
522 case SIOCSIFBRDADDR:
523 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
524 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
525 NULL) != 0) {
526 error = EPERM;
527 goto out;
528 }
529 /* FALLTHROUGH */
530
531 case SIOCGIFADDR:
532 case SIOCGIFNETMASK:
533 case SIOCGIFDSTADDR:
534 case SIOCGIFBRDADDR:
535 if (ia == NULL) {
536 error = EADDRNOTAVAIL;
537 goto out;
538 }
539 break;
540 }
541 error = 0;
542 switch (cmd) {
543
544 case SIOCGIFADDR:
545 ifreq_setaddr(cmd, ifr, sintocsa(&ia->ia_addr));
546 break;
547
548 case SIOCGIFBRDADDR:
549 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
550 error = EINVAL;
551 goto out;
552 }
553 ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_broadaddr));
554 break;
555
556 case SIOCGIFDSTADDR:
557 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
558 error = EINVAL;
559 goto out;
560 }
561 ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_dstaddr));
562 break;
563
564 case SIOCGIFNETMASK:
565 /*
566 * We keep the number of trailing zero bytes the sin_len field
567 * of ia_sockmask, so we fix this before we pass it back to
568 * userland.
569 */
570 oldaddr = ia->ia_sockmask;
571 oldaddr.sin_len = sizeof(struct sockaddr_in);
572 ifreq_setaddr(cmd, ifr, (const void *)&oldaddr);
573 break;
574
575 case SIOCSIFDSTADDR:
576 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
577 error = EINVAL;
578 goto out;
579 }
580 oldaddr = ia->ia_dstaddr;
581 ia->ia_dstaddr = *satocsin(ifreq_getdstaddr(cmd, ifr));
582 if ((error = if_addr_init(ifp, &ia->ia_ifa, false)) != 0) {
583 ia->ia_dstaddr = oldaddr;
584 goto out;
585 }
586 if (ia->ia_flags & IFA_ROUTE) {
587 ia->ia_ifa.ifa_dstaddr = sintosa(&oldaddr);
588 rtinit(&ia->ia_ifa, RTM_DELETE, RTF_HOST);
589 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
590 rtinit(&ia->ia_ifa, RTM_ADD, RTF_HOST|RTF_UP);
591 }
592 break;
593
594 case SIOCSIFBRDADDR:
595 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
596 error = EINVAL;
597 goto out;
598 }
599 ia->ia_broadaddr = *satocsin(ifreq_getbroadaddr(cmd, ifr));
600 break;
601
602 case SIOCSIFADDR:
603 if (!newifaddr) {
604 in_addrhash_remove(ia);
605 need_reinsert = true;
606 }
607 error = in_ifinit(ifp, ia, satocsin(ifreq_getaddr(cmd, ifr)),
608 NULL, 1);
609
610 run_hook = true;
611 break;
612
613 case SIOCSIFNETMASK:
614 in_scrubprefix(ia);
615 ia->ia_sockmask = *satocsin(ifreq_getaddr(cmd, ifr));
616 ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr;
617 if (!newifaddr) {
618 in_addrhash_remove(ia);
619 need_reinsert = true;
620 }
621 error = in_ifinit(ifp, ia, NULL, NULL, 0);
622 break;
623
624 case SIOCAIFADDR:
625 maskIsNew = 0;
626 if (ifra->ifra_mask.sin_len) {
627 in_scrubprefix(ia);
628 ia->ia_sockmask = ifra->ifra_mask;
629 ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr;
630 maskIsNew = 1;
631 }
632 if ((ifp->if_flags & IFF_POINTOPOINT) &&
633 (ifra->ifra_dstaddr.sin_family == AF_INET)) {
634 new_dstaddr = &ifra->ifra_dstaddr;
635 maskIsNew = 1; /* We lie; but the effect's the same */
636 } else
637 new_dstaddr = NULL;
638 if (ifra->ifra_addr.sin_family == AF_INET &&
639 (hostIsNew || maskIsNew)) {
640 if (!newifaddr) {
641 in_addrhash_remove(ia);
642 need_reinsert = true;
643 }
644 error = in_ifinit(ifp, ia, &ifra->ifra_addr,
645 new_dstaddr, 0);
646 }
647 if ((ifp->if_flags & IFF_BROADCAST) &&
648 (ifra->ifra_broadaddr.sin_family == AF_INET))
649 ia->ia_broadaddr = ifra->ifra_broadaddr;
650 run_hook = true;
651 break;
652
653 case SIOCGIFALIAS:
654 ifra->ifra_mask = ia->ia_sockmask;
655 if ((ifp->if_flags & IFF_POINTOPOINT) &&
656 (ia->ia_dstaddr.sin_family == AF_INET))
657 ifra->ifra_dstaddr = ia->ia_dstaddr;
658 else if ((ifp->if_flags & IFF_BROADCAST) &&
659 (ia->ia_broadaddr.sin_family == AF_INET))
660 ifra->ifra_broadaddr = ia->ia_broadaddr;
661 else
662 memset(&ifra->ifra_broadaddr, 0,
663 sizeof(ifra->ifra_broadaddr));
664 break;
665
666 case SIOCGIFAFLAG_IN:
667 ifr->ifr_addrflags = ia->ia4_flags;
668 break;
669
670 case SIOCDIFADDR:
671 ia4_release(ia, &psref);
672 in_purgeaddr(&ia->ia_ifa);
673 ia = NULL;
674 run_hook = true;
675 break;
676
677 #ifdef MROUTING
678 case SIOCGETVIFCNT:
679 case SIOCGETSGCNT:
680 error = mrt_ioctl(so, cmd, data);
681 break;
682 #endif /* MROUTING */
683
684 default:
685 error = ENOTTY;
686 goto out;
687 }
688
689 /*
690 * XXX insert regardless of error to make in_purgeaddr below work.
691 * Need to improve.
692 */
693 if (newifaddr) {
694 ifaref(&ia->ia_ifa);
695 ifa_insert(ifp, &ia->ia_ifa);
696
697 mutex_enter(&in_ifaddr_lock);
698 TAILQ_INSERT_TAIL(&in_ifaddrhead, ia, ia_list);
699 IN_ADDRLIST_WRITER_INSERT_TAIL(ia);
700 in_addrhash_insert_locked(ia);
701 mutex_exit(&in_ifaddr_lock);
702 } else if (need_reinsert) {
703 in_addrhash_insert(ia);
704 }
705
706 if (error == 0) {
707 if (run_hook)
708 (void)pfil_run_hooks(if_pfil,
709 (struct mbuf **)cmd, ifp, PFIL_IFADDR);
710 } else if (newifaddr) {
711 KASSERT(ia != NULL);
712 in_purgeaddr(&ia->ia_ifa);
713 ia = NULL;
714 }
715
716 out:
717 if (!newifaddr && ia != NULL)
718 ia4_release(ia, &psref);
719 curlwp_bindx(bound);
720 return error;
721 }
722
723 int
724 in_control(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
725 {
726 int error;
727
728 #ifndef NET_MPSAFE
729 mutex_enter(softnet_lock);
730 #endif
731 error = in_control0(so, cmd, data, ifp);
732 #ifndef NET_MPSAFE
733 mutex_exit(softnet_lock);
734 #endif
735
736 return error;
737 }
738
739 /* Add ownaddr as loopback rtentry. */
740 static void
741 in_ifaddlocal(struct ifaddr *ifa)
742 {
743 struct in_ifaddr *ia;
744
745 ia = (struct in_ifaddr *)ifa;
746 if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY ||
747 (ia->ia_ifp->if_flags & IFF_POINTOPOINT &&
748 in_hosteq(ia->ia_dstaddr.sin_addr, ia->ia_addr.sin_addr)))
749 {
750 rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
751 return;
752 }
753
754 rt_ifa_addlocal(ifa);
755 }
756
757 /* Remove loopback entry of ownaddr */
758 static void
759 in_ifremlocal(struct ifaddr *ifa)
760 {
761 struct in_ifaddr *ia, *p;
762 struct ifaddr *alt_ifa = NULL;
763 int ia_count = 0;
764 int s;
765 struct psref psref;
766 int bound = curlwp_bind();
767
768 ia = (struct in_ifaddr *)ifa;
769 /* Delete the entry if exactly one ifaddr matches the
770 * address, ifa->ifa_addr. */
771 s = pserialize_read_enter();
772 IN_ADDRLIST_READER_FOREACH(p) {
773 if (!in_hosteq(p->ia_addr.sin_addr, ia->ia_addr.sin_addr))
774 continue;
775 if (p->ia_ifp != ia->ia_ifp)
776 alt_ifa = &p->ia_ifa;
777 if (++ia_count > 1 && alt_ifa != NULL)
778 break;
779 }
780 if (alt_ifa != NULL && ia_count > 1)
781 ifa_acquire(alt_ifa, &psref);
782 pserialize_read_exit(s);
783
784 if (ia_count == 0)
785 goto out;
786
787 rt_ifa_remlocal(ifa, ia_count == 1 ? NULL : alt_ifa);
788 if (alt_ifa != NULL && ia_count > 1)
789 ifa_release(alt_ifa, &psref);
790 out:
791 curlwp_bindx(bound);
792 }
793
794 static void
795 in_scrubaddr(struct in_ifaddr *ia)
796 {
797
798 /* stop DAD processing */
799 if (ia->ia_dad_stop != NULL)
800 ia->ia_dad_stop(&ia->ia_ifa);
801
802 in_scrubprefix(ia);
803 in_ifremlocal(&ia->ia_ifa);
804
805 if (ia->ia_allhosts != NULL) {
806 in_delmulti(ia->ia_allhosts);
807 ia->ia_allhosts = NULL;
808 }
809 }
810
811 /*
812 * Depends on it isn't called in concurrent. It should be guaranteed
813 * by ifa->ifa_ifp's ioctl lock. The possible callers are in_control
814 * and if_purgeaddrs; the former is called iva ifa->ifa_ifp's ioctl
815 * and the latter is called via ifa->ifa_ifp's if_detach. The functions
816 * never be executed in concurrent.
817 */
818 void
819 in_purgeaddr(struct ifaddr *ifa)
820 {
821 struct in_ifaddr *ia = (void *) ifa;
822 struct ifnet *ifp = ifa->ifa_ifp;
823
824 KASSERT(!ifa_held(ifa));
825
826 in_scrubaddr(ia);
827
828 mutex_enter(&in_ifaddr_lock);
829 in_addrhash_remove_locked(ia);
830 TAILQ_REMOVE(&in_ifaddrhead, ia, ia_list);
831 IN_ADDRLIST_WRITER_REMOVE(ia);
832 ifa_remove(ifp, &ia->ia_ifa);
833 mutex_exit(&in_ifaddr_lock);
834
835 #ifdef NET_MPSAFE
836 pserialize_perform(in_ifaddrhash_psz);
837 #endif
838 IN_ADDRHASH_ENTRY_DESTROY(ia);
839 IN_ADDRLIST_ENTRY_DESTROY(ia);
840 ifafree(&ia->ia_ifa);
841 in_setmaxmtu();
842 }
843
844 static void
845 in_addrhash_insert_locked(struct in_ifaddr *ia)
846 {
847
848 KASSERT(mutex_owned(&in_ifaddr_lock));
849
850 LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr), ia,
851 ia_hash);
852 IN_ADDRHASH_ENTRY_INIT(ia);
853 IN_ADDRHASH_WRITER_INSERT_HEAD(ia);
854 }
855
856 void
857 in_addrhash_insert(struct in_ifaddr *ia)
858 {
859
860 mutex_enter(&in_ifaddr_lock);
861 in_addrhash_insert_locked(ia);
862 mutex_exit(&in_ifaddr_lock);
863 }
864
865 static void
866 in_addrhash_remove_locked(struct in_ifaddr *ia)
867 {
868
869 KASSERT(mutex_owned(&in_ifaddr_lock));
870
871 LIST_REMOVE(ia, ia_hash);
872 IN_ADDRHASH_WRITER_REMOVE(ia);
873 }
874
875 void
876 in_addrhash_remove(struct in_ifaddr *ia)
877 {
878
879 mutex_enter(&in_ifaddr_lock);
880 in_addrhash_remove_locked(ia);
881 mutex_exit(&in_ifaddr_lock);
882 #ifdef NET_MPSAFE
883 pserialize_perform(in_ifaddrhash_psz);
884 #endif
885 IN_ADDRHASH_ENTRY_DESTROY(ia);
886 }
887
888 void
889 in_purgeif(struct ifnet *ifp) /* MUST be called at splsoftnet() */
890 {
891 if_purgeaddrs(ifp, AF_INET, in_purgeaddr);
892 igmp_purgeif(ifp); /* manipulates pools */
893 #ifdef MROUTING
894 ip_mrouter_detach(ifp);
895 #endif
896 }
897
898 /*
899 * SIOC[GAD]LIFADDR.
900 * SIOCGLIFADDR: get first address. (???)
901 * SIOCGLIFADDR with IFLR_PREFIX:
902 * get first address that matches the specified prefix.
903 * SIOCALIFADDR: add the specified address.
904 * SIOCALIFADDR with IFLR_PREFIX:
905 * EINVAL since we can't deduce hostid part of the address.
906 * SIOCDLIFADDR: delete the specified address.
907 * SIOCDLIFADDR with IFLR_PREFIX:
908 * delete the first address that matches the specified prefix.
909 * return values:
910 * EINVAL on invalid parameters
911 * EADDRNOTAVAIL on prefix match failed/specified address not found
912 * other values may be returned from in_ioctl()
913 */
914 static int
915 in_lifaddr_ioctl(struct socket *so, u_long cmd, void *data,
916 struct ifnet *ifp)
917 {
918 struct if_laddrreq *iflr = (struct if_laddrreq *)data;
919 struct ifaddr *ifa;
920 struct sockaddr *sa;
921
922 /* sanity checks */
923 if (data == NULL || ifp == NULL) {
924 panic("invalid argument to in_lifaddr_ioctl");
925 /*NOTRECHED*/
926 }
927
928 switch (cmd) {
929 case SIOCGLIFADDR:
930 /* address must be specified on GET with IFLR_PREFIX */
931 if ((iflr->flags & IFLR_PREFIX) == 0)
932 break;
933 /*FALLTHROUGH*/
934 case SIOCALIFADDR:
935 case SIOCDLIFADDR:
936 /* address must be specified on ADD and DELETE */
937 sa = (struct sockaddr *)&iflr->addr;
938 if (sa->sa_family != AF_INET)
939 return EINVAL;
940 if (sa->sa_len != sizeof(struct sockaddr_in))
941 return EINVAL;
942 /* XXX need improvement */
943 sa = (struct sockaddr *)&iflr->dstaddr;
944 if (sa->sa_family != AF_UNSPEC && sa->sa_family != AF_INET)
945 return EINVAL;
946 if (sa->sa_len != 0 && sa->sa_len != sizeof(struct sockaddr_in))
947 return EINVAL;
948 break;
949 default: /*shouldn't happen*/
950 #if 0
951 panic("invalid cmd to in_lifaddr_ioctl");
952 /*NOTREACHED*/
953 #else
954 return EOPNOTSUPP;
955 #endif
956 }
957 if (sizeof(struct in_addr) * NBBY < iflr->prefixlen)
958 return EINVAL;
959
960 switch (cmd) {
961 case SIOCALIFADDR:
962 {
963 struct in_aliasreq ifra;
964
965 if (iflr->flags & IFLR_PREFIX)
966 return EINVAL;
967
968 /* copy args to in_aliasreq, perform ioctl(SIOCAIFADDR). */
969 memset(&ifra, 0, sizeof(ifra));
970 memcpy(ifra.ifra_name, iflr->iflr_name,
971 sizeof(ifra.ifra_name));
972
973 memcpy(&ifra.ifra_addr, &iflr->addr,
974 ((struct sockaddr *)&iflr->addr)->sa_len);
975
976 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/
977 memcpy(&ifra.ifra_dstaddr, &iflr->dstaddr,
978 ((struct sockaddr *)&iflr->dstaddr)->sa_len);
979 }
980
981 ifra.ifra_mask.sin_family = AF_INET;
982 ifra.ifra_mask.sin_len = sizeof(struct sockaddr_in);
983 in_len2mask(&ifra.ifra_mask.sin_addr, iflr->prefixlen);
984
985 return in_control(so, SIOCAIFADDR, &ifra, ifp);
986 }
987 case SIOCGLIFADDR:
988 case SIOCDLIFADDR:
989 {
990 struct in_ifaddr *ia;
991 struct in_addr mask, candidate, match;
992 struct sockaddr_in *sin;
993 int cmp, s;
994
995 memset(&mask, 0, sizeof(mask));
996 memset(&match, 0, sizeof(match)); /* XXX gcc */
997 if (iflr->flags & IFLR_PREFIX) {
998 /* lookup a prefix rather than address. */
999 in_len2mask(&mask, iflr->prefixlen);
1000
1001 sin = (struct sockaddr_in *)&iflr->addr;
1002 match.s_addr = sin->sin_addr.s_addr;
1003 match.s_addr &= mask.s_addr;
1004
1005 /* if you set extra bits, that's wrong */
1006 if (match.s_addr != sin->sin_addr.s_addr)
1007 return EINVAL;
1008
1009 cmp = 1;
1010 } else {
1011 if (cmd == SIOCGLIFADDR) {
1012 /* on getting an address, take the 1st match */
1013 cmp = 0; /*XXX*/
1014 } else {
1015 /* on deleting an address, do exact match */
1016 in_len2mask(&mask, 32);
1017 sin = (struct sockaddr_in *)&iflr->addr;
1018 match.s_addr = sin->sin_addr.s_addr;
1019
1020 cmp = 1;
1021 }
1022 }
1023
1024 s = pserialize_read_enter();
1025 IFADDR_READER_FOREACH(ifa, ifp) {
1026 if (ifa->ifa_addr->sa_family != AF_INET)
1027 continue;
1028 if (cmp == 0)
1029 break;
1030 candidate.s_addr = ((struct sockaddr_in *)ifa->ifa_addr)->sin_addr.s_addr;
1031 candidate.s_addr &= mask.s_addr;
1032 if (candidate.s_addr == match.s_addr)
1033 break;
1034 }
1035 if (ifa == NULL) {
1036 pserialize_read_exit(s);
1037 return EADDRNOTAVAIL;
1038 }
1039 ia = (struct in_ifaddr *)ifa;
1040
1041 if (cmd == SIOCGLIFADDR) {
1042 /* fill in the if_laddrreq structure */
1043 memcpy(&iflr->addr, &ia->ia_addr, ia->ia_addr.sin_len);
1044
1045 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1046 memcpy(&iflr->dstaddr, &ia->ia_dstaddr,
1047 ia->ia_dstaddr.sin_len);
1048 } else
1049 memset(&iflr->dstaddr, 0, sizeof(iflr->dstaddr));
1050
1051 iflr->prefixlen =
1052 in_mask2len(&ia->ia_sockmask.sin_addr);
1053
1054 iflr->flags = 0; /*XXX*/
1055 pserialize_read_exit(s);
1056
1057 return 0;
1058 } else {
1059 struct in_aliasreq ifra;
1060
1061 /* fill in_aliasreq and do ioctl(SIOCDIFADDR) */
1062 memset(&ifra, 0, sizeof(ifra));
1063 memcpy(ifra.ifra_name, iflr->iflr_name,
1064 sizeof(ifra.ifra_name));
1065
1066 memcpy(&ifra.ifra_addr, &ia->ia_addr,
1067 ia->ia_addr.sin_len);
1068 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1069 memcpy(&ifra.ifra_dstaddr, &ia->ia_dstaddr,
1070 ia->ia_dstaddr.sin_len);
1071 }
1072 memcpy(&ifra.ifra_dstaddr, &ia->ia_sockmask,
1073 ia->ia_sockmask.sin_len);
1074 pserialize_read_exit(s);
1075
1076 return in_control(so, SIOCDIFADDR, &ifra, ifp);
1077 }
1078 }
1079 }
1080
1081 return EOPNOTSUPP; /*just for safety*/
1082 }
1083
1084 /*
1085 * Initialize an interface's internet address
1086 * and routing table entry.
1087 */
1088 int
1089 in_ifinit(struct ifnet *ifp, struct in_ifaddr *ia,
1090 const struct sockaddr_in *sin, const struct sockaddr_in *dst, int scrub)
1091 {
1092 u_int32_t i;
1093 struct sockaddr_in oldaddr, olddst;
1094 int s, oldflags, flags = RTF_UP, error, hostIsNew;
1095
1096 if (sin == NULL)
1097 sin = &ia->ia_addr;
1098 if (dst == NULL)
1099 dst = &ia->ia_dstaddr;
1100
1101 /*
1102 * Set up new addresses.
1103 */
1104 oldaddr = ia->ia_addr;
1105 olddst = ia->ia_dstaddr;
1106 oldflags = ia->ia4_flags;
1107 ia->ia_addr = *sin;
1108 ia->ia_dstaddr = *dst;
1109 hostIsNew = oldaddr.sin_family != AF_INET ||
1110 !in_hosteq(ia->ia_addr.sin_addr, oldaddr.sin_addr);
1111 if (!scrub)
1112 scrub = oldaddr.sin_family != ia->ia_dstaddr.sin_family ||
1113 !in_hosteq(ia->ia_dstaddr.sin_addr, olddst.sin_addr);
1114
1115 /*
1116 * Configure address flags.
1117 * We need to do this early because they maybe adjusted
1118 * by if_addr_init depending on the address.
1119 */
1120 if (ia->ia4_flags & IN_IFF_DUPLICATED) {
1121 ia->ia4_flags &= ~IN_IFF_DUPLICATED;
1122 hostIsNew = 1;
1123 }
1124 if (ifp->if_link_state == LINK_STATE_DOWN) {
1125 ia->ia4_flags |= IN_IFF_DETACHED;
1126 ia->ia4_flags &= ~IN_IFF_TENTATIVE;
1127 } else if (hostIsNew && if_do_dad(ifp))
1128 ia->ia4_flags |= IN_IFF_TRYTENTATIVE;
1129
1130 /*
1131 * Give the interface a chance to initialize
1132 * if this is its first address,
1133 * and to validate the address if necessary.
1134 */
1135 s = splnet();
1136 error = if_addr_init(ifp, &ia->ia_ifa, true);
1137 splx(s);
1138 /* Now clear the try tentative flag, it's job is done. */
1139 ia->ia4_flags &= ~IN_IFF_TRYTENTATIVE;
1140 if (error != 0) {
1141 ia->ia_addr = oldaddr;
1142 ia->ia_dstaddr = olddst;
1143 ia->ia4_flags = oldflags;
1144 return error;
1145 }
1146
1147 if (scrub || hostIsNew) {
1148 int newflags = ia->ia4_flags;
1149
1150 ia->ia_ifa.ifa_addr = sintosa(&oldaddr);
1151 ia->ia_ifa.ifa_dstaddr = sintosa(&olddst);
1152 ia->ia4_flags = oldflags;
1153 if (hostIsNew)
1154 in_scrubaddr(ia);
1155 else if (scrub)
1156 in_scrubprefix(ia);
1157 ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
1158 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
1159 ia->ia4_flags = newflags;
1160 }
1161
1162 /* Add the local route to the address */
1163 in_ifaddlocal(&ia->ia_ifa);
1164
1165 i = ia->ia_addr.sin_addr.s_addr;
1166 if (ifp->if_flags & IFF_POINTOPOINT)
1167 ia->ia_netmask = INADDR_BROADCAST; /* default to /32 */
1168 else if (IN_CLASSA(i))
1169 ia->ia_netmask = IN_CLASSA_NET;
1170 else if (IN_CLASSB(i))
1171 ia->ia_netmask = IN_CLASSB_NET;
1172 else
1173 ia->ia_netmask = IN_CLASSC_NET;
1174 /*
1175 * The subnet mask usually includes at least the standard network part,
1176 * but may may be smaller in the case of supernetting.
1177 * If it is set, we believe it.
1178 */
1179 if (ia->ia_subnetmask == 0) {
1180 ia->ia_subnetmask = ia->ia_netmask;
1181 ia->ia_sockmask.sin_addr.s_addr = ia->ia_subnetmask;
1182 } else
1183 ia->ia_netmask &= ia->ia_subnetmask;
1184
1185 ia->ia_net = i & ia->ia_netmask;
1186 ia->ia_subnet = i & ia->ia_subnetmask;
1187 in_socktrim(&ia->ia_sockmask);
1188 /* re-calculate the "in_maxmtu" value */
1189 in_setmaxmtu();
1190 /*
1191 * Add route for the network.
1192 */
1193 ia->ia_ifa.ifa_metric = ifp->if_metric;
1194 if (ifp->if_flags & IFF_BROADCAST) {
1195 ia->ia_broadaddr.sin_addr.s_addr =
1196 ia->ia_subnet | ~ia->ia_subnetmask;
1197 ia->ia_netbroadcast.s_addr =
1198 ia->ia_net | ~ia->ia_netmask;
1199 } else if (ifp->if_flags & IFF_LOOPBACK) {
1200 ia->ia_dstaddr = ia->ia_addr;
1201 flags |= RTF_HOST;
1202 } else if (ifp->if_flags & IFF_POINTOPOINT) {
1203 if (ia->ia_dstaddr.sin_family != AF_INET)
1204 return (0);
1205 flags |= RTF_HOST;
1206 }
1207 error = in_addprefix(ia, flags);
1208 /*
1209 * If the interface supports multicast, join the "all hosts"
1210 * multicast group on that interface.
1211 */
1212 if ((ifp->if_flags & IFF_MULTICAST) != 0 && ia->ia_allhosts == NULL) {
1213 struct in_addr addr;
1214
1215 addr.s_addr = INADDR_ALLHOSTS_GROUP;
1216 ia->ia_allhosts = in_addmulti(&addr, ifp);
1217 }
1218
1219 if (hostIsNew &&
1220 ia->ia4_flags & IN_IFF_TENTATIVE &&
1221 if_do_dad(ifp))
1222 ia->ia_dad_start((struct ifaddr *)ia);
1223
1224 return error;
1225 }
1226
1227 #define rtinitflags(x) \
1228 ((((x)->ia_ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) != 0) \
1229 ? RTF_HOST : 0)
1230
1231 /*
1232 * add a route to prefix ("connected route" in cisco terminology).
1233 * does nothing if there's some interface address with the same prefix already.
1234 */
1235 static int
1236 in_addprefix(struct in_ifaddr *target, int flags)
1237 {
1238 struct in_ifaddr *ia;
1239 struct in_addr prefix, mask, p;
1240 int error;
1241 int s;
1242
1243 if ((flags & RTF_HOST) != 0)
1244 prefix = target->ia_dstaddr.sin_addr;
1245 else {
1246 prefix = target->ia_addr.sin_addr;
1247 mask = target->ia_sockmask.sin_addr;
1248 prefix.s_addr &= mask.s_addr;
1249 }
1250
1251 s = pserialize_read_enter();
1252 IN_ADDRLIST_READER_FOREACH(ia) {
1253 if (rtinitflags(ia))
1254 p = ia->ia_dstaddr.sin_addr;
1255 else {
1256 p = ia->ia_addr.sin_addr;
1257 p.s_addr &= ia->ia_sockmask.sin_addr.s_addr;
1258 }
1259
1260 if (prefix.s_addr != p.s_addr)
1261 continue;
1262
1263 /*
1264 * if we got a matching prefix route inserted by other
1265 * interface address, we don't need to bother
1266 *
1267 * XXX RADIX_MPATH implications here? -dyoung
1268 */
1269 if (ia->ia_flags & IFA_ROUTE) {
1270 pserialize_read_exit(s);
1271 return 0;
1272 }
1273 }
1274 pserialize_read_exit(s);
1275
1276 /*
1277 * noone seem to have prefix route. insert it.
1278 */
1279 error = rtinit(&target->ia_ifa, RTM_ADD, flags);
1280 if (error == 0)
1281 target->ia_flags |= IFA_ROUTE;
1282 else if (error == EEXIST) {
1283 /*
1284 * the fact the route already exists is not an error.
1285 */
1286 error = 0;
1287 }
1288 return error;
1289 }
1290
1291 /*
1292 * remove a route to prefix ("connected route" in cisco terminology).
1293 * re-installs the route by using another interface address, if there's one
1294 * with the same prefix (otherwise we lose the route mistakenly).
1295 */
1296 static int
1297 in_scrubprefix(struct in_ifaddr *target)
1298 {
1299 struct in_ifaddr *ia;
1300 struct in_addr prefix, mask, p;
1301 int error;
1302 int s;
1303
1304 /* If we don't have IFA_ROUTE we have nothing to do */
1305 if ((target->ia_flags & IFA_ROUTE) == 0)
1306 return 0;
1307
1308 if (rtinitflags(target))
1309 prefix = target->ia_dstaddr.sin_addr;
1310 else {
1311 prefix = target->ia_addr.sin_addr;
1312 mask = target->ia_sockmask.sin_addr;
1313 prefix.s_addr &= mask.s_addr;
1314 }
1315
1316 s = pserialize_read_enter();
1317 IN_ADDRLIST_READER_FOREACH(ia) {
1318 if (rtinitflags(ia))
1319 p = ia->ia_dstaddr.sin_addr;
1320 else {
1321 p = ia->ia_addr.sin_addr;
1322 p.s_addr &= ia->ia_sockmask.sin_addr.s_addr;
1323 }
1324
1325 if (prefix.s_addr != p.s_addr)
1326 continue;
1327
1328 /*
1329 * if we got a matching prefix route, move IFA_ROUTE to him
1330 */
1331 if ((ia->ia_flags & IFA_ROUTE) == 0) {
1332 struct psref psref;
1333 int bound = curlwp_bind();
1334
1335 ia4_acquire(ia, &psref);
1336 pserialize_read_exit(s);
1337
1338 rtinit(&target->ia_ifa, RTM_DELETE,
1339 rtinitflags(target));
1340 target->ia_flags &= ~IFA_ROUTE;
1341
1342 error = rtinit(&ia->ia_ifa, RTM_ADD,
1343 rtinitflags(ia) | RTF_UP);
1344 if (error == 0)
1345 ia->ia_flags |= IFA_ROUTE;
1346
1347 ia4_release(ia, &psref);
1348 curlwp_bindx(bound);
1349
1350 return error;
1351 }
1352 }
1353 pserialize_read_exit(s);
1354
1355 /*
1356 * noone seem to have prefix route. remove it.
1357 */
1358 rtinit(&target->ia_ifa, RTM_DELETE, rtinitflags(target));
1359 target->ia_flags &= ~IFA_ROUTE;
1360 return 0;
1361 }
1362
1363 #undef rtinitflags
1364
1365 /*
1366 * Return 1 if the address might be a local broadcast address.
1367 */
1368 int
1369 in_broadcast(struct in_addr in, struct ifnet *ifp)
1370 {
1371 struct ifaddr *ifa;
1372 int s;
1373
1374 KASSERT(ifp != NULL);
1375
1376 if (in.s_addr == INADDR_BROADCAST ||
1377 in_nullhost(in))
1378 return 1;
1379 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1380 return 0;
1381 /*
1382 * Look through the list of addresses for a match
1383 * with a broadcast address.
1384 */
1385 #define ia (ifatoia(ifa))
1386 s = pserialize_read_enter();
1387 IFADDR_READER_FOREACH(ifa, ifp) {
1388 if (ifa->ifa_addr->sa_family == AF_INET &&
1389 !in_hosteq(in, ia->ia_addr.sin_addr) &&
1390 (in_hosteq(in, ia->ia_broadaddr.sin_addr) ||
1391 in_hosteq(in, ia->ia_netbroadcast) ||
1392 (hostzeroisbroadcast &&
1393 /*
1394 * Check for old-style (host 0) broadcast.
1395 */
1396 (in.s_addr == ia->ia_subnet ||
1397 in.s_addr == ia->ia_net)))) {
1398 pserialize_read_exit(s);
1399 return 1;
1400 }
1401 }
1402 pserialize_read_exit(s);
1403 return (0);
1404 #undef ia
1405 }
1406
1407 /*
1408 * perform DAD when interface becomes IFF_UP.
1409 */
1410 void
1411 in_if_link_up(struct ifnet *ifp)
1412 {
1413 struct ifaddr *ifa;
1414 struct in_ifaddr *ia;
1415 int s, bound;
1416
1417 /* Ensure it's sane to run DAD */
1418 if (ifp->if_link_state == LINK_STATE_DOWN)
1419 return;
1420 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING))
1421 return;
1422
1423 bound = curlwp_bind();
1424 s = pserialize_read_enter();
1425 IFADDR_READER_FOREACH(ifa, ifp) {
1426 struct psref psref;
1427
1428 if (ifa->ifa_addr->sa_family != AF_INET)
1429 continue;
1430 ifa_acquire(ifa, &psref);
1431 pserialize_read_exit(s);
1432
1433 ia = (struct in_ifaddr *)ifa;
1434
1435 /* If detached then mark as tentative */
1436 if (ia->ia4_flags & IN_IFF_DETACHED) {
1437 ia->ia4_flags &= ~IN_IFF_DETACHED;
1438 if (if_do_dad(ifp) && ia->ia_dad_start != NULL)
1439 ia->ia4_flags |= IN_IFF_TENTATIVE;
1440 else if ((ia->ia4_flags & IN_IFF_TENTATIVE) == 0)
1441 rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
1442 }
1443
1444 if (ia->ia4_flags & IN_IFF_TENTATIVE) {
1445 /* Clear the duplicated flag as we're starting DAD. */
1446 ia->ia4_flags &= ~IN_IFF_DUPLICATED;
1447 ia->ia_dad_start(ifa);
1448 }
1449
1450 s = pserialize_read_enter();
1451 ifa_release(ifa, &psref);
1452 }
1453 pserialize_read_exit(s);
1454 curlwp_bindx(bound);
1455 }
1456
1457 void
1458 in_if_up(struct ifnet *ifp)
1459 {
1460
1461 /* interface may not support link state, so bring it up also */
1462 in_if_link_up(ifp);
1463 }
1464
1465 /*
1466 * Mark all addresses as detached.
1467 */
1468 void
1469 in_if_link_down(struct ifnet *ifp)
1470 {
1471 struct ifaddr *ifa;
1472 struct in_ifaddr *ia;
1473 int s, bound;
1474
1475 bound = curlwp_bind();
1476 s = pserialize_read_enter();
1477 IFADDR_READER_FOREACH(ifa, ifp) {
1478 struct psref psref;
1479
1480 if (ifa->ifa_addr->sa_family != AF_INET)
1481 continue;
1482 ifa_acquire(ifa, &psref);
1483 pserialize_read_exit(s);
1484
1485 ia = (struct in_ifaddr *)ifa;
1486
1487 /* Stop DAD processing */
1488 if (ia->ia_dad_stop != NULL)
1489 ia->ia_dad_stop(ifa);
1490
1491 /*
1492 * Mark the address as detached.
1493 */
1494 if (!(ia->ia4_flags & IN_IFF_DETACHED)) {
1495 ia->ia4_flags |= IN_IFF_DETACHED;
1496 ia->ia4_flags &=
1497 ~(IN_IFF_TENTATIVE | IN_IFF_DUPLICATED);
1498 rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
1499 }
1500
1501 s = pserialize_read_enter();
1502 ifa_release(ifa, &psref);
1503 }
1504 pserialize_read_exit(s);
1505 curlwp_bindx(bound);
1506 }
1507
1508 void
1509 in_if_down(struct ifnet *ifp)
1510 {
1511
1512 in_if_link_down(ifp);
1513 }
1514
1515 void
1516 in_if_link_state_change(struct ifnet *ifp, int link_state)
1517 {
1518
1519 switch (link_state) {
1520 case LINK_STATE_DOWN:
1521 in_if_link_down(ifp);
1522 break;
1523 case LINK_STATE_UP:
1524 in_if_link_up(ifp);
1525 break;
1526 }
1527 }
1528
1529 /*
1530 * in_lookup_multi: look up the in_multi record for a given IP
1531 * multicast address on a given interface. If no matching record is
1532 * found, return NULL.
1533 */
1534 struct in_multi *
1535 in_lookup_multi(struct in_addr addr, ifnet_t *ifp)
1536 {
1537 struct in_multi *inm;
1538
1539 KASSERT(rw_lock_held(&in_multilock));
1540
1541 LIST_FOREACH(inm, &IN_MULTI_HASH(addr.s_addr, ifp), inm_list) {
1542 if (in_hosteq(inm->inm_addr, addr) && inm->inm_ifp == ifp)
1543 break;
1544 }
1545 return inm;
1546 }
1547
1548 /*
1549 * in_multi_group: check whether the address belongs to an IP multicast
1550 * group we are joined on this interface. Returns true or false.
1551 */
1552 bool
1553 in_multi_group(struct in_addr addr, ifnet_t *ifp, int flags)
1554 {
1555 bool ingroup;
1556
1557 if (__predict_true(flags & IP_IGMP_MCAST) == 0) {
1558 rw_enter(&in_multilock, RW_READER);
1559 ingroup = in_lookup_multi(addr, ifp) != NULL;
1560 rw_exit(&in_multilock);
1561 } else {
1562 /* XXX Recursive call from ip_output(). */
1563 KASSERT(rw_lock_held(&in_multilock));
1564 ingroup = in_lookup_multi(addr, ifp) != NULL;
1565 }
1566 return ingroup;
1567 }
1568
1569 /*
1570 * Add an address to the list of IP multicast addresses for a given interface.
1571 */
1572 struct in_multi *
1573 in_addmulti(struct in_addr *ap, ifnet_t *ifp)
1574 {
1575 struct sockaddr_in sin;
1576 struct in_multi *inm;
1577
1578 /*
1579 * See if address already in list.
1580 */
1581 rw_enter(&in_multilock, RW_WRITER);
1582 inm = in_lookup_multi(*ap, ifp);
1583 if (inm != NULL) {
1584 /*
1585 * Found it; just increment the reference count.
1586 */
1587 inm->inm_refcount++;
1588 rw_exit(&in_multilock);
1589 return inm;
1590 }
1591
1592 /*
1593 * New address; allocate a new multicast record.
1594 */
1595 inm = pool_get(&inmulti_pool, PR_NOWAIT);
1596 if (inm == NULL) {
1597 rw_exit(&in_multilock);
1598 return NULL;
1599 }
1600 inm->inm_addr = *ap;
1601 inm->inm_ifp = ifp;
1602 inm->inm_refcount = 1;
1603
1604 /*
1605 * Ask the network driver to update its multicast reception
1606 * filter appropriately for the new address.
1607 */
1608 sockaddr_in_init(&sin, ap, 0);
1609 if (if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin)) != 0) {
1610 rw_exit(&in_multilock);
1611 pool_put(&inmulti_pool, inm);
1612 return NULL;
1613 }
1614
1615 /*
1616 * Let IGMP know that we have joined a new IP multicast group.
1617 */
1618 if (igmp_joingroup(inm) != 0) {
1619 rw_exit(&in_multilock);
1620 pool_put(&inmulti_pool, inm);
1621 return NULL;
1622 }
1623 LIST_INSERT_HEAD(
1624 &IN_MULTI_HASH(inm->inm_addr.s_addr, ifp),
1625 inm, inm_list);
1626 in_multientries++;
1627 rw_exit(&in_multilock);
1628
1629 return inm;
1630 }
1631
1632 /*
1633 * Delete a multicast address record.
1634 */
1635 void
1636 in_delmulti(struct in_multi *inm)
1637 {
1638 struct sockaddr_in sin;
1639
1640 rw_enter(&in_multilock, RW_WRITER);
1641 if (--inm->inm_refcount > 0) {
1642 rw_exit(&in_multilock);
1643 return;
1644 }
1645
1646 /*
1647 * No remaining claims to this record; let IGMP know that
1648 * we are leaving the multicast group.
1649 */
1650 igmp_leavegroup(inm);
1651
1652 /*
1653 * Notify the network driver to update its multicast reception
1654 * filter.
1655 */
1656 sockaddr_in_init(&sin, &inm->inm_addr, 0);
1657 if_mcast_op(inm->inm_ifp, SIOCDELMULTI, sintosa(&sin));
1658
1659 /*
1660 * Unlink from list.
1661 */
1662 LIST_REMOVE(inm, inm_list);
1663 in_multientries--;
1664 rw_exit(&in_multilock);
1665
1666 pool_put(&inmulti_pool, inm);
1667 }
1668
1669 /*
1670 * in_next_multi: step through all of the in_multi records, one at a time.
1671 * The current position is remembered in "step", which the caller must
1672 * provide. in_first_multi(), below, must be called to initialize "step"
1673 * and get the first record. Both macros return a NULL "inm" when there
1674 * are no remaining records.
1675 */
1676 struct in_multi *
1677 in_next_multi(struct in_multistep *step)
1678 {
1679 struct in_multi *inm;
1680
1681 KASSERT(rw_lock_held(&in_multilock));
1682
1683 while (step->i_inm == NULL && step->i_n < IN_MULTI_HASH_SIZE) {
1684 step->i_inm = LIST_FIRST(&in_multihashtbl[++step->i_n]);
1685 }
1686 if ((inm = step->i_inm) != NULL) {
1687 step->i_inm = LIST_NEXT(inm, inm_list);
1688 }
1689 return inm;
1690 }
1691
1692 struct in_multi *
1693 in_first_multi(struct in_multistep *step)
1694 {
1695 KASSERT(rw_lock_held(&in_multilock));
1696
1697 step->i_n = 0;
1698 step->i_inm = LIST_FIRST(&in_multihashtbl[0]);
1699 return in_next_multi(step);
1700 }
1701
1702 void
1703 in_multi_lock(int op)
1704 {
1705 rw_enter(&in_multilock, op);
1706 }
1707
1708 void
1709 in_multi_unlock(void)
1710 {
1711 rw_exit(&in_multilock);
1712 }
1713
1714 int
1715 in_multi_lock_held(void)
1716 {
1717 return rw_lock_held(&in_multilock);
1718 }
1719
1720 struct in_ifaddr *
1721 in_selectsrc(struct sockaddr_in *sin, struct route *ro,
1722 int soopts, struct ip_moptions *mopts, int *errorp, struct psref *psref)
1723 {
1724 struct rtentry *rt = NULL;
1725 struct in_ifaddr *ia = NULL;
1726
1727 KASSERT(ISSET(curlwp->l_pflag, LP_BOUND));
1728 /*
1729 * If route is known or can be allocated now, take the
1730 * source address from the interface. Otherwise, punt.
1731 */
1732 if ((soopts & SO_DONTROUTE) != 0)
1733 rtcache_free(ro);
1734 else {
1735 union {
1736 struct sockaddr dst;
1737 struct sockaddr_in dst4;
1738 } u;
1739
1740 sockaddr_in_init(&u.dst4, &sin->sin_addr, 0);
1741 rt = rtcache_lookup(ro, &u.dst);
1742 }
1743 /*
1744 * If we found a route, use the address
1745 * corresponding to the outgoing interface
1746 * unless it is the loopback (in case a route
1747 * to our address on another net goes to loopback).
1748 *
1749 * XXX Is this still true? Do we care?
1750 */
1751 if (rt != NULL && (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
1752 int s;
1753 struct ifaddr *ifa;
1754 /*
1755 * Just in case. May not need to do this workaround.
1756 * Revisit when working on rtentry MP-ification.
1757 */
1758 s = pserialize_read_enter();
1759 IFADDR_READER_FOREACH(ifa, rt->rt_ifp) {
1760 if (ifa == rt->rt_ifa)
1761 break;
1762 }
1763 if (ifa != NULL)
1764 ifa_acquire(ifa, psref);
1765 pserialize_read_exit(s);
1766
1767 ia = ifatoia(ifa);
1768 }
1769 if (ia == NULL) {
1770 u_int16_t fport = sin->sin_port;
1771 struct ifaddr *ifa;
1772 int s;
1773
1774 sin->sin_port = 0;
1775 ifa = ifa_ifwithladdr_psref(sintosa(sin), psref);
1776 sin->sin_port = fport;
1777 if (ifa == NULL) {
1778 /* Find 1st non-loopback AF_INET address */
1779 s = pserialize_read_enter();
1780 IN_ADDRLIST_READER_FOREACH(ia) {
1781 if (!(ia->ia_ifp->if_flags & IFF_LOOPBACK))
1782 break;
1783 }
1784 if (ia != NULL)
1785 ia4_acquire(ia, psref);
1786 pserialize_read_exit(s);
1787 } else {
1788 /* ia is already referenced by psref */
1789 ia = ifatoia(ifa);
1790 }
1791 if (ia == NULL) {
1792 *errorp = EADDRNOTAVAIL;
1793 return NULL;
1794 }
1795 }
1796 /*
1797 * If the destination address is multicast and an outgoing
1798 * interface has been set as a multicast option, use the
1799 * address of that interface as our source address.
1800 */
1801 if (IN_MULTICAST(sin->sin_addr.s_addr) && mopts != NULL) {
1802 struct ip_moptions *imo;
1803
1804 imo = mopts;
1805 if (imo->imo_multicast_if_index != 0) {
1806 struct ifnet *ifp;
1807 int s;
1808
1809 if (ia != NULL)
1810 ia4_release(ia, psref);
1811 s = pserialize_read_enter();
1812 ifp = if_byindex(imo->imo_multicast_if_index);
1813 if (ifp != NULL) {
1814 /* XXX */
1815 ia = in_get_ia_from_ifp_psref(ifp, psref);
1816 } else
1817 ia = NULL;
1818 if (ia == NULL || ia->ia4_flags & IN_IFF_NOTREADY) {
1819 pserialize_read_exit(s);
1820 if (ia != NULL)
1821 ia4_release(ia, psref);
1822 *errorp = EADDRNOTAVAIL;
1823 return NULL;
1824 }
1825 pserialize_read_exit(s);
1826 }
1827 }
1828 if (ia->ia_ifa.ifa_getifa != NULL) {
1829 ia = ifatoia((*ia->ia_ifa.ifa_getifa)(&ia->ia_ifa,
1830 sintosa(sin)));
1831 if (ia == NULL) {
1832 *errorp = EADDRNOTAVAIL;
1833 return NULL;
1834 }
1835 /* FIXME NOMPSAFE */
1836 ia4_acquire(ia, psref);
1837 }
1838 #ifdef GETIFA_DEBUG
1839 else
1840 printf("%s: missing ifa_getifa\n", __func__);
1841 #endif
1842 return ia;
1843 }
1844
1845 #if NARP > 0
1846
1847 struct in_llentry {
1848 struct llentry base;
1849 };
1850
1851 #define IN_LLTBL_DEFAULT_HSIZE 32
1852 #define IN_LLTBL_HASH(k, h) \
1853 (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1))
1854
1855 /*
1856 * Do actual deallocation of @lle.
1857 * Called by LLE_FREE_LOCKED when number of references
1858 * drops to zero.
1859 */
1860 static void
1861 in_lltable_destroy_lle(struct llentry *lle)
1862 {
1863
1864 LLE_WUNLOCK(lle);
1865 LLE_LOCK_DESTROY(lle);
1866 kmem_intr_free(lle, sizeof(*lle));
1867 }
1868
1869 static struct llentry *
1870 in_lltable_new(struct in_addr addr4, u_int flags)
1871 {
1872 struct in_llentry *lle;
1873
1874 lle = kmem_intr_zalloc(sizeof(*lle), KM_NOSLEEP);
1875 if (lle == NULL) /* NB: caller generates msg */
1876 return NULL;
1877
1878 /*
1879 * For IPv4 this will trigger "arpresolve" to generate
1880 * an ARP request.
1881 */
1882 lle->base.la_expire = time_uptime; /* mark expired */
1883 lle->base.r_l3addr.addr4 = addr4;
1884 lle->base.lle_refcnt = 1;
1885 lle->base.lle_free = in_lltable_destroy_lle;
1886 LLE_LOCK_INIT(&lle->base);
1887 callout_init(&lle->base.la_timer, CALLOUT_MPSAFE);
1888
1889 return (&lle->base);
1890 }
1891
1892 #define IN_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \
1893 (((ntohl((d).s_addr) ^ (a)->sin_addr.s_addr) & (m)->sin_addr.s_addr)) == 0 )
1894
1895 static int
1896 in_lltable_match_prefix(const struct sockaddr *prefix,
1897 const struct sockaddr *mask, u_int flags, struct llentry *lle)
1898 {
1899 const struct sockaddr_in *pfx = (const struct sockaddr_in *)prefix;
1900 const struct sockaddr_in *msk = (const struct sockaddr_in *)mask;
1901
1902 /*
1903 * (flags & LLE_STATIC) means deleting all entries
1904 * including static ARP entries.
1905 */
1906 if (IN_ARE_MASKED_ADDR_EQUAL(lle->r_l3addr.addr4, pfx, msk) &&
1907 ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC)))
1908 return (1);
1909
1910 return (0);
1911 }
1912
1913 static void
1914 in_lltable_free_entry(struct lltable *llt, struct llentry *lle)
1915 {
1916 struct ifnet *ifp __diagused;
1917 size_t pkts_dropped;
1918
1919 LLE_WLOCK_ASSERT(lle);
1920 KASSERT(llt != NULL);
1921
1922 /* Unlink entry from table if not already */
1923 if ((lle->la_flags & LLE_LINKED) != 0) {
1924 ifp = llt->llt_ifp;
1925 IF_AFDATA_WLOCK_ASSERT(ifp);
1926 lltable_unlink_entry(llt, lle);
1927 }
1928
1929 /* cancel timer */
1930 if (callout_halt(&lle->lle_timer, &lle->lle_lock))
1931 LLE_REMREF(lle);
1932
1933 /* Drop hold queue */
1934 pkts_dropped = llentry_free(lle);
1935 arp_stat_add(ARP_STAT_DFRDROPPED, (uint64_t)pkts_dropped);
1936 }
1937
1938 static int
1939 in_lltable_rtcheck(struct ifnet *ifp, u_int flags, const struct sockaddr *l3addr)
1940 {
1941 struct rtentry *rt;
1942 int error = EINVAL;
1943
1944 KASSERTMSG(l3addr->sa_family == AF_INET,
1945 "sin_family %d", l3addr->sa_family);
1946
1947 rt = rtalloc1(l3addr, 0);
1948 if (rt == NULL)
1949 return error;
1950
1951 /*
1952 * If the gateway for an existing host route matches the target L3
1953 * address, which is a special route inserted by some implementation
1954 * such as MANET, and the interface is of the correct type, then
1955 * allow for ARP to proceed.
1956 */
1957 if (rt->rt_flags & RTF_GATEWAY) {
1958 if (!(rt->rt_flags & RTF_HOST) || !rt->rt_ifp ||
1959 rt->rt_ifp->if_type != IFT_ETHER ||
1960 #ifdef __FreeBSD__
1961 (rt->rt_ifp->if_flags & (IFF_NOARP | IFF_STATICARP)) != 0 ||
1962 #else
1963 (rt->rt_ifp->if_flags & IFF_NOARP) != 0 ||
1964 #endif
1965 memcmp(rt->rt_gateway->sa_data, l3addr->sa_data,
1966 sizeof(in_addr_t)) != 0) {
1967 goto error;
1968 }
1969 }
1970
1971 /*
1972 * Make sure that at least the destination address is covered
1973 * by the route. This is for handling the case where 2 or more
1974 * interfaces have the same prefix. An incoming packet arrives
1975 * on one interface and the corresponding outgoing packet leaves
1976 * another interface.
1977 */
1978 if (!(rt->rt_flags & RTF_HOST) && rt->rt_ifp != ifp) {
1979 const char *sa, *mask, *addr, *lim;
1980 int len;
1981
1982 mask = (const char *)rt_mask(rt);
1983 /*
1984 * Just being extra cautious to avoid some custom
1985 * code getting into trouble.
1986 */
1987 if (mask == NULL)
1988 goto error;
1989
1990 sa = (const char *)rt_getkey(rt);
1991 addr = (const char *)l3addr;
1992 len = ((const struct sockaddr_in *)l3addr)->sin_len;
1993 lim = addr + len;
1994
1995 for ( ; addr < lim; sa++, mask++, addr++) {
1996 if ((*sa ^ *addr) & *mask) {
1997 #ifdef DIAGNOSTIC
1998 log(LOG_INFO, "IPv4 address: \"%s\" is not on the network\n",
1999 inet_ntoa(((const struct sockaddr_in *)l3addr)->sin_addr));
2000 #endif
2001 goto error;
2002 }
2003 }
2004 }
2005
2006 error = 0;
2007 error:
2008 rtfree(rt);
2009 return error;
2010 }
2011
2012 static inline uint32_t
2013 in_lltable_hash_dst(const struct in_addr dst, uint32_t hsize)
2014 {
2015
2016 return (IN_LLTBL_HASH(dst.s_addr, hsize));
2017 }
2018
2019 static uint32_t
2020 in_lltable_hash(const struct llentry *lle, uint32_t hsize)
2021 {
2022
2023 return (in_lltable_hash_dst(lle->r_l3addr.addr4, hsize));
2024 }
2025
2026 static void
2027 in_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa)
2028 {
2029 struct sockaddr_in *sin;
2030
2031 sin = (struct sockaddr_in *)sa;
2032 memset(sin, 0, sizeof(*sin));
2033 sin->sin_family = AF_INET;
2034 sin->sin_len = sizeof(*sin);
2035 sin->sin_addr = lle->r_l3addr.addr4;
2036 }
2037
2038 static inline struct llentry *
2039 in_lltable_find_dst(struct lltable *llt, struct in_addr dst)
2040 {
2041 struct llentry *lle;
2042 struct llentries *lleh;
2043 u_int hashidx;
2044
2045 hashidx = in_lltable_hash_dst(dst, llt->llt_hsize);
2046 lleh = &llt->lle_head[hashidx];
2047 LIST_FOREACH(lle, lleh, lle_next) {
2048 if (lle->la_flags & LLE_DELETED)
2049 continue;
2050 if (lle->r_l3addr.addr4.s_addr == dst.s_addr)
2051 break;
2052 }
2053
2054 return (lle);
2055 }
2056
2057 static int
2058 in_lltable_delete(struct lltable *llt, u_int flags,
2059 const struct sockaddr *l3addr)
2060 {
2061 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
2062 struct ifnet *ifp __diagused = llt->llt_ifp;
2063 struct llentry *lle;
2064
2065 IF_AFDATA_WLOCK_ASSERT(ifp);
2066 KASSERTMSG(l3addr->sa_family == AF_INET,
2067 "sin_family %d", l3addr->sa_family);
2068
2069 lle = in_lltable_find_dst(llt, sin->sin_addr);
2070 if (lle == NULL) {
2071 #ifdef DIAGNOSTIC
2072 log(LOG_INFO, "interface address is missing from cache = %p in delete\n", lle);
2073 #endif
2074 return (ENOENT);
2075 }
2076
2077 LLE_WLOCK(lle);
2078 lle->la_flags |= LLE_DELETED;
2079 #ifdef DIAGNOSTIC
2080 log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle);
2081 #endif
2082 if ((lle->la_flags & (LLE_STATIC | LLE_IFADDR)) == LLE_STATIC)
2083 llentry_free(lle);
2084 else
2085 LLE_WUNLOCK(lle);
2086
2087 return (0);
2088 }
2089
2090 static struct llentry *
2091 in_lltable_create(struct lltable *llt, u_int flags, const struct sockaddr *l3addr)
2092 {
2093 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
2094 struct ifnet *ifp = llt->llt_ifp;
2095 struct llentry *lle;
2096
2097 IF_AFDATA_WLOCK_ASSERT(ifp);
2098 KASSERTMSG(l3addr->sa_family == AF_INET,
2099 "sin_family %d", l3addr->sa_family);
2100
2101 lle = in_lltable_find_dst(llt, sin->sin_addr);
2102
2103 if (lle != NULL) {
2104 LLE_WLOCK(lle);
2105 return (lle);
2106 }
2107
2108 /* no existing record, we need to create new one */
2109
2110 /*
2111 * A route that covers the given address must have
2112 * been installed 1st because we are doing a resolution,
2113 * verify this.
2114 */
2115 if (!(flags & LLE_IFADDR) &&
2116 in_lltable_rtcheck(ifp, flags, l3addr) != 0)
2117 return (NULL);
2118
2119 lle = in_lltable_new(sin->sin_addr, flags);
2120 if (lle == NULL) {
2121 log(LOG_INFO, "lla_lookup: new lle malloc failed\n");
2122 return (NULL);
2123 }
2124 lle->la_flags = flags;
2125 if ((flags & LLE_IFADDR) == LLE_IFADDR) {
2126 memcpy(&lle->ll_addr, CLLADDR(ifp->if_sadl), ifp->if_addrlen);
2127 lle->la_flags |= (LLE_VALID | LLE_STATIC);
2128 }
2129
2130 lltable_link_entry(llt, lle);
2131 LLE_WLOCK(lle);
2132
2133 return (lle);
2134 }
2135
2136 /*
2137 * Return NULL if not found or marked for deletion.
2138 * If found return lle read locked.
2139 */
2140 static struct llentry *
2141 in_lltable_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr)
2142 {
2143 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
2144 struct llentry *lle;
2145
2146 IF_AFDATA_LOCK_ASSERT(llt->llt_ifp);
2147 KASSERTMSG(l3addr->sa_family == AF_INET,
2148 "sin_family %d", l3addr->sa_family);
2149
2150 lle = in_lltable_find_dst(llt, sin->sin_addr);
2151
2152 if (lle == NULL)
2153 return NULL;
2154
2155 if (flags & LLE_EXCLUSIVE)
2156 LLE_WLOCK(lle);
2157 else
2158 LLE_RLOCK(lle);
2159
2160 return lle;
2161 }
2162
2163 static int
2164 in_lltable_dump_entry(struct lltable *llt, struct llentry *lle,
2165 struct rt_walkarg *w)
2166 {
2167 struct sockaddr_in sin;
2168
2169 LLTABLE_LOCK_ASSERT();
2170
2171 /* skip deleted entries */
2172 if (lle->la_flags & LLE_DELETED)
2173 return 0;
2174
2175 sockaddr_in_init(&sin, &lle->r_l3addr.addr4, 0);
2176
2177 return lltable_dump_entry(llt, lle, w, sintosa(&sin));
2178 }
2179
2180 #endif /* NARP > 0 */
2181
2182 static int
2183 in_multicast_sysctl(SYSCTLFN_ARGS)
2184 {
2185 struct ifnet *ifp;
2186 struct ifaddr *ifa;
2187 struct in_ifaddr *ifa4;
2188 struct in_multi *inm;
2189 uint32_t tmp;
2190 int error;
2191 size_t written;
2192 struct psref psref;
2193 int bound;
2194
2195 if (namelen != 1)
2196 return EINVAL;
2197
2198 bound = curlwp_bind();
2199 ifp = if_get_byindex(name[0], &psref);
2200 if (ifp == NULL) {
2201 curlwp_bindx(bound);
2202 return ENODEV;
2203 }
2204
2205 if (oldp == NULL) {
2206 *oldlenp = 0;
2207 IFADDR_FOREACH(ifa, ifp) {
2208 if (ifa->ifa_addr->sa_family != AF_INET)
2209 continue;
2210 ifa4 = (void *)ifa;
2211 LIST_FOREACH(inm, &ifa4->ia_multiaddrs, inm_list) {
2212 *oldlenp += 2 * sizeof(struct in_addr) +
2213 sizeof(uint32_t);
2214 }
2215 }
2216 if_put(ifp, &psref);
2217 curlwp_bindx(bound);
2218 return 0;
2219 }
2220
2221 error = 0;
2222 written = 0;
2223 IFADDR_FOREACH(ifa, ifp) {
2224 if (ifa->ifa_addr->sa_family != AF_INET)
2225 continue;
2226 ifa4 = (void *)ifa;
2227 LIST_FOREACH(inm, &ifa4->ia_multiaddrs, inm_list) {
2228 if (written + 2 * sizeof(struct in_addr) +
2229 sizeof(uint32_t) > *oldlenp)
2230 goto done;
2231 error = sysctl_copyout(l, &ifa4->ia_addr.sin_addr,
2232 oldp, sizeof(struct in_addr));
2233 if (error)
2234 goto done;
2235 oldp = (char *)oldp + sizeof(struct in_addr);
2236 written += sizeof(struct in_addr);
2237 error = sysctl_copyout(l, &inm->inm_addr,
2238 oldp, sizeof(struct in_addr));
2239 if (error)
2240 goto done;
2241 oldp = (char *)oldp + sizeof(struct in_addr);
2242 written += sizeof(struct in_addr);
2243 tmp = inm->inm_refcount;
2244 error = sysctl_copyout(l, &tmp, oldp, sizeof(tmp));
2245 if (error)
2246 goto done;
2247 oldp = (char *)oldp + sizeof(tmp);
2248 written += sizeof(tmp);
2249 }
2250 }
2251 done:
2252 if_put(ifp, &psref);
2253 curlwp_bindx(bound);
2254 *oldlenp = written;
2255 return error;
2256 }
2257
2258 static void
2259 in_sysctl_init(struct sysctllog **clog)
2260 {
2261 sysctl_createv(clog, 0, NULL, NULL,
2262 CTLFLAG_PERMANENT,
2263 CTLTYPE_NODE, "inet",
2264 SYSCTL_DESCR("PF_INET related settings"),
2265 NULL, 0, NULL, 0,
2266 CTL_NET, PF_INET, CTL_EOL);
2267 sysctl_createv(clog, 0, NULL, NULL,
2268 CTLFLAG_PERMANENT,
2269 CTLTYPE_NODE, "multicast",
2270 SYSCTL_DESCR("Multicast information"),
2271 in_multicast_sysctl, 0, NULL, 0,
2272 CTL_NET, PF_INET, CTL_CREATE, CTL_EOL);
2273 sysctl_createv(clog, 0, NULL, NULL,
2274 CTLFLAG_PERMANENT,
2275 CTLTYPE_NODE, "ip",
2276 SYSCTL_DESCR("IPv4 related settings"),
2277 NULL, 0, NULL, 0,
2278 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2279
2280 sysctl_createv(clog, 0, NULL, NULL,
2281 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2282 CTLTYPE_INT, "subnetsarelocal",
2283 SYSCTL_DESCR("Whether logical subnets are considered "
2284 "local"),
2285 NULL, 0, &subnetsarelocal, 0,
2286 CTL_NET, PF_INET, IPPROTO_IP,
2287 IPCTL_SUBNETSARELOCAL, CTL_EOL);
2288 sysctl_createv(clog, 0, NULL, NULL,
2289 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2290 CTLTYPE_INT, "hostzerobroadcast",
2291 SYSCTL_DESCR("All zeroes address is broadcast address"),
2292 NULL, 0, &hostzeroisbroadcast, 0,
2293 CTL_NET, PF_INET, IPPROTO_IP,
2294 IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2295 }
2296
2297 #if NARP > 0
2298
2299 static struct lltable *
2300 in_lltattach(struct ifnet *ifp)
2301 {
2302 struct lltable *llt;
2303
2304 llt = lltable_allocate_htbl(IN_LLTBL_DEFAULT_HSIZE);
2305 llt->llt_af = AF_INET;
2306 llt->llt_ifp = ifp;
2307
2308 llt->llt_lookup = in_lltable_lookup;
2309 llt->llt_create = in_lltable_create;
2310 llt->llt_delete = in_lltable_delete;
2311 llt->llt_dump_entry = in_lltable_dump_entry;
2312 llt->llt_hash = in_lltable_hash;
2313 llt->llt_fill_sa_entry = in_lltable_fill_sa_entry;
2314 llt->llt_free_entry = in_lltable_free_entry;
2315 llt->llt_match_prefix = in_lltable_match_prefix;
2316 lltable_link(llt);
2317
2318 return (llt);
2319 }
2320
2321 #endif /* NARP > 0 */
2322
2323 void *
2324 in_domifattach(struct ifnet *ifp)
2325 {
2326 struct in_ifinfo *ii;
2327
2328 ii = kmem_zalloc(sizeof(struct in_ifinfo), KM_SLEEP);
2329 KASSERT(ii != NULL);
2330
2331 #if NARP > 0
2332 ii->ii_llt = in_lltattach(ifp);
2333 #endif
2334
2335 #ifdef IPSELSRC
2336 ii->ii_selsrc = in_selsrc_domifattach(ifp);
2337 KASSERT(ii->ii_selsrc != NULL);
2338 #endif
2339
2340 return ii;
2341 }
2342
2343 void
2344 in_domifdetach(struct ifnet *ifp, void *aux)
2345 {
2346 struct in_ifinfo *ii = aux;
2347
2348 #ifdef IPSELSRC
2349 in_selsrc_domifdetach(ifp, ii->ii_selsrc);
2350 #endif
2351 #if NARP > 0
2352 lltable_free(ii->ii_llt);
2353 #endif
2354 kmem_free(ii, sizeof(struct in_ifinfo));
2355 }
2356