in.c revision 1.216 1 /* $NetBSD: in.c,v 1.216 2018/01/19 08:01:05 ozaki-r Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1991, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)in.c 8.4 (Berkeley) 1/9/95
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: in.c,v 1.216 2018/01/19 08:01:05 ozaki-r Exp $");
95
96 #include "arp.h"
97
98 #ifdef _KERNEL_OPT
99 #include "opt_inet.h"
100 #include "opt_inet_conf.h"
101 #include "opt_mrouting.h"
102 #include "opt_net_mpsafe.h"
103 #endif
104
105 #include <sys/param.h>
106 #include <sys/ioctl.h>
107 #include <sys/errno.h>
108 #include <sys/kernel.h>
109 #include <sys/malloc.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/sysctl.h>
113 #include <sys/systm.h>
114 #include <sys/proc.h>
115 #include <sys/syslog.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118
119 #include <sys/cprng.h>
120
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124
125 #include <net/if_arp.h>
126 #include <net/if_ether.h>
127 #include <net/if_types.h>
128 #include <net/if_llatbl.h>
129 #include <net/if_dl.h>
130
131 #include <netinet/in_systm.h>
132 #include <netinet/in.h>
133 #include <netinet/in_var.h>
134 #include <netinet/ip.h>
135 #include <netinet/ip_var.h>
136 #include <netinet/in_ifattach.h>
137 #include <netinet/in_pcb.h>
138 #include <netinet/in_selsrc.h>
139 #include <netinet/if_inarp.h>
140 #include <netinet/ip_mroute.h>
141 #include <netinet/igmp_var.h>
142
143 #ifdef IPSELSRC
144 #include <netinet/in_selsrc.h>
145 #endif
146
147 static u_int in_mask2len(struct in_addr *);
148 static void in_len2mask(struct in_addr *, u_int);
149 static int in_lifaddr_ioctl(struct socket *, u_long, void *,
150 struct ifnet *);
151
152 static void in_addrhash_insert_locked(struct in_ifaddr *);
153 static void in_addrhash_remove_locked(struct in_ifaddr *);
154
155 static int in_addprefix(struct in_ifaddr *, int);
156 static void in_scrubaddr(struct in_ifaddr *);
157 static int in_scrubprefix(struct in_ifaddr *);
158 static void in_sysctl_init(struct sysctllog **);
159
160 #ifndef SUBNETSARELOCAL
161 #define SUBNETSARELOCAL 1
162 #endif
163
164 #ifndef HOSTZEROBROADCAST
165 #define HOSTZEROBROADCAST 0
166 #endif
167
168 /* Note: 61, 127, 251, 509, 1021, 2039 are good. */
169 #ifndef IN_MULTI_HASH_SIZE
170 #define IN_MULTI_HASH_SIZE 509
171 #endif
172
173 static int subnetsarelocal = SUBNETSARELOCAL;
174 static int hostzeroisbroadcast = HOSTZEROBROADCAST;
175
176 /*
177 * This list is used to keep track of in_multi chains which belong to
178 * deleted interface addresses. We use in_ifaddr so that a chain head
179 * won't be deallocated until all multicast address record are deleted.
180 */
181
182 LIST_HEAD(in_multihashhead, in_multi); /* Type of the hash head */
183
184 static struct pool inmulti_pool;
185 static u_int in_multientries;
186 static struct in_multihashhead *in_multihashtbl;
187 static u_long in_multihash;
188 static krwlock_t in_multilock;
189
190 #define IN_MULTI_HASH(x, ifp) \
191 (in_multihashtbl[(u_long)((x) ^ (ifp->if_index)) % IN_MULTI_HASH_SIZE])
192
193 /* XXX DEPRECATED. Keep them to avoid breaking kvm(3) users. */
194 struct in_ifaddrhashhead * in_ifaddrhashtbl;
195 u_long in_ifaddrhash;
196 struct in_ifaddrhead in_ifaddrhead;
197 static kmutex_t in_ifaddr_lock;
198
199 pserialize_t in_ifaddrhash_psz;
200 struct pslist_head * in_ifaddrhashtbl_pslist;
201 u_long in_ifaddrhash_pslist;
202 struct pslist_head in_ifaddrhead_pslist;
203
204 void
205 in_init(void)
206 {
207 pool_init(&inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl",
208 NULL, IPL_SOFTNET);
209 TAILQ_INIT(&in_ifaddrhead);
210 PSLIST_INIT(&in_ifaddrhead_pslist);
211
212 in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
213 &in_ifaddrhash);
214
215 in_ifaddrhash_psz = pserialize_create();
216 in_ifaddrhashtbl_pslist = hashinit(IN_IFADDR_HASH_SIZE, HASH_PSLIST,
217 true, &in_ifaddrhash_pslist);
218 mutex_init(&in_ifaddr_lock, MUTEX_DEFAULT, IPL_NONE);
219
220 in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
221 &in_multihash);
222 rw_init(&in_multilock);
223
224 in_sysctl_init(NULL);
225 }
226
227 /*
228 * Return 1 if an internet address is for a ``local'' host
229 * (one to which we have a connection). If subnetsarelocal
230 * is true, this includes other subnets of the local net.
231 * Otherwise, it includes only the directly-connected (sub)nets.
232 */
233 int
234 in_localaddr(struct in_addr in)
235 {
236 struct in_ifaddr *ia;
237 int localaddr = 0;
238 int s = pserialize_read_enter();
239
240 if (subnetsarelocal) {
241 IN_ADDRLIST_READER_FOREACH(ia) {
242 if ((in.s_addr & ia->ia_netmask) == ia->ia_net) {
243 localaddr = 1;
244 break;
245 }
246 }
247 } else {
248 IN_ADDRLIST_READER_FOREACH(ia) {
249 if ((in.s_addr & ia->ia_subnetmask) == ia->ia_subnet) {
250 localaddr = 1;
251 break;
252 }
253 }
254 }
255 pserialize_read_exit(s);
256
257 return localaddr;
258 }
259
260 /*
261 * like in_localaddr() but can specify ifp.
262 */
263 int
264 in_direct(struct in_addr in, struct ifnet *ifp)
265 {
266 struct ifaddr *ifa;
267 int localaddr = 0;
268 int s;
269
270 KASSERT(ifp != NULL);
271
272 #define ia (ifatoia(ifa))
273 s = pserialize_read_enter();
274 if (subnetsarelocal) {
275 IFADDR_READER_FOREACH(ifa, ifp) {
276 if (ifa->ifa_addr->sa_family == AF_INET &&
277 ((in.s_addr & ia->ia_netmask) == ia->ia_net)) {
278 localaddr = 1;
279 break;
280 }
281 }
282 } else {
283 IFADDR_READER_FOREACH(ifa, ifp) {
284 if (ifa->ifa_addr->sa_family == AF_INET &&
285 (in.s_addr & ia->ia_subnetmask) == ia->ia_subnet) {
286 localaddr = 1;
287 break;
288 }
289 }
290 }
291 pserialize_read_exit(s);
292
293 return localaddr;
294 #undef ia
295 }
296
297 /*
298 * Determine whether an IP address is in a reserved set of addresses
299 * that may not be forwarded, or whether datagrams to that destination
300 * may be forwarded.
301 */
302 int
303 in_canforward(struct in_addr in)
304 {
305 u_int32_t net;
306
307 if (IN_EXPERIMENTAL(in.s_addr) || IN_MULTICAST(in.s_addr))
308 return (0);
309 if (IN_CLASSA(in.s_addr)) {
310 net = in.s_addr & IN_CLASSA_NET;
311 if (net == 0 || net == htonl(IN_LOOPBACKNET << IN_CLASSA_NSHIFT))
312 return (0);
313 }
314 return (1);
315 }
316
317 /*
318 * Trim a mask in a sockaddr
319 */
320 void
321 in_socktrim(struct sockaddr_in *ap)
322 {
323 char *cplim = (char *) &ap->sin_addr;
324 char *cp = (char *) (&ap->sin_addr + 1);
325
326 ap->sin_len = 0;
327 while (--cp >= cplim)
328 if (*cp) {
329 (ap)->sin_len = cp - (char *) (ap) + 1;
330 break;
331 }
332 }
333
334 /*
335 * Maintain the "in_maxmtu" variable, which is the largest
336 * mtu for non-local interfaces with AF_INET addresses assigned
337 * to them that are up.
338 */
339 unsigned long in_maxmtu;
340
341 void
342 in_setmaxmtu(void)
343 {
344 struct in_ifaddr *ia;
345 struct ifnet *ifp;
346 unsigned long maxmtu = 0;
347 int s = pserialize_read_enter();
348
349 IN_ADDRLIST_READER_FOREACH(ia) {
350 if ((ifp = ia->ia_ifp) == 0)
351 continue;
352 if ((ifp->if_flags & (IFF_UP|IFF_LOOPBACK)) != IFF_UP)
353 continue;
354 if (ifp->if_mtu > maxmtu)
355 maxmtu = ifp->if_mtu;
356 }
357 if (maxmtu)
358 in_maxmtu = maxmtu;
359 pserialize_read_exit(s);
360 }
361
362 static u_int
363 in_mask2len(struct in_addr *mask)
364 {
365 u_int x, y;
366 u_char *p;
367
368 p = (u_char *)mask;
369 for (x = 0; x < sizeof(*mask); x++) {
370 if (p[x] != 0xff)
371 break;
372 }
373 y = 0;
374 if (x < sizeof(*mask)) {
375 for (y = 0; y < NBBY; y++) {
376 if ((p[x] & (0x80 >> y)) == 0)
377 break;
378 }
379 }
380 return x * NBBY + y;
381 }
382
383 static void
384 in_len2mask(struct in_addr *mask, u_int len)
385 {
386 u_int i;
387 u_char *p;
388
389 p = (u_char *)mask;
390 memset(mask, 0, sizeof(*mask));
391 for (i = 0; i < len / NBBY; i++)
392 p[i] = 0xff;
393 if (len % NBBY)
394 p[i] = (0xff00 >> (len % NBBY)) & 0xff;
395 }
396
397 /*
398 * Generic internet control operations (ioctl's).
399 * Ifp is 0 if not an interface-specific ioctl.
400 */
401 /* ARGSUSED */
402 static int
403 in_control0(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
404 {
405 struct ifreq *ifr = (struct ifreq *)data;
406 struct in_ifaddr *ia = NULL;
407 struct in_aliasreq *ifra = (struct in_aliasreq *)data;
408 struct sockaddr_in oldaddr, *new_dstaddr;
409 int error, hostIsNew, maskIsNew;
410 int newifaddr = 0;
411 bool run_hook = false;
412 bool need_reinsert = false;
413 struct psref psref;
414 int bound;
415
416 switch (cmd) {
417 case SIOCALIFADDR:
418 case SIOCDLIFADDR:
419 case SIOCGLIFADDR:
420 if (ifp == NULL)
421 return EINVAL;
422 return in_lifaddr_ioctl(so, cmd, data, ifp);
423 case SIOCGIFADDRPREF:
424 case SIOCSIFADDRPREF:
425 if (ifp == NULL)
426 return EINVAL;
427 return ifaddrpref_ioctl(so, cmd, data, ifp);
428 }
429
430 bound = curlwp_bind();
431 /*
432 * Find address for this interface, if it exists.
433 */
434 if (ifp != NULL)
435 ia = in_get_ia_from_ifp_psref(ifp, &psref);
436
437 hostIsNew = 1; /* moved here to appease gcc */
438 switch (cmd) {
439 case SIOCAIFADDR:
440 case SIOCDIFADDR:
441 case SIOCGIFALIAS:
442 case SIOCGIFAFLAG_IN:
443 if (ifra->ifra_addr.sin_family == AF_INET) {
444 int s;
445
446 if (ia != NULL)
447 ia4_release(ia, &psref);
448 s = pserialize_read_enter();
449 IN_ADDRHASH_READER_FOREACH(ia,
450 ifra->ifra_addr.sin_addr.s_addr) {
451 if (ia->ia_ifp == ifp &&
452 in_hosteq(ia->ia_addr.sin_addr,
453 ifra->ifra_addr.sin_addr))
454 break;
455 }
456 if (ia != NULL)
457 ia4_acquire(ia, &psref);
458 pserialize_read_exit(s);
459 }
460 if ((cmd == SIOCDIFADDR ||
461 cmd == SIOCGIFALIAS ||
462 cmd == SIOCGIFAFLAG_IN) &&
463 ia == NULL) {
464 error = EADDRNOTAVAIL;
465 goto out;
466 }
467
468 if (cmd == SIOCDIFADDR &&
469 ifra->ifra_addr.sin_family == AF_UNSPEC) {
470 ifra->ifra_addr.sin_family = AF_INET;
471 }
472 /* FALLTHROUGH */
473 case SIOCSIFADDR:
474 if (ia == NULL || ia->ia_addr.sin_family != AF_INET)
475 ;
476 else if (ifra->ifra_addr.sin_len == 0) {
477 ifra->ifra_addr = ia->ia_addr;
478 hostIsNew = 0;
479 } else if (in_hosteq(ia->ia_addr.sin_addr,
480 ifra->ifra_addr.sin_addr))
481 hostIsNew = 0;
482 /* FALLTHROUGH */
483 case SIOCSIFDSTADDR:
484 if (ifra->ifra_addr.sin_family != AF_INET) {
485 error = EAFNOSUPPORT;
486 goto out;
487 }
488 /* FALLTHROUGH */
489 case SIOCSIFNETMASK:
490 if (ifp == NULL)
491 panic("in_control");
492
493 if (cmd == SIOCGIFALIAS || cmd == SIOCGIFAFLAG_IN)
494 break;
495
496 if (ia == NULL &&
497 (cmd == SIOCSIFNETMASK || cmd == SIOCSIFDSTADDR)) {
498 error = EADDRNOTAVAIL;
499 goto out;
500 }
501
502 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
503 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
504 NULL) != 0) {
505 error = EPERM;
506 goto out;
507 }
508
509 if (ia == NULL) {
510 ia = malloc(sizeof(*ia), M_IFADDR, M_WAITOK|M_ZERO);
511 if (ia == NULL) {
512 error = ENOBUFS;
513 goto out;
514 }
515 ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
516 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
517 ia->ia_ifa.ifa_netmask = sintosa(&ia->ia_sockmask);
518 #ifdef IPSELSRC
519 ia->ia_ifa.ifa_getifa = in_getifa;
520 #else /* IPSELSRC */
521 ia->ia_ifa.ifa_getifa = NULL;
522 #endif /* IPSELSRC */
523 ia->ia_sockmask.sin_len = 8;
524 ia->ia_sockmask.sin_family = AF_INET;
525 if (ifp->if_flags & IFF_BROADCAST) {
526 ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr);
527 ia->ia_broadaddr.sin_family = AF_INET;
528 }
529 ia->ia_ifp = ifp;
530 ia->ia_idsalt = cprng_fast32() % 65535;
531 LIST_INIT(&ia->ia_multiaddrs);
532 IN_ADDRHASH_ENTRY_INIT(ia);
533 IN_ADDRLIST_ENTRY_INIT(ia);
534 ifa_psref_init(&ia->ia_ifa);
535 /*
536 * We need a reference to make ia survive over in_ifinit
537 * that does ifaref and ifafree.
538 */
539 ifaref(&ia->ia_ifa);
540
541 newifaddr = 1;
542 }
543 break;
544
545 case SIOCSIFBRDADDR:
546 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
547 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
548 NULL) != 0) {
549 error = EPERM;
550 goto out;
551 }
552 /* FALLTHROUGH */
553
554 case SIOCGIFADDR:
555 case SIOCGIFNETMASK:
556 case SIOCGIFDSTADDR:
557 case SIOCGIFBRDADDR:
558 if (ia == NULL) {
559 error = EADDRNOTAVAIL;
560 goto out;
561 }
562 break;
563 }
564 error = 0;
565 switch (cmd) {
566
567 case SIOCGIFADDR:
568 ifreq_setaddr(cmd, ifr, sintocsa(&ia->ia_addr));
569 break;
570
571 case SIOCGIFBRDADDR:
572 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
573 error = EINVAL;
574 goto out;
575 }
576 ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_broadaddr));
577 break;
578
579 case SIOCGIFDSTADDR:
580 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
581 error = EINVAL;
582 goto out;
583 }
584 ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_dstaddr));
585 break;
586
587 case SIOCGIFNETMASK:
588 /*
589 * We keep the number of trailing zero bytes the sin_len field
590 * of ia_sockmask, so we fix this before we pass it back to
591 * userland.
592 */
593 oldaddr = ia->ia_sockmask;
594 oldaddr.sin_len = sizeof(struct sockaddr_in);
595 ifreq_setaddr(cmd, ifr, (const void *)&oldaddr);
596 break;
597
598 case SIOCSIFDSTADDR:
599 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
600 error = EINVAL;
601 goto out;
602 }
603 oldaddr = ia->ia_dstaddr;
604 ia->ia_dstaddr = *satocsin(ifreq_getdstaddr(cmd, ifr));
605 if ((error = if_addr_init(ifp, &ia->ia_ifa, false)) != 0) {
606 ia->ia_dstaddr = oldaddr;
607 goto out;
608 }
609 if (ia->ia_flags & IFA_ROUTE) {
610 ia->ia_ifa.ifa_dstaddr = sintosa(&oldaddr);
611 rtinit(&ia->ia_ifa, RTM_DELETE, RTF_HOST);
612 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
613 rtinit(&ia->ia_ifa, RTM_ADD, RTF_HOST|RTF_UP);
614 }
615 break;
616
617 case SIOCSIFBRDADDR:
618 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
619 error = EINVAL;
620 goto out;
621 }
622 ia->ia_broadaddr = *satocsin(ifreq_getbroadaddr(cmd, ifr));
623 break;
624
625 case SIOCSIFADDR:
626 if (!newifaddr) {
627 in_addrhash_remove(ia);
628 need_reinsert = true;
629 }
630 error = in_ifinit(ifp, ia, satocsin(ifreq_getaddr(cmd, ifr)),
631 NULL, 1);
632
633 run_hook = true;
634 break;
635
636 case SIOCSIFNETMASK:
637 in_scrubprefix(ia);
638 ia->ia_sockmask = *satocsin(ifreq_getaddr(cmd, ifr));
639 ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr;
640 if (!newifaddr) {
641 in_addrhash_remove(ia);
642 need_reinsert = true;
643 }
644 error = in_ifinit(ifp, ia, NULL, NULL, 0);
645 break;
646
647 case SIOCAIFADDR:
648 maskIsNew = 0;
649 if (ifra->ifra_mask.sin_len) {
650 in_scrubprefix(ia);
651 ia->ia_sockmask = ifra->ifra_mask;
652 ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr;
653 maskIsNew = 1;
654 }
655 if ((ifp->if_flags & IFF_POINTOPOINT) &&
656 (ifra->ifra_dstaddr.sin_family == AF_INET)) {
657 new_dstaddr = &ifra->ifra_dstaddr;
658 maskIsNew = 1; /* We lie; but the effect's the same */
659 } else
660 new_dstaddr = NULL;
661 if (ifra->ifra_addr.sin_family == AF_INET &&
662 (hostIsNew || maskIsNew)) {
663 if (!newifaddr) {
664 in_addrhash_remove(ia);
665 need_reinsert = true;
666 }
667 error = in_ifinit(ifp, ia, &ifra->ifra_addr,
668 new_dstaddr, 0);
669 }
670 if ((ifp->if_flags & IFF_BROADCAST) &&
671 (ifra->ifra_broadaddr.sin_family == AF_INET))
672 ia->ia_broadaddr = ifra->ifra_broadaddr;
673 run_hook = true;
674 break;
675
676 case SIOCGIFALIAS:
677 ifra->ifra_mask = ia->ia_sockmask;
678 if ((ifp->if_flags & IFF_POINTOPOINT) &&
679 (ia->ia_dstaddr.sin_family == AF_INET))
680 ifra->ifra_dstaddr = ia->ia_dstaddr;
681 else if ((ifp->if_flags & IFF_BROADCAST) &&
682 (ia->ia_broadaddr.sin_family == AF_INET))
683 ifra->ifra_broadaddr = ia->ia_broadaddr;
684 else
685 memset(&ifra->ifra_broadaddr, 0,
686 sizeof(ifra->ifra_broadaddr));
687 break;
688
689 case SIOCGIFAFLAG_IN:
690 ifr->ifr_addrflags = ia->ia4_flags;
691 break;
692
693 case SIOCDIFADDR:
694 ia4_release(ia, &psref);
695 ifaref(&ia->ia_ifa);
696 in_purgeaddr(&ia->ia_ifa);
697 pfil_run_addrhooks(if_pfil, cmd, &ia->ia_ifa);
698 ifafree(&ia->ia_ifa);
699 ia = NULL;
700 break;
701
702 #ifdef MROUTING
703 case SIOCGETVIFCNT:
704 case SIOCGETSGCNT:
705 error = mrt_ioctl(so, cmd, data);
706 break;
707 #endif /* MROUTING */
708
709 default:
710 error = ENOTTY;
711 goto out;
712 }
713
714 /*
715 * XXX insert regardless of error to make in_purgeaddr below work.
716 * Need to improve.
717 */
718 if (newifaddr) {
719 ifaref(&ia->ia_ifa);
720 ifa_insert(ifp, &ia->ia_ifa);
721
722 mutex_enter(&in_ifaddr_lock);
723 TAILQ_INSERT_TAIL(&in_ifaddrhead, ia, ia_list);
724 IN_ADDRLIST_WRITER_INSERT_TAIL(ia);
725 in_addrhash_insert_locked(ia);
726 /* Release a reference that is held just after creation. */
727 ifafree(&ia->ia_ifa);
728 mutex_exit(&in_ifaddr_lock);
729 } else if (need_reinsert) {
730 in_addrhash_insert(ia);
731 }
732
733 if (error == 0) {
734 if (run_hook)
735 pfil_run_addrhooks(if_pfil, cmd, &ia->ia_ifa);
736 } else if (newifaddr) {
737 KASSERT(ia != NULL);
738 in_purgeaddr(&ia->ia_ifa);
739 ia = NULL;
740 }
741
742 out:
743 if (!newifaddr && ia != NULL)
744 ia4_release(ia, &psref);
745 curlwp_bindx(bound);
746 return error;
747 }
748
749 int
750 in_control(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
751 {
752 int error;
753
754 SOFTNET_LOCK_UNLESS_NET_MPSAFE();
755 error = in_control0(so, cmd, data, ifp);
756 SOFTNET_UNLOCK_UNLESS_NET_MPSAFE();
757
758 return error;
759 }
760
761 /* Add ownaddr as loopback rtentry. */
762 static void
763 in_ifaddlocal(struct ifaddr *ifa)
764 {
765 struct in_ifaddr *ia;
766
767 ia = (struct in_ifaddr *)ifa;
768 if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY ||
769 (ia->ia_ifp->if_flags & IFF_POINTOPOINT &&
770 in_hosteq(ia->ia_dstaddr.sin_addr, ia->ia_addr.sin_addr)))
771 {
772 rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
773 return;
774 }
775
776 rt_ifa_addlocal(ifa);
777 }
778
779 /* Remove loopback entry of ownaddr */
780 static void
781 in_ifremlocal(struct ifaddr *ifa)
782 {
783 struct in_ifaddr *ia, *p;
784 struct ifaddr *alt_ifa = NULL;
785 int ia_count = 0;
786 int s;
787 struct psref psref;
788 int bound = curlwp_bind();
789
790 ia = (struct in_ifaddr *)ifa;
791 /* Delete the entry if exactly one ifaddr matches the
792 * address, ifa->ifa_addr. */
793 s = pserialize_read_enter();
794 IN_ADDRLIST_READER_FOREACH(p) {
795 if (!in_hosteq(p->ia_addr.sin_addr, ia->ia_addr.sin_addr))
796 continue;
797 if (p->ia_ifp != ia->ia_ifp)
798 alt_ifa = &p->ia_ifa;
799 if (++ia_count > 1 && alt_ifa != NULL)
800 break;
801 }
802 if (alt_ifa != NULL && ia_count > 1)
803 ifa_acquire(alt_ifa, &psref);
804 pserialize_read_exit(s);
805
806 if (ia_count == 0)
807 goto out;
808
809 rt_ifa_remlocal(ifa, ia_count == 1 ? NULL : alt_ifa);
810 if (alt_ifa != NULL && ia_count > 1)
811 ifa_release(alt_ifa, &psref);
812 out:
813 curlwp_bindx(bound);
814 }
815
816 static void
817 in_scrubaddr(struct in_ifaddr *ia)
818 {
819
820 /* stop DAD processing */
821 if (ia->ia_dad_stop != NULL)
822 ia->ia_dad_stop(&ia->ia_ifa);
823
824 in_scrubprefix(ia);
825 in_ifremlocal(&ia->ia_ifa);
826
827 mutex_enter(&in_ifaddr_lock);
828 if (ia->ia_allhosts != NULL) {
829 in_delmulti(ia->ia_allhosts);
830 ia->ia_allhosts = NULL;
831 }
832 mutex_exit(&in_ifaddr_lock);
833 }
834
835 /*
836 * Depends on it isn't called in concurrent. It should be guaranteed
837 * by ifa->ifa_ifp's ioctl lock. The possible callers are in_control
838 * and if_purgeaddrs; the former is called iva ifa->ifa_ifp's ioctl
839 * and the latter is called via ifa->ifa_ifp's if_detach. The functions
840 * never be executed in concurrent.
841 */
842 void
843 in_purgeaddr(struct ifaddr *ifa)
844 {
845 struct in_ifaddr *ia = (void *) ifa;
846 struct ifnet *ifp = ifa->ifa_ifp;
847
848 /* KASSERT(!ifa_held(ifa)); XXX need ifa_not_held (psref_not_held) */
849
850 ifa->ifa_flags |= IFA_DESTROYING;
851 in_scrubaddr(ia);
852
853 mutex_enter(&in_ifaddr_lock);
854 in_addrhash_remove_locked(ia);
855 TAILQ_REMOVE(&in_ifaddrhead, ia, ia_list);
856 IN_ADDRLIST_WRITER_REMOVE(ia);
857 ifa_remove(ifp, &ia->ia_ifa);
858 /* Assume ifa_remove called pserialize_perform and psref_destroy */
859 mutex_exit(&in_ifaddr_lock);
860 IN_ADDRHASH_ENTRY_DESTROY(ia);
861 IN_ADDRLIST_ENTRY_DESTROY(ia);
862 ifafree(&ia->ia_ifa);
863 in_setmaxmtu();
864 }
865
866 static void
867 in_addrhash_insert_locked(struct in_ifaddr *ia)
868 {
869
870 KASSERT(mutex_owned(&in_ifaddr_lock));
871
872 LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr), ia,
873 ia_hash);
874 IN_ADDRHASH_ENTRY_INIT(ia);
875 IN_ADDRHASH_WRITER_INSERT_HEAD(ia);
876 }
877
878 void
879 in_addrhash_insert(struct in_ifaddr *ia)
880 {
881
882 mutex_enter(&in_ifaddr_lock);
883 in_addrhash_insert_locked(ia);
884 mutex_exit(&in_ifaddr_lock);
885 }
886
887 static void
888 in_addrhash_remove_locked(struct in_ifaddr *ia)
889 {
890
891 KASSERT(mutex_owned(&in_ifaddr_lock));
892
893 LIST_REMOVE(ia, ia_hash);
894 IN_ADDRHASH_WRITER_REMOVE(ia);
895 }
896
897 void
898 in_addrhash_remove(struct in_ifaddr *ia)
899 {
900
901 mutex_enter(&in_ifaddr_lock);
902 in_addrhash_remove_locked(ia);
903 #ifdef NET_MPSAFE
904 pserialize_perform(in_ifaddrhash_psz);
905 #endif
906 mutex_exit(&in_ifaddr_lock);
907 IN_ADDRHASH_ENTRY_DESTROY(ia);
908 }
909
910 void
911 in_purgeif(struct ifnet *ifp) /* MUST be called at splsoftnet() */
912 {
913
914 IFNET_LOCK(ifp);
915 if_purgeaddrs(ifp, AF_INET, in_purgeaddr);
916 igmp_purgeif(ifp); /* manipulates pools */
917 #ifdef MROUTING
918 ip_mrouter_detach(ifp);
919 #endif
920 IFNET_UNLOCK(ifp);
921 }
922
923 /*
924 * SIOC[GAD]LIFADDR.
925 * SIOCGLIFADDR: get first address. (???)
926 * SIOCGLIFADDR with IFLR_PREFIX:
927 * get first address that matches the specified prefix.
928 * SIOCALIFADDR: add the specified address.
929 * SIOCALIFADDR with IFLR_PREFIX:
930 * EINVAL since we can't deduce hostid part of the address.
931 * SIOCDLIFADDR: delete the specified address.
932 * SIOCDLIFADDR with IFLR_PREFIX:
933 * delete the first address that matches the specified prefix.
934 * return values:
935 * EINVAL on invalid parameters
936 * EADDRNOTAVAIL on prefix match failed/specified address not found
937 * other values may be returned from in_ioctl()
938 */
939 static int
940 in_lifaddr_ioctl(struct socket *so, u_long cmd, void *data,
941 struct ifnet *ifp)
942 {
943 struct if_laddrreq *iflr = (struct if_laddrreq *)data;
944 struct ifaddr *ifa;
945 struct sockaddr *sa;
946
947 /* sanity checks */
948 if (data == NULL || ifp == NULL) {
949 panic("invalid argument to in_lifaddr_ioctl");
950 /*NOTRECHED*/
951 }
952
953 switch (cmd) {
954 case SIOCGLIFADDR:
955 /* address must be specified on GET with IFLR_PREFIX */
956 if ((iflr->flags & IFLR_PREFIX) == 0)
957 break;
958 /*FALLTHROUGH*/
959 case SIOCALIFADDR:
960 case SIOCDLIFADDR:
961 /* address must be specified on ADD and DELETE */
962 sa = (struct sockaddr *)&iflr->addr;
963 if (sa->sa_family != AF_INET)
964 return EINVAL;
965 if (sa->sa_len != sizeof(struct sockaddr_in))
966 return EINVAL;
967 /* XXX need improvement */
968 sa = (struct sockaddr *)&iflr->dstaddr;
969 if (sa->sa_family != AF_UNSPEC && sa->sa_family != AF_INET)
970 return EINVAL;
971 if (sa->sa_len != 0 && sa->sa_len != sizeof(struct sockaddr_in))
972 return EINVAL;
973 break;
974 default: /*shouldn't happen*/
975 #if 0
976 panic("invalid cmd to in_lifaddr_ioctl");
977 /*NOTREACHED*/
978 #else
979 return EOPNOTSUPP;
980 #endif
981 }
982 if (sizeof(struct in_addr) * NBBY < iflr->prefixlen)
983 return EINVAL;
984
985 switch (cmd) {
986 case SIOCALIFADDR:
987 {
988 struct in_aliasreq ifra;
989
990 if (iflr->flags & IFLR_PREFIX)
991 return EINVAL;
992
993 /* copy args to in_aliasreq, perform ioctl(SIOCAIFADDR). */
994 memset(&ifra, 0, sizeof(ifra));
995 memcpy(ifra.ifra_name, iflr->iflr_name,
996 sizeof(ifra.ifra_name));
997
998 memcpy(&ifra.ifra_addr, &iflr->addr,
999 ((struct sockaddr *)&iflr->addr)->sa_len);
1000
1001 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/
1002 memcpy(&ifra.ifra_dstaddr, &iflr->dstaddr,
1003 ((struct sockaddr *)&iflr->dstaddr)->sa_len);
1004 }
1005
1006 ifra.ifra_mask.sin_family = AF_INET;
1007 ifra.ifra_mask.sin_len = sizeof(struct sockaddr_in);
1008 in_len2mask(&ifra.ifra_mask.sin_addr, iflr->prefixlen);
1009
1010 return in_control(so, SIOCAIFADDR, &ifra, ifp);
1011 }
1012 case SIOCGLIFADDR:
1013 case SIOCDLIFADDR:
1014 {
1015 struct in_ifaddr *ia;
1016 struct in_addr mask, candidate, match;
1017 struct sockaddr_in *sin;
1018 int cmp, s;
1019
1020 memset(&mask, 0, sizeof(mask));
1021 memset(&match, 0, sizeof(match)); /* XXX gcc */
1022 if (iflr->flags & IFLR_PREFIX) {
1023 /* lookup a prefix rather than address. */
1024 in_len2mask(&mask, iflr->prefixlen);
1025
1026 sin = (struct sockaddr_in *)&iflr->addr;
1027 match.s_addr = sin->sin_addr.s_addr;
1028 match.s_addr &= mask.s_addr;
1029
1030 /* if you set extra bits, that's wrong */
1031 if (match.s_addr != sin->sin_addr.s_addr)
1032 return EINVAL;
1033
1034 cmp = 1;
1035 } else {
1036 if (cmd == SIOCGLIFADDR) {
1037 /* on getting an address, take the 1st match */
1038 cmp = 0; /*XXX*/
1039 } else {
1040 /* on deleting an address, do exact match */
1041 in_len2mask(&mask, 32);
1042 sin = (struct sockaddr_in *)&iflr->addr;
1043 match.s_addr = sin->sin_addr.s_addr;
1044
1045 cmp = 1;
1046 }
1047 }
1048
1049 s = pserialize_read_enter();
1050 IFADDR_READER_FOREACH(ifa, ifp) {
1051 if (ifa->ifa_addr->sa_family != AF_INET)
1052 continue;
1053 if (cmp == 0)
1054 break;
1055 candidate.s_addr = ((struct sockaddr_in *)ifa->ifa_addr)->sin_addr.s_addr;
1056 candidate.s_addr &= mask.s_addr;
1057 if (candidate.s_addr == match.s_addr)
1058 break;
1059 }
1060 if (ifa == NULL) {
1061 pserialize_read_exit(s);
1062 return EADDRNOTAVAIL;
1063 }
1064 ia = (struct in_ifaddr *)ifa;
1065
1066 if (cmd == SIOCGLIFADDR) {
1067 /* fill in the if_laddrreq structure */
1068 memcpy(&iflr->addr, &ia->ia_addr, ia->ia_addr.sin_len);
1069
1070 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1071 memcpy(&iflr->dstaddr, &ia->ia_dstaddr,
1072 ia->ia_dstaddr.sin_len);
1073 } else
1074 memset(&iflr->dstaddr, 0, sizeof(iflr->dstaddr));
1075
1076 iflr->prefixlen =
1077 in_mask2len(&ia->ia_sockmask.sin_addr);
1078
1079 iflr->flags = 0; /*XXX*/
1080 pserialize_read_exit(s);
1081
1082 return 0;
1083 } else {
1084 struct in_aliasreq ifra;
1085
1086 /* fill in_aliasreq and do ioctl(SIOCDIFADDR) */
1087 memset(&ifra, 0, sizeof(ifra));
1088 memcpy(ifra.ifra_name, iflr->iflr_name,
1089 sizeof(ifra.ifra_name));
1090
1091 memcpy(&ifra.ifra_addr, &ia->ia_addr,
1092 ia->ia_addr.sin_len);
1093 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1094 memcpy(&ifra.ifra_dstaddr, &ia->ia_dstaddr,
1095 ia->ia_dstaddr.sin_len);
1096 }
1097 memcpy(&ifra.ifra_dstaddr, &ia->ia_sockmask,
1098 ia->ia_sockmask.sin_len);
1099 pserialize_read_exit(s);
1100
1101 return in_control(so, SIOCDIFADDR, &ifra, ifp);
1102 }
1103 }
1104 }
1105
1106 return EOPNOTSUPP; /*just for safety*/
1107 }
1108
1109 /*
1110 * Initialize an interface's internet address
1111 * and routing table entry.
1112 */
1113 int
1114 in_ifinit(struct ifnet *ifp, struct in_ifaddr *ia,
1115 const struct sockaddr_in *sin, const struct sockaddr_in *dst, int scrub)
1116 {
1117 u_int32_t i;
1118 struct sockaddr_in oldaddr, olddst;
1119 int s, oldflags, flags = RTF_UP, error, hostIsNew;
1120
1121 if (sin == NULL)
1122 sin = &ia->ia_addr;
1123 if (dst == NULL)
1124 dst = &ia->ia_dstaddr;
1125
1126 /*
1127 * Set up new addresses.
1128 */
1129 oldaddr = ia->ia_addr;
1130 olddst = ia->ia_dstaddr;
1131 oldflags = ia->ia4_flags;
1132 ia->ia_addr = *sin;
1133 ia->ia_dstaddr = *dst;
1134 hostIsNew = oldaddr.sin_family != AF_INET ||
1135 !in_hosteq(ia->ia_addr.sin_addr, oldaddr.sin_addr);
1136 if (!scrub)
1137 scrub = oldaddr.sin_family != ia->ia_dstaddr.sin_family ||
1138 !in_hosteq(ia->ia_dstaddr.sin_addr, olddst.sin_addr);
1139
1140 /*
1141 * Configure address flags.
1142 * We need to do this early because they maybe adjusted
1143 * by if_addr_init depending on the address.
1144 */
1145 if (ia->ia4_flags & IN_IFF_DUPLICATED) {
1146 ia->ia4_flags &= ~IN_IFF_DUPLICATED;
1147 hostIsNew = 1;
1148 }
1149 if (ifp->if_link_state == LINK_STATE_DOWN) {
1150 ia->ia4_flags |= IN_IFF_DETACHED;
1151 ia->ia4_flags &= ~IN_IFF_TENTATIVE;
1152 } else if (hostIsNew && if_do_dad(ifp))
1153 ia->ia4_flags |= IN_IFF_TRYTENTATIVE;
1154
1155 /*
1156 * Give the interface a chance to initialize
1157 * if this is its first address,
1158 * and to validate the address if necessary.
1159 */
1160 s = splsoftnet();
1161 error = if_addr_init(ifp, &ia->ia_ifa, true);
1162 splx(s);
1163 /* Now clear the try tentative flag, its job is done. */
1164 ia->ia4_flags &= ~IN_IFF_TRYTENTATIVE;
1165 if (error != 0) {
1166 ia->ia_addr = oldaddr;
1167 ia->ia_dstaddr = olddst;
1168 ia->ia4_flags = oldflags;
1169 return error;
1170 }
1171
1172 if (scrub || hostIsNew) {
1173 int newflags = ia->ia4_flags;
1174
1175 ia->ia_ifa.ifa_addr = sintosa(&oldaddr);
1176 ia->ia_ifa.ifa_dstaddr = sintosa(&olddst);
1177 ia->ia4_flags = oldflags;
1178 if (hostIsNew)
1179 in_scrubaddr(ia);
1180 else if (scrub)
1181 in_scrubprefix(ia);
1182 ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
1183 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
1184 ia->ia4_flags = newflags;
1185 }
1186
1187 i = ia->ia_addr.sin_addr.s_addr;
1188 if (ifp->if_flags & IFF_POINTOPOINT)
1189 ia->ia_netmask = INADDR_BROADCAST; /* default to /32 */
1190 else if (IN_CLASSA(i))
1191 ia->ia_netmask = IN_CLASSA_NET;
1192 else if (IN_CLASSB(i))
1193 ia->ia_netmask = IN_CLASSB_NET;
1194 else
1195 ia->ia_netmask = IN_CLASSC_NET;
1196 /*
1197 * The subnet mask usually includes at least the standard network part,
1198 * but may may be smaller in the case of supernetting.
1199 * If it is set, we believe it.
1200 */
1201 if (ia->ia_subnetmask == 0) {
1202 ia->ia_subnetmask = ia->ia_netmask;
1203 ia->ia_sockmask.sin_addr.s_addr = ia->ia_subnetmask;
1204 } else
1205 ia->ia_netmask &= ia->ia_subnetmask;
1206
1207 ia->ia_net = i & ia->ia_netmask;
1208 ia->ia_subnet = i & ia->ia_subnetmask;
1209 in_socktrim(&ia->ia_sockmask);
1210
1211 /* re-calculate the "in_maxmtu" value */
1212 in_setmaxmtu();
1213
1214 ia->ia_ifa.ifa_metric = ifp->if_metric;
1215 if (ifp->if_flags & IFF_BROADCAST) {
1216 ia->ia_broadaddr.sin_addr.s_addr =
1217 ia->ia_subnet | ~ia->ia_subnetmask;
1218 ia->ia_netbroadcast.s_addr =
1219 ia->ia_net | ~ia->ia_netmask;
1220 } else if (ifp->if_flags & IFF_LOOPBACK) {
1221 ia->ia_dstaddr = ia->ia_addr;
1222 flags |= RTF_HOST;
1223 } else if (ifp->if_flags & IFF_POINTOPOINT) {
1224 if (ia->ia_dstaddr.sin_family != AF_INET)
1225 return (0);
1226 flags |= RTF_HOST;
1227 }
1228
1229 /* Add the local route to the address */
1230 in_ifaddlocal(&ia->ia_ifa);
1231
1232 /* Add the prefix route for the address */
1233 error = in_addprefix(ia, flags);
1234
1235 /*
1236 * If the interface supports multicast, join the "all hosts"
1237 * multicast group on that interface.
1238 */
1239 mutex_enter(&in_ifaddr_lock);
1240 if ((ifp->if_flags & IFF_MULTICAST) != 0 && ia->ia_allhosts == NULL) {
1241 struct in_addr addr;
1242
1243 addr.s_addr = INADDR_ALLHOSTS_GROUP;
1244 ia->ia_allhosts = in_addmulti(&addr, ifp);
1245 }
1246 mutex_exit(&in_ifaddr_lock);
1247
1248 if (hostIsNew &&
1249 ia->ia4_flags & IN_IFF_TENTATIVE &&
1250 if_do_dad(ifp))
1251 ia->ia_dad_start((struct ifaddr *)ia);
1252
1253 return error;
1254 }
1255
1256 #define rtinitflags(x) \
1257 ((((x)->ia_ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) != 0) \
1258 ? RTF_HOST : 0)
1259
1260 /*
1261 * add a route to prefix ("connected route" in cisco terminology).
1262 * does nothing if there's some interface address with the same prefix already.
1263 */
1264 static int
1265 in_addprefix(struct in_ifaddr *target, int flags)
1266 {
1267 struct in_ifaddr *ia;
1268 struct in_addr prefix, mask, p;
1269 int error;
1270 int s;
1271
1272 if ((flags & RTF_HOST) != 0)
1273 prefix = target->ia_dstaddr.sin_addr;
1274 else {
1275 prefix = target->ia_addr.sin_addr;
1276 mask = target->ia_sockmask.sin_addr;
1277 prefix.s_addr &= mask.s_addr;
1278 }
1279
1280 s = pserialize_read_enter();
1281 IN_ADDRLIST_READER_FOREACH(ia) {
1282 if (rtinitflags(ia))
1283 p = ia->ia_dstaddr.sin_addr;
1284 else {
1285 p = ia->ia_addr.sin_addr;
1286 p.s_addr &= ia->ia_sockmask.sin_addr.s_addr;
1287 }
1288
1289 if (prefix.s_addr != p.s_addr)
1290 continue;
1291
1292 /*
1293 * if we got a matching prefix route inserted by other
1294 * interface address, we don't need to bother
1295 *
1296 * XXX RADIX_MPATH implications here? -dyoung
1297 */
1298 if (ia->ia_flags & IFA_ROUTE) {
1299 pserialize_read_exit(s);
1300 return 0;
1301 }
1302 }
1303 pserialize_read_exit(s);
1304
1305 /*
1306 * noone seem to have prefix route. insert it.
1307 */
1308 error = rtinit(&target->ia_ifa, RTM_ADD, flags);
1309 if (error == 0)
1310 target->ia_flags |= IFA_ROUTE;
1311 else if (error == EEXIST) {
1312 /*
1313 * the fact the route already exists is not an error.
1314 */
1315 error = 0;
1316 }
1317 return error;
1318 }
1319
1320 /*
1321 * remove a route to prefix ("connected route" in cisco terminology).
1322 * re-installs the route by using another interface address, if there's one
1323 * with the same prefix (otherwise we lose the route mistakenly).
1324 */
1325 static int
1326 in_scrubprefix(struct in_ifaddr *target)
1327 {
1328 struct in_ifaddr *ia;
1329 struct in_addr prefix, mask, p;
1330 int error;
1331 int s;
1332
1333 /* If we don't have IFA_ROUTE we have nothing to do */
1334 if ((target->ia_flags & IFA_ROUTE) == 0)
1335 return 0;
1336
1337 if (rtinitflags(target))
1338 prefix = target->ia_dstaddr.sin_addr;
1339 else {
1340 prefix = target->ia_addr.sin_addr;
1341 mask = target->ia_sockmask.sin_addr;
1342 prefix.s_addr &= mask.s_addr;
1343 }
1344
1345 s = pserialize_read_enter();
1346 IN_ADDRLIST_READER_FOREACH(ia) {
1347 if (rtinitflags(ia))
1348 p = ia->ia_dstaddr.sin_addr;
1349 else {
1350 p = ia->ia_addr.sin_addr;
1351 p.s_addr &= ia->ia_sockmask.sin_addr.s_addr;
1352 }
1353
1354 if (prefix.s_addr != p.s_addr)
1355 continue;
1356
1357 /*
1358 * if we got a matching prefix route, move IFA_ROUTE to him
1359 */
1360 if ((ia->ia_flags & IFA_ROUTE) == 0) {
1361 struct psref psref;
1362 int bound = curlwp_bind();
1363
1364 ia4_acquire(ia, &psref);
1365 pserialize_read_exit(s);
1366
1367 rtinit(&target->ia_ifa, RTM_DELETE,
1368 rtinitflags(target));
1369 target->ia_flags &= ~IFA_ROUTE;
1370
1371 error = rtinit(&ia->ia_ifa, RTM_ADD,
1372 rtinitflags(ia) | RTF_UP);
1373 if (error == 0)
1374 ia->ia_flags |= IFA_ROUTE;
1375
1376 ia4_release(ia, &psref);
1377 curlwp_bindx(bound);
1378
1379 return error;
1380 }
1381 }
1382 pserialize_read_exit(s);
1383
1384 /*
1385 * noone seem to have prefix route. remove it.
1386 */
1387 rtinit(&target->ia_ifa, RTM_DELETE, rtinitflags(target));
1388 target->ia_flags &= ~IFA_ROUTE;
1389 return 0;
1390 }
1391
1392 #undef rtinitflags
1393
1394 /*
1395 * Return 1 if the address might be a local broadcast address.
1396 */
1397 int
1398 in_broadcast(struct in_addr in, struct ifnet *ifp)
1399 {
1400 struct ifaddr *ifa;
1401 int s;
1402
1403 KASSERT(ifp != NULL);
1404
1405 if (in.s_addr == INADDR_BROADCAST ||
1406 in_nullhost(in))
1407 return 1;
1408 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1409 return 0;
1410 /*
1411 * Look through the list of addresses for a match
1412 * with a broadcast address.
1413 */
1414 #define ia (ifatoia(ifa))
1415 s = pserialize_read_enter();
1416 IFADDR_READER_FOREACH(ifa, ifp) {
1417 if (ifa->ifa_addr->sa_family == AF_INET &&
1418 !in_hosteq(in, ia->ia_addr.sin_addr) &&
1419 (in_hosteq(in, ia->ia_broadaddr.sin_addr) ||
1420 in_hosteq(in, ia->ia_netbroadcast) ||
1421 (hostzeroisbroadcast &&
1422 /*
1423 * Check for old-style (host 0) broadcast.
1424 */
1425 (in.s_addr == ia->ia_subnet ||
1426 in.s_addr == ia->ia_net)))) {
1427 pserialize_read_exit(s);
1428 return 1;
1429 }
1430 }
1431 pserialize_read_exit(s);
1432 return (0);
1433 #undef ia
1434 }
1435
1436 /*
1437 * perform DAD when interface becomes IFF_UP.
1438 */
1439 void
1440 in_if_link_up(struct ifnet *ifp)
1441 {
1442 struct ifaddr *ifa;
1443 struct in_ifaddr *ia;
1444 int s, bound;
1445
1446 /* Ensure it's sane to run DAD */
1447 if (ifp->if_link_state == LINK_STATE_DOWN)
1448 return;
1449 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING))
1450 return;
1451
1452 bound = curlwp_bind();
1453 s = pserialize_read_enter();
1454 IFADDR_READER_FOREACH(ifa, ifp) {
1455 struct psref psref;
1456
1457 if (ifa->ifa_addr->sa_family != AF_INET)
1458 continue;
1459 ifa_acquire(ifa, &psref);
1460 pserialize_read_exit(s);
1461
1462 ia = (struct in_ifaddr *)ifa;
1463
1464 /* If detached then mark as tentative */
1465 if (ia->ia4_flags & IN_IFF_DETACHED) {
1466 ia->ia4_flags &= ~IN_IFF_DETACHED;
1467 if (if_do_dad(ifp) && ia->ia_dad_start != NULL)
1468 ia->ia4_flags |= IN_IFF_TENTATIVE;
1469 else if ((ia->ia4_flags & IN_IFF_TENTATIVE) == 0)
1470 rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
1471 }
1472
1473 if (ia->ia4_flags & IN_IFF_TENTATIVE) {
1474 /* Clear the duplicated flag as we're starting DAD. */
1475 ia->ia4_flags &= ~IN_IFF_DUPLICATED;
1476 ia->ia_dad_start(ifa);
1477 }
1478
1479 s = pserialize_read_enter();
1480 ifa_release(ifa, &psref);
1481 }
1482 pserialize_read_exit(s);
1483 curlwp_bindx(bound);
1484 }
1485
1486 void
1487 in_if_up(struct ifnet *ifp)
1488 {
1489
1490 /* interface may not support link state, so bring it up also */
1491 in_if_link_up(ifp);
1492 }
1493
1494 /*
1495 * Mark all addresses as detached.
1496 */
1497 void
1498 in_if_link_down(struct ifnet *ifp)
1499 {
1500 struct ifaddr *ifa;
1501 struct in_ifaddr *ia;
1502 int s, bound;
1503
1504 bound = curlwp_bind();
1505 s = pserialize_read_enter();
1506 IFADDR_READER_FOREACH(ifa, ifp) {
1507 struct psref psref;
1508
1509 if (ifa->ifa_addr->sa_family != AF_INET)
1510 continue;
1511 ifa_acquire(ifa, &psref);
1512 pserialize_read_exit(s);
1513
1514 ia = (struct in_ifaddr *)ifa;
1515
1516 /* Stop DAD processing */
1517 if (ia->ia_dad_stop != NULL)
1518 ia->ia_dad_stop(ifa);
1519
1520 /*
1521 * Mark the address as detached.
1522 */
1523 if (!(ia->ia4_flags & IN_IFF_DETACHED)) {
1524 ia->ia4_flags |= IN_IFF_DETACHED;
1525 ia->ia4_flags &=
1526 ~(IN_IFF_TENTATIVE | IN_IFF_DUPLICATED);
1527 rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
1528 }
1529
1530 s = pserialize_read_enter();
1531 ifa_release(ifa, &psref);
1532 }
1533 pserialize_read_exit(s);
1534 curlwp_bindx(bound);
1535 }
1536
1537 void
1538 in_if_down(struct ifnet *ifp)
1539 {
1540
1541 in_if_link_down(ifp);
1542 lltable_purge_entries(LLTABLE(ifp));
1543 }
1544
1545 void
1546 in_if_link_state_change(struct ifnet *ifp, int link_state)
1547 {
1548
1549 switch (link_state) {
1550 case LINK_STATE_DOWN:
1551 in_if_link_down(ifp);
1552 break;
1553 case LINK_STATE_UP:
1554 in_if_link_up(ifp);
1555 break;
1556 }
1557 }
1558
1559 /*
1560 * in_lookup_multi: look up the in_multi record for a given IP
1561 * multicast address on a given interface. If no matching record is
1562 * found, return NULL.
1563 */
1564 struct in_multi *
1565 in_lookup_multi(struct in_addr addr, ifnet_t *ifp)
1566 {
1567 struct in_multi *inm;
1568
1569 KASSERT(rw_lock_held(&in_multilock));
1570
1571 LIST_FOREACH(inm, &IN_MULTI_HASH(addr.s_addr, ifp), inm_list) {
1572 if (in_hosteq(inm->inm_addr, addr) && inm->inm_ifp == ifp)
1573 break;
1574 }
1575 return inm;
1576 }
1577
1578 /*
1579 * in_multi_group: check whether the address belongs to an IP multicast
1580 * group we are joined on this interface. Returns true or false.
1581 */
1582 bool
1583 in_multi_group(struct in_addr addr, ifnet_t *ifp, int flags)
1584 {
1585 bool ingroup;
1586
1587 if (__predict_true(flags & IP_IGMP_MCAST) == 0) {
1588 rw_enter(&in_multilock, RW_READER);
1589 ingroup = in_lookup_multi(addr, ifp) != NULL;
1590 rw_exit(&in_multilock);
1591 } else {
1592 /* XXX Recursive call from ip_output(). */
1593 KASSERT(rw_lock_held(&in_multilock));
1594 ingroup = in_lookup_multi(addr, ifp) != NULL;
1595 }
1596 return ingroup;
1597 }
1598
1599 /*
1600 * Add an address to the list of IP multicast addresses for a given interface.
1601 */
1602 struct in_multi *
1603 in_addmulti(struct in_addr *ap, ifnet_t *ifp)
1604 {
1605 struct sockaddr_in sin;
1606 struct in_multi *inm;
1607
1608 /*
1609 * See if address already in list.
1610 */
1611 rw_enter(&in_multilock, RW_WRITER);
1612 inm = in_lookup_multi(*ap, ifp);
1613 if (inm != NULL) {
1614 /*
1615 * Found it; just increment the reference count.
1616 */
1617 inm->inm_refcount++;
1618 rw_exit(&in_multilock);
1619 return inm;
1620 }
1621
1622 /*
1623 * New address; allocate a new multicast record.
1624 */
1625 inm = pool_get(&inmulti_pool, PR_NOWAIT);
1626 if (inm == NULL) {
1627 rw_exit(&in_multilock);
1628 return NULL;
1629 }
1630 inm->inm_addr = *ap;
1631 inm->inm_ifp = ifp;
1632 inm->inm_refcount = 1;
1633
1634 /*
1635 * Ask the network driver to update its multicast reception
1636 * filter appropriately for the new address.
1637 */
1638 sockaddr_in_init(&sin, ap, 0);
1639 if (if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin)) != 0) {
1640 rw_exit(&in_multilock);
1641 pool_put(&inmulti_pool, inm);
1642 return NULL;
1643 }
1644
1645 /*
1646 * Let IGMP know that we have joined a new IP multicast group.
1647 */
1648 if (igmp_joingroup(inm) != 0) {
1649 rw_exit(&in_multilock);
1650 pool_put(&inmulti_pool, inm);
1651 return NULL;
1652 }
1653 LIST_INSERT_HEAD(
1654 &IN_MULTI_HASH(inm->inm_addr.s_addr, ifp),
1655 inm, inm_list);
1656 in_multientries++;
1657 rw_exit(&in_multilock);
1658
1659 return inm;
1660 }
1661
1662 /*
1663 * Delete a multicast address record.
1664 */
1665 void
1666 in_delmulti(struct in_multi *inm)
1667 {
1668 struct sockaddr_in sin;
1669
1670 rw_enter(&in_multilock, RW_WRITER);
1671 if (--inm->inm_refcount > 0) {
1672 rw_exit(&in_multilock);
1673 return;
1674 }
1675
1676 /*
1677 * No remaining claims to this record; let IGMP know that
1678 * we are leaving the multicast group.
1679 */
1680 igmp_leavegroup(inm);
1681
1682 /*
1683 * Notify the network driver to update its multicast reception
1684 * filter.
1685 */
1686 sockaddr_in_init(&sin, &inm->inm_addr, 0);
1687 if_mcast_op(inm->inm_ifp, SIOCDELMULTI, sintosa(&sin));
1688
1689 /*
1690 * Unlink from list.
1691 */
1692 LIST_REMOVE(inm, inm_list);
1693 in_multientries--;
1694 rw_exit(&in_multilock);
1695
1696 pool_put(&inmulti_pool, inm);
1697 }
1698
1699 /*
1700 * in_next_multi: step through all of the in_multi records, one at a time.
1701 * The current position is remembered in "step", which the caller must
1702 * provide. in_first_multi(), below, must be called to initialize "step"
1703 * and get the first record. Both macros return a NULL "inm" when there
1704 * are no remaining records.
1705 */
1706 struct in_multi *
1707 in_next_multi(struct in_multistep *step)
1708 {
1709 struct in_multi *inm;
1710
1711 KASSERT(rw_lock_held(&in_multilock));
1712
1713 while (step->i_inm == NULL && step->i_n < IN_MULTI_HASH_SIZE) {
1714 step->i_inm = LIST_FIRST(&in_multihashtbl[++step->i_n]);
1715 }
1716 if ((inm = step->i_inm) != NULL) {
1717 step->i_inm = LIST_NEXT(inm, inm_list);
1718 }
1719 return inm;
1720 }
1721
1722 struct in_multi *
1723 in_first_multi(struct in_multistep *step)
1724 {
1725 KASSERT(rw_lock_held(&in_multilock));
1726
1727 step->i_n = 0;
1728 step->i_inm = LIST_FIRST(&in_multihashtbl[0]);
1729 return in_next_multi(step);
1730 }
1731
1732 void
1733 in_multi_lock(int op)
1734 {
1735 rw_enter(&in_multilock, op);
1736 }
1737
1738 void
1739 in_multi_unlock(void)
1740 {
1741 rw_exit(&in_multilock);
1742 }
1743
1744 int
1745 in_multi_lock_held(void)
1746 {
1747 return rw_lock_held(&in_multilock);
1748 }
1749
1750 struct in_ifaddr *
1751 in_selectsrc(struct sockaddr_in *sin, struct route *ro,
1752 int soopts, struct ip_moptions *mopts, int *errorp, struct psref *psref)
1753 {
1754 struct rtentry *rt = NULL;
1755 struct in_ifaddr *ia = NULL;
1756
1757 KASSERT(ISSET(curlwp->l_pflag, LP_BOUND));
1758 /*
1759 * If route is known or can be allocated now, take the
1760 * source address from the interface. Otherwise, punt.
1761 */
1762 if ((soopts & SO_DONTROUTE) != 0)
1763 rtcache_free(ro);
1764 else {
1765 union {
1766 struct sockaddr dst;
1767 struct sockaddr_in dst4;
1768 } u;
1769
1770 sockaddr_in_init(&u.dst4, &sin->sin_addr, 0);
1771 rt = rtcache_lookup(ro, &u.dst);
1772 }
1773 /*
1774 * If we found a route, use the address
1775 * corresponding to the outgoing interface
1776 * unless it is the loopback (in case a route
1777 * to our address on another net goes to loopback).
1778 *
1779 * XXX Is this still true? Do we care?
1780 */
1781 if (rt != NULL && (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
1782 int s;
1783 struct ifaddr *ifa;
1784 /*
1785 * Just in case. May not need to do this workaround.
1786 * Revisit when working on rtentry MP-ification.
1787 */
1788 s = pserialize_read_enter();
1789 IFADDR_READER_FOREACH(ifa, rt->rt_ifp) {
1790 if (ifa == rt->rt_ifa)
1791 break;
1792 }
1793 if (ifa != NULL)
1794 ifa_acquire(ifa, psref);
1795 pserialize_read_exit(s);
1796
1797 ia = ifatoia(ifa);
1798 }
1799 if (ia == NULL) {
1800 u_int16_t fport = sin->sin_port;
1801 struct ifaddr *ifa;
1802 int s;
1803
1804 sin->sin_port = 0;
1805 ifa = ifa_ifwithladdr_psref(sintosa(sin), psref);
1806 sin->sin_port = fport;
1807 if (ifa == NULL) {
1808 /* Find 1st non-loopback AF_INET address */
1809 s = pserialize_read_enter();
1810 IN_ADDRLIST_READER_FOREACH(ia) {
1811 if (!(ia->ia_ifp->if_flags & IFF_LOOPBACK))
1812 break;
1813 }
1814 if (ia != NULL)
1815 ia4_acquire(ia, psref);
1816 pserialize_read_exit(s);
1817 } else {
1818 /* ia is already referenced by psref */
1819 ia = ifatoia(ifa);
1820 }
1821 if (ia == NULL) {
1822 *errorp = EADDRNOTAVAIL;
1823 goto out;
1824 }
1825 }
1826 /*
1827 * If the destination address is multicast and an outgoing
1828 * interface has been set as a multicast option, use the
1829 * address of that interface as our source address.
1830 */
1831 if (IN_MULTICAST(sin->sin_addr.s_addr) && mopts != NULL) {
1832 struct ip_moptions *imo;
1833
1834 imo = mopts;
1835 if (imo->imo_multicast_if_index != 0) {
1836 struct ifnet *ifp;
1837 int s;
1838
1839 if (ia != NULL)
1840 ia4_release(ia, psref);
1841 s = pserialize_read_enter();
1842 ifp = if_byindex(imo->imo_multicast_if_index);
1843 if (ifp != NULL) {
1844 /* XXX */
1845 ia = in_get_ia_from_ifp_psref(ifp, psref);
1846 } else
1847 ia = NULL;
1848 if (ia == NULL || ia->ia4_flags & IN_IFF_NOTREADY) {
1849 pserialize_read_exit(s);
1850 if (ia != NULL)
1851 ia4_release(ia, psref);
1852 *errorp = EADDRNOTAVAIL;
1853 ia = NULL;
1854 goto out;
1855 }
1856 pserialize_read_exit(s);
1857 }
1858 }
1859 if (ia->ia_ifa.ifa_getifa != NULL) {
1860 ia = ifatoia((*ia->ia_ifa.ifa_getifa)(&ia->ia_ifa,
1861 sintosa(sin)));
1862 if (ia == NULL) {
1863 *errorp = EADDRNOTAVAIL;
1864 goto out;
1865 }
1866 /* FIXME NOMPSAFE */
1867 ia4_acquire(ia, psref);
1868 }
1869 #ifdef GETIFA_DEBUG
1870 else
1871 printf("%s: missing ifa_getifa\n", __func__);
1872 #endif
1873 out:
1874 rtcache_unref(rt, ro);
1875 return ia;
1876 }
1877
1878 int
1879 in_tunnel_validate(const struct ip *ip, struct in_addr src, struct in_addr dst)
1880 {
1881 struct in_ifaddr *ia4;
1882 int s;
1883
1884 /* check for address match */
1885 if (src.s_addr != ip->ip_dst.s_addr ||
1886 dst.s_addr != ip->ip_src.s_addr)
1887 return 0;
1888
1889 /* martian filters on outer source - NOT done in ip_input! */
1890 if (IN_MULTICAST(ip->ip_src.s_addr))
1891 return 0;
1892 switch ((ntohl(ip->ip_src.s_addr) & 0xff000000) >> 24) {
1893 case 0:
1894 case 127:
1895 case 255:
1896 return 0;
1897 }
1898 /* reject packets with broadcast on source */
1899 s = pserialize_read_enter();
1900 IN_ADDRLIST_READER_FOREACH(ia4) {
1901 if ((ia4->ia_ifa.ifa_ifp->if_flags & IFF_BROADCAST) == 0)
1902 continue;
1903 if (ip->ip_src.s_addr == ia4->ia_broadaddr.sin_addr.s_addr) {
1904 pserialize_read_exit(s);
1905 return 0;
1906 }
1907 }
1908 pserialize_read_exit(s);
1909
1910 /* NOTE: packet may dropped by uRPF */
1911
1912 /* return valid bytes length */
1913 return sizeof(src) + sizeof(dst);
1914 }
1915
1916 #if NARP > 0
1917
1918 struct in_llentry {
1919 struct llentry base;
1920 };
1921
1922 #define IN_LLTBL_DEFAULT_HSIZE 32
1923 #define IN_LLTBL_HASH(k, h) \
1924 (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1))
1925
1926 /*
1927 * Do actual deallocation of @lle.
1928 * Called by LLE_FREE_LOCKED when number of references
1929 * drops to zero.
1930 */
1931 static void
1932 in_lltable_destroy_lle(struct llentry *lle)
1933 {
1934
1935 LLE_WUNLOCK(lle);
1936 LLE_LOCK_DESTROY(lle);
1937 kmem_intr_free(lle, sizeof(*lle));
1938 }
1939
1940 static struct llentry *
1941 in_lltable_new(struct in_addr addr4, u_int flags)
1942 {
1943 struct in_llentry *lle;
1944
1945 lle = kmem_intr_zalloc(sizeof(*lle), KM_NOSLEEP);
1946 if (lle == NULL) /* NB: caller generates msg */
1947 return NULL;
1948
1949 /*
1950 * For IPv4 this will trigger "arpresolve" to generate
1951 * an ARP request.
1952 */
1953 lle->base.la_expire = time_uptime; /* mark expired */
1954 lle->base.r_l3addr.addr4 = addr4;
1955 lle->base.lle_refcnt = 1;
1956 lle->base.lle_free = in_lltable_destroy_lle;
1957 LLE_LOCK_INIT(&lle->base);
1958 callout_init(&lle->base.la_timer, CALLOUT_MPSAFE);
1959
1960 return (&lle->base);
1961 }
1962
1963 #define IN_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \
1964 (((ntohl((d).s_addr) ^ (a)->sin_addr.s_addr) & (m)->sin_addr.s_addr)) == 0 )
1965
1966 static int
1967 in_lltable_match_prefix(const struct sockaddr *prefix,
1968 const struct sockaddr *mask, u_int flags, struct llentry *lle)
1969 {
1970 const struct sockaddr_in *pfx = (const struct sockaddr_in *)prefix;
1971 const struct sockaddr_in *msk = (const struct sockaddr_in *)mask;
1972 struct in_addr lle_addr;
1973
1974 lle_addr.s_addr = ntohl(lle->r_l3addr.addr4.s_addr);
1975
1976 /*
1977 * (flags & LLE_STATIC) means deleting all entries
1978 * including static ARP entries.
1979 */
1980 if (IN_ARE_MASKED_ADDR_EQUAL(lle_addr, pfx, msk) &&
1981 ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC)))
1982 return (1);
1983
1984 return (0);
1985 }
1986
1987 static void
1988 in_lltable_free_entry(struct lltable *llt, struct llentry *lle)
1989 {
1990 struct ifnet *ifp __diagused;
1991 size_t pkts_dropped;
1992 bool locked = false;
1993
1994 LLE_WLOCK_ASSERT(lle);
1995 KASSERT(llt != NULL);
1996
1997 /* Unlink entry from table if not already */
1998 if ((lle->la_flags & LLE_LINKED) != 0) {
1999 ifp = llt->llt_ifp;
2000 IF_AFDATA_WLOCK_ASSERT(ifp);
2001 lltable_unlink_entry(llt, lle);
2002 locked = true;
2003 }
2004
2005 /*
2006 * We need to release the lock here to lle_timer proceeds;
2007 * lle_timer should stop immediately if LLE_LINKED isn't set.
2008 * Note that we cannot pass lle->lle_lock to callout_halt
2009 * because it's a rwlock.
2010 */
2011 LLE_ADDREF(lle);
2012 LLE_WUNLOCK(lle);
2013 if (locked)
2014 IF_AFDATA_WUNLOCK(ifp);
2015
2016 /* cancel timer */
2017 callout_halt(&lle->lle_timer, NULL);
2018
2019 LLE_WLOCK(lle);
2020 LLE_REMREF(lle);
2021
2022 /* Drop hold queue */
2023 pkts_dropped = llentry_free(lle);
2024 arp_stat_add(ARP_STAT_DFRDROPPED, (uint64_t)pkts_dropped);
2025
2026 if (locked)
2027 IF_AFDATA_WLOCK(ifp);
2028 }
2029
2030 static int
2031 in_lltable_rtcheck(struct ifnet *ifp, u_int flags, const struct sockaddr *l3addr,
2032 const struct rtentry *rt)
2033 {
2034 int error = EINVAL;
2035
2036 if (rt == NULL)
2037 return error;
2038
2039 /*
2040 * If the gateway for an existing host route matches the target L3
2041 * address, which is a special route inserted by some implementation
2042 * such as MANET, and the interface is of the correct type, then
2043 * allow for ARP to proceed.
2044 */
2045 if (rt->rt_flags & RTF_GATEWAY) {
2046 if (!(rt->rt_flags & RTF_HOST) || !rt->rt_ifp ||
2047 rt->rt_ifp->if_type != IFT_ETHER ||
2048 #ifdef __FreeBSD__
2049 (rt->rt_ifp->if_flags & (IFF_NOARP | IFF_STATICARP)) != 0 ||
2050 #else
2051 (rt->rt_ifp->if_flags & IFF_NOARP) != 0 ||
2052 #endif
2053 memcmp(rt->rt_gateway->sa_data, l3addr->sa_data,
2054 sizeof(in_addr_t)) != 0) {
2055 goto error;
2056 }
2057 }
2058
2059 /*
2060 * Make sure that at least the destination address is covered
2061 * by the route. This is for handling the case where 2 or more
2062 * interfaces have the same prefix. An incoming packet arrives
2063 * on one interface and the corresponding outgoing packet leaves
2064 * another interface.
2065 */
2066 if (!(rt->rt_flags & RTF_HOST) && rt->rt_ifp != ifp) {
2067 const char *sa, *mask, *addr, *lim;
2068 int len;
2069
2070 mask = (const char *)rt_mask(rt);
2071 /*
2072 * Just being extra cautious to avoid some custom
2073 * code getting into trouble.
2074 */
2075 if (mask == NULL)
2076 goto error;
2077
2078 sa = (const char *)rt_getkey(rt);
2079 addr = (const char *)l3addr;
2080 len = ((const struct sockaddr_in *)l3addr)->sin_len;
2081 lim = addr + len;
2082
2083 for ( ; addr < lim; sa++, mask++, addr++) {
2084 if ((*sa ^ *addr) & *mask) {
2085 #ifdef DIAGNOSTIC
2086 log(LOG_INFO, "IPv4 address: \"%s\" is not on the network\n",
2087 inet_ntoa(((const struct sockaddr_in *)l3addr)->sin_addr));
2088 #endif
2089 goto error;
2090 }
2091 }
2092 }
2093
2094 error = 0;
2095 error:
2096 return error;
2097 }
2098
2099 static inline uint32_t
2100 in_lltable_hash_dst(const struct in_addr dst, uint32_t hsize)
2101 {
2102
2103 return (IN_LLTBL_HASH(dst.s_addr, hsize));
2104 }
2105
2106 static uint32_t
2107 in_lltable_hash(const struct llentry *lle, uint32_t hsize)
2108 {
2109
2110 return (in_lltable_hash_dst(lle->r_l3addr.addr4, hsize));
2111 }
2112
2113 static void
2114 in_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa)
2115 {
2116 struct sockaddr_in *sin;
2117
2118 sin = (struct sockaddr_in *)sa;
2119 memset(sin, 0, sizeof(*sin));
2120 sin->sin_family = AF_INET;
2121 sin->sin_len = sizeof(*sin);
2122 sin->sin_addr = lle->r_l3addr.addr4;
2123 }
2124
2125 static inline struct llentry *
2126 in_lltable_find_dst(struct lltable *llt, struct in_addr dst)
2127 {
2128 struct llentry *lle;
2129 struct llentries *lleh;
2130 u_int hashidx;
2131
2132 hashidx = in_lltable_hash_dst(dst, llt->llt_hsize);
2133 lleh = &llt->lle_head[hashidx];
2134 LIST_FOREACH(lle, lleh, lle_next) {
2135 if (lle->la_flags & LLE_DELETED)
2136 continue;
2137 if (lle->r_l3addr.addr4.s_addr == dst.s_addr)
2138 break;
2139 }
2140
2141 return (lle);
2142 }
2143
2144 static int
2145 in_lltable_delete(struct lltable *llt, u_int flags,
2146 const struct sockaddr *l3addr)
2147 {
2148 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
2149 struct ifnet *ifp __diagused = llt->llt_ifp;
2150 struct llentry *lle;
2151
2152 IF_AFDATA_WLOCK_ASSERT(ifp);
2153 KASSERTMSG(l3addr->sa_family == AF_INET,
2154 "sin_family %d", l3addr->sa_family);
2155
2156 lle = in_lltable_find_dst(llt, sin->sin_addr);
2157 if (lle == NULL) {
2158 #ifdef LLTABLE_DEBUG
2159 char buf[64];
2160 sockaddr_format(l3addr, buf, sizeof(buf));
2161 log(LOG_INFO, "%s: cache for %s is not found\n",
2162 __func__, buf);
2163 #endif
2164 return (ENOENT);
2165 }
2166
2167 LLE_WLOCK(lle);
2168 lle->la_flags |= LLE_DELETED;
2169 #ifdef LLTABLE_DEBUG
2170 {
2171 char buf[64];
2172 sockaddr_format(l3addr, buf, sizeof(buf));
2173 log(LOG_INFO, "%s: cache for %s (%p) is deleted\n",
2174 __func__, buf, lle);
2175 }
2176 #endif
2177 if ((lle->la_flags & (LLE_STATIC | LLE_IFADDR)) == LLE_STATIC)
2178 llentry_free(lle);
2179 else
2180 LLE_WUNLOCK(lle);
2181
2182 return (0);
2183 }
2184
2185 static struct llentry *
2186 in_lltable_create(struct lltable *llt, u_int flags, const struct sockaddr *l3addr,
2187 const struct rtentry *rt)
2188 {
2189 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
2190 struct ifnet *ifp = llt->llt_ifp;
2191 struct llentry *lle;
2192
2193 IF_AFDATA_WLOCK_ASSERT(ifp);
2194 KASSERTMSG(l3addr->sa_family == AF_INET,
2195 "sin_family %d", l3addr->sa_family);
2196
2197 lle = in_lltable_find_dst(llt, sin->sin_addr);
2198
2199 if (lle != NULL) {
2200 LLE_WLOCK(lle);
2201 return (lle);
2202 }
2203
2204 /* no existing record, we need to create new one */
2205
2206 /*
2207 * A route that covers the given address must have
2208 * been installed 1st because we are doing a resolution,
2209 * verify this.
2210 */
2211 if (!(flags & LLE_IFADDR) &&
2212 in_lltable_rtcheck(ifp, flags, l3addr, rt) != 0)
2213 return (NULL);
2214
2215 lle = in_lltable_new(sin->sin_addr, flags);
2216 if (lle == NULL) {
2217 log(LOG_INFO, "lla_lookup: new lle malloc failed\n");
2218 return (NULL);
2219 }
2220 lle->la_flags = flags;
2221 if ((flags & LLE_IFADDR) == LLE_IFADDR) {
2222 memcpy(&lle->ll_addr, CLLADDR(ifp->if_sadl), ifp->if_addrlen);
2223 lle->la_flags |= (LLE_VALID | LLE_STATIC);
2224 }
2225
2226 lltable_link_entry(llt, lle);
2227 LLE_WLOCK(lle);
2228
2229 return (lle);
2230 }
2231
2232 /*
2233 * Return NULL if not found or marked for deletion.
2234 * If found return lle read locked.
2235 */
2236 static struct llentry *
2237 in_lltable_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr)
2238 {
2239 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
2240 struct llentry *lle;
2241
2242 IF_AFDATA_LOCK_ASSERT(llt->llt_ifp);
2243 KASSERTMSG(l3addr->sa_family == AF_INET,
2244 "sin_family %d", l3addr->sa_family);
2245
2246 lle = in_lltable_find_dst(llt, sin->sin_addr);
2247
2248 if (lle == NULL)
2249 return NULL;
2250
2251 if (flags & LLE_EXCLUSIVE)
2252 LLE_WLOCK(lle);
2253 else
2254 LLE_RLOCK(lle);
2255
2256 return lle;
2257 }
2258
2259 static int
2260 in_lltable_dump_entry(struct lltable *llt, struct llentry *lle,
2261 struct rt_walkarg *w)
2262 {
2263 struct sockaddr_in sin;
2264
2265 LLTABLE_LOCK_ASSERT();
2266
2267 /* skip deleted entries */
2268 if (lle->la_flags & LLE_DELETED)
2269 return 0;
2270
2271 sockaddr_in_init(&sin, &lle->r_l3addr.addr4, 0);
2272
2273 return lltable_dump_entry(llt, lle, w, sintosa(&sin));
2274 }
2275
2276 #endif /* NARP > 0 */
2277
2278 static int
2279 in_multicast_sysctl(SYSCTLFN_ARGS)
2280 {
2281 struct ifnet *ifp;
2282 struct ifaddr *ifa;
2283 struct in_ifaddr *ifa4;
2284 struct in_multi *inm;
2285 uint32_t tmp;
2286 int error;
2287 size_t written;
2288 struct psref psref;
2289 int bound;
2290
2291 if (namelen != 1)
2292 return EINVAL;
2293
2294 bound = curlwp_bind();
2295 ifp = if_get_byindex(name[0], &psref);
2296 if (ifp == NULL) {
2297 curlwp_bindx(bound);
2298 return ENODEV;
2299 }
2300
2301 if (oldp == NULL) {
2302 *oldlenp = 0;
2303 IFADDR_FOREACH(ifa, ifp) {
2304 if (ifa->ifa_addr->sa_family != AF_INET)
2305 continue;
2306 ifa4 = (void *)ifa;
2307 LIST_FOREACH(inm, &ifa4->ia_multiaddrs, inm_list) {
2308 *oldlenp += 2 * sizeof(struct in_addr) +
2309 sizeof(uint32_t);
2310 }
2311 }
2312 if_put(ifp, &psref);
2313 curlwp_bindx(bound);
2314 return 0;
2315 }
2316
2317 error = 0;
2318 written = 0;
2319 IFADDR_FOREACH(ifa, ifp) {
2320 if (ifa->ifa_addr->sa_family != AF_INET)
2321 continue;
2322 ifa4 = (void *)ifa;
2323 LIST_FOREACH(inm, &ifa4->ia_multiaddrs, inm_list) {
2324 if (written + 2 * sizeof(struct in_addr) +
2325 sizeof(uint32_t) > *oldlenp)
2326 goto done;
2327 error = sysctl_copyout(l, &ifa4->ia_addr.sin_addr,
2328 oldp, sizeof(struct in_addr));
2329 if (error)
2330 goto done;
2331 oldp = (char *)oldp + sizeof(struct in_addr);
2332 written += sizeof(struct in_addr);
2333 error = sysctl_copyout(l, &inm->inm_addr,
2334 oldp, sizeof(struct in_addr));
2335 if (error)
2336 goto done;
2337 oldp = (char *)oldp + sizeof(struct in_addr);
2338 written += sizeof(struct in_addr);
2339 tmp = inm->inm_refcount;
2340 error = sysctl_copyout(l, &tmp, oldp, sizeof(tmp));
2341 if (error)
2342 goto done;
2343 oldp = (char *)oldp + sizeof(tmp);
2344 written += sizeof(tmp);
2345 }
2346 }
2347 done:
2348 if_put(ifp, &psref);
2349 curlwp_bindx(bound);
2350 *oldlenp = written;
2351 return error;
2352 }
2353
2354 static void
2355 in_sysctl_init(struct sysctllog **clog)
2356 {
2357 sysctl_createv(clog, 0, NULL, NULL,
2358 CTLFLAG_PERMANENT,
2359 CTLTYPE_NODE, "inet",
2360 SYSCTL_DESCR("PF_INET related settings"),
2361 NULL, 0, NULL, 0,
2362 CTL_NET, PF_INET, CTL_EOL);
2363 sysctl_createv(clog, 0, NULL, NULL,
2364 CTLFLAG_PERMANENT,
2365 CTLTYPE_NODE, "multicast",
2366 SYSCTL_DESCR("Multicast information"),
2367 in_multicast_sysctl, 0, NULL, 0,
2368 CTL_NET, PF_INET, CTL_CREATE, CTL_EOL);
2369 sysctl_createv(clog, 0, NULL, NULL,
2370 CTLFLAG_PERMANENT,
2371 CTLTYPE_NODE, "ip",
2372 SYSCTL_DESCR("IPv4 related settings"),
2373 NULL, 0, NULL, 0,
2374 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2375
2376 sysctl_createv(clog, 0, NULL, NULL,
2377 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2378 CTLTYPE_INT, "subnetsarelocal",
2379 SYSCTL_DESCR("Whether logical subnets are considered "
2380 "local"),
2381 NULL, 0, &subnetsarelocal, 0,
2382 CTL_NET, PF_INET, IPPROTO_IP,
2383 IPCTL_SUBNETSARELOCAL, CTL_EOL);
2384 sysctl_createv(clog, 0, NULL, NULL,
2385 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2386 CTLTYPE_INT, "hostzerobroadcast",
2387 SYSCTL_DESCR("All zeroes address is broadcast address"),
2388 NULL, 0, &hostzeroisbroadcast, 0,
2389 CTL_NET, PF_INET, IPPROTO_IP,
2390 IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2391 }
2392
2393 #if NARP > 0
2394
2395 static struct lltable *
2396 in_lltattach(struct ifnet *ifp)
2397 {
2398 struct lltable *llt;
2399
2400 llt = lltable_allocate_htbl(IN_LLTBL_DEFAULT_HSIZE);
2401 llt->llt_af = AF_INET;
2402 llt->llt_ifp = ifp;
2403
2404 llt->llt_lookup = in_lltable_lookup;
2405 llt->llt_create = in_lltable_create;
2406 llt->llt_delete = in_lltable_delete;
2407 llt->llt_dump_entry = in_lltable_dump_entry;
2408 llt->llt_hash = in_lltable_hash;
2409 llt->llt_fill_sa_entry = in_lltable_fill_sa_entry;
2410 llt->llt_free_entry = in_lltable_free_entry;
2411 llt->llt_match_prefix = in_lltable_match_prefix;
2412 lltable_link(llt);
2413
2414 return (llt);
2415 }
2416
2417 #endif /* NARP > 0 */
2418
2419 void *
2420 in_domifattach(struct ifnet *ifp)
2421 {
2422 struct in_ifinfo *ii;
2423
2424 ii = kmem_zalloc(sizeof(struct in_ifinfo), KM_SLEEP);
2425
2426 #if NARP > 0
2427 ii->ii_llt = in_lltattach(ifp);
2428 #endif
2429
2430 #ifdef IPSELSRC
2431 ii->ii_selsrc = in_selsrc_domifattach(ifp);
2432 KASSERT(ii->ii_selsrc != NULL);
2433 #endif
2434
2435 return ii;
2436 }
2437
2438 void
2439 in_domifdetach(struct ifnet *ifp, void *aux)
2440 {
2441 struct in_ifinfo *ii = aux;
2442
2443 #ifdef IPSELSRC
2444 in_selsrc_domifdetach(ifp, ii->ii_selsrc);
2445 #endif
2446 #if NARP > 0
2447 lltable_free(ii->ii_llt);
2448 #endif
2449 kmem_free(ii, sizeof(struct in_ifinfo));
2450 }
2451