in.c revision 1.234 1 /* $NetBSD: in.c,v 1.234 2019/04/29 11:57:22 roy Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1991, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)in.c 8.4 (Berkeley) 1/9/95
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: in.c,v 1.234 2019/04/29 11:57:22 roy Exp $");
95
96 #include "arp.h"
97
98 #ifdef _KERNEL_OPT
99 #include "opt_inet.h"
100 #include "opt_inet_conf.h"
101 #include "opt_mrouting.h"
102 #include "opt_net_mpsafe.h"
103 #endif
104
105 #include <sys/param.h>
106 #include <sys/ioctl.h>
107 #include <sys/errno.h>
108 #include <sys/kernel.h>
109 #include <sys/malloc.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/sysctl.h>
113 #include <sys/systm.h>
114 #include <sys/proc.h>
115 #include <sys/syslog.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118
119 #include <sys/cprng.h>
120
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124
125 #include <net/if_arp.h>
126 #include <net/if_ether.h>
127 #include <net/if_types.h>
128 #include <net/if_llatbl.h>
129 #include <net/if_dl.h>
130
131 #include <netinet/in_systm.h>
132 #include <netinet/in.h>
133 #include <netinet/in_var.h>
134 #include <netinet/ip.h>
135 #include <netinet/ip_var.h>
136 #include <netinet/in_ifattach.h>
137 #include <netinet/in_pcb.h>
138 #include <netinet/in_selsrc.h>
139 #include <netinet/if_inarp.h>
140 #include <netinet/ip_mroute.h>
141 #include <netinet/igmp_var.h>
142
143 #ifdef IPSELSRC
144 #include <netinet/in_selsrc.h>
145 #endif
146
147 static u_int in_mask2len(struct in_addr *);
148 static void in_len2mask(struct in_addr *, u_int);
149 static int in_lifaddr_ioctl(struct socket *, u_long, void *,
150 struct ifnet *);
151
152 static void in_addrhash_insert_locked(struct in_ifaddr *);
153 static void in_addrhash_remove_locked(struct in_ifaddr *);
154
155 static int in_addprefix(struct in_ifaddr *, int);
156 static void in_scrubaddr(struct in_ifaddr *);
157 static int in_scrubprefix(struct in_ifaddr *);
158 static void in_sysctl_init(struct sysctllog **);
159
160 #ifndef SUBNETSARELOCAL
161 #define SUBNETSARELOCAL 1
162 #endif
163
164 #ifndef HOSTZEROBROADCAST
165 #define HOSTZEROBROADCAST 0
166 #endif
167
168 /* Note: 61, 127, 251, 509, 1021, 2039 are good. */
169 #ifndef IN_MULTI_HASH_SIZE
170 #define IN_MULTI_HASH_SIZE 509
171 #endif
172
173 static int subnetsarelocal = SUBNETSARELOCAL;
174 static int hostzeroisbroadcast = HOSTZEROBROADCAST;
175
176 /*
177 * This list is used to keep track of in_multi chains which belong to
178 * deleted interface addresses. We use in_ifaddr so that a chain head
179 * won't be deallocated until all multicast address record are deleted.
180 */
181
182 LIST_HEAD(in_multihashhead, in_multi); /* Type of the hash head */
183
184 static struct pool inmulti_pool;
185 static u_int in_multientries;
186 static struct in_multihashhead *in_multihashtbl;
187 static u_long in_multihash;
188 static krwlock_t in_multilock;
189
190 #define IN_MULTI_HASH(x, ifp) \
191 (in_multihashtbl[(u_long)((x) ^ (ifp->if_index)) % IN_MULTI_HASH_SIZE])
192
193 /* XXX DEPRECATED. Keep them to avoid breaking kvm(3) users. */
194 struct in_ifaddrhashhead * in_ifaddrhashtbl;
195 u_long in_ifaddrhash;
196 struct in_ifaddrhead in_ifaddrhead;
197 static kmutex_t in_ifaddr_lock;
198
199 pserialize_t in_ifaddrhash_psz;
200 struct pslist_head * in_ifaddrhashtbl_pslist;
201 u_long in_ifaddrhash_pslist;
202 struct pslist_head in_ifaddrhead_pslist;
203
204 void
205 in_init(void)
206 {
207 pool_init(&inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl",
208 NULL, IPL_SOFTNET);
209 TAILQ_INIT(&in_ifaddrhead);
210 PSLIST_INIT(&in_ifaddrhead_pslist);
211
212 in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
213 &in_ifaddrhash);
214
215 in_ifaddrhash_psz = pserialize_create();
216 in_ifaddrhashtbl_pslist = hashinit(IN_IFADDR_HASH_SIZE, HASH_PSLIST,
217 true, &in_ifaddrhash_pslist);
218 mutex_init(&in_ifaddr_lock, MUTEX_DEFAULT, IPL_NONE);
219
220 in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
221 &in_multihash);
222 rw_init(&in_multilock);
223
224 in_sysctl_init(NULL);
225 }
226
227 /*
228 * Return 1 if an internet address is for a ``local'' host
229 * (one to which we have a connection). If subnetsarelocal
230 * is true, this includes other subnets of the local net.
231 * Otherwise, it includes only the directly-connected (sub)nets.
232 */
233 int
234 in_localaddr(struct in_addr in)
235 {
236 struct in_ifaddr *ia;
237 int localaddr = 0;
238 int s = pserialize_read_enter();
239
240 if (subnetsarelocal) {
241 IN_ADDRLIST_READER_FOREACH(ia) {
242 if ((in.s_addr & ia->ia_netmask) == ia->ia_net) {
243 localaddr = 1;
244 break;
245 }
246 }
247 } else {
248 IN_ADDRLIST_READER_FOREACH(ia) {
249 if ((in.s_addr & ia->ia_subnetmask) == ia->ia_subnet) {
250 localaddr = 1;
251 break;
252 }
253 }
254 }
255 pserialize_read_exit(s);
256
257 return localaddr;
258 }
259
260 /*
261 * like in_localaddr() but can specify ifp.
262 */
263 int
264 in_direct(struct in_addr in, struct ifnet *ifp)
265 {
266 struct ifaddr *ifa;
267 int localaddr = 0;
268 int s;
269
270 KASSERT(ifp != NULL);
271
272 #define ia (ifatoia(ifa))
273 s = pserialize_read_enter();
274 if (subnetsarelocal) {
275 IFADDR_READER_FOREACH(ifa, ifp) {
276 if (ifa->ifa_addr->sa_family == AF_INET &&
277 ((in.s_addr & ia->ia_netmask) == ia->ia_net)) {
278 localaddr = 1;
279 break;
280 }
281 }
282 } else {
283 IFADDR_READER_FOREACH(ifa, ifp) {
284 if (ifa->ifa_addr->sa_family == AF_INET &&
285 (in.s_addr & ia->ia_subnetmask) == ia->ia_subnet) {
286 localaddr = 1;
287 break;
288 }
289 }
290 }
291 pserialize_read_exit(s);
292
293 return localaddr;
294 #undef ia
295 }
296
297 /*
298 * Determine whether an IP address is in a reserved set of addresses
299 * that may not be forwarded, or whether datagrams to that destination
300 * may be forwarded.
301 */
302 int
303 in_canforward(struct in_addr in)
304 {
305 u_int32_t net;
306
307 if (IN_EXPERIMENTAL(in.s_addr) || IN_MULTICAST(in.s_addr))
308 return (0);
309 if (IN_CLASSA(in.s_addr)) {
310 net = in.s_addr & IN_CLASSA_NET;
311 if (net == 0 || net == htonl(IN_LOOPBACKNET << IN_CLASSA_NSHIFT))
312 return (0);
313 }
314 return (1);
315 }
316
317 /*
318 * Trim a mask in a sockaddr
319 */
320 void
321 in_socktrim(struct sockaddr_in *ap)
322 {
323 char *cplim = (char *) &ap->sin_addr;
324 char *cp = (char *) (&ap->sin_addr + 1);
325
326 ap->sin_len = 0;
327 while (--cp >= cplim)
328 if (*cp) {
329 (ap)->sin_len = cp - (char *) (ap) + 1;
330 break;
331 }
332 }
333
334 /*
335 * Maintain the "in_maxmtu" variable, which is the largest
336 * mtu for non-local interfaces with AF_INET addresses assigned
337 * to them that are up.
338 */
339 unsigned long in_maxmtu;
340
341 void
342 in_setmaxmtu(void)
343 {
344 struct in_ifaddr *ia;
345 struct ifnet *ifp;
346 unsigned long maxmtu = 0;
347 int s = pserialize_read_enter();
348
349 IN_ADDRLIST_READER_FOREACH(ia) {
350 if ((ifp = ia->ia_ifp) == 0)
351 continue;
352 if ((ifp->if_flags & (IFF_UP|IFF_LOOPBACK)) != IFF_UP)
353 continue;
354 if (ifp->if_mtu > maxmtu)
355 maxmtu = ifp->if_mtu;
356 }
357 if (maxmtu)
358 in_maxmtu = maxmtu;
359 pserialize_read_exit(s);
360 }
361
362 static u_int
363 in_mask2len(struct in_addr *mask)
364 {
365 u_int x, y;
366 u_char *p;
367
368 p = (u_char *)mask;
369 for (x = 0; x < sizeof(*mask); x++) {
370 if (p[x] != 0xff)
371 break;
372 }
373 y = 0;
374 if (x < sizeof(*mask)) {
375 for (y = 0; y < NBBY; y++) {
376 if ((p[x] & (0x80 >> y)) == 0)
377 break;
378 }
379 }
380 return x * NBBY + y;
381 }
382
383 static void
384 in_len2mask(struct in_addr *mask, u_int len)
385 {
386 u_int i;
387 u_char *p;
388
389 p = (u_char *)mask;
390 memset(mask, 0, sizeof(*mask));
391 for (i = 0; i < len / NBBY; i++)
392 p[i] = 0xff;
393 if (len % NBBY)
394 p[i] = (0xff00 >> (len % NBBY)) & 0xff;
395 }
396
397 /*
398 * Generic internet control operations (ioctl's).
399 * Ifp is 0 if not an interface-specific ioctl.
400 */
401 /* ARGSUSED */
402 static int
403 in_control0(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
404 {
405 struct ifreq *ifr = (struct ifreq *)data;
406 struct in_ifaddr *ia = NULL;
407 struct in_aliasreq *ifra = (struct in_aliasreq *)data;
408 struct sockaddr_in oldaddr, *new_dstaddr;
409 int error, hostIsNew, maskIsNew;
410 int newifaddr = 0;
411 bool run_hook = false;
412 bool need_reinsert = false;
413 struct psref psref;
414 int bound;
415
416 switch (cmd) {
417 case SIOCALIFADDR:
418 case SIOCDLIFADDR:
419 case SIOCGLIFADDR:
420 if (ifp == NULL)
421 return EINVAL;
422 return in_lifaddr_ioctl(so, cmd, data, ifp);
423 case SIOCGIFADDRPREF:
424 case SIOCSIFADDRPREF:
425 if (ifp == NULL)
426 return EINVAL;
427 return ifaddrpref_ioctl(so, cmd, data, ifp);
428 }
429
430 bound = curlwp_bind();
431 /*
432 * Find address for this interface, if it exists.
433 */
434 if (ifp != NULL)
435 ia = in_get_ia_from_ifp_psref(ifp, &psref);
436
437 hostIsNew = 1; /* moved here to appease gcc */
438 switch (cmd) {
439 case SIOCAIFADDR:
440 case SIOCDIFADDR:
441 case SIOCGIFALIAS:
442 case SIOCGIFAFLAG_IN:
443 if (ifra->ifra_addr.sin_family == AF_INET) {
444 int s;
445
446 if (ia != NULL)
447 ia4_release(ia, &psref);
448 s = pserialize_read_enter();
449 IN_ADDRHASH_READER_FOREACH(ia,
450 ifra->ifra_addr.sin_addr.s_addr) {
451 if (ia->ia_ifp == ifp &&
452 in_hosteq(ia->ia_addr.sin_addr,
453 ifra->ifra_addr.sin_addr))
454 break;
455 }
456 if (ia != NULL)
457 ia4_acquire(ia, &psref);
458 pserialize_read_exit(s);
459 }
460 if ((cmd == SIOCDIFADDR ||
461 cmd == SIOCGIFALIAS ||
462 cmd == SIOCGIFAFLAG_IN) &&
463 ia == NULL) {
464 error = EADDRNOTAVAIL;
465 goto out;
466 }
467
468 if (cmd == SIOCDIFADDR &&
469 ifra->ifra_addr.sin_family == AF_UNSPEC) {
470 ifra->ifra_addr.sin_family = AF_INET;
471 }
472 /* FALLTHROUGH */
473 case SIOCSIFADDR:
474 if (ia == NULL || ia->ia_addr.sin_family != AF_INET)
475 ;
476 else if (ifra->ifra_addr.sin_len == 0) {
477 ifra->ifra_addr = ia->ia_addr;
478 hostIsNew = 0;
479 } else if (in_hosteq(ia->ia_addr.sin_addr,
480 ifra->ifra_addr.sin_addr))
481 hostIsNew = 0;
482 if (ifra->ifra_addr.sin_family != AF_INET) {
483 error = EAFNOSUPPORT;
484 goto out;
485 }
486 /* FALLTHROUGH */
487 case SIOCSIFDSTADDR:
488 if (cmd == SIOCSIFDSTADDR &&
489 ifreq_getaddr(cmd, ifr)->sa_family != AF_INET) {
490 error = EAFNOSUPPORT;
491 goto out;
492 }
493 /* FALLTHROUGH */
494 case SIOCSIFNETMASK:
495 if (ifp == NULL)
496 panic("in_control");
497
498 if (cmd == SIOCGIFALIAS || cmd == SIOCGIFAFLAG_IN)
499 break;
500
501 if (ia == NULL &&
502 (cmd == SIOCSIFNETMASK || cmd == SIOCSIFDSTADDR)) {
503 error = EADDRNOTAVAIL;
504 goto out;
505 }
506
507 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
508 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
509 NULL) != 0) {
510 error = EPERM;
511 goto out;
512 }
513
514 if (ia == NULL) {
515 ia = malloc(sizeof(*ia), M_IFADDR, M_WAITOK|M_ZERO);
516 if (ia == NULL) {
517 error = ENOBUFS;
518 goto out;
519 }
520 ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
521 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
522 ia->ia_ifa.ifa_netmask = sintosa(&ia->ia_sockmask);
523 #ifdef IPSELSRC
524 ia->ia_ifa.ifa_getifa = in_getifa;
525 #else /* IPSELSRC */
526 ia->ia_ifa.ifa_getifa = NULL;
527 #endif /* IPSELSRC */
528 ia->ia_sockmask.sin_len = 8;
529 ia->ia_sockmask.sin_family = AF_INET;
530 if (ifp->if_flags & IFF_BROADCAST) {
531 ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr);
532 ia->ia_broadaddr.sin_family = AF_INET;
533 }
534 ia->ia_ifp = ifp;
535 ia->ia_idsalt = cprng_fast32() % 65535;
536 LIST_INIT(&ia->ia_multiaddrs);
537 IN_ADDRHASH_ENTRY_INIT(ia);
538 IN_ADDRLIST_ENTRY_INIT(ia);
539 ifa_psref_init(&ia->ia_ifa);
540 /*
541 * We need a reference to make ia survive over in_ifinit
542 * that does ifaref and ifafree.
543 */
544 ifaref(&ia->ia_ifa);
545
546 newifaddr = 1;
547 }
548 break;
549
550 case SIOCSIFBRDADDR:
551 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
552 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
553 NULL) != 0) {
554 error = EPERM;
555 goto out;
556 }
557 /* FALLTHROUGH */
558
559 case SIOCGIFADDR:
560 case SIOCGIFNETMASK:
561 case SIOCGIFDSTADDR:
562 case SIOCGIFBRDADDR:
563 if (ia == NULL) {
564 error = EADDRNOTAVAIL;
565 goto out;
566 }
567 break;
568 }
569 error = 0;
570 switch (cmd) {
571
572 case SIOCGIFADDR:
573 ifreq_setaddr(cmd, ifr, sintocsa(&ia->ia_addr));
574 break;
575
576 case SIOCGIFBRDADDR:
577 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
578 error = EINVAL;
579 goto out;
580 }
581 ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_broadaddr));
582 break;
583
584 case SIOCGIFDSTADDR:
585 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
586 error = EINVAL;
587 goto out;
588 }
589 ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_dstaddr));
590 break;
591
592 case SIOCGIFNETMASK:
593 /*
594 * We keep the number of trailing zero bytes the sin_len field
595 * of ia_sockmask, so we fix this before we pass it back to
596 * userland.
597 */
598 oldaddr = ia->ia_sockmask;
599 oldaddr.sin_len = sizeof(struct sockaddr_in);
600 ifreq_setaddr(cmd, ifr, (const void *)&oldaddr);
601 break;
602
603 case SIOCSIFDSTADDR:
604 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
605 error = EINVAL;
606 goto out;
607 }
608 oldaddr = ia->ia_dstaddr;
609 ia->ia_dstaddr = *satocsin(ifreq_getdstaddr(cmd, ifr));
610 if ((error = if_addr_init(ifp, &ia->ia_ifa, false)) != 0) {
611 ia->ia_dstaddr = oldaddr;
612 goto out;
613 }
614 if (ia->ia_flags & IFA_ROUTE) {
615 ia->ia_ifa.ifa_dstaddr = sintosa(&oldaddr);
616 rtinit(&ia->ia_ifa, RTM_DELETE, RTF_HOST);
617 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
618 rtinit(&ia->ia_ifa, RTM_ADD, RTF_HOST|RTF_UP);
619 }
620 break;
621
622 case SIOCSIFBRDADDR:
623 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
624 error = EINVAL;
625 goto out;
626 }
627 ia->ia_broadaddr = *satocsin(ifreq_getbroadaddr(cmd, ifr));
628 break;
629
630 case SIOCSIFADDR:
631 if (!newifaddr) {
632 in_addrhash_remove(ia);
633 need_reinsert = true;
634 }
635 error = in_ifinit(ifp, ia, satocsin(ifreq_getaddr(cmd, ifr)),
636 NULL, 1);
637
638 run_hook = true;
639 break;
640
641 case SIOCSIFNETMASK:
642 in_scrubprefix(ia);
643 ia->ia_sockmask = *satocsin(ifreq_getaddr(cmd, ifr));
644 ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr;
645 if (!newifaddr) {
646 in_addrhash_remove(ia);
647 need_reinsert = true;
648 }
649 error = in_ifinit(ifp, ia, NULL, NULL, 0);
650 break;
651
652 case SIOCAIFADDR:
653 maskIsNew = 0;
654 if (ifra->ifra_mask.sin_len) {
655 in_scrubprefix(ia);
656 ia->ia_sockmask = ifra->ifra_mask;
657 ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr;
658 maskIsNew = 1;
659 }
660 if ((ifp->if_flags & IFF_POINTOPOINT) &&
661 (ifra->ifra_dstaddr.sin_family == AF_INET)) {
662 new_dstaddr = &ifra->ifra_dstaddr;
663 maskIsNew = 1; /* We lie; but the effect's the same */
664 } else
665 new_dstaddr = NULL;
666 if (ifra->ifra_addr.sin_family == AF_INET &&
667 (hostIsNew || maskIsNew)) {
668 if (!newifaddr) {
669 in_addrhash_remove(ia);
670 need_reinsert = true;
671 }
672 error = in_ifinit(ifp, ia, &ifra->ifra_addr,
673 new_dstaddr, 0);
674 }
675 if ((ifp->if_flags & IFF_BROADCAST) &&
676 (ifra->ifra_broadaddr.sin_family == AF_INET))
677 ia->ia_broadaddr = ifra->ifra_broadaddr;
678 run_hook = true;
679 break;
680
681 case SIOCGIFALIAS:
682 ifra->ifra_mask = ia->ia_sockmask;
683 if ((ifp->if_flags & IFF_POINTOPOINT) &&
684 (ia->ia_dstaddr.sin_family == AF_INET))
685 ifra->ifra_dstaddr = ia->ia_dstaddr;
686 else if ((ifp->if_flags & IFF_BROADCAST) &&
687 (ia->ia_broadaddr.sin_family == AF_INET))
688 ifra->ifra_broadaddr = ia->ia_broadaddr;
689 else
690 memset(&ifra->ifra_broadaddr, 0,
691 sizeof(ifra->ifra_broadaddr));
692 break;
693
694 case SIOCGIFAFLAG_IN:
695 ifr->ifr_addrflags = ia->ia4_flags;
696 break;
697
698 case SIOCDIFADDR:
699 ia4_release(ia, &psref);
700 ifaref(&ia->ia_ifa);
701 in_purgeaddr(&ia->ia_ifa);
702 pfil_run_addrhooks(if_pfil, cmd, &ia->ia_ifa);
703 ifafree(&ia->ia_ifa);
704 ia = NULL;
705 break;
706
707 #ifdef MROUTING
708 case SIOCGETVIFCNT:
709 case SIOCGETSGCNT:
710 error = mrt_ioctl(so, cmd, data);
711 break;
712 #endif /* MROUTING */
713
714 default:
715 error = ENOTTY;
716 goto out;
717 }
718
719 /*
720 * XXX insert regardless of error to make in_purgeaddr below work.
721 * Need to improve.
722 */
723 if (newifaddr) {
724 ifaref(&ia->ia_ifa);
725 ifa_insert(ifp, &ia->ia_ifa);
726
727 mutex_enter(&in_ifaddr_lock);
728 TAILQ_INSERT_TAIL(&in_ifaddrhead, ia, ia_list);
729 IN_ADDRLIST_WRITER_INSERT_TAIL(ia);
730 in_addrhash_insert_locked(ia);
731 /* Release a reference that is held just after creation. */
732 ifafree(&ia->ia_ifa);
733 mutex_exit(&in_ifaddr_lock);
734 } else if (need_reinsert) {
735 in_addrhash_insert(ia);
736 }
737
738 if (error == 0) {
739 if (run_hook)
740 pfil_run_addrhooks(if_pfil, cmd, &ia->ia_ifa);
741 } else if (newifaddr) {
742 KASSERT(ia != NULL);
743 in_purgeaddr(&ia->ia_ifa);
744 ia = NULL;
745 }
746
747 out:
748 if (!newifaddr && ia != NULL)
749 ia4_release(ia, &psref);
750 curlwp_bindx(bound);
751 return error;
752 }
753
754 int
755 in_control(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
756 {
757 int error;
758
759 #ifndef NET_MPSAFE
760 KASSERT(KERNEL_LOCKED_P());
761 #endif
762 error = in_control0(so, cmd, data, ifp);
763
764 return error;
765 }
766
767 /* Add ownaddr as loopback rtentry. */
768 static void
769 in_ifaddlocal(struct ifaddr *ifa)
770 {
771 struct in_ifaddr *ia;
772
773 ia = (struct in_ifaddr *)ifa;
774 if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY ||
775 (ia->ia_ifp->if_flags & IFF_POINTOPOINT &&
776 in_hosteq(ia->ia_dstaddr.sin_addr, ia->ia_addr.sin_addr)))
777 {
778 rt_addrmsg(RTM_NEWADDR, ifa);
779 return;
780 }
781
782 rt_ifa_addlocal(ifa);
783 }
784
785 /* Remove loopback entry of ownaddr */
786 static void
787 in_ifremlocal(struct ifaddr *ifa)
788 {
789 struct in_ifaddr *ia, *p;
790 struct ifaddr *alt_ifa = NULL;
791 int ia_count = 0;
792 int s;
793 struct psref psref;
794 int bound = curlwp_bind();
795
796 ia = (struct in_ifaddr *)ifa;
797 /* Delete the entry if exactly one ifaddr matches the
798 * address, ifa->ifa_addr. */
799 s = pserialize_read_enter();
800 IN_ADDRLIST_READER_FOREACH(p) {
801 if (!in_hosteq(p->ia_addr.sin_addr, ia->ia_addr.sin_addr))
802 continue;
803 if (p->ia_ifp != ia->ia_ifp)
804 alt_ifa = &p->ia_ifa;
805 if (++ia_count > 1 && alt_ifa != NULL)
806 break;
807 }
808 if (alt_ifa != NULL && ia_count > 1)
809 ifa_acquire(alt_ifa, &psref);
810 pserialize_read_exit(s);
811
812 if (ia_count == 0)
813 goto out;
814
815 rt_ifa_remlocal(ifa, ia_count == 1 ? NULL : alt_ifa);
816 if (alt_ifa != NULL && ia_count > 1)
817 ifa_release(alt_ifa, &psref);
818 out:
819 curlwp_bindx(bound);
820 }
821
822 static void
823 in_scrubaddr(struct in_ifaddr *ia)
824 {
825
826 /* stop DAD processing */
827 if (ia->ia_dad_stop != NULL)
828 ia->ia_dad_stop(&ia->ia_ifa);
829
830 in_scrubprefix(ia);
831 in_ifremlocal(&ia->ia_ifa);
832
833 mutex_enter(&in_ifaddr_lock);
834 if (ia->ia_allhosts != NULL) {
835 in_delmulti(ia->ia_allhosts);
836 ia->ia_allhosts = NULL;
837 }
838 mutex_exit(&in_ifaddr_lock);
839 }
840
841 /*
842 * Depends on it isn't called in concurrent. It should be guaranteed
843 * by ifa->ifa_ifp's ioctl lock. The possible callers are in_control
844 * and if_purgeaddrs; the former is called iva ifa->ifa_ifp's ioctl
845 * and the latter is called via ifa->ifa_ifp's if_detach. The functions
846 * never be executed in concurrent.
847 */
848 void
849 in_purgeaddr(struct ifaddr *ifa)
850 {
851 struct in_ifaddr *ia = (void *) ifa;
852 struct ifnet *ifp = ifa->ifa_ifp;
853
854 /* KASSERT(!ifa_held(ifa)); XXX need ifa_not_held (psref_not_held) */
855
856 ifa->ifa_flags |= IFA_DESTROYING;
857 in_scrubaddr(ia);
858
859 mutex_enter(&in_ifaddr_lock);
860 in_addrhash_remove_locked(ia);
861 TAILQ_REMOVE(&in_ifaddrhead, ia, ia_list);
862 IN_ADDRLIST_WRITER_REMOVE(ia);
863 ifa_remove(ifp, &ia->ia_ifa);
864 /* Assume ifa_remove called pserialize_perform and psref_destroy */
865 mutex_exit(&in_ifaddr_lock);
866 IN_ADDRHASH_ENTRY_DESTROY(ia);
867 IN_ADDRLIST_ENTRY_DESTROY(ia);
868 ifafree(&ia->ia_ifa);
869 in_setmaxmtu();
870 }
871
872 static void
873 in_addrhash_insert_locked(struct in_ifaddr *ia)
874 {
875
876 KASSERT(mutex_owned(&in_ifaddr_lock));
877
878 LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr), ia,
879 ia_hash);
880 IN_ADDRHASH_ENTRY_INIT(ia);
881 IN_ADDRHASH_WRITER_INSERT_HEAD(ia);
882 }
883
884 void
885 in_addrhash_insert(struct in_ifaddr *ia)
886 {
887
888 mutex_enter(&in_ifaddr_lock);
889 in_addrhash_insert_locked(ia);
890 mutex_exit(&in_ifaddr_lock);
891 }
892
893 static void
894 in_addrhash_remove_locked(struct in_ifaddr *ia)
895 {
896
897 KASSERT(mutex_owned(&in_ifaddr_lock));
898
899 LIST_REMOVE(ia, ia_hash);
900 IN_ADDRHASH_WRITER_REMOVE(ia);
901 }
902
903 void
904 in_addrhash_remove(struct in_ifaddr *ia)
905 {
906
907 mutex_enter(&in_ifaddr_lock);
908 in_addrhash_remove_locked(ia);
909 #ifdef NET_MPSAFE
910 pserialize_perform(in_ifaddrhash_psz);
911 #endif
912 mutex_exit(&in_ifaddr_lock);
913 IN_ADDRHASH_ENTRY_DESTROY(ia);
914 }
915
916 void
917 in_purgeif(struct ifnet *ifp) /* MUST be called at splsoftnet() */
918 {
919
920 IFNET_LOCK(ifp);
921 if_purgeaddrs(ifp, AF_INET, in_purgeaddr);
922 igmp_purgeif(ifp); /* manipulates pools */
923 #ifdef MROUTING
924 ip_mrouter_detach(ifp);
925 #endif
926 IFNET_UNLOCK(ifp);
927 }
928
929 /*
930 * SIOC[GAD]LIFADDR.
931 * SIOCGLIFADDR: get first address. (???)
932 * SIOCGLIFADDR with IFLR_PREFIX:
933 * get first address that matches the specified prefix.
934 * SIOCALIFADDR: add the specified address.
935 * SIOCALIFADDR with IFLR_PREFIX:
936 * EINVAL since we can't deduce hostid part of the address.
937 * SIOCDLIFADDR: delete the specified address.
938 * SIOCDLIFADDR with IFLR_PREFIX:
939 * delete the first address that matches the specified prefix.
940 * return values:
941 * EINVAL on invalid parameters
942 * EADDRNOTAVAIL on prefix match failed/specified address not found
943 * other values may be returned from in_ioctl()
944 */
945 static int
946 in_lifaddr_ioctl(struct socket *so, u_long cmd, void *data,
947 struct ifnet *ifp)
948 {
949 struct if_laddrreq *iflr = (struct if_laddrreq *)data;
950 struct ifaddr *ifa;
951 struct sockaddr *sa;
952
953 /* sanity checks */
954 if (data == NULL || ifp == NULL) {
955 panic("invalid argument to in_lifaddr_ioctl");
956 /*NOTRECHED*/
957 }
958
959 switch (cmd) {
960 case SIOCGLIFADDR:
961 /* address must be specified on GET with IFLR_PREFIX */
962 if ((iflr->flags & IFLR_PREFIX) == 0)
963 break;
964 /*FALLTHROUGH*/
965 case SIOCALIFADDR:
966 case SIOCDLIFADDR:
967 /* address must be specified on ADD and DELETE */
968 sa = (struct sockaddr *)&iflr->addr;
969 if (sa->sa_family != AF_INET)
970 return EINVAL;
971 if (sa->sa_len != sizeof(struct sockaddr_in))
972 return EINVAL;
973 /* XXX need improvement */
974 sa = (struct sockaddr *)&iflr->dstaddr;
975 if (sa->sa_family != AF_UNSPEC && sa->sa_family != AF_INET)
976 return EINVAL;
977 if (sa->sa_len != 0 && sa->sa_len != sizeof(struct sockaddr_in))
978 return EINVAL;
979 break;
980 default: /*shouldn't happen*/
981 #if 0
982 panic("invalid cmd to in_lifaddr_ioctl");
983 /*NOTREACHED*/
984 #else
985 return EOPNOTSUPP;
986 #endif
987 }
988 if (sizeof(struct in_addr) * NBBY < iflr->prefixlen)
989 return EINVAL;
990
991 switch (cmd) {
992 case SIOCALIFADDR:
993 {
994 struct in_aliasreq ifra;
995
996 if (iflr->flags & IFLR_PREFIX)
997 return EINVAL;
998
999 /* copy args to in_aliasreq, perform ioctl(SIOCAIFADDR). */
1000 memset(&ifra, 0, sizeof(ifra));
1001 memcpy(ifra.ifra_name, iflr->iflr_name,
1002 sizeof(ifra.ifra_name));
1003
1004 memcpy(&ifra.ifra_addr, &iflr->addr,
1005 ((struct sockaddr *)&iflr->addr)->sa_len);
1006
1007 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/
1008 memcpy(&ifra.ifra_dstaddr, &iflr->dstaddr,
1009 ((struct sockaddr *)&iflr->dstaddr)->sa_len);
1010 }
1011
1012 ifra.ifra_mask.sin_family = AF_INET;
1013 ifra.ifra_mask.sin_len = sizeof(struct sockaddr_in);
1014 in_len2mask(&ifra.ifra_mask.sin_addr, iflr->prefixlen);
1015
1016 return in_control(so, SIOCAIFADDR, &ifra, ifp);
1017 }
1018 case SIOCGLIFADDR:
1019 case SIOCDLIFADDR:
1020 {
1021 struct in_ifaddr *ia;
1022 struct in_addr mask, candidate, match;
1023 struct sockaddr_in *sin;
1024 int cmp, s;
1025
1026 memset(&mask, 0, sizeof(mask));
1027 memset(&match, 0, sizeof(match)); /* XXX gcc */
1028 if (iflr->flags & IFLR_PREFIX) {
1029 /* lookup a prefix rather than address. */
1030 in_len2mask(&mask, iflr->prefixlen);
1031
1032 sin = (struct sockaddr_in *)&iflr->addr;
1033 match.s_addr = sin->sin_addr.s_addr;
1034 match.s_addr &= mask.s_addr;
1035
1036 /* if you set extra bits, that's wrong */
1037 if (match.s_addr != sin->sin_addr.s_addr)
1038 return EINVAL;
1039
1040 cmp = 1;
1041 } else {
1042 if (cmd == SIOCGLIFADDR) {
1043 /* on getting an address, take the 1st match */
1044 cmp = 0; /*XXX*/
1045 } else {
1046 /* on deleting an address, do exact match */
1047 in_len2mask(&mask, 32);
1048 sin = (struct sockaddr_in *)&iflr->addr;
1049 match.s_addr = sin->sin_addr.s_addr;
1050
1051 cmp = 1;
1052 }
1053 }
1054
1055 s = pserialize_read_enter();
1056 IFADDR_READER_FOREACH(ifa, ifp) {
1057 if (ifa->ifa_addr->sa_family != AF_INET)
1058 continue;
1059 if (cmp == 0)
1060 break;
1061 candidate.s_addr = ((struct sockaddr_in *)ifa->ifa_addr)->sin_addr.s_addr;
1062 candidate.s_addr &= mask.s_addr;
1063 if (candidate.s_addr == match.s_addr)
1064 break;
1065 }
1066 if (ifa == NULL) {
1067 pserialize_read_exit(s);
1068 return EADDRNOTAVAIL;
1069 }
1070 ia = (struct in_ifaddr *)ifa;
1071
1072 if (cmd == SIOCGLIFADDR) {
1073 /* fill in the if_laddrreq structure */
1074 memcpy(&iflr->addr, &ia->ia_addr, ia->ia_addr.sin_len);
1075
1076 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1077 memcpy(&iflr->dstaddr, &ia->ia_dstaddr,
1078 ia->ia_dstaddr.sin_len);
1079 } else
1080 memset(&iflr->dstaddr, 0, sizeof(iflr->dstaddr));
1081
1082 iflr->prefixlen =
1083 in_mask2len(&ia->ia_sockmask.sin_addr);
1084
1085 iflr->flags = 0; /*XXX*/
1086 pserialize_read_exit(s);
1087
1088 return 0;
1089 } else {
1090 struct in_aliasreq ifra;
1091
1092 /* fill in_aliasreq and do ioctl(SIOCDIFADDR) */
1093 memset(&ifra, 0, sizeof(ifra));
1094 memcpy(ifra.ifra_name, iflr->iflr_name,
1095 sizeof(ifra.ifra_name));
1096
1097 memcpy(&ifra.ifra_addr, &ia->ia_addr,
1098 ia->ia_addr.sin_len);
1099 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1100 memcpy(&ifra.ifra_dstaddr, &ia->ia_dstaddr,
1101 ia->ia_dstaddr.sin_len);
1102 }
1103 memcpy(&ifra.ifra_dstaddr, &ia->ia_sockmask,
1104 ia->ia_sockmask.sin_len);
1105 pserialize_read_exit(s);
1106
1107 return in_control(so, SIOCDIFADDR, &ifra, ifp);
1108 }
1109 }
1110 }
1111
1112 return EOPNOTSUPP; /*just for safety*/
1113 }
1114
1115 /*
1116 * Initialize an interface's internet address
1117 * and routing table entry.
1118 */
1119 int
1120 in_ifinit(struct ifnet *ifp, struct in_ifaddr *ia,
1121 const struct sockaddr_in *sin, const struct sockaddr_in *dst, int scrub)
1122 {
1123 u_int32_t i;
1124 struct sockaddr_in oldaddr, olddst;
1125 int s, oldflags, flags = RTF_UP, error, hostIsNew;
1126
1127 if (sin == NULL)
1128 sin = &ia->ia_addr;
1129 if (dst == NULL)
1130 dst = &ia->ia_dstaddr;
1131
1132 /*
1133 * Set up new addresses.
1134 */
1135 oldaddr = ia->ia_addr;
1136 olddst = ia->ia_dstaddr;
1137 oldflags = ia->ia4_flags;
1138 ia->ia_addr = *sin;
1139 ia->ia_dstaddr = *dst;
1140 hostIsNew = oldaddr.sin_family != AF_INET ||
1141 !in_hosteq(ia->ia_addr.sin_addr, oldaddr.sin_addr);
1142 if (!scrub)
1143 scrub = oldaddr.sin_family != ia->ia_dstaddr.sin_family ||
1144 !in_hosteq(ia->ia_dstaddr.sin_addr, olddst.sin_addr);
1145
1146 /*
1147 * Configure address flags.
1148 * We need to do this early because they may be adjusted
1149 * by if_addr_init depending on the address.
1150 */
1151 if (ia->ia4_flags & IN_IFF_DUPLICATED) {
1152 ia->ia4_flags &= ~IN_IFF_DUPLICATED;
1153 hostIsNew = 1;
1154 }
1155 if (ifp->if_link_state == LINK_STATE_DOWN) {
1156 ia->ia4_flags |= IN_IFF_DETACHED;
1157 ia->ia4_flags &= ~IN_IFF_TENTATIVE;
1158 } else if (hostIsNew && if_do_dad(ifp) && ip_dad_enabled())
1159 ia->ia4_flags |= IN_IFF_TRYTENTATIVE;
1160
1161 /*
1162 * Give the interface a chance to initialize
1163 * if this is its first address,
1164 * and to validate the address if necessary.
1165 */
1166 s = splsoftnet();
1167 error = if_addr_init(ifp, &ia->ia_ifa, true);
1168 splx(s);
1169 /* Now clear the try tentative flag, its job is done. */
1170 ia->ia4_flags &= ~IN_IFF_TRYTENTATIVE;
1171 if (error != 0) {
1172 ia->ia_addr = oldaddr;
1173 ia->ia_dstaddr = olddst;
1174 ia->ia4_flags = oldflags;
1175 return error;
1176 }
1177
1178 if (scrub || hostIsNew) {
1179 int newflags = ia->ia4_flags;
1180
1181 ia->ia_ifa.ifa_addr = sintosa(&oldaddr);
1182 ia->ia_ifa.ifa_dstaddr = sintosa(&olddst);
1183 ia->ia4_flags = oldflags;
1184 if (hostIsNew)
1185 in_scrubaddr(ia);
1186 else if (scrub)
1187 in_scrubprefix(ia);
1188 ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
1189 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
1190 ia->ia4_flags = newflags;
1191 }
1192
1193 i = ia->ia_addr.sin_addr.s_addr;
1194 if (ifp->if_flags & IFF_POINTOPOINT)
1195 ia->ia_netmask = INADDR_BROADCAST; /* default to /32 */
1196 else if (IN_CLASSA(i))
1197 ia->ia_netmask = IN_CLASSA_NET;
1198 else if (IN_CLASSB(i))
1199 ia->ia_netmask = IN_CLASSB_NET;
1200 else
1201 ia->ia_netmask = IN_CLASSC_NET;
1202 /*
1203 * The subnet mask usually includes at least the standard network part,
1204 * but may may be smaller in the case of supernetting.
1205 * If it is set, we believe it.
1206 */
1207 if (ia->ia_subnetmask == 0) {
1208 ia->ia_subnetmask = ia->ia_netmask;
1209 ia->ia_sockmask.sin_addr.s_addr = ia->ia_subnetmask;
1210 } else
1211 ia->ia_netmask &= ia->ia_subnetmask;
1212
1213 ia->ia_net = i & ia->ia_netmask;
1214 ia->ia_subnet = i & ia->ia_subnetmask;
1215 in_socktrim(&ia->ia_sockmask);
1216
1217 /* re-calculate the "in_maxmtu" value */
1218 in_setmaxmtu();
1219
1220 ia->ia_ifa.ifa_metric = ifp->if_metric;
1221 if (ifp->if_flags & IFF_BROADCAST) {
1222 ia->ia_broadaddr.sin_addr.s_addr =
1223 ia->ia_subnet | ~ia->ia_subnetmask;
1224 ia->ia_netbroadcast.s_addr =
1225 ia->ia_net | ~ia->ia_netmask;
1226 } else if (ifp->if_flags & IFF_LOOPBACK) {
1227 ia->ia_dstaddr = ia->ia_addr;
1228 flags |= RTF_HOST;
1229 } else if (ifp->if_flags & IFF_POINTOPOINT) {
1230 if (ia->ia_dstaddr.sin_family != AF_INET)
1231 return (0);
1232 flags |= RTF_HOST;
1233 }
1234
1235 /* Add the local route to the address */
1236 in_ifaddlocal(&ia->ia_ifa);
1237
1238 /* Add the prefix route for the address */
1239 error = in_addprefix(ia, flags);
1240
1241 /*
1242 * If the interface supports multicast, join the "all hosts"
1243 * multicast group on that interface.
1244 */
1245 mutex_enter(&in_ifaddr_lock);
1246 if ((ifp->if_flags & IFF_MULTICAST) != 0 && ia->ia_allhosts == NULL) {
1247 struct in_addr addr;
1248
1249 addr.s_addr = INADDR_ALLHOSTS_GROUP;
1250 ia->ia_allhosts = in_addmulti(&addr, ifp);
1251 }
1252 mutex_exit(&in_ifaddr_lock);
1253
1254 if (hostIsNew &&
1255 ia->ia4_flags & IN_IFF_TENTATIVE &&
1256 if_do_dad(ifp))
1257 ia->ia_dad_start((struct ifaddr *)ia);
1258
1259 return error;
1260 }
1261
1262 #define rtinitflags(x) \
1263 ((((x)->ia_ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) != 0) \
1264 ? RTF_HOST : 0)
1265
1266 /*
1267 * add a route to prefix ("connected route" in cisco terminology).
1268 * does nothing if there's some interface address with the same prefix already.
1269 */
1270 static int
1271 in_addprefix(struct in_ifaddr *target, int flags)
1272 {
1273 struct in_ifaddr *ia;
1274 struct in_addr prefix, mask, p;
1275 int error;
1276 int s;
1277
1278 if ((flags & RTF_HOST) != 0)
1279 prefix = target->ia_dstaddr.sin_addr;
1280 else {
1281 prefix = target->ia_addr.sin_addr;
1282 mask = target->ia_sockmask.sin_addr;
1283 prefix.s_addr &= mask.s_addr;
1284 }
1285
1286 s = pserialize_read_enter();
1287 IN_ADDRLIST_READER_FOREACH(ia) {
1288 if (rtinitflags(ia))
1289 p = ia->ia_dstaddr.sin_addr;
1290 else {
1291 p = ia->ia_addr.sin_addr;
1292 p.s_addr &= ia->ia_sockmask.sin_addr.s_addr;
1293 }
1294
1295 if (prefix.s_addr != p.s_addr)
1296 continue;
1297
1298 /*
1299 * if we got a matching prefix route inserted by other
1300 * interface address, we don't need to bother
1301 *
1302 * XXX RADIX_MPATH implications here? -dyoung
1303 */
1304 if (ia->ia_flags & IFA_ROUTE) {
1305 pserialize_read_exit(s);
1306 return 0;
1307 }
1308 }
1309 pserialize_read_exit(s);
1310
1311 /*
1312 * noone seem to have prefix route. insert it.
1313 */
1314 error = rtinit(&target->ia_ifa, RTM_ADD, flags);
1315 if (error == 0)
1316 target->ia_flags |= IFA_ROUTE;
1317 else if (error == EEXIST) {
1318 /*
1319 * the fact the route already exists is not an error.
1320 */
1321 error = 0;
1322 }
1323 return error;
1324 }
1325
1326 /*
1327 * remove a route to prefix ("connected route" in cisco terminology).
1328 * re-installs the route by using another interface address, if there's one
1329 * with the same prefix (otherwise we lose the route mistakenly).
1330 */
1331 static int
1332 in_scrubprefix(struct in_ifaddr *target)
1333 {
1334 struct in_ifaddr *ia;
1335 struct in_addr prefix, mask, p;
1336 int error;
1337 int s;
1338
1339 /* If we don't have IFA_ROUTE we have nothing to do */
1340 if ((target->ia_flags & IFA_ROUTE) == 0)
1341 return 0;
1342
1343 if (rtinitflags(target))
1344 prefix = target->ia_dstaddr.sin_addr;
1345 else {
1346 prefix = target->ia_addr.sin_addr;
1347 mask = target->ia_sockmask.sin_addr;
1348 prefix.s_addr &= mask.s_addr;
1349 }
1350
1351 s = pserialize_read_enter();
1352 IN_ADDRLIST_READER_FOREACH(ia) {
1353 if (rtinitflags(ia))
1354 p = ia->ia_dstaddr.sin_addr;
1355 else {
1356 p = ia->ia_addr.sin_addr;
1357 p.s_addr &= ia->ia_sockmask.sin_addr.s_addr;
1358 }
1359
1360 if (prefix.s_addr != p.s_addr)
1361 continue;
1362
1363 /*
1364 * if we got a matching prefix route, move IFA_ROUTE to him
1365 */
1366 if ((ia->ia_flags & IFA_ROUTE) == 0) {
1367 struct psref psref;
1368 int bound = curlwp_bind();
1369
1370 ia4_acquire(ia, &psref);
1371 pserialize_read_exit(s);
1372
1373 rtinit(&target->ia_ifa, RTM_DELETE,
1374 rtinitflags(target));
1375 target->ia_flags &= ~IFA_ROUTE;
1376
1377 error = rtinit(&ia->ia_ifa, RTM_ADD,
1378 rtinitflags(ia) | RTF_UP);
1379 if (error == 0)
1380 ia->ia_flags |= IFA_ROUTE;
1381
1382 ia4_release(ia, &psref);
1383 curlwp_bindx(bound);
1384
1385 return error;
1386 }
1387 }
1388 pserialize_read_exit(s);
1389
1390 /*
1391 * noone seem to have prefix route. remove it.
1392 */
1393 rtinit(&target->ia_ifa, RTM_DELETE, rtinitflags(target));
1394 target->ia_flags &= ~IFA_ROUTE;
1395 return 0;
1396 }
1397
1398 #undef rtinitflags
1399
1400 /*
1401 * Return 1 if the address might be a local broadcast address.
1402 */
1403 int
1404 in_broadcast(struct in_addr in, struct ifnet *ifp)
1405 {
1406 struct ifaddr *ifa;
1407 int s;
1408
1409 KASSERT(ifp != NULL);
1410
1411 if (in.s_addr == INADDR_BROADCAST ||
1412 in_nullhost(in))
1413 return 1;
1414 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1415 return 0;
1416 /*
1417 * Look through the list of addresses for a match
1418 * with a broadcast address.
1419 */
1420 #define ia (ifatoia(ifa))
1421 s = pserialize_read_enter();
1422 IFADDR_READER_FOREACH(ifa, ifp) {
1423 if (ifa->ifa_addr->sa_family == AF_INET &&
1424 !in_hosteq(in, ia->ia_addr.sin_addr) &&
1425 (in_hosteq(in, ia->ia_broadaddr.sin_addr) ||
1426 in_hosteq(in, ia->ia_netbroadcast) ||
1427 (hostzeroisbroadcast &&
1428 /*
1429 * Check for old-style (host 0) broadcast.
1430 */
1431 (in.s_addr == ia->ia_subnet ||
1432 in.s_addr == ia->ia_net)))) {
1433 pserialize_read_exit(s);
1434 return 1;
1435 }
1436 }
1437 pserialize_read_exit(s);
1438 return (0);
1439 #undef ia
1440 }
1441
1442 /*
1443 * perform DAD when interface becomes IFF_UP.
1444 */
1445 void
1446 in_if_link_up(struct ifnet *ifp)
1447 {
1448 struct ifaddr *ifa;
1449 struct in_ifaddr *ia;
1450 int s, bound;
1451
1452 /* Ensure it's sane to run DAD */
1453 if (ifp->if_link_state == LINK_STATE_DOWN)
1454 return;
1455 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING))
1456 return;
1457
1458 bound = curlwp_bind();
1459 s = pserialize_read_enter();
1460 IFADDR_READER_FOREACH(ifa, ifp) {
1461 struct psref psref;
1462
1463 if (ifa->ifa_addr->sa_family != AF_INET)
1464 continue;
1465 ifa_acquire(ifa, &psref);
1466 pserialize_read_exit(s);
1467
1468 ia = (struct in_ifaddr *)ifa;
1469
1470 /* If detached then mark as tentative */
1471 if (ia->ia4_flags & IN_IFF_DETACHED) {
1472 ia->ia4_flags &= ~IN_IFF_DETACHED;
1473 if (ip_dad_enabled() && if_do_dad(ifp) &&
1474 ia->ia_dad_start != NULL)
1475 ia->ia4_flags |= IN_IFF_TENTATIVE;
1476 else if ((ia->ia4_flags & IN_IFF_TENTATIVE) == 0)
1477 rt_addrmsg(RTM_NEWADDR, ifa);
1478 }
1479
1480 if (ia->ia4_flags & IN_IFF_TENTATIVE) {
1481 /* Clear the duplicated flag as we're starting DAD. */
1482 ia->ia4_flags &= ~IN_IFF_DUPLICATED;
1483 ia->ia_dad_start(ifa);
1484 }
1485
1486 s = pserialize_read_enter();
1487 ifa_release(ifa, &psref);
1488 }
1489 pserialize_read_exit(s);
1490 curlwp_bindx(bound);
1491 }
1492
1493 void
1494 in_if_up(struct ifnet *ifp)
1495 {
1496
1497 /* interface may not support link state, so bring it up also */
1498 in_if_link_up(ifp);
1499 }
1500
1501 /*
1502 * Mark all addresses as detached.
1503 */
1504 void
1505 in_if_link_down(struct ifnet *ifp)
1506 {
1507 struct ifaddr *ifa;
1508 struct in_ifaddr *ia;
1509 int s, bound;
1510
1511 bound = curlwp_bind();
1512 s = pserialize_read_enter();
1513 IFADDR_READER_FOREACH(ifa, ifp) {
1514 struct psref psref;
1515
1516 if (ifa->ifa_addr->sa_family != AF_INET)
1517 continue;
1518 ifa_acquire(ifa, &psref);
1519 pserialize_read_exit(s);
1520
1521 ia = (struct in_ifaddr *)ifa;
1522
1523 /* Stop DAD processing */
1524 if (ia->ia_dad_stop != NULL)
1525 ia->ia_dad_stop(ifa);
1526
1527 /*
1528 * Mark the address as detached.
1529 */
1530 if (!(ia->ia4_flags & IN_IFF_DETACHED)) {
1531 ia->ia4_flags |= IN_IFF_DETACHED;
1532 ia->ia4_flags &=
1533 ~(IN_IFF_TENTATIVE | IN_IFF_DUPLICATED);
1534 rt_addrmsg(RTM_NEWADDR, ifa);
1535 }
1536
1537 s = pserialize_read_enter();
1538 ifa_release(ifa, &psref);
1539 }
1540 pserialize_read_exit(s);
1541 curlwp_bindx(bound);
1542 }
1543
1544 void
1545 in_if_down(struct ifnet *ifp)
1546 {
1547
1548 in_if_link_down(ifp);
1549 #if NARP > 0
1550 lltable_purge_entries(LLTABLE(ifp));
1551 #endif
1552 }
1553
1554 void
1555 in_if_link_state_change(struct ifnet *ifp, int link_state)
1556 {
1557
1558 switch (link_state) {
1559 case LINK_STATE_DOWN:
1560 in_if_link_down(ifp);
1561 break;
1562 case LINK_STATE_UP:
1563 in_if_link_up(ifp);
1564 break;
1565 }
1566 }
1567
1568 /*
1569 * in_lookup_multi: look up the in_multi record for a given IP
1570 * multicast address on a given interface. If no matching record is
1571 * found, return NULL.
1572 */
1573 struct in_multi *
1574 in_lookup_multi(struct in_addr addr, ifnet_t *ifp)
1575 {
1576 struct in_multi *inm;
1577
1578 KASSERT(rw_lock_held(&in_multilock));
1579
1580 LIST_FOREACH(inm, &IN_MULTI_HASH(addr.s_addr, ifp), inm_list) {
1581 if (in_hosteq(inm->inm_addr, addr) && inm->inm_ifp == ifp)
1582 break;
1583 }
1584 return inm;
1585 }
1586
1587 /*
1588 * in_multi_group: check whether the address belongs to an IP multicast
1589 * group we are joined on this interface. Returns true or false.
1590 */
1591 bool
1592 in_multi_group(struct in_addr addr, ifnet_t *ifp, int flags)
1593 {
1594 bool ingroup;
1595
1596 if (__predict_true(flags & IP_IGMP_MCAST) == 0) {
1597 rw_enter(&in_multilock, RW_READER);
1598 ingroup = in_lookup_multi(addr, ifp) != NULL;
1599 rw_exit(&in_multilock);
1600 } else {
1601 /* XXX Recursive call from ip_output(). */
1602 KASSERT(rw_lock_held(&in_multilock));
1603 ingroup = in_lookup_multi(addr, ifp) != NULL;
1604 }
1605 return ingroup;
1606 }
1607
1608 /*
1609 * Add an address to the list of IP multicast addresses for a given interface.
1610 */
1611 struct in_multi *
1612 in_addmulti(struct in_addr *ap, ifnet_t *ifp)
1613 {
1614 struct sockaddr_in sin;
1615 struct in_multi *inm;
1616
1617 /*
1618 * See if address already in list.
1619 */
1620 rw_enter(&in_multilock, RW_WRITER);
1621 inm = in_lookup_multi(*ap, ifp);
1622 if (inm != NULL) {
1623 /*
1624 * Found it; just increment the reference count.
1625 */
1626 inm->inm_refcount++;
1627 rw_exit(&in_multilock);
1628 return inm;
1629 }
1630
1631 /*
1632 * New address; allocate a new multicast record.
1633 */
1634 inm = pool_get(&inmulti_pool, PR_NOWAIT);
1635 if (inm == NULL) {
1636 rw_exit(&in_multilock);
1637 return NULL;
1638 }
1639 inm->inm_addr = *ap;
1640 inm->inm_ifp = ifp;
1641 inm->inm_refcount = 1;
1642
1643 /*
1644 * Ask the network driver to update its multicast reception
1645 * filter appropriately for the new address.
1646 */
1647 sockaddr_in_init(&sin, ap, 0);
1648 if (if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin)) != 0) {
1649 rw_exit(&in_multilock);
1650 pool_put(&inmulti_pool, inm);
1651 return NULL;
1652 }
1653
1654 /*
1655 * Let IGMP know that we have joined a new IP multicast group.
1656 */
1657 if (igmp_joingroup(inm) != 0) {
1658 rw_exit(&in_multilock);
1659 pool_put(&inmulti_pool, inm);
1660 return NULL;
1661 }
1662 LIST_INSERT_HEAD(
1663 &IN_MULTI_HASH(inm->inm_addr.s_addr, ifp),
1664 inm, inm_list);
1665 in_multientries++;
1666 rw_exit(&in_multilock);
1667
1668 return inm;
1669 }
1670
1671 /*
1672 * Delete a multicast address record.
1673 */
1674 void
1675 in_delmulti(struct in_multi *inm)
1676 {
1677 struct sockaddr_in sin;
1678
1679 rw_enter(&in_multilock, RW_WRITER);
1680 if (--inm->inm_refcount > 0) {
1681 rw_exit(&in_multilock);
1682 return;
1683 }
1684
1685 /*
1686 * No remaining claims to this record; let IGMP know that
1687 * we are leaving the multicast group.
1688 */
1689 igmp_leavegroup(inm);
1690
1691 /*
1692 * Notify the network driver to update its multicast reception
1693 * filter.
1694 */
1695 sockaddr_in_init(&sin, &inm->inm_addr, 0);
1696 if_mcast_op(inm->inm_ifp, SIOCDELMULTI, sintosa(&sin));
1697
1698 /*
1699 * Unlink from list.
1700 */
1701 LIST_REMOVE(inm, inm_list);
1702 in_multientries--;
1703 rw_exit(&in_multilock);
1704
1705 pool_put(&inmulti_pool, inm);
1706 }
1707
1708 /*
1709 * in_next_multi: step through all of the in_multi records, one at a time.
1710 * The current position is remembered in "step", which the caller must
1711 * provide. in_first_multi(), below, must be called to initialize "step"
1712 * and get the first record. Both macros return a NULL "inm" when there
1713 * are no remaining records.
1714 */
1715 struct in_multi *
1716 in_next_multi(struct in_multistep *step)
1717 {
1718 struct in_multi *inm;
1719
1720 KASSERT(rw_lock_held(&in_multilock));
1721
1722 while (step->i_inm == NULL && step->i_n < IN_MULTI_HASH_SIZE) {
1723 step->i_inm = LIST_FIRST(&in_multihashtbl[++step->i_n]);
1724 }
1725 if ((inm = step->i_inm) != NULL) {
1726 step->i_inm = LIST_NEXT(inm, inm_list);
1727 }
1728 return inm;
1729 }
1730
1731 struct in_multi *
1732 in_first_multi(struct in_multistep *step)
1733 {
1734 KASSERT(rw_lock_held(&in_multilock));
1735
1736 step->i_n = 0;
1737 step->i_inm = LIST_FIRST(&in_multihashtbl[0]);
1738 return in_next_multi(step);
1739 }
1740
1741 void
1742 in_multi_lock(int op)
1743 {
1744 rw_enter(&in_multilock, op);
1745 }
1746
1747 void
1748 in_multi_unlock(void)
1749 {
1750 rw_exit(&in_multilock);
1751 }
1752
1753 int
1754 in_multi_lock_held(void)
1755 {
1756 return rw_lock_held(&in_multilock);
1757 }
1758
1759 struct in_ifaddr *
1760 in_selectsrc(struct sockaddr_in *sin, struct route *ro,
1761 int soopts, struct ip_moptions *mopts, int *errorp, struct psref *psref)
1762 {
1763 struct rtentry *rt = NULL;
1764 struct in_ifaddr *ia = NULL;
1765
1766 KASSERT(ISSET(curlwp->l_pflag, LP_BOUND));
1767 /*
1768 * If route is known or can be allocated now, take the
1769 * source address from the interface. Otherwise, punt.
1770 */
1771 if ((soopts & SO_DONTROUTE) != 0)
1772 rtcache_free(ro);
1773 else {
1774 union {
1775 struct sockaddr dst;
1776 struct sockaddr_in dst4;
1777 } u;
1778
1779 sockaddr_in_init(&u.dst4, &sin->sin_addr, 0);
1780 rt = rtcache_lookup(ro, &u.dst);
1781 }
1782 /*
1783 * If we found a route, use the address
1784 * corresponding to the outgoing interface
1785 * unless it is the loopback (in case a route
1786 * to our address on another net goes to loopback).
1787 *
1788 * XXX Is this still true? Do we care?
1789 */
1790 if (rt != NULL && (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
1791 int s;
1792 struct ifaddr *ifa;
1793 /*
1794 * Just in case. May not need to do this workaround.
1795 * Revisit when working on rtentry MP-ification.
1796 */
1797 s = pserialize_read_enter();
1798 IFADDR_READER_FOREACH(ifa, rt->rt_ifp) {
1799 if (ifa == rt->rt_ifa)
1800 break;
1801 }
1802 if (ifa != NULL)
1803 ifa_acquire(ifa, psref);
1804 pserialize_read_exit(s);
1805
1806 ia = ifatoia(ifa);
1807 }
1808 if (ia == NULL) {
1809 u_int16_t fport = sin->sin_port;
1810 struct ifaddr *ifa;
1811 int s;
1812
1813 sin->sin_port = 0;
1814 ifa = ifa_ifwithladdr_psref(sintosa(sin), psref);
1815 sin->sin_port = fport;
1816 if (ifa == NULL) {
1817 /* Find 1st non-loopback AF_INET address */
1818 s = pserialize_read_enter();
1819 IN_ADDRLIST_READER_FOREACH(ia) {
1820 if (!(ia->ia_ifp->if_flags & IFF_LOOPBACK))
1821 break;
1822 }
1823 if (ia != NULL)
1824 ia4_acquire(ia, psref);
1825 pserialize_read_exit(s);
1826 } else {
1827 /* ia is already referenced by psref */
1828 ia = ifatoia(ifa);
1829 }
1830 if (ia == NULL) {
1831 *errorp = EADDRNOTAVAIL;
1832 goto out;
1833 }
1834 }
1835 /*
1836 * If the destination address is multicast and an outgoing
1837 * interface has been set as a multicast option, use the
1838 * address of that interface as our source address.
1839 */
1840 if (IN_MULTICAST(sin->sin_addr.s_addr) && mopts != NULL) {
1841 struct ip_moptions *imo;
1842
1843 imo = mopts;
1844 if (imo->imo_multicast_if_index != 0) {
1845 struct ifnet *ifp;
1846 int s;
1847
1848 if (ia != NULL)
1849 ia4_release(ia, psref);
1850 s = pserialize_read_enter();
1851 ifp = if_byindex(imo->imo_multicast_if_index);
1852 if (ifp != NULL) {
1853 /* XXX */
1854 ia = in_get_ia_from_ifp_psref(ifp, psref);
1855 } else
1856 ia = NULL;
1857 if (ia == NULL || ia->ia4_flags & IN_IFF_NOTREADY) {
1858 pserialize_read_exit(s);
1859 if (ia != NULL)
1860 ia4_release(ia, psref);
1861 *errorp = EADDRNOTAVAIL;
1862 ia = NULL;
1863 goto out;
1864 }
1865 pserialize_read_exit(s);
1866 }
1867 }
1868 if (ia->ia_ifa.ifa_getifa != NULL) {
1869 ia = ifatoia((*ia->ia_ifa.ifa_getifa)(&ia->ia_ifa,
1870 sintosa(sin)));
1871 if (ia == NULL) {
1872 *errorp = EADDRNOTAVAIL;
1873 goto out;
1874 }
1875 /* FIXME NOMPSAFE */
1876 ia4_acquire(ia, psref);
1877 }
1878 #ifdef GETIFA_DEBUG
1879 else
1880 printf("%s: missing ifa_getifa\n", __func__);
1881 #endif
1882 out:
1883 rtcache_unref(rt, ro);
1884 return ia;
1885 }
1886
1887 int
1888 in_tunnel_validate(const struct ip *ip, struct in_addr src, struct in_addr dst)
1889 {
1890 struct in_ifaddr *ia4;
1891 int s;
1892
1893 /* check for address match */
1894 if (src.s_addr != ip->ip_dst.s_addr ||
1895 dst.s_addr != ip->ip_src.s_addr)
1896 return 0;
1897
1898 /* martian filters on outer source - NOT done in ip_input! */
1899 if (IN_MULTICAST(ip->ip_src.s_addr))
1900 return 0;
1901 switch ((ntohl(ip->ip_src.s_addr) & 0xff000000) >> 24) {
1902 case 0:
1903 case 127:
1904 case 255:
1905 return 0;
1906 }
1907 /* reject packets with broadcast on source */
1908 s = pserialize_read_enter();
1909 IN_ADDRLIST_READER_FOREACH(ia4) {
1910 if ((ia4->ia_ifa.ifa_ifp->if_flags & IFF_BROADCAST) == 0)
1911 continue;
1912 if (ip->ip_src.s_addr == ia4->ia_broadaddr.sin_addr.s_addr) {
1913 pserialize_read_exit(s);
1914 return 0;
1915 }
1916 }
1917 pserialize_read_exit(s);
1918
1919 /* NOTE: packet may dropped by uRPF */
1920
1921 /* return valid bytes length */
1922 return sizeof(src) + sizeof(dst);
1923 }
1924
1925 #if NARP > 0
1926
1927 #define IN_LLTBL_DEFAULT_HSIZE 32
1928 #define IN_LLTBL_HASH(k, h) \
1929 (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1))
1930
1931 /*
1932 * Do actual deallocation of @lle.
1933 * Called by LLE_FREE_LOCKED when number of references
1934 * drops to zero.
1935 */
1936 static void
1937 in_lltable_destroy_lle(struct llentry *lle)
1938 {
1939
1940 KASSERT(lle->la_numheld == 0);
1941
1942 LLE_WUNLOCK(lle);
1943 LLE_LOCK_DESTROY(lle);
1944 llentry_pool_put(lle);
1945 }
1946
1947 static struct llentry *
1948 in_lltable_new(struct in_addr addr4, u_int flags)
1949 {
1950 struct llentry *lle;
1951
1952 lle = llentry_pool_get(PR_NOWAIT);
1953 if (lle == NULL) /* NB: caller generates msg */
1954 return NULL;
1955
1956 /*
1957 * For IPv4 this will trigger "arpresolve" to generate
1958 * an ARP request.
1959 */
1960 lle->la_expire = time_uptime; /* mark expired */
1961 lle->r_l3addr.addr4 = addr4;
1962 lle->lle_refcnt = 1;
1963 lle->lle_free = in_lltable_destroy_lle;
1964 LLE_LOCK_INIT(lle);
1965 callout_init(&lle->la_timer, CALLOUT_MPSAFE);
1966
1967 return lle;
1968 }
1969
1970 #define IN_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \
1971 (((ntohl((d).s_addr) ^ (a)->sin_addr.s_addr) & (m)->sin_addr.s_addr)) == 0 )
1972
1973 static int
1974 in_lltable_match_prefix(const struct sockaddr *prefix,
1975 const struct sockaddr *mask, u_int flags, struct llentry *lle)
1976 {
1977 const struct sockaddr_in *pfx = (const struct sockaddr_in *)prefix;
1978 const struct sockaddr_in *msk = (const struct sockaddr_in *)mask;
1979 struct in_addr lle_addr;
1980
1981 lle_addr.s_addr = ntohl(lle->r_l3addr.addr4.s_addr);
1982
1983 /*
1984 * (flags & LLE_STATIC) means deleting all entries
1985 * including static ARP entries.
1986 */
1987 if (IN_ARE_MASKED_ADDR_EQUAL(lle_addr, pfx, msk) &&
1988 ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC)))
1989 return (1);
1990
1991 return (0);
1992 }
1993
1994 static void
1995 in_lltable_free_entry(struct lltable *llt, struct llentry *lle)
1996 {
1997 size_t pkts_dropped;
1998
1999 LLE_WLOCK_ASSERT(lle);
2000 KASSERT(llt != NULL);
2001
2002 pkts_dropped = llentry_free(lle);
2003 arp_stat_add(ARP_STAT_DFRDROPPED, (uint64_t)pkts_dropped);
2004 }
2005
2006 static int
2007 in_lltable_rtcheck(struct ifnet *ifp, u_int flags, const struct sockaddr *l3addr,
2008 const struct rtentry *rt)
2009 {
2010 int error = EINVAL;
2011
2012 if (rt == NULL)
2013 return error;
2014
2015 /*
2016 * If the gateway for an existing host route matches the target L3
2017 * address, which is a special route inserted by some implementation
2018 * such as MANET, and the interface is of the correct type, then
2019 * allow for ARP to proceed.
2020 */
2021 if (rt->rt_flags & RTF_GATEWAY) {
2022 if (!(rt->rt_flags & RTF_HOST) || !rt->rt_ifp ||
2023 rt->rt_ifp->if_type != IFT_ETHER ||
2024 (rt->rt_ifp->if_flags & IFF_NOARP) != 0 ||
2025 memcmp(rt->rt_gateway->sa_data, l3addr->sa_data,
2026 sizeof(in_addr_t)) != 0) {
2027 goto error;
2028 }
2029 }
2030
2031 /*
2032 * Make sure that at least the destination address is covered
2033 * by the route. This is for handling the case where 2 or more
2034 * interfaces have the same prefix. An incoming packet arrives
2035 * on one interface and the corresponding outgoing packet leaves
2036 * another interface.
2037 */
2038 if (!(rt->rt_flags & RTF_HOST) && rt->rt_ifp != ifp) {
2039 const char *sa, *mask, *addr, *lim;
2040 int len;
2041
2042 mask = (const char *)rt_mask(rt);
2043 /*
2044 * Just being extra cautious to avoid some custom
2045 * code getting into trouble.
2046 */
2047 if (mask == NULL)
2048 goto error;
2049
2050 sa = (const char *)rt_getkey(rt);
2051 addr = (const char *)l3addr;
2052 len = ((const struct sockaddr_in *)l3addr)->sin_len;
2053 lim = addr + len;
2054
2055 for ( ; addr < lim; sa++, mask++, addr++) {
2056 if ((*sa ^ *addr) & *mask) {
2057 #ifdef DIAGNOSTIC
2058 log(LOG_INFO, "IPv4 address: \"%s\" is not on the network\n",
2059 inet_ntoa(((const struct sockaddr_in *)l3addr)->sin_addr));
2060 #endif
2061 goto error;
2062 }
2063 }
2064 }
2065
2066 error = 0;
2067 error:
2068 return error;
2069 }
2070
2071 static inline uint32_t
2072 in_lltable_hash_dst(const struct in_addr dst, uint32_t hsize)
2073 {
2074
2075 return (IN_LLTBL_HASH(dst.s_addr, hsize));
2076 }
2077
2078 static uint32_t
2079 in_lltable_hash(const struct llentry *lle, uint32_t hsize)
2080 {
2081
2082 return (in_lltable_hash_dst(lle->r_l3addr.addr4, hsize));
2083 }
2084
2085 static void
2086 in_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa)
2087 {
2088 struct sockaddr_in *sin;
2089
2090 sin = (struct sockaddr_in *)sa;
2091 memset(sin, 0, sizeof(*sin));
2092 sin->sin_family = AF_INET;
2093 sin->sin_len = sizeof(*sin);
2094 sin->sin_addr = lle->r_l3addr.addr4;
2095 }
2096
2097 static inline struct llentry *
2098 in_lltable_find_dst(struct lltable *llt, struct in_addr dst)
2099 {
2100 struct llentry *lle;
2101 struct llentries *lleh;
2102 u_int hashidx;
2103
2104 hashidx = in_lltable_hash_dst(dst, llt->llt_hsize);
2105 lleh = &llt->lle_head[hashidx];
2106 LIST_FOREACH(lle, lleh, lle_next) {
2107 if (lle->la_flags & LLE_DELETED)
2108 continue;
2109 if (lle->r_l3addr.addr4.s_addr == dst.s_addr)
2110 break;
2111 }
2112
2113 return (lle);
2114 }
2115
2116 static int
2117 in_lltable_delete(struct lltable *llt, u_int flags,
2118 const struct sockaddr *l3addr)
2119 {
2120 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
2121 struct ifnet *ifp __diagused = llt->llt_ifp;
2122 struct llentry *lle;
2123
2124 IF_AFDATA_WLOCK_ASSERT(ifp);
2125 KASSERTMSG(l3addr->sa_family == AF_INET,
2126 "sin_family %d", l3addr->sa_family);
2127
2128 lle = in_lltable_find_dst(llt, sin->sin_addr);
2129 if (lle == NULL) {
2130 #ifdef LLTABLE_DEBUG
2131 char buf[64];
2132 sockaddr_format(l3addr, buf, sizeof(buf));
2133 log(LOG_INFO, "%s: cache for %s is not found\n",
2134 __func__, buf);
2135 #endif
2136 return (ENOENT);
2137 }
2138
2139 LLE_WLOCK(lle);
2140 #ifdef LLTABLE_DEBUG
2141 {
2142 char buf[64];
2143 sockaddr_format(l3addr, buf, sizeof(buf));
2144 log(LOG_INFO, "%s: cache for %s (%p) is deleted\n",
2145 __func__, buf, lle);
2146 }
2147 #endif
2148 llentry_free(lle);
2149
2150 return (0);
2151 }
2152
2153 static struct llentry *
2154 in_lltable_create(struct lltable *llt, u_int flags, const struct sockaddr *l3addr,
2155 const struct rtentry *rt)
2156 {
2157 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
2158 struct ifnet *ifp = llt->llt_ifp;
2159 struct llentry *lle;
2160
2161 IF_AFDATA_WLOCK_ASSERT(ifp);
2162 KASSERTMSG(l3addr->sa_family == AF_INET,
2163 "sin_family %d", l3addr->sa_family);
2164
2165 lle = in_lltable_find_dst(llt, sin->sin_addr);
2166
2167 if (lle != NULL) {
2168 LLE_WLOCK(lle);
2169 return (lle);
2170 }
2171
2172 /* no existing record, we need to create new one */
2173
2174 /*
2175 * A route that covers the given address must have
2176 * been installed 1st because we are doing a resolution,
2177 * verify this.
2178 */
2179 if (!(flags & LLE_IFADDR) &&
2180 in_lltable_rtcheck(ifp, flags, l3addr, rt) != 0)
2181 return (NULL);
2182
2183 lle = in_lltable_new(sin->sin_addr, flags);
2184 if (lle == NULL) {
2185 log(LOG_INFO, "lla_lookup: new lle malloc failed\n");
2186 return (NULL);
2187 }
2188 lle->la_flags = flags;
2189 if ((flags & LLE_IFADDR) == LLE_IFADDR) {
2190 memcpy(&lle->ll_addr, CLLADDR(ifp->if_sadl), ifp->if_addrlen);
2191 lle->la_flags |= (LLE_VALID | LLE_STATIC);
2192 }
2193
2194 lltable_link_entry(llt, lle);
2195 LLE_WLOCK(lle);
2196
2197 return (lle);
2198 }
2199
2200 /*
2201 * Return NULL if not found or marked for deletion.
2202 * If found return lle read locked.
2203 */
2204 static struct llentry *
2205 in_lltable_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr)
2206 {
2207 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
2208 struct llentry *lle;
2209
2210 IF_AFDATA_LOCK_ASSERT(llt->llt_ifp);
2211 KASSERTMSG(l3addr->sa_family == AF_INET,
2212 "sin_family %d", l3addr->sa_family);
2213
2214 lle = in_lltable_find_dst(llt, sin->sin_addr);
2215
2216 if (lle == NULL)
2217 return NULL;
2218
2219 if (flags & LLE_EXCLUSIVE)
2220 LLE_WLOCK(lle);
2221 else
2222 LLE_RLOCK(lle);
2223
2224 return lle;
2225 }
2226
2227 static int
2228 in_lltable_dump_entry(struct lltable *llt, struct llentry *lle,
2229 struct rt_walkarg *w)
2230 {
2231 struct sockaddr_in sin;
2232
2233 LLTABLE_LOCK_ASSERT();
2234
2235 /* skip deleted entries */
2236 if (lle->la_flags & LLE_DELETED)
2237 return 0;
2238
2239 sockaddr_in_init(&sin, &lle->r_l3addr.addr4, 0);
2240
2241 return lltable_dump_entry(llt, lle, w, sintosa(&sin));
2242 }
2243
2244 #endif /* NARP > 0 */
2245
2246 static int
2247 in_multicast_sysctl(SYSCTLFN_ARGS)
2248 {
2249 struct ifnet *ifp;
2250 struct ifaddr *ifa;
2251 struct in_ifaddr *ifa4;
2252 struct in_multi *inm;
2253 uint32_t tmp;
2254 int error;
2255 size_t written;
2256 struct psref psref;
2257 int bound;
2258
2259 if (namelen != 1)
2260 return EINVAL;
2261
2262 bound = curlwp_bind();
2263 ifp = if_get_byindex(name[0], &psref);
2264 if (ifp == NULL) {
2265 curlwp_bindx(bound);
2266 return ENODEV;
2267 }
2268
2269 if (oldp == NULL) {
2270 *oldlenp = 0;
2271 IFADDR_FOREACH(ifa, ifp) {
2272 if (ifa->ifa_addr->sa_family != AF_INET)
2273 continue;
2274 ifa4 = (void *)ifa;
2275 LIST_FOREACH(inm, &ifa4->ia_multiaddrs, inm_list) {
2276 *oldlenp += 2 * sizeof(struct in_addr) +
2277 sizeof(uint32_t);
2278 }
2279 }
2280 if_put(ifp, &psref);
2281 curlwp_bindx(bound);
2282 return 0;
2283 }
2284
2285 error = 0;
2286 written = 0;
2287 IFADDR_FOREACH(ifa, ifp) {
2288 if (ifa->ifa_addr->sa_family != AF_INET)
2289 continue;
2290 ifa4 = (void *)ifa;
2291 LIST_FOREACH(inm, &ifa4->ia_multiaddrs, inm_list) {
2292 if (written + 2 * sizeof(struct in_addr) +
2293 sizeof(uint32_t) > *oldlenp)
2294 goto done;
2295 error = sysctl_copyout(l, &ifa4->ia_addr.sin_addr,
2296 oldp, sizeof(struct in_addr));
2297 if (error)
2298 goto done;
2299 oldp = (char *)oldp + sizeof(struct in_addr);
2300 written += sizeof(struct in_addr);
2301 error = sysctl_copyout(l, &inm->inm_addr,
2302 oldp, sizeof(struct in_addr));
2303 if (error)
2304 goto done;
2305 oldp = (char *)oldp + sizeof(struct in_addr);
2306 written += sizeof(struct in_addr);
2307 tmp = inm->inm_refcount;
2308 error = sysctl_copyout(l, &tmp, oldp, sizeof(tmp));
2309 if (error)
2310 goto done;
2311 oldp = (char *)oldp + sizeof(tmp);
2312 written += sizeof(tmp);
2313 }
2314 }
2315 done:
2316 if_put(ifp, &psref);
2317 curlwp_bindx(bound);
2318 *oldlenp = written;
2319 return error;
2320 }
2321
2322 static void
2323 in_sysctl_init(struct sysctllog **clog)
2324 {
2325 sysctl_createv(clog, 0, NULL, NULL,
2326 CTLFLAG_PERMANENT,
2327 CTLTYPE_NODE, "inet",
2328 SYSCTL_DESCR("PF_INET related settings"),
2329 NULL, 0, NULL, 0,
2330 CTL_NET, PF_INET, CTL_EOL);
2331 sysctl_createv(clog, 0, NULL, NULL,
2332 CTLFLAG_PERMANENT,
2333 CTLTYPE_NODE, "multicast",
2334 SYSCTL_DESCR("Multicast information"),
2335 in_multicast_sysctl, 0, NULL, 0,
2336 CTL_NET, PF_INET, CTL_CREATE, CTL_EOL);
2337 sysctl_createv(clog, 0, NULL, NULL,
2338 CTLFLAG_PERMANENT,
2339 CTLTYPE_NODE, "ip",
2340 SYSCTL_DESCR("IPv4 related settings"),
2341 NULL, 0, NULL, 0,
2342 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2343
2344 sysctl_createv(clog, 0, NULL, NULL,
2345 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2346 CTLTYPE_INT, "subnetsarelocal",
2347 SYSCTL_DESCR("Whether logical subnets are considered "
2348 "local"),
2349 NULL, 0, &subnetsarelocal, 0,
2350 CTL_NET, PF_INET, IPPROTO_IP,
2351 IPCTL_SUBNETSARELOCAL, CTL_EOL);
2352 sysctl_createv(clog, 0, NULL, NULL,
2353 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2354 CTLTYPE_INT, "hostzerobroadcast",
2355 SYSCTL_DESCR("All zeroes address is broadcast address"),
2356 NULL, 0, &hostzeroisbroadcast, 0,
2357 CTL_NET, PF_INET, IPPROTO_IP,
2358 IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2359 }
2360
2361 #if NARP > 0
2362
2363 static struct lltable *
2364 in_lltattach(struct ifnet *ifp)
2365 {
2366 struct lltable *llt;
2367
2368 llt = lltable_allocate_htbl(IN_LLTBL_DEFAULT_HSIZE);
2369 llt->llt_af = AF_INET;
2370 llt->llt_ifp = ifp;
2371
2372 llt->llt_lookup = in_lltable_lookup;
2373 llt->llt_create = in_lltable_create;
2374 llt->llt_delete = in_lltable_delete;
2375 llt->llt_dump_entry = in_lltable_dump_entry;
2376 llt->llt_hash = in_lltable_hash;
2377 llt->llt_fill_sa_entry = in_lltable_fill_sa_entry;
2378 llt->llt_free_entry = in_lltable_free_entry;
2379 llt->llt_match_prefix = in_lltable_match_prefix;
2380 lltable_link(llt);
2381
2382 return (llt);
2383 }
2384
2385 #endif /* NARP > 0 */
2386
2387 void *
2388 in_domifattach(struct ifnet *ifp)
2389 {
2390 struct in_ifinfo *ii;
2391
2392 ii = kmem_zalloc(sizeof(struct in_ifinfo), KM_SLEEP);
2393
2394 #if NARP > 0
2395 ii->ii_llt = in_lltattach(ifp);
2396 #endif
2397
2398 #ifdef IPSELSRC
2399 ii->ii_selsrc = in_selsrc_domifattach(ifp);
2400 KASSERT(ii->ii_selsrc != NULL);
2401 #endif
2402
2403 return ii;
2404 }
2405
2406 void
2407 in_domifdetach(struct ifnet *ifp, void *aux)
2408 {
2409 struct in_ifinfo *ii = aux;
2410
2411 #ifdef IPSELSRC
2412 in_selsrc_domifdetach(ifp, ii->ii_selsrc);
2413 #endif
2414 #if NARP > 0
2415 lltable_free(ii->ii_llt);
2416 #endif
2417 kmem_free(ii, sizeof(struct in_ifinfo));
2418 }
2419