in.c revision 1.236 1 /* $NetBSD: in.c,v 1.236 2019/12/18 00:49:15 roy Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1991, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)in.c 8.4 (Berkeley) 1/9/95
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: in.c,v 1.236 2019/12/18 00:49:15 roy Exp $");
95
96 #include "arp.h"
97
98 #ifdef _KERNEL_OPT
99 #include "opt_inet.h"
100 #include "opt_inet_conf.h"
101 #include "opt_mrouting.h"
102 #include "opt_net_mpsafe.h"
103 #endif
104
105 #include <sys/param.h>
106 #include <sys/ioctl.h>
107 #include <sys/errno.h>
108 #include <sys/kernel.h>
109 #include <sys/malloc.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/sysctl.h>
113 #include <sys/systm.h>
114 #include <sys/proc.h>
115 #include <sys/syslog.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118
119 #include <sys/cprng.h>
120
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124
125 #include <net/if_arp.h>
126 #include <net/if_ether.h>
127 #include <net/if_types.h>
128 #include <net/if_llatbl.h>
129 #include <net/if_dl.h>
130
131 #include <netinet/in_systm.h>
132 #include <netinet/in.h>
133 #include <netinet/in_var.h>
134 #include <netinet/ip.h>
135 #include <netinet/ip_var.h>
136 #include <netinet/in_ifattach.h>
137 #include <netinet/in_pcb.h>
138 #include <netinet/in_selsrc.h>
139 #include <netinet/if_inarp.h>
140 #include <netinet/ip_mroute.h>
141 #include <netinet/igmp_var.h>
142
143 #ifdef IPSELSRC
144 #include <netinet/in_selsrc.h>
145 #endif
146
147 static u_int in_mask2len(struct in_addr *);
148 static void in_len2mask(struct in_addr *, u_int);
149 static int in_lifaddr_ioctl(struct socket *, u_long, void *,
150 struct ifnet *);
151
152 static void in_addrhash_insert_locked(struct in_ifaddr *);
153 static void in_addrhash_remove_locked(struct in_ifaddr *);
154
155 static int in_addprefix(struct in_ifaddr *, int);
156 static void in_scrubaddr(struct in_ifaddr *);
157 static int in_scrubprefix(struct in_ifaddr *);
158 static void in_sysctl_init(struct sysctllog **);
159
160 #ifndef SUBNETSARELOCAL
161 #define SUBNETSARELOCAL 1
162 #endif
163
164 #ifndef HOSTZEROBROADCAST
165 #define HOSTZEROBROADCAST 0
166 #endif
167
168 /* Note: 61, 127, 251, 509, 1021, 2039 are good. */
169 #ifndef IN_MULTI_HASH_SIZE
170 #define IN_MULTI_HASH_SIZE 509
171 #endif
172
173 static int subnetsarelocal = SUBNETSARELOCAL;
174 static int hostzeroisbroadcast = HOSTZEROBROADCAST;
175
176 /*
177 * This list is used to keep track of in_multi chains which belong to
178 * deleted interface addresses. We use in_ifaddr so that a chain head
179 * won't be deallocated until all multicast address record are deleted.
180 */
181
182 LIST_HEAD(in_multihashhead, in_multi); /* Type of the hash head */
183
184 static struct pool inmulti_pool;
185 static u_int in_multientries;
186 static struct in_multihashhead *in_multihashtbl;
187 static u_long in_multihash;
188 static krwlock_t in_multilock;
189
190 #define IN_MULTI_HASH(x, ifp) \
191 (in_multihashtbl[(u_long)((x) ^ (ifp->if_index)) % IN_MULTI_HASH_SIZE])
192
193 /* XXX DEPRECATED. Keep them to avoid breaking kvm(3) users. */
194 struct in_ifaddrhashhead * in_ifaddrhashtbl;
195 u_long in_ifaddrhash;
196 struct in_ifaddrhead in_ifaddrhead;
197 static kmutex_t in_ifaddr_lock;
198
199 pserialize_t in_ifaddrhash_psz;
200 struct pslist_head * in_ifaddrhashtbl_pslist;
201 u_long in_ifaddrhash_pslist;
202 struct pslist_head in_ifaddrhead_pslist;
203
204 void
205 in_init(void)
206 {
207 pool_init(&inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl",
208 NULL, IPL_SOFTNET);
209 TAILQ_INIT(&in_ifaddrhead);
210 PSLIST_INIT(&in_ifaddrhead_pslist);
211
212 in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
213 &in_ifaddrhash);
214
215 in_ifaddrhash_psz = pserialize_create();
216 in_ifaddrhashtbl_pslist = hashinit(IN_IFADDR_HASH_SIZE, HASH_PSLIST,
217 true, &in_ifaddrhash_pslist);
218 mutex_init(&in_ifaddr_lock, MUTEX_DEFAULT, IPL_NONE);
219
220 in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
221 &in_multihash);
222 rw_init(&in_multilock);
223
224 in_sysctl_init(NULL);
225 }
226
227 /*
228 * Return 1 if an internet address is for a ``local'' host
229 * (one to which we have a connection). If subnetsarelocal
230 * is true, this includes other subnets of the local net.
231 * Otherwise, it includes only the directly-connected (sub)nets.
232 */
233 int
234 in_localaddr(struct in_addr in)
235 {
236 struct in_ifaddr *ia;
237 int localaddr = 0;
238 int s = pserialize_read_enter();
239
240 if (subnetsarelocal) {
241 IN_ADDRLIST_READER_FOREACH(ia) {
242 if ((in.s_addr & ia->ia_netmask) == ia->ia_net) {
243 localaddr = 1;
244 break;
245 }
246 }
247 } else {
248 IN_ADDRLIST_READER_FOREACH(ia) {
249 if ((in.s_addr & ia->ia_subnetmask) == ia->ia_subnet) {
250 localaddr = 1;
251 break;
252 }
253 }
254 }
255 pserialize_read_exit(s);
256
257 return localaddr;
258 }
259
260 /*
261 * like in_localaddr() but can specify ifp.
262 */
263 int
264 in_direct(struct in_addr in, struct ifnet *ifp)
265 {
266 struct ifaddr *ifa;
267 int localaddr = 0;
268 int s;
269
270 KASSERT(ifp != NULL);
271
272 #define ia (ifatoia(ifa))
273 s = pserialize_read_enter();
274 if (subnetsarelocal) {
275 IFADDR_READER_FOREACH(ifa, ifp) {
276 if (ifa->ifa_addr->sa_family == AF_INET &&
277 ((in.s_addr & ia->ia_netmask) == ia->ia_net)) {
278 localaddr = 1;
279 break;
280 }
281 }
282 } else {
283 IFADDR_READER_FOREACH(ifa, ifp) {
284 if (ifa->ifa_addr->sa_family == AF_INET &&
285 (in.s_addr & ia->ia_subnetmask) == ia->ia_subnet) {
286 localaddr = 1;
287 break;
288 }
289 }
290 }
291 pserialize_read_exit(s);
292
293 return localaddr;
294 #undef ia
295 }
296
297 /*
298 * Determine whether an IP address is in a reserved set of addresses
299 * that may not be forwarded, or whether datagrams to that destination
300 * may be forwarded.
301 */
302 int
303 in_canforward(struct in_addr in)
304 {
305 u_int32_t net;
306
307 if (IN_EXPERIMENTAL(in.s_addr) || IN_MULTICAST(in.s_addr))
308 return (0);
309 if (IN_CLASSA(in.s_addr)) {
310 net = in.s_addr & IN_CLASSA_NET;
311 if (net == 0 || net == htonl(IN_LOOPBACKNET << IN_CLASSA_NSHIFT))
312 return (0);
313 }
314 return (1);
315 }
316
317 /*
318 * Trim a mask in a sockaddr
319 */
320 void
321 in_socktrim(struct sockaddr_in *ap)
322 {
323 char *cplim = (char *) &ap->sin_addr;
324 char *cp = (char *) (&ap->sin_addr + 1);
325
326 ap->sin_len = 0;
327 while (--cp >= cplim)
328 if (*cp) {
329 (ap)->sin_len = cp - (char *) (ap) + 1;
330 break;
331 }
332 }
333
334 /*
335 * Maintain the "in_maxmtu" variable, which is the largest
336 * mtu for non-local interfaces with AF_INET addresses assigned
337 * to them that are up.
338 */
339 unsigned long in_maxmtu;
340
341 void
342 in_setmaxmtu(void)
343 {
344 struct in_ifaddr *ia;
345 struct ifnet *ifp;
346 unsigned long maxmtu = 0;
347 int s = pserialize_read_enter();
348
349 IN_ADDRLIST_READER_FOREACH(ia) {
350 if ((ifp = ia->ia_ifp) == 0)
351 continue;
352 if ((ifp->if_flags & (IFF_UP|IFF_LOOPBACK)) != IFF_UP)
353 continue;
354 if (ifp->if_mtu > maxmtu)
355 maxmtu = ifp->if_mtu;
356 }
357 if (maxmtu)
358 in_maxmtu = maxmtu;
359 pserialize_read_exit(s);
360 }
361
362 static u_int
363 in_mask2len(struct in_addr *mask)
364 {
365 u_int x, y;
366 u_char *p;
367
368 p = (u_char *)mask;
369 for (x = 0; x < sizeof(*mask); x++) {
370 if (p[x] != 0xff)
371 break;
372 }
373 y = 0;
374 if (x < sizeof(*mask)) {
375 for (y = 0; y < NBBY; y++) {
376 if ((p[x] & (0x80 >> y)) == 0)
377 break;
378 }
379 }
380 return x * NBBY + y;
381 }
382
383 static void
384 in_len2mask(struct in_addr *mask, u_int len)
385 {
386 u_int i;
387 u_char *p;
388
389 p = (u_char *)mask;
390 memset(mask, 0, sizeof(*mask));
391 for (i = 0; i < len / NBBY; i++)
392 p[i] = 0xff;
393 if (len % NBBY)
394 p[i] = (0xff00 >> (len % NBBY)) & 0xff;
395 }
396
397 /*
398 * Generic internet control operations (ioctl's).
399 * Ifp is 0 if not an interface-specific ioctl.
400 */
401 /* ARGSUSED */
402 static int
403 in_control0(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
404 {
405 struct ifreq *ifr = (struct ifreq *)data;
406 struct in_ifaddr *ia = NULL;
407 struct in_aliasreq *ifra = (struct in_aliasreq *)data;
408 struct sockaddr_in oldaddr, *new_dstaddr;
409 int error, hostIsNew, maskIsNew;
410 int newifaddr = 0;
411 bool run_hook = false;
412 bool need_reinsert = false;
413 struct psref psref;
414 int bound;
415
416 switch (cmd) {
417 case SIOCALIFADDR:
418 case SIOCDLIFADDR:
419 case SIOCGLIFADDR:
420 if (ifp == NULL)
421 return EINVAL;
422 return in_lifaddr_ioctl(so, cmd, data, ifp);
423 case SIOCGIFADDRPREF:
424 case SIOCSIFADDRPREF:
425 if (ifp == NULL)
426 return EINVAL;
427 return ifaddrpref_ioctl(so, cmd, data, ifp);
428 }
429
430 bound = curlwp_bind();
431 /*
432 * Find address for this interface, if it exists.
433 */
434 if (ifp != NULL)
435 ia = in_get_ia_from_ifp_psref(ifp, &psref);
436
437 hostIsNew = 1; /* moved here to appease gcc */
438 switch (cmd) {
439 case SIOCAIFADDR:
440 case SIOCDIFADDR:
441 case SIOCGIFALIAS:
442 case SIOCGIFAFLAG_IN:
443 if (ifra->ifra_addr.sin_family == AF_INET) {
444 int s;
445
446 if (ia != NULL)
447 ia4_release(ia, &psref);
448 s = pserialize_read_enter();
449 IN_ADDRHASH_READER_FOREACH(ia,
450 ifra->ifra_addr.sin_addr.s_addr) {
451 if (ia->ia_ifp == ifp &&
452 in_hosteq(ia->ia_addr.sin_addr,
453 ifra->ifra_addr.sin_addr))
454 break;
455 }
456 if (ia != NULL)
457 ia4_acquire(ia, &psref);
458 pserialize_read_exit(s);
459 }
460 if ((cmd == SIOCDIFADDR ||
461 cmd == SIOCGIFALIAS ||
462 cmd == SIOCGIFAFLAG_IN) &&
463 ia == NULL) {
464 error = EADDRNOTAVAIL;
465 goto out;
466 }
467
468 if (cmd == SIOCDIFADDR &&
469 ifra->ifra_addr.sin_family == AF_UNSPEC) {
470 ifra->ifra_addr.sin_family = AF_INET;
471 }
472 /* FALLTHROUGH */
473 case SIOCSIFADDR:
474 if (ia == NULL || ia->ia_addr.sin_family != AF_INET)
475 ;
476 else if (ifra->ifra_addr.sin_len == 0) {
477 ifra->ifra_addr = ia->ia_addr;
478 hostIsNew = 0;
479 } else if (in_hosteq(ia->ia_addr.sin_addr,
480 ifra->ifra_addr.sin_addr))
481 hostIsNew = 0;
482 if (ifra->ifra_addr.sin_family != AF_INET) {
483 error = EAFNOSUPPORT;
484 goto out;
485 }
486 /* FALLTHROUGH */
487 case SIOCSIFDSTADDR:
488 if (cmd == SIOCSIFDSTADDR &&
489 ifreq_getaddr(cmd, ifr)->sa_family != AF_INET) {
490 error = EAFNOSUPPORT;
491 goto out;
492 }
493 /* FALLTHROUGH */
494 case SIOCSIFNETMASK:
495 if (ifp == NULL)
496 panic("in_control");
497
498 if (cmd == SIOCGIFALIAS || cmd == SIOCGIFAFLAG_IN)
499 break;
500
501 if (ia == NULL &&
502 (cmd == SIOCSIFNETMASK || cmd == SIOCSIFDSTADDR)) {
503 error = EADDRNOTAVAIL;
504 goto out;
505 }
506
507 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
508 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
509 NULL) != 0) {
510 error = EPERM;
511 goto out;
512 }
513
514 if (ia == NULL) {
515 ia = malloc(sizeof(*ia), M_IFADDR, M_WAITOK|M_ZERO);
516 if (ia == NULL) {
517 error = ENOBUFS;
518 goto out;
519 }
520 ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
521 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
522 ia->ia_ifa.ifa_netmask = sintosa(&ia->ia_sockmask);
523 #ifdef IPSELSRC
524 ia->ia_ifa.ifa_getifa = in_getifa;
525 #else /* IPSELSRC */
526 ia->ia_ifa.ifa_getifa = NULL;
527 #endif /* IPSELSRC */
528 ia->ia_sockmask.sin_len = 8;
529 ia->ia_sockmask.sin_family = AF_INET;
530 if (ifp->if_flags & IFF_BROADCAST) {
531 ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr);
532 ia->ia_broadaddr.sin_family = AF_INET;
533 }
534 ia->ia_ifp = ifp;
535 ia->ia_idsalt = cprng_fast32() % 65535;
536 LIST_INIT(&ia->ia_multiaddrs);
537 IN_ADDRHASH_ENTRY_INIT(ia);
538 IN_ADDRLIST_ENTRY_INIT(ia);
539 ifa_psref_init(&ia->ia_ifa);
540 /*
541 * We need a reference to make ia survive over in_ifinit
542 * that does ifaref and ifafree.
543 */
544 ifaref(&ia->ia_ifa);
545
546 newifaddr = 1;
547 }
548 break;
549
550 case SIOCSIFBRDADDR:
551 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
552 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
553 NULL) != 0) {
554 error = EPERM;
555 goto out;
556 }
557 /* FALLTHROUGH */
558
559 case SIOCGIFADDR:
560 case SIOCGIFNETMASK:
561 case SIOCGIFDSTADDR:
562 case SIOCGIFBRDADDR:
563 if (ia == NULL) {
564 error = EADDRNOTAVAIL;
565 goto out;
566 }
567 break;
568 }
569 error = 0;
570 switch (cmd) {
571
572 case SIOCGIFADDR:
573 ifreq_setaddr(cmd, ifr, sintocsa(&ia->ia_addr));
574 break;
575
576 case SIOCGIFBRDADDR:
577 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
578 error = EINVAL;
579 goto out;
580 }
581 ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_broadaddr));
582 break;
583
584 case SIOCGIFDSTADDR:
585 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
586 error = EINVAL;
587 goto out;
588 }
589 ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_dstaddr));
590 break;
591
592 case SIOCGIFNETMASK:
593 /*
594 * We keep the number of trailing zero bytes the sin_len field
595 * of ia_sockmask, so we fix this before we pass it back to
596 * userland.
597 */
598 oldaddr = ia->ia_sockmask;
599 oldaddr.sin_len = sizeof(struct sockaddr_in);
600 ifreq_setaddr(cmd, ifr, (const void *)&oldaddr);
601 break;
602
603 case SIOCSIFDSTADDR:
604 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
605 error = EINVAL;
606 goto out;
607 }
608 oldaddr = ia->ia_dstaddr;
609 ia->ia_dstaddr = *satocsin(ifreq_getdstaddr(cmd, ifr));
610 if ((error = if_addr_init(ifp, &ia->ia_ifa, false)) != 0) {
611 ia->ia_dstaddr = oldaddr;
612 goto out;
613 }
614 if (ia->ia_flags & IFA_ROUTE) {
615 ia->ia_ifa.ifa_dstaddr = sintosa(&oldaddr);
616 rtinit(&ia->ia_ifa, RTM_DELETE, RTF_HOST);
617 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
618 rtinit(&ia->ia_ifa, RTM_ADD, RTF_HOST|RTF_UP);
619 }
620 break;
621
622 case SIOCSIFBRDADDR:
623 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
624 error = EINVAL;
625 goto out;
626 }
627 ia->ia_broadaddr = *satocsin(ifreq_getbroadaddr(cmd, ifr));
628 break;
629
630 case SIOCSIFADDR:
631 if (!newifaddr) {
632 in_addrhash_remove(ia);
633 need_reinsert = true;
634 }
635 error = in_ifinit(ifp, ia, satocsin(ifreq_getaddr(cmd, ifr)),
636 NULL, 1);
637
638 run_hook = true;
639 break;
640
641 case SIOCSIFNETMASK:
642 in_scrubprefix(ia);
643 ia->ia_sockmask = *satocsin(ifreq_getaddr(cmd, ifr));
644 ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr;
645 if (!newifaddr) {
646 in_addrhash_remove(ia);
647 need_reinsert = true;
648 }
649 error = in_ifinit(ifp, ia, NULL, NULL, 0);
650 break;
651
652 case SIOCAIFADDR:
653 maskIsNew = 0;
654 if (ifra->ifra_mask.sin_len) {
655 in_scrubprefix(ia);
656 ia->ia_sockmask = ifra->ifra_mask;
657 ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr;
658 maskIsNew = 1;
659 }
660 if ((ifp->if_flags & IFF_POINTOPOINT) &&
661 (ifra->ifra_dstaddr.sin_family == AF_INET)) {
662 new_dstaddr = &ifra->ifra_dstaddr;
663 maskIsNew = 1; /* We lie; but the effect's the same */
664 } else
665 new_dstaddr = NULL;
666 if (ifra->ifra_addr.sin_family == AF_INET &&
667 (hostIsNew || maskIsNew)) {
668 if (!newifaddr) {
669 in_addrhash_remove(ia);
670 need_reinsert = true;
671 }
672 error = in_ifinit(ifp, ia, &ifra->ifra_addr,
673 new_dstaddr, 0);
674 }
675 if ((ifp->if_flags & IFF_BROADCAST) &&
676 (ifra->ifra_broadaddr.sin_family == AF_INET))
677 ia->ia_broadaddr = ifra->ifra_broadaddr;
678 run_hook = true;
679 break;
680
681 case SIOCGIFALIAS:
682 ifra->ifra_mask = ia->ia_sockmask;
683 if ((ifp->if_flags & IFF_POINTOPOINT) &&
684 (ia->ia_dstaddr.sin_family == AF_INET))
685 ifra->ifra_dstaddr = ia->ia_dstaddr;
686 else if ((ifp->if_flags & IFF_BROADCAST) &&
687 (ia->ia_broadaddr.sin_family == AF_INET))
688 ifra->ifra_broadaddr = ia->ia_broadaddr;
689 else
690 memset(&ifra->ifra_broadaddr, 0,
691 sizeof(ifra->ifra_broadaddr));
692 break;
693
694 case SIOCGIFAFLAG_IN:
695 ifr->ifr_addrflags = ia->ia4_flags;
696 break;
697
698 case SIOCDIFADDR:
699 ia4_release(ia, &psref);
700 ifaref(&ia->ia_ifa);
701 in_purgeaddr(&ia->ia_ifa);
702 pfil_run_addrhooks(if_pfil, cmd, &ia->ia_ifa);
703 ifafree(&ia->ia_ifa);
704 ia = NULL;
705 break;
706
707 #ifdef MROUTING
708 case SIOCGETVIFCNT:
709 case SIOCGETSGCNT:
710 error = mrt_ioctl(so, cmd, data);
711 break;
712 #endif /* MROUTING */
713
714 default:
715 error = ENOTTY;
716 goto out;
717 }
718
719 /*
720 * XXX insert regardless of error to make in_purgeaddr below work.
721 * Need to improve.
722 */
723 if (newifaddr) {
724 ifaref(&ia->ia_ifa);
725 ifa_insert(ifp, &ia->ia_ifa);
726
727 mutex_enter(&in_ifaddr_lock);
728 TAILQ_INSERT_TAIL(&in_ifaddrhead, ia, ia_list);
729 IN_ADDRLIST_WRITER_INSERT_TAIL(ia);
730 in_addrhash_insert_locked(ia);
731 /* Release a reference that is held just after creation. */
732 ifafree(&ia->ia_ifa);
733 mutex_exit(&in_ifaddr_lock);
734 } else if (need_reinsert) {
735 in_addrhash_insert(ia);
736 }
737
738 if (error == 0) {
739 if (run_hook)
740 pfil_run_addrhooks(if_pfil, cmd, &ia->ia_ifa);
741 } else if (newifaddr) {
742 KASSERT(ia != NULL);
743 in_purgeaddr(&ia->ia_ifa);
744 ia = NULL;
745 }
746
747 out:
748 if (!newifaddr && ia != NULL)
749 ia4_release(ia, &psref);
750 curlwp_bindx(bound);
751 return error;
752 }
753
754 int
755 in_control(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
756 {
757 int error;
758
759 #ifndef NET_MPSAFE
760 KASSERT(KERNEL_LOCKED_P());
761 #endif
762 error = in_control0(so, cmd, data, ifp);
763
764 return error;
765 }
766
767 /* Add ownaddr as loopback rtentry. */
768 static void
769 in_ifaddlocal(struct ifaddr *ifa)
770 {
771 struct in_ifaddr *ia;
772
773 ia = (struct in_ifaddr *)ifa;
774 if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY ||
775 (ia->ia_ifp->if_flags & IFF_POINTOPOINT &&
776 in_hosteq(ia->ia_dstaddr.sin_addr, ia->ia_addr.sin_addr)))
777 {
778 rt_addrmsg(RTM_NEWADDR, ifa);
779 return;
780 }
781
782 rt_ifa_addlocal(ifa);
783 }
784
785 /* Remove loopback entry of ownaddr */
786 static void
787 in_ifremlocal(struct ifaddr *ifa)
788 {
789 struct in_ifaddr *ia, *p;
790 struct ifaddr *alt_ifa = NULL;
791 int ia_count = 0;
792 int s;
793 struct psref psref;
794 int bound = curlwp_bind();
795
796 ia = (struct in_ifaddr *)ifa;
797 /* Delete the entry if exactly one ifaddr matches the
798 * address, ifa->ifa_addr. */
799 s = pserialize_read_enter();
800 IN_ADDRLIST_READER_FOREACH(p) {
801 if (!in_hosteq(p->ia_addr.sin_addr, ia->ia_addr.sin_addr))
802 continue;
803 if (p->ia_ifp != ia->ia_ifp)
804 alt_ifa = &p->ia_ifa;
805 if (++ia_count > 1 && alt_ifa != NULL)
806 break;
807 }
808 if (alt_ifa != NULL && ia_count > 1)
809 ifa_acquire(alt_ifa, &psref);
810 pserialize_read_exit(s);
811
812 if (ia_count == 0)
813 goto out;
814
815 rt_ifa_remlocal(ifa, ia_count == 1 ? NULL : alt_ifa);
816 if (alt_ifa != NULL && ia_count > 1)
817 ifa_release(alt_ifa, &psref);
818 out:
819 curlwp_bindx(bound);
820 }
821
822 static void
823 in_scrubaddr(struct in_ifaddr *ia)
824 {
825
826 /* stop DAD processing */
827 if (ia->ia_dad_stop != NULL)
828 ia->ia_dad_stop(&ia->ia_ifa);
829
830 in_scrubprefix(ia);
831 in_ifremlocal(&ia->ia_ifa);
832
833 mutex_enter(&in_ifaddr_lock);
834 if (ia->ia_allhosts != NULL) {
835 in_delmulti(ia->ia_allhosts);
836 ia->ia_allhosts = NULL;
837 }
838 mutex_exit(&in_ifaddr_lock);
839 }
840
841 /*
842 * Depends on it isn't called in concurrent. It should be guaranteed
843 * by ifa->ifa_ifp's ioctl lock. The possible callers are in_control
844 * and if_purgeaddrs; the former is called iva ifa->ifa_ifp's ioctl
845 * and the latter is called via ifa->ifa_ifp's if_detach. The functions
846 * never be executed in concurrent.
847 */
848 void
849 in_purgeaddr(struct ifaddr *ifa)
850 {
851 struct in_ifaddr *ia = (void *) ifa;
852 struct ifnet *ifp = ifa->ifa_ifp;
853
854 /* KASSERT(!ifa_held(ifa)); XXX need ifa_not_held (psref_not_held) */
855
856 ifa->ifa_flags |= IFA_DESTROYING;
857 in_scrubaddr(ia);
858
859 mutex_enter(&in_ifaddr_lock);
860 in_addrhash_remove_locked(ia);
861 TAILQ_REMOVE(&in_ifaddrhead, ia, ia_list);
862 IN_ADDRLIST_WRITER_REMOVE(ia);
863 ifa_remove(ifp, &ia->ia_ifa);
864 /* Assume ifa_remove called pserialize_perform and psref_destroy */
865 mutex_exit(&in_ifaddr_lock);
866 IN_ADDRHASH_ENTRY_DESTROY(ia);
867 IN_ADDRLIST_ENTRY_DESTROY(ia);
868 ifafree(&ia->ia_ifa);
869 in_setmaxmtu();
870 }
871
872 static void
873 in_addrhash_insert_locked(struct in_ifaddr *ia)
874 {
875
876 KASSERT(mutex_owned(&in_ifaddr_lock));
877
878 LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr), ia,
879 ia_hash);
880 IN_ADDRHASH_ENTRY_INIT(ia);
881 IN_ADDRHASH_WRITER_INSERT_HEAD(ia);
882 }
883
884 void
885 in_addrhash_insert(struct in_ifaddr *ia)
886 {
887
888 mutex_enter(&in_ifaddr_lock);
889 in_addrhash_insert_locked(ia);
890 mutex_exit(&in_ifaddr_lock);
891 }
892
893 static void
894 in_addrhash_remove_locked(struct in_ifaddr *ia)
895 {
896
897 KASSERT(mutex_owned(&in_ifaddr_lock));
898
899 LIST_REMOVE(ia, ia_hash);
900 IN_ADDRHASH_WRITER_REMOVE(ia);
901 }
902
903 void
904 in_addrhash_remove(struct in_ifaddr *ia)
905 {
906
907 mutex_enter(&in_ifaddr_lock);
908 in_addrhash_remove_locked(ia);
909 #ifdef NET_MPSAFE
910 pserialize_perform(in_ifaddrhash_psz);
911 #endif
912 mutex_exit(&in_ifaddr_lock);
913 IN_ADDRHASH_ENTRY_DESTROY(ia);
914 }
915
916 void
917 in_purgeif(struct ifnet *ifp) /* MUST be called at splsoftnet() */
918 {
919
920 IFNET_LOCK(ifp);
921 if_purgeaddrs(ifp, AF_INET, in_purgeaddr);
922 igmp_purgeif(ifp); /* manipulates pools */
923 #ifdef MROUTING
924 ip_mrouter_detach(ifp);
925 #endif
926 IFNET_UNLOCK(ifp);
927 }
928
929 /*
930 * SIOC[GAD]LIFADDR.
931 * SIOCGLIFADDR: get first address. (???)
932 * SIOCGLIFADDR with IFLR_PREFIX:
933 * get first address that matches the specified prefix.
934 * SIOCALIFADDR: add the specified address.
935 * SIOCALIFADDR with IFLR_PREFIX:
936 * EINVAL since we can't deduce hostid part of the address.
937 * SIOCDLIFADDR: delete the specified address.
938 * SIOCDLIFADDR with IFLR_PREFIX:
939 * delete the first address that matches the specified prefix.
940 * return values:
941 * EINVAL on invalid parameters
942 * EADDRNOTAVAIL on prefix match failed/specified address not found
943 * other values may be returned from in_ioctl()
944 */
945 static int
946 in_lifaddr_ioctl(struct socket *so, u_long cmd, void *data,
947 struct ifnet *ifp)
948 {
949 struct if_laddrreq *iflr = (struct if_laddrreq *)data;
950 struct ifaddr *ifa;
951 struct sockaddr *sa;
952
953 /* sanity checks */
954 if (data == NULL || ifp == NULL) {
955 panic("invalid argument to in_lifaddr_ioctl");
956 /*NOTRECHED*/
957 }
958
959 switch (cmd) {
960 case SIOCGLIFADDR:
961 /* address must be specified on GET with IFLR_PREFIX */
962 if ((iflr->flags & IFLR_PREFIX) == 0)
963 break;
964 /*FALLTHROUGH*/
965 case SIOCALIFADDR:
966 case SIOCDLIFADDR:
967 /* address must be specified on ADD and DELETE */
968 sa = (struct sockaddr *)&iflr->addr;
969 if (sa->sa_family != AF_INET)
970 return EINVAL;
971 if (sa->sa_len != sizeof(struct sockaddr_in))
972 return EINVAL;
973 /* XXX need improvement */
974 sa = (struct sockaddr *)&iflr->dstaddr;
975 if (sa->sa_family != AF_UNSPEC && sa->sa_family != AF_INET)
976 return EINVAL;
977 if (sa->sa_len != 0 && sa->sa_len != sizeof(struct sockaddr_in))
978 return EINVAL;
979 break;
980 default: /*shouldn't happen*/
981 #if 0
982 panic("invalid cmd to in_lifaddr_ioctl");
983 /*NOTREACHED*/
984 #else
985 return EOPNOTSUPP;
986 #endif
987 }
988 if (sizeof(struct in_addr) * NBBY < iflr->prefixlen)
989 return EINVAL;
990
991 switch (cmd) {
992 case SIOCALIFADDR:
993 {
994 struct in_aliasreq ifra;
995
996 if (iflr->flags & IFLR_PREFIX)
997 return EINVAL;
998
999 /* copy args to in_aliasreq, perform ioctl(SIOCAIFADDR). */
1000 memset(&ifra, 0, sizeof(ifra));
1001 memcpy(ifra.ifra_name, iflr->iflr_name,
1002 sizeof(ifra.ifra_name));
1003
1004 memcpy(&ifra.ifra_addr, &iflr->addr,
1005 ((struct sockaddr *)&iflr->addr)->sa_len);
1006
1007 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/
1008 memcpy(&ifra.ifra_dstaddr, &iflr->dstaddr,
1009 ((struct sockaddr *)&iflr->dstaddr)->sa_len);
1010 }
1011
1012 ifra.ifra_mask.sin_family = AF_INET;
1013 ifra.ifra_mask.sin_len = sizeof(struct sockaddr_in);
1014 in_len2mask(&ifra.ifra_mask.sin_addr, iflr->prefixlen);
1015
1016 return in_control(so, SIOCAIFADDR, &ifra, ifp);
1017 }
1018 case SIOCGLIFADDR:
1019 case SIOCDLIFADDR:
1020 {
1021 struct in_ifaddr *ia;
1022 struct in_addr mask, candidate, match;
1023 struct sockaddr_in *sin;
1024 int cmp, s;
1025
1026 memset(&mask, 0, sizeof(mask));
1027 memset(&match, 0, sizeof(match)); /* XXX gcc */
1028 if (iflr->flags & IFLR_PREFIX) {
1029 /* lookup a prefix rather than address. */
1030 in_len2mask(&mask, iflr->prefixlen);
1031
1032 sin = (struct sockaddr_in *)&iflr->addr;
1033 match.s_addr = sin->sin_addr.s_addr;
1034 match.s_addr &= mask.s_addr;
1035
1036 /* if you set extra bits, that's wrong */
1037 if (match.s_addr != sin->sin_addr.s_addr)
1038 return EINVAL;
1039
1040 cmp = 1;
1041 } else {
1042 if (cmd == SIOCGLIFADDR) {
1043 /* on getting an address, take the 1st match */
1044 cmp = 0; /*XXX*/
1045 } else {
1046 /* on deleting an address, do exact match */
1047 in_len2mask(&mask, 32);
1048 sin = (struct sockaddr_in *)&iflr->addr;
1049 match.s_addr = sin->sin_addr.s_addr;
1050
1051 cmp = 1;
1052 }
1053 }
1054
1055 s = pserialize_read_enter();
1056 IFADDR_READER_FOREACH(ifa, ifp) {
1057 if (ifa->ifa_addr->sa_family != AF_INET)
1058 continue;
1059 if (cmp == 0)
1060 break;
1061 candidate.s_addr = ((struct sockaddr_in *)ifa->ifa_addr)->sin_addr.s_addr;
1062 candidate.s_addr &= mask.s_addr;
1063 if (candidate.s_addr == match.s_addr)
1064 break;
1065 }
1066 if (ifa == NULL) {
1067 pserialize_read_exit(s);
1068 return EADDRNOTAVAIL;
1069 }
1070 ia = (struct in_ifaddr *)ifa;
1071
1072 if (cmd == SIOCGLIFADDR) {
1073 /* fill in the if_laddrreq structure */
1074 memcpy(&iflr->addr, &ia->ia_addr, ia->ia_addr.sin_len);
1075
1076 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1077 memcpy(&iflr->dstaddr, &ia->ia_dstaddr,
1078 ia->ia_dstaddr.sin_len);
1079 } else
1080 memset(&iflr->dstaddr, 0, sizeof(iflr->dstaddr));
1081
1082 iflr->prefixlen =
1083 in_mask2len(&ia->ia_sockmask.sin_addr);
1084
1085 iflr->flags = 0; /*XXX*/
1086 pserialize_read_exit(s);
1087
1088 return 0;
1089 } else {
1090 struct in_aliasreq ifra;
1091
1092 /* fill in_aliasreq and do ioctl(SIOCDIFADDR) */
1093 memset(&ifra, 0, sizeof(ifra));
1094 memcpy(ifra.ifra_name, iflr->iflr_name,
1095 sizeof(ifra.ifra_name));
1096
1097 memcpy(&ifra.ifra_addr, &ia->ia_addr,
1098 ia->ia_addr.sin_len);
1099 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1100 memcpy(&ifra.ifra_dstaddr, &ia->ia_dstaddr,
1101 ia->ia_dstaddr.sin_len);
1102 }
1103 memcpy(&ifra.ifra_dstaddr, &ia->ia_sockmask,
1104 ia->ia_sockmask.sin_len);
1105 pserialize_read_exit(s);
1106
1107 return in_control(so, SIOCDIFADDR, &ifra, ifp);
1108 }
1109 }
1110 }
1111
1112 return EOPNOTSUPP; /*just for safety*/
1113 }
1114
1115 /*
1116 * Initialize an interface's internet address
1117 * and routing table entry.
1118 */
1119 int
1120 in_ifinit(struct ifnet *ifp, struct in_ifaddr *ia,
1121 const struct sockaddr_in *sin, const struct sockaddr_in *dst, int scrub)
1122 {
1123 u_int32_t i;
1124 struct sockaddr_in oldaddr, olddst;
1125 int s, oldflags, flags = RTF_UP, error, hostIsNew;
1126
1127 if (sin == NULL)
1128 sin = &ia->ia_addr;
1129 if (dst == NULL)
1130 dst = &ia->ia_dstaddr;
1131
1132 /*
1133 * Set up new addresses.
1134 */
1135 oldaddr = ia->ia_addr;
1136 olddst = ia->ia_dstaddr;
1137 oldflags = ia->ia4_flags;
1138 ia->ia_addr = *sin;
1139 ia->ia_dstaddr = *dst;
1140 hostIsNew = oldaddr.sin_family != AF_INET ||
1141 !in_hosteq(ia->ia_addr.sin_addr, oldaddr.sin_addr);
1142 if (!scrub)
1143 scrub = oldaddr.sin_family != ia->ia_dstaddr.sin_family ||
1144 !in_hosteq(ia->ia_dstaddr.sin_addr, olddst.sin_addr);
1145
1146 /*
1147 * Configure address flags.
1148 * We need to do this early because they may be adjusted
1149 * by if_addr_init depending on the address.
1150 */
1151 if (ia->ia4_flags & IN_IFF_DUPLICATED) {
1152 ia->ia4_flags &= ~IN_IFF_DUPLICATED;
1153 hostIsNew = 1;
1154 }
1155 if (ifp->if_link_state == LINK_STATE_DOWN) {
1156 ia->ia4_flags |= IN_IFF_DETACHED;
1157 ia->ia4_flags &= ~IN_IFF_TENTATIVE;
1158 } else if (hostIsNew && if_do_dad(ifp) && ip_dad_enabled())
1159 ia->ia4_flags |= IN_IFF_TRYTENTATIVE;
1160
1161 /*
1162 * Give the interface a chance to initialize
1163 * if this is its first address,
1164 * and to validate the address if necessary.
1165 */
1166 s = splsoftnet();
1167 error = if_addr_init(ifp, &ia->ia_ifa, true);
1168 splx(s);
1169 /* Now clear the try tentative flag, its job is done. */
1170 ia->ia4_flags &= ~IN_IFF_TRYTENTATIVE;
1171 if (error != 0) {
1172 ia->ia_addr = oldaddr;
1173 ia->ia_dstaddr = olddst;
1174 ia->ia4_flags = oldflags;
1175 return error;
1176 }
1177
1178 if (scrub || hostIsNew) {
1179 int newflags = ia->ia4_flags;
1180
1181 ia->ia_ifa.ifa_addr = sintosa(&oldaddr);
1182 ia->ia_ifa.ifa_dstaddr = sintosa(&olddst);
1183 ia->ia4_flags = oldflags;
1184 if (hostIsNew)
1185 in_scrubaddr(ia);
1186 else if (scrub)
1187 in_scrubprefix(ia);
1188 ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
1189 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
1190 ia->ia4_flags = newflags;
1191 }
1192
1193 i = ia->ia_addr.sin_addr.s_addr;
1194 if (ifp->if_flags & IFF_POINTOPOINT)
1195 ia->ia_netmask = INADDR_BROADCAST; /* default to /32 */
1196 else if (IN_CLASSA(i))
1197 ia->ia_netmask = IN_CLASSA_NET;
1198 else if (IN_CLASSB(i))
1199 ia->ia_netmask = IN_CLASSB_NET;
1200 else
1201 ia->ia_netmask = IN_CLASSC_NET;
1202 /*
1203 * The subnet mask usually includes at least the standard network part,
1204 * but may may be smaller in the case of supernetting.
1205 * If it is set, we believe it.
1206 */
1207 if (ia->ia_subnetmask == 0) {
1208 ia->ia_subnetmask = ia->ia_netmask;
1209 ia->ia_sockmask.sin_addr.s_addr = ia->ia_subnetmask;
1210 } else
1211 ia->ia_netmask &= ia->ia_subnetmask;
1212
1213 ia->ia_net = i & ia->ia_netmask;
1214 ia->ia_subnet = i & ia->ia_subnetmask;
1215 in_socktrim(&ia->ia_sockmask);
1216
1217 /* re-calculate the "in_maxmtu" value */
1218 in_setmaxmtu();
1219
1220 ia->ia_ifa.ifa_metric = ifp->if_metric;
1221 if (ifp->if_flags & IFF_BROADCAST) {
1222 if (ia->ia_subnetmask == IN_RFC3021_MASK) {
1223 ia->ia_broadaddr.sin_addr.s_addr = INADDR_BROADCAST;
1224 ia->ia_netbroadcast.s_addr = INADDR_BROADCAST;
1225 } else {
1226 ia->ia_broadaddr.sin_addr.s_addr =
1227 ia->ia_subnet | ~ia->ia_subnetmask;
1228 ia->ia_netbroadcast.s_addr =
1229 ia->ia_net | ~ia->ia_netmask;
1230 }
1231 } else if (ifp->if_flags & IFF_LOOPBACK) {
1232 ia->ia_dstaddr = ia->ia_addr;
1233 flags |= RTF_HOST;
1234 } else if (ifp->if_flags & IFF_POINTOPOINT) {
1235 if (ia->ia_dstaddr.sin_family != AF_INET)
1236 return (0);
1237 flags |= RTF_HOST;
1238 }
1239
1240 /* Add the local route to the address */
1241 in_ifaddlocal(&ia->ia_ifa);
1242
1243 /* Add the prefix route for the address */
1244 error = in_addprefix(ia, flags);
1245
1246 /*
1247 * If the interface supports multicast, join the "all hosts"
1248 * multicast group on that interface.
1249 */
1250 mutex_enter(&in_ifaddr_lock);
1251 if ((ifp->if_flags & IFF_MULTICAST) != 0 && ia->ia_allhosts == NULL) {
1252 struct in_addr addr;
1253
1254 addr.s_addr = INADDR_ALLHOSTS_GROUP;
1255 ia->ia_allhosts = in_addmulti(&addr, ifp);
1256 }
1257 mutex_exit(&in_ifaddr_lock);
1258
1259 if (hostIsNew &&
1260 ia->ia4_flags & IN_IFF_TENTATIVE &&
1261 if_do_dad(ifp))
1262 ia->ia_dad_start((struct ifaddr *)ia);
1263
1264 return error;
1265 }
1266
1267 #define rtinitflags(x) \
1268 ((((x)->ia_ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) != 0) \
1269 ? RTF_HOST : 0)
1270
1271 /*
1272 * add a route to prefix ("connected route" in cisco terminology).
1273 * does nothing if there's some interface address with the same prefix already.
1274 */
1275 static int
1276 in_addprefix(struct in_ifaddr *target, int flags)
1277 {
1278 struct in_ifaddr *ia;
1279 struct in_addr prefix, mask, p;
1280 int error;
1281 int s;
1282
1283 if ((flags & RTF_HOST) != 0)
1284 prefix = target->ia_dstaddr.sin_addr;
1285 else {
1286 prefix = target->ia_addr.sin_addr;
1287 mask = target->ia_sockmask.sin_addr;
1288 prefix.s_addr &= mask.s_addr;
1289 }
1290
1291 s = pserialize_read_enter();
1292 IN_ADDRLIST_READER_FOREACH(ia) {
1293 if (rtinitflags(ia))
1294 p = ia->ia_dstaddr.sin_addr;
1295 else {
1296 p = ia->ia_addr.sin_addr;
1297 p.s_addr &= ia->ia_sockmask.sin_addr.s_addr;
1298 }
1299
1300 if (prefix.s_addr != p.s_addr)
1301 continue;
1302
1303 /*
1304 * if we got a matching prefix route inserted by other
1305 * interface address, we don't need to bother
1306 *
1307 * XXX RADIX_MPATH implications here? -dyoung
1308 */
1309 if (ia->ia_flags & IFA_ROUTE) {
1310 pserialize_read_exit(s);
1311 return 0;
1312 }
1313 }
1314 pserialize_read_exit(s);
1315
1316 /*
1317 * noone seem to have prefix route. insert it.
1318 */
1319 error = rtinit(&target->ia_ifa, RTM_ADD, flags);
1320 if (error == 0)
1321 target->ia_flags |= IFA_ROUTE;
1322 else if (error == EEXIST) {
1323 /*
1324 * the fact the route already exists is not an error.
1325 */
1326 error = 0;
1327 }
1328 return error;
1329 }
1330
1331 /*
1332 * remove a route to prefix ("connected route" in cisco terminology).
1333 * re-installs the route by using another interface address, if there's one
1334 * with the same prefix (otherwise we lose the route mistakenly).
1335 */
1336 static int
1337 in_scrubprefix(struct in_ifaddr *target)
1338 {
1339 struct in_ifaddr *ia;
1340 struct in_addr prefix, mask, p;
1341 int error;
1342 int s;
1343
1344 /* If we don't have IFA_ROUTE we have nothing to do */
1345 if ((target->ia_flags & IFA_ROUTE) == 0)
1346 return 0;
1347
1348 if (rtinitflags(target))
1349 prefix = target->ia_dstaddr.sin_addr;
1350 else {
1351 prefix = target->ia_addr.sin_addr;
1352 mask = target->ia_sockmask.sin_addr;
1353 prefix.s_addr &= mask.s_addr;
1354 }
1355
1356 s = pserialize_read_enter();
1357 IN_ADDRLIST_READER_FOREACH(ia) {
1358 if (rtinitflags(ia))
1359 p = ia->ia_dstaddr.sin_addr;
1360 else {
1361 p = ia->ia_addr.sin_addr;
1362 p.s_addr &= ia->ia_sockmask.sin_addr.s_addr;
1363 }
1364
1365 if (prefix.s_addr != p.s_addr)
1366 continue;
1367
1368 /*
1369 * if we got a matching prefix route, move IFA_ROUTE to him
1370 */
1371 if ((ia->ia_flags & IFA_ROUTE) == 0) {
1372 struct psref psref;
1373 int bound = curlwp_bind();
1374
1375 ia4_acquire(ia, &psref);
1376 pserialize_read_exit(s);
1377
1378 rtinit(&target->ia_ifa, RTM_DELETE,
1379 rtinitflags(target));
1380 target->ia_flags &= ~IFA_ROUTE;
1381
1382 error = rtinit(&ia->ia_ifa, RTM_ADD,
1383 rtinitflags(ia) | RTF_UP);
1384 if (error == 0)
1385 ia->ia_flags |= IFA_ROUTE;
1386
1387 ia4_release(ia, &psref);
1388 curlwp_bindx(bound);
1389
1390 return error;
1391 }
1392 }
1393 pserialize_read_exit(s);
1394
1395 /*
1396 * noone seem to have prefix route. remove it.
1397 */
1398 rtinit(&target->ia_ifa, RTM_DELETE, rtinitflags(target));
1399 target->ia_flags &= ~IFA_ROUTE;
1400 return 0;
1401 }
1402
1403 #undef rtinitflags
1404
1405 /*
1406 * Return 1 if the address might be a local broadcast address.
1407 */
1408 int
1409 in_broadcast(struct in_addr in, struct ifnet *ifp)
1410 {
1411 struct ifaddr *ifa;
1412 int s;
1413
1414 KASSERT(ifp != NULL);
1415
1416 if (in.s_addr == INADDR_BROADCAST ||
1417 in_nullhost(in))
1418 return 1;
1419 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1420 return 0;
1421 /*
1422 * Look through the list of addresses for a match
1423 * with a broadcast address.
1424 */
1425 #define ia (ifatoia(ifa))
1426 s = pserialize_read_enter();
1427 IFADDR_READER_FOREACH(ifa, ifp) {
1428 if (ifa->ifa_addr->sa_family == AF_INET &&
1429 !in_hosteq(in, ia->ia_addr.sin_addr) &&
1430 (in_hosteq(in, ia->ia_broadaddr.sin_addr) ||
1431 in_hosteq(in, ia->ia_netbroadcast) ||
1432 (hostzeroisbroadcast &&
1433 /*
1434 * Check for old-style (host 0) broadcast, but
1435 * taking into account that RFC 3021 obsoletes it.
1436 */
1437 ia->ia_subnetmask != IN_RFC3021_MASK &&
1438 (in.s_addr == ia->ia_subnet ||
1439 in.s_addr == ia->ia_net)))) {
1440 pserialize_read_exit(s);
1441 return 1;
1442 }
1443 }
1444 pserialize_read_exit(s);
1445 return (0);
1446 #undef ia
1447 }
1448
1449 /*
1450 * perform DAD when interface becomes IFF_UP.
1451 */
1452 void
1453 in_if_link_up(struct ifnet *ifp)
1454 {
1455 struct ifaddr *ifa;
1456 struct in_ifaddr *ia;
1457 int s, bound;
1458
1459 /* Ensure it's sane to run DAD */
1460 if (ifp->if_link_state == LINK_STATE_DOWN)
1461 return;
1462 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING))
1463 return;
1464
1465 bound = curlwp_bind();
1466 s = pserialize_read_enter();
1467 IFADDR_READER_FOREACH(ifa, ifp) {
1468 struct psref psref;
1469
1470 if (ifa->ifa_addr->sa_family != AF_INET)
1471 continue;
1472 ifa_acquire(ifa, &psref);
1473 pserialize_read_exit(s);
1474
1475 ia = (struct in_ifaddr *)ifa;
1476
1477 /* If detached then mark as tentative */
1478 if (ia->ia4_flags & IN_IFF_DETACHED) {
1479 ia->ia4_flags &= ~IN_IFF_DETACHED;
1480 if (ip_dad_enabled() && if_do_dad(ifp) &&
1481 ia->ia_dad_start != NULL)
1482 ia->ia4_flags |= IN_IFF_TENTATIVE;
1483 else if ((ia->ia4_flags & IN_IFF_TENTATIVE) == 0)
1484 rt_addrmsg(RTM_NEWADDR, ifa);
1485 }
1486
1487 if (ia->ia4_flags & IN_IFF_TENTATIVE) {
1488 /* Clear the duplicated flag as we're starting DAD. */
1489 ia->ia4_flags &= ~IN_IFF_DUPLICATED;
1490 ia->ia_dad_start(ifa);
1491 }
1492
1493 s = pserialize_read_enter();
1494 ifa_release(ifa, &psref);
1495 }
1496 pserialize_read_exit(s);
1497 curlwp_bindx(bound);
1498 }
1499
1500 void
1501 in_if_up(struct ifnet *ifp)
1502 {
1503
1504 /* interface may not support link state, so bring it up also */
1505 in_if_link_up(ifp);
1506 }
1507
1508 /*
1509 * Mark all addresses as detached.
1510 */
1511 void
1512 in_if_link_down(struct ifnet *ifp)
1513 {
1514 struct ifaddr *ifa;
1515 struct in_ifaddr *ia;
1516 int s, bound;
1517
1518 bound = curlwp_bind();
1519 s = pserialize_read_enter();
1520 IFADDR_READER_FOREACH(ifa, ifp) {
1521 struct psref psref;
1522
1523 if (ifa->ifa_addr->sa_family != AF_INET)
1524 continue;
1525 ifa_acquire(ifa, &psref);
1526 pserialize_read_exit(s);
1527
1528 ia = (struct in_ifaddr *)ifa;
1529
1530 /* Stop DAD processing */
1531 if (ia->ia_dad_stop != NULL)
1532 ia->ia_dad_stop(ifa);
1533
1534 /*
1535 * Mark the address as detached.
1536 */
1537 if (!(ia->ia4_flags & IN_IFF_DETACHED)) {
1538 ia->ia4_flags |= IN_IFF_DETACHED;
1539 ia->ia4_flags &=
1540 ~(IN_IFF_TENTATIVE | IN_IFF_DUPLICATED);
1541 rt_addrmsg(RTM_NEWADDR, ifa);
1542 }
1543
1544 s = pserialize_read_enter();
1545 ifa_release(ifa, &psref);
1546 }
1547 pserialize_read_exit(s);
1548 curlwp_bindx(bound);
1549 }
1550
1551 void
1552 in_if_down(struct ifnet *ifp)
1553 {
1554
1555 in_if_link_down(ifp);
1556 #if NARP > 0
1557 lltable_purge_entries(LLTABLE(ifp));
1558 #endif
1559 }
1560
1561 void
1562 in_if_link_state_change(struct ifnet *ifp, int link_state)
1563 {
1564
1565 switch (link_state) {
1566 case LINK_STATE_DOWN:
1567 in_if_link_down(ifp);
1568 break;
1569 case LINK_STATE_UP:
1570 in_if_link_up(ifp);
1571 break;
1572 }
1573 }
1574
1575 /*
1576 * in_lookup_multi: look up the in_multi record for a given IP
1577 * multicast address on a given interface. If no matching record is
1578 * found, return NULL.
1579 */
1580 struct in_multi *
1581 in_lookup_multi(struct in_addr addr, ifnet_t *ifp)
1582 {
1583 struct in_multi *inm;
1584
1585 KASSERT(rw_lock_held(&in_multilock));
1586
1587 LIST_FOREACH(inm, &IN_MULTI_HASH(addr.s_addr, ifp), inm_list) {
1588 if (in_hosteq(inm->inm_addr, addr) && inm->inm_ifp == ifp)
1589 break;
1590 }
1591 return inm;
1592 }
1593
1594 /*
1595 * in_multi_group: check whether the address belongs to an IP multicast
1596 * group we are joined on this interface. Returns true or false.
1597 */
1598 bool
1599 in_multi_group(struct in_addr addr, ifnet_t *ifp, int flags)
1600 {
1601 bool ingroup;
1602
1603 if (__predict_true(flags & IP_IGMP_MCAST) == 0) {
1604 rw_enter(&in_multilock, RW_READER);
1605 ingroup = in_lookup_multi(addr, ifp) != NULL;
1606 rw_exit(&in_multilock);
1607 } else {
1608 /* XXX Recursive call from ip_output(). */
1609 KASSERT(rw_lock_held(&in_multilock));
1610 ingroup = in_lookup_multi(addr, ifp) != NULL;
1611 }
1612 return ingroup;
1613 }
1614
1615 /*
1616 * Add an address to the list of IP multicast addresses for a given interface.
1617 */
1618 struct in_multi *
1619 in_addmulti(struct in_addr *ap, ifnet_t *ifp)
1620 {
1621 struct sockaddr_in sin;
1622 struct in_multi *inm;
1623
1624 /*
1625 * See if address already in list.
1626 */
1627 rw_enter(&in_multilock, RW_WRITER);
1628 inm = in_lookup_multi(*ap, ifp);
1629 if (inm != NULL) {
1630 /*
1631 * Found it; just increment the reference count.
1632 */
1633 inm->inm_refcount++;
1634 rw_exit(&in_multilock);
1635 return inm;
1636 }
1637
1638 /*
1639 * New address; allocate a new multicast record.
1640 */
1641 inm = pool_get(&inmulti_pool, PR_NOWAIT);
1642 if (inm == NULL) {
1643 rw_exit(&in_multilock);
1644 return NULL;
1645 }
1646 inm->inm_addr = *ap;
1647 inm->inm_ifp = ifp;
1648 inm->inm_refcount = 1;
1649
1650 /*
1651 * Ask the network driver to update its multicast reception
1652 * filter appropriately for the new address.
1653 */
1654 sockaddr_in_init(&sin, ap, 0);
1655 if (if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin)) != 0) {
1656 rw_exit(&in_multilock);
1657 pool_put(&inmulti_pool, inm);
1658 return NULL;
1659 }
1660
1661 /*
1662 * Let IGMP know that we have joined a new IP multicast group.
1663 */
1664 if (igmp_joingroup(inm) != 0) {
1665 rw_exit(&in_multilock);
1666 pool_put(&inmulti_pool, inm);
1667 return NULL;
1668 }
1669 LIST_INSERT_HEAD(
1670 &IN_MULTI_HASH(inm->inm_addr.s_addr, ifp),
1671 inm, inm_list);
1672 in_multientries++;
1673 rw_exit(&in_multilock);
1674
1675 return inm;
1676 }
1677
1678 /*
1679 * Delete a multicast address record.
1680 */
1681 void
1682 in_delmulti(struct in_multi *inm)
1683 {
1684 struct sockaddr_in sin;
1685
1686 rw_enter(&in_multilock, RW_WRITER);
1687 if (--inm->inm_refcount > 0) {
1688 rw_exit(&in_multilock);
1689 return;
1690 }
1691
1692 /*
1693 * No remaining claims to this record; let IGMP know that
1694 * we are leaving the multicast group.
1695 */
1696 igmp_leavegroup(inm);
1697
1698 /*
1699 * Notify the network driver to update its multicast reception
1700 * filter.
1701 */
1702 sockaddr_in_init(&sin, &inm->inm_addr, 0);
1703 if_mcast_op(inm->inm_ifp, SIOCDELMULTI, sintosa(&sin));
1704
1705 /*
1706 * Unlink from list.
1707 */
1708 LIST_REMOVE(inm, inm_list);
1709 in_multientries--;
1710 rw_exit(&in_multilock);
1711
1712 pool_put(&inmulti_pool, inm);
1713 }
1714
1715 /*
1716 * in_next_multi: step through all of the in_multi records, one at a time.
1717 * The current position is remembered in "step", which the caller must
1718 * provide. in_first_multi(), below, must be called to initialize "step"
1719 * and get the first record. Both macros return a NULL "inm" when there
1720 * are no remaining records.
1721 */
1722 struct in_multi *
1723 in_next_multi(struct in_multistep *step)
1724 {
1725 struct in_multi *inm;
1726
1727 KASSERT(rw_lock_held(&in_multilock));
1728
1729 while (step->i_inm == NULL && step->i_n < IN_MULTI_HASH_SIZE) {
1730 step->i_inm = LIST_FIRST(&in_multihashtbl[++step->i_n]);
1731 }
1732 if ((inm = step->i_inm) != NULL) {
1733 step->i_inm = LIST_NEXT(inm, inm_list);
1734 }
1735 return inm;
1736 }
1737
1738 struct in_multi *
1739 in_first_multi(struct in_multistep *step)
1740 {
1741 KASSERT(rw_lock_held(&in_multilock));
1742
1743 step->i_n = 0;
1744 step->i_inm = LIST_FIRST(&in_multihashtbl[0]);
1745 return in_next_multi(step);
1746 }
1747
1748 void
1749 in_multi_lock(int op)
1750 {
1751 rw_enter(&in_multilock, op);
1752 }
1753
1754 void
1755 in_multi_unlock(void)
1756 {
1757 rw_exit(&in_multilock);
1758 }
1759
1760 int
1761 in_multi_lock_held(void)
1762 {
1763 return rw_lock_held(&in_multilock);
1764 }
1765
1766 struct in_ifaddr *
1767 in_selectsrc(struct sockaddr_in *sin, struct route *ro,
1768 int soopts, struct ip_moptions *mopts, int *errorp, struct psref *psref)
1769 {
1770 struct rtentry *rt = NULL;
1771 struct in_ifaddr *ia = NULL;
1772
1773 KASSERT(ISSET(curlwp->l_pflag, LP_BOUND));
1774 /*
1775 * If route is known or can be allocated now, take the
1776 * source address from the interface. Otherwise, punt.
1777 */
1778 if ((soopts & SO_DONTROUTE) != 0)
1779 rtcache_free(ro);
1780 else {
1781 union {
1782 struct sockaddr dst;
1783 struct sockaddr_in dst4;
1784 } u;
1785
1786 sockaddr_in_init(&u.dst4, &sin->sin_addr, 0);
1787 rt = rtcache_lookup(ro, &u.dst);
1788 }
1789 /*
1790 * If we found a route, use the address
1791 * corresponding to the outgoing interface
1792 * unless it is the loopback (in case a route
1793 * to our address on another net goes to loopback).
1794 *
1795 * XXX Is this still true? Do we care?
1796 */
1797 if (rt != NULL && (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
1798 int s;
1799 struct ifaddr *ifa;
1800 /*
1801 * Just in case. May not need to do this workaround.
1802 * Revisit when working on rtentry MP-ification.
1803 */
1804 s = pserialize_read_enter();
1805 IFADDR_READER_FOREACH(ifa, rt->rt_ifp) {
1806 if (ifa == rt->rt_ifa)
1807 break;
1808 }
1809 if (ifa != NULL)
1810 ifa_acquire(ifa, psref);
1811 pserialize_read_exit(s);
1812
1813 ia = ifatoia(ifa);
1814 }
1815 if (ia == NULL) {
1816 u_int16_t fport = sin->sin_port;
1817 struct ifaddr *ifa;
1818 int s;
1819
1820 sin->sin_port = 0;
1821 ifa = ifa_ifwithladdr_psref(sintosa(sin), psref);
1822 sin->sin_port = fport;
1823 if (ifa == NULL) {
1824 /* Find 1st non-loopback AF_INET address */
1825 s = pserialize_read_enter();
1826 IN_ADDRLIST_READER_FOREACH(ia) {
1827 if (!(ia->ia_ifp->if_flags & IFF_LOOPBACK))
1828 break;
1829 }
1830 if (ia != NULL)
1831 ia4_acquire(ia, psref);
1832 pserialize_read_exit(s);
1833 } else {
1834 /* ia is already referenced by psref */
1835 ia = ifatoia(ifa);
1836 }
1837 if (ia == NULL) {
1838 *errorp = EADDRNOTAVAIL;
1839 goto out;
1840 }
1841 }
1842 /*
1843 * If the destination address is multicast and an outgoing
1844 * interface has been set as a multicast option, use the
1845 * address of that interface as our source address.
1846 */
1847 if (IN_MULTICAST(sin->sin_addr.s_addr) && mopts != NULL) {
1848 struct ip_moptions *imo;
1849
1850 imo = mopts;
1851 if (imo->imo_multicast_if_index != 0) {
1852 struct ifnet *ifp;
1853 int s;
1854
1855 if (ia != NULL)
1856 ia4_release(ia, psref);
1857 s = pserialize_read_enter();
1858 ifp = if_byindex(imo->imo_multicast_if_index);
1859 if (ifp != NULL) {
1860 /* XXX */
1861 ia = in_get_ia_from_ifp_psref(ifp, psref);
1862 } else
1863 ia = NULL;
1864 if (ia == NULL || ia->ia4_flags & IN_IFF_NOTREADY) {
1865 pserialize_read_exit(s);
1866 if (ia != NULL)
1867 ia4_release(ia, psref);
1868 *errorp = EADDRNOTAVAIL;
1869 ia = NULL;
1870 goto out;
1871 }
1872 pserialize_read_exit(s);
1873 }
1874 }
1875 if (ia->ia_ifa.ifa_getifa != NULL) {
1876 ia = ifatoia((*ia->ia_ifa.ifa_getifa)(&ia->ia_ifa,
1877 sintosa(sin)));
1878 if (ia == NULL) {
1879 *errorp = EADDRNOTAVAIL;
1880 goto out;
1881 }
1882 /* FIXME NOMPSAFE */
1883 ia4_acquire(ia, psref);
1884 }
1885 #ifdef GETIFA_DEBUG
1886 else
1887 printf("%s: missing ifa_getifa\n", __func__);
1888 #endif
1889 out:
1890 rtcache_unref(rt, ro);
1891 return ia;
1892 }
1893
1894 int
1895 in_tunnel_validate(const struct ip *ip, struct in_addr src, struct in_addr dst)
1896 {
1897 struct in_ifaddr *ia4;
1898 int s;
1899
1900 /* check for address match */
1901 if (src.s_addr != ip->ip_dst.s_addr ||
1902 dst.s_addr != ip->ip_src.s_addr)
1903 return 0;
1904
1905 /* martian filters on outer source - NOT done in ip_input! */
1906 if (IN_MULTICAST(ip->ip_src.s_addr))
1907 return 0;
1908 switch ((ntohl(ip->ip_src.s_addr) & 0xff000000) >> 24) {
1909 case 0:
1910 case 127:
1911 case 255:
1912 return 0;
1913 }
1914 /* reject packets with broadcast on source */
1915 s = pserialize_read_enter();
1916 IN_ADDRLIST_READER_FOREACH(ia4) {
1917 if ((ia4->ia_ifa.ifa_ifp->if_flags & IFF_BROADCAST) == 0)
1918 continue;
1919 if (ip->ip_src.s_addr == ia4->ia_broadaddr.sin_addr.s_addr) {
1920 pserialize_read_exit(s);
1921 return 0;
1922 }
1923 }
1924 pserialize_read_exit(s);
1925
1926 /* NOTE: packet may dropped by uRPF */
1927
1928 /* return valid bytes length */
1929 return sizeof(src) + sizeof(dst);
1930 }
1931
1932 #if NARP > 0
1933
1934 #define IN_LLTBL_DEFAULT_HSIZE 32
1935 #define IN_LLTBL_HASH(k, h) \
1936 (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1))
1937
1938 /*
1939 * Do actual deallocation of @lle.
1940 * Called by LLE_FREE_LOCKED when number of references
1941 * drops to zero.
1942 */
1943 static void
1944 in_lltable_destroy_lle(struct llentry *lle)
1945 {
1946
1947 KASSERTMSG(lle->la_numheld == 0, "la_numheld=%d", lle->la_numheld);
1948
1949 LLE_WUNLOCK(lle);
1950 LLE_LOCK_DESTROY(lle);
1951 llentry_pool_put(lle);
1952 }
1953
1954 static struct llentry *
1955 in_lltable_new(struct in_addr addr4, u_int flags)
1956 {
1957 struct llentry *lle;
1958
1959 lle = llentry_pool_get(PR_NOWAIT);
1960 if (lle == NULL) /* NB: caller generates msg */
1961 return NULL;
1962
1963 /*
1964 * For IPv4 this will trigger "arpresolve" to generate
1965 * an ARP request.
1966 */
1967 lle->la_expire = time_uptime; /* mark expired */
1968 lle->r_l3addr.addr4 = addr4;
1969 lle->lle_refcnt = 1;
1970 lle->lle_free = in_lltable_destroy_lle;
1971 LLE_LOCK_INIT(lle);
1972 callout_init(&lle->la_timer, CALLOUT_MPSAFE);
1973
1974 return lle;
1975 }
1976
1977 #define IN_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \
1978 (((ntohl((d).s_addr) ^ (a)->sin_addr.s_addr) & (m)->sin_addr.s_addr)) == 0 )
1979
1980 static int
1981 in_lltable_match_prefix(const struct sockaddr *prefix,
1982 const struct sockaddr *mask, u_int flags, struct llentry *lle)
1983 {
1984 const struct sockaddr_in *pfx = (const struct sockaddr_in *)prefix;
1985 const struct sockaddr_in *msk = (const struct sockaddr_in *)mask;
1986 struct in_addr lle_addr;
1987
1988 lle_addr.s_addr = ntohl(lle->r_l3addr.addr4.s_addr);
1989
1990 /*
1991 * (flags & LLE_STATIC) means deleting all entries
1992 * including static ARP entries.
1993 */
1994 if (IN_ARE_MASKED_ADDR_EQUAL(lle_addr, pfx, msk) &&
1995 ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC)))
1996 return (1);
1997
1998 return (0);
1999 }
2000
2001 static void
2002 in_lltable_free_entry(struct lltable *llt, struct llentry *lle)
2003 {
2004 size_t pkts_dropped;
2005
2006 LLE_WLOCK_ASSERT(lle);
2007 KASSERT(llt != NULL);
2008
2009 pkts_dropped = llentry_free(lle);
2010 arp_stat_add(ARP_STAT_DFRDROPPED, (uint64_t)pkts_dropped);
2011 }
2012
2013 static int
2014 in_lltable_rtcheck(struct ifnet *ifp, u_int flags, const struct sockaddr *l3addr,
2015 const struct rtentry *rt)
2016 {
2017 int error = EINVAL;
2018
2019 if (rt == NULL)
2020 return error;
2021
2022 /*
2023 * If the gateway for an existing host route matches the target L3
2024 * address, which is a special route inserted by some implementation
2025 * such as MANET, and the interface is of the correct type, then
2026 * allow for ARP to proceed.
2027 */
2028 if (rt->rt_flags & RTF_GATEWAY) {
2029 if (!(rt->rt_flags & RTF_HOST) || !rt->rt_ifp ||
2030 rt->rt_ifp->if_type != IFT_ETHER ||
2031 (rt->rt_ifp->if_flags & IFF_NOARP) != 0 ||
2032 memcmp(rt->rt_gateway->sa_data, l3addr->sa_data,
2033 sizeof(in_addr_t)) != 0) {
2034 goto error;
2035 }
2036 }
2037
2038 /*
2039 * Make sure that at least the destination address is covered
2040 * by the route. This is for handling the case where 2 or more
2041 * interfaces have the same prefix. An incoming packet arrives
2042 * on one interface and the corresponding outgoing packet leaves
2043 * another interface.
2044 */
2045 if (!(rt->rt_flags & RTF_HOST) && rt->rt_ifp != ifp) {
2046 const char *sa, *mask, *addr, *lim;
2047 int len;
2048
2049 mask = (const char *)rt_mask(rt);
2050 /*
2051 * Just being extra cautious to avoid some custom
2052 * code getting into trouble.
2053 */
2054 if (mask == NULL)
2055 goto error;
2056
2057 sa = (const char *)rt_getkey(rt);
2058 addr = (const char *)l3addr;
2059 len = ((const struct sockaddr_in *)l3addr)->sin_len;
2060 lim = addr + len;
2061
2062 for ( ; addr < lim; sa++, mask++, addr++) {
2063 if ((*sa ^ *addr) & *mask) {
2064 #ifdef DIAGNOSTIC
2065 log(LOG_INFO, "IPv4 address: \"%s\" is not on the network\n",
2066 inet_ntoa(((const struct sockaddr_in *)l3addr)->sin_addr));
2067 #endif
2068 goto error;
2069 }
2070 }
2071 }
2072
2073 error = 0;
2074 error:
2075 return error;
2076 }
2077
2078 static inline uint32_t
2079 in_lltable_hash_dst(const struct in_addr dst, uint32_t hsize)
2080 {
2081
2082 return (IN_LLTBL_HASH(dst.s_addr, hsize));
2083 }
2084
2085 static uint32_t
2086 in_lltable_hash(const struct llentry *lle, uint32_t hsize)
2087 {
2088
2089 return (in_lltable_hash_dst(lle->r_l3addr.addr4, hsize));
2090 }
2091
2092 static void
2093 in_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa)
2094 {
2095 struct sockaddr_in *sin;
2096
2097 sin = (struct sockaddr_in *)sa;
2098 memset(sin, 0, sizeof(*sin));
2099 sin->sin_family = AF_INET;
2100 sin->sin_len = sizeof(*sin);
2101 sin->sin_addr = lle->r_l3addr.addr4;
2102 }
2103
2104 static inline struct llentry *
2105 in_lltable_find_dst(struct lltable *llt, struct in_addr dst)
2106 {
2107 struct llentry *lle;
2108 struct llentries *lleh;
2109 u_int hashidx;
2110
2111 hashidx = in_lltable_hash_dst(dst, llt->llt_hsize);
2112 lleh = &llt->lle_head[hashidx];
2113 LIST_FOREACH(lle, lleh, lle_next) {
2114 if (lle->la_flags & LLE_DELETED)
2115 continue;
2116 if (lle->r_l3addr.addr4.s_addr == dst.s_addr)
2117 break;
2118 }
2119
2120 return (lle);
2121 }
2122
2123 static int
2124 in_lltable_delete(struct lltable *llt, u_int flags,
2125 const struct sockaddr *l3addr)
2126 {
2127 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
2128 struct ifnet *ifp __diagused = llt->llt_ifp;
2129 struct llentry *lle;
2130
2131 IF_AFDATA_WLOCK_ASSERT(ifp);
2132 KASSERTMSG(l3addr->sa_family == AF_INET,
2133 "sin_family %d", l3addr->sa_family);
2134
2135 lle = in_lltable_find_dst(llt, sin->sin_addr);
2136 if (lle == NULL) {
2137 #ifdef LLTABLE_DEBUG
2138 char buf[64];
2139 sockaddr_format(l3addr, buf, sizeof(buf));
2140 log(LOG_INFO, "%s: cache for %s is not found\n",
2141 __func__, buf);
2142 #endif
2143 return (ENOENT);
2144 }
2145
2146 LLE_WLOCK(lle);
2147 #ifdef LLTABLE_DEBUG
2148 {
2149 char buf[64];
2150 sockaddr_format(l3addr, buf, sizeof(buf));
2151 log(LOG_INFO, "%s: cache for %s (%p) is deleted\n",
2152 __func__, buf, lle);
2153 }
2154 #endif
2155 llentry_free(lle);
2156
2157 return (0);
2158 }
2159
2160 static struct llentry *
2161 in_lltable_create(struct lltable *llt, u_int flags, const struct sockaddr *l3addr,
2162 const struct rtentry *rt)
2163 {
2164 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
2165 struct ifnet *ifp = llt->llt_ifp;
2166 struct llentry *lle;
2167
2168 IF_AFDATA_WLOCK_ASSERT(ifp);
2169 KASSERTMSG(l3addr->sa_family == AF_INET,
2170 "sin_family %d", l3addr->sa_family);
2171
2172 lle = in_lltable_find_dst(llt, sin->sin_addr);
2173
2174 if (lle != NULL) {
2175 LLE_WLOCK(lle);
2176 return (lle);
2177 }
2178
2179 /* no existing record, we need to create new one */
2180
2181 /*
2182 * A route that covers the given address must have
2183 * been installed 1st because we are doing a resolution,
2184 * verify this.
2185 */
2186 if (!(flags & LLE_IFADDR) &&
2187 in_lltable_rtcheck(ifp, flags, l3addr, rt) != 0)
2188 return (NULL);
2189
2190 lle = in_lltable_new(sin->sin_addr, flags);
2191 if (lle == NULL) {
2192 log(LOG_INFO, "lla_lookup: new lle malloc failed\n");
2193 return (NULL);
2194 }
2195 lle->la_flags = flags;
2196 if ((flags & LLE_IFADDR) == LLE_IFADDR) {
2197 memcpy(&lle->ll_addr, CLLADDR(ifp->if_sadl), ifp->if_addrlen);
2198 lle->la_flags |= (LLE_VALID | LLE_STATIC);
2199 }
2200
2201 lltable_link_entry(llt, lle);
2202 LLE_WLOCK(lle);
2203
2204 return (lle);
2205 }
2206
2207 /*
2208 * Return NULL if not found or marked for deletion.
2209 * If found return lle read locked.
2210 */
2211 static struct llentry *
2212 in_lltable_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr)
2213 {
2214 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
2215 struct llentry *lle;
2216
2217 IF_AFDATA_LOCK_ASSERT(llt->llt_ifp);
2218 KASSERTMSG(l3addr->sa_family == AF_INET,
2219 "sin_family %d", l3addr->sa_family);
2220
2221 lle = in_lltable_find_dst(llt, sin->sin_addr);
2222
2223 if (lle == NULL)
2224 return NULL;
2225
2226 if (flags & LLE_EXCLUSIVE)
2227 LLE_WLOCK(lle);
2228 else
2229 LLE_RLOCK(lle);
2230
2231 return lle;
2232 }
2233
2234 static int
2235 in_lltable_dump_entry(struct lltable *llt, struct llentry *lle,
2236 struct rt_walkarg *w)
2237 {
2238 struct sockaddr_in sin;
2239
2240 LLTABLE_LOCK_ASSERT();
2241
2242 /* skip deleted entries */
2243 if (lle->la_flags & LLE_DELETED)
2244 return 0;
2245
2246 sockaddr_in_init(&sin, &lle->r_l3addr.addr4, 0);
2247
2248 return lltable_dump_entry(llt, lle, w, sintosa(&sin));
2249 }
2250
2251 #endif /* NARP > 0 */
2252
2253 static int
2254 in_multicast_sysctl(SYSCTLFN_ARGS)
2255 {
2256 struct ifnet *ifp;
2257 struct ifaddr *ifa;
2258 struct in_ifaddr *ifa4;
2259 struct in_multi *inm;
2260 uint32_t tmp;
2261 int error;
2262 size_t written;
2263 struct psref psref;
2264 int bound;
2265
2266 if (namelen != 1)
2267 return EINVAL;
2268
2269 bound = curlwp_bind();
2270 ifp = if_get_byindex(name[0], &psref);
2271 if (ifp == NULL) {
2272 curlwp_bindx(bound);
2273 return ENODEV;
2274 }
2275
2276 if (oldp == NULL) {
2277 *oldlenp = 0;
2278 IFADDR_FOREACH(ifa, ifp) {
2279 if (ifa->ifa_addr->sa_family != AF_INET)
2280 continue;
2281 ifa4 = (void *)ifa;
2282 LIST_FOREACH(inm, &ifa4->ia_multiaddrs, inm_list) {
2283 *oldlenp += 2 * sizeof(struct in_addr) +
2284 sizeof(uint32_t);
2285 }
2286 }
2287 if_put(ifp, &psref);
2288 curlwp_bindx(bound);
2289 return 0;
2290 }
2291
2292 error = 0;
2293 written = 0;
2294 IFADDR_FOREACH(ifa, ifp) {
2295 if (ifa->ifa_addr->sa_family != AF_INET)
2296 continue;
2297 ifa4 = (void *)ifa;
2298 LIST_FOREACH(inm, &ifa4->ia_multiaddrs, inm_list) {
2299 if (written + 2 * sizeof(struct in_addr) +
2300 sizeof(uint32_t) > *oldlenp)
2301 goto done;
2302 error = sysctl_copyout(l, &ifa4->ia_addr.sin_addr,
2303 oldp, sizeof(struct in_addr));
2304 if (error)
2305 goto done;
2306 oldp = (char *)oldp + sizeof(struct in_addr);
2307 written += sizeof(struct in_addr);
2308 error = sysctl_copyout(l, &inm->inm_addr,
2309 oldp, sizeof(struct in_addr));
2310 if (error)
2311 goto done;
2312 oldp = (char *)oldp + sizeof(struct in_addr);
2313 written += sizeof(struct in_addr);
2314 tmp = inm->inm_refcount;
2315 error = sysctl_copyout(l, &tmp, oldp, sizeof(tmp));
2316 if (error)
2317 goto done;
2318 oldp = (char *)oldp + sizeof(tmp);
2319 written += sizeof(tmp);
2320 }
2321 }
2322 done:
2323 if_put(ifp, &psref);
2324 curlwp_bindx(bound);
2325 *oldlenp = written;
2326 return error;
2327 }
2328
2329 static void
2330 in_sysctl_init(struct sysctllog **clog)
2331 {
2332 sysctl_createv(clog, 0, NULL, NULL,
2333 CTLFLAG_PERMANENT,
2334 CTLTYPE_NODE, "inet",
2335 SYSCTL_DESCR("PF_INET related settings"),
2336 NULL, 0, NULL, 0,
2337 CTL_NET, PF_INET, CTL_EOL);
2338 sysctl_createv(clog, 0, NULL, NULL,
2339 CTLFLAG_PERMANENT,
2340 CTLTYPE_NODE, "multicast",
2341 SYSCTL_DESCR("Multicast information"),
2342 in_multicast_sysctl, 0, NULL, 0,
2343 CTL_NET, PF_INET, CTL_CREATE, CTL_EOL);
2344 sysctl_createv(clog, 0, NULL, NULL,
2345 CTLFLAG_PERMANENT,
2346 CTLTYPE_NODE, "ip",
2347 SYSCTL_DESCR("IPv4 related settings"),
2348 NULL, 0, NULL, 0,
2349 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2350
2351 sysctl_createv(clog, 0, NULL, NULL,
2352 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2353 CTLTYPE_INT, "subnetsarelocal",
2354 SYSCTL_DESCR("Whether logical subnets are considered "
2355 "local"),
2356 NULL, 0, &subnetsarelocal, 0,
2357 CTL_NET, PF_INET, IPPROTO_IP,
2358 IPCTL_SUBNETSARELOCAL, CTL_EOL);
2359 sysctl_createv(clog, 0, NULL, NULL,
2360 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2361 CTLTYPE_INT, "hostzerobroadcast",
2362 SYSCTL_DESCR("All zeroes address is broadcast address"),
2363 NULL, 0, &hostzeroisbroadcast, 0,
2364 CTL_NET, PF_INET, IPPROTO_IP,
2365 IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2366 }
2367
2368 #if NARP > 0
2369
2370 static struct lltable *
2371 in_lltattach(struct ifnet *ifp)
2372 {
2373 struct lltable *llt;
2374
2375 llt = lltable_allocate_htbl(IN_LLTBL_DEFAULT_HSIZE);
2376 llt->llt_af = AF_INET;
2377 llt->llt_ifp = ifp;
2378
2379 llt->llt_lookup = in_lltable_lookup;
2380 llt->llt_create = in_lltable_create;
2381 llt->llt_delete = in_lltable_delete;
2382 llt->llt_dump_entry = in_lltable_dump_entry;
2383 llt->llt_hash = in_lltable_hash;
2384 llt->llt_fill_sa_entry = in_lltable_fill_sa_entry;
2385 llt->llt_free_entry = in_lltable_free_entry;
2386 llt->llt_match_prefix = in_lltable_match_prefix;
2387 lltable_link(llt);
2388
2389 return (llt);
2390 }
2391
2392 #endif /* NARP > 0 */
2393
2394 void *
2395 in_domifattach(struct ifnet *ifp)
2396 {
2397 struct in_ifinfo *ii;
2398
2399 ii = kmem_zalloc(sizeof(struct in_ifinfo), KM_SLEEP);
2400
2401 #if NARP > 0
2402 ii->ii_llt = in_lltattach(ifp);
2403 #endif
2404
2405 #ifdef IPSELSRC
2406 ii->ii_selsrc = in_selsrc_domifattach(ifp);
2407 KASSERT(ii->ii_selsrc != NULL);
2408 #endif
2409
2410 return ii;
2411 }
2412
2413 void
2414 in_domifdetach(struct ifnet *ifp, void *aux)
2415 {
2416 struct in_ifinfo *ii = aux;
2417
2418 #ifdef IPSELSRC
2419 in_selsrc_domifdetach(ifp, ii->ii_selsrc);
2420 #endif
2421 #if NARP > 0
2422 lltable_free(ii->ii_llt);
2423 #endif
2424 kmem_free(ii, sizeof(struct in_ifinfo));
2425 }
2426