in.c revision 1.240 1 /* $NetBSD: in.c,v 1.240 2020/09/11 15:22:12 roy Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1991, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)in.c 8.4 (Berkeley) 1/9/95
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: in.c,v 1.240 2020/09/11 15:22:12 roy Exp $");
95
96 #include "arp.h"
97
98 #ifdef _KERNEL_OPT
99 #include "opt_inet.h"
100 #include "opt_inet_conf.h"
101 #include "opt_mrouting.h"
102 #include "opt_net_mpsafe.h"
103 #endif
104
105 #include <sys/param.h>
106 #include <sys/ioctl.h>
107 #include <sys/errno.h>
108 #include <sys/kernel.h>
109 #include <sys/malloc.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/sysctl.h>
113 #include <sys/systm.h>
114 #include <sys/proc.h>
115 #include <sys/syslog.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118
119 #include <sys/cprng.h>
120
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124
125 #include <net/if_arp.h>
126 #include <net/if_ether.h>
127 #include <net/if_types.h>
128 #include <net/if_llatbl.h>
129 #include <net/if_dl.h>
130
131 #include <netinet/in_systm.h>
132 #include <netinet/in.h>
133 #include <netinet/in_var.h>
134 #include <netinet/ip.h>
135 #include <netinet/ip_var.h>
136 #include <netinet/in_ifattach.h>
137 #include <netinet/in_pcb.h>
138 #include <netinet/in_selsrc.h>
139 #include <netinet/if_inarp.h>
140 #include <netinet/ip_mroute.h>
141 #include <netinet/igmp_var.h>
142
143 #ifdef IPSELSRC
144 #include <netinet/in_selsrc.h>
145 #endif
146
147 static u_int in_mask2len(struct in_addr *);
148 static int in_lifaddr_ioctl(struct socket *, u_long, void *,
149 struct ifnet *);
150
151 static void in_addrhash_insert_locked(struct in_ifaddr *);
152 static void in_addrhash_remove_locked(struct in_ifaddr *);
153
154 static int in_addprefix(struct in_ifaddr *, int);
155 static void in_scrubaddr(struct in_ifaddr *);
156 static int in_scrubprefix(struct in_ifaddr *);
157 static void in_sysctl_init(struct sysctllog **);
158
159 #ifndef SUBNETSARELOCAL
160 #define SUBNETSARELOCAL 1
161 #endif
162
163 #ifndef HOSTZEROBROADCAST
164 #define HOSTZEROBROADCAST 0
165 #endif
166
167 /* Note: 61, 127, 251, 509, 1021, 2039 are good. */
168 #ifndef IN_MULTI_HASH_SIZE
169 #define IN_MULTI_HASH_SIZE 509
170 #endif
171
172 static int subnetsarelocal = SUBNETSARELOCAL;
173 static int hostzeroisbroadcast = HOSTZEROBROADCAST;
174
175 /*
176 * This list is used to keep track of in_multi chains which belong to
177 * deleted interface addresses. We use in_ifaddr so that a chain head
178 * won't be deallocated until all multicast address record are deleted.
179 */
180
181 LIST_HEAD(in_multihashhead, in_multi); /* Type of the hash head */
182
183 static struct pool inmulti_pool;
184 static u_int in_multientries;
185 static struct in_multihashhead *in_multihashtbl;
186 static u_long in_multihash;
187 static krwlock_t in_multilock;
188
189 #define IN_MULTI_HASH(x, ifp) \
190 (in_multihashtbl[(u_long)((x) ^ (ifp->if_index)) % IN_MULTI_HASH_SIZE])
191
192 /* XXX DEPRECATED. Keep them to avoid breaking kvm(3) users. */
193 struct in_ifaddrhashhead * in_ifaddrhashtbl;
194 u_long in_ifaddrhash;
195 struct in_ifaddrhead in_ifaddrhead;
196 static kmutex_t in_ifaddr_lock;
197
198 pserialize_t in_ifaddrhash_psz;
199 struct pslist_head * in_ifaddrhashtbl_pslist;
200 u_long in_ifaddrhash_pslist;
201 struct pslist_head in_ifaddrhead_pslist;
202
203 void
204 in_init(void)
205 {
206 pool_init(&inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl",
207 NULL, IPL_SOFTNET);
208 TAILQ_INIT(&in_ifaddrhead);
209 PSLIST_INIT(&in_ifaddrhead_pslist);
210
211 in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
212 &in_ifaddrhash);
213
214 in_ifaddrhash_psz = pserialize_create();
215 in_ifaddrhashtbl_pslist = hashinit(IN_IFADDR_HASH_SIZE, HASH_PSLIST,
216 true, &in_ifaddrhash_pslist);
217 mutex_init(&in_ifaddr_lock, MUTEX_DEFAULT, IPL_NONE);
218
219 in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
220 &in_multihash);
221 rw_init(&in_multilock);
222
223 in_sysctl_init(NULL);
224 }
225
226 /*
227 * Return 1 if an internet address is for a ``local'' host
228 * (one to which we have a connection). If subnetsarelocal
229 * is true, this includes other subnets of the local net.
230 * Otherwise, it includes only the directly-connected (sub)nets.
231 */
232 int
233 in_localaddr(struct in_addr in)
234 {
235 struct in_ifaddr *ia;
236 int localaddr = 0;
237 int s = pserialize_read_enter();
238
239 if (subnetsarelocal) {
240 IN_ADDRLIST_READER_FOREACH(ia) {
241 if ((in.s_addr & ia->ia_netmask) == ia->ia_net) {
242 localaddr = 1;
243 break;
244 }
245 }
246 } else {
247 IN_ADDRLIST_READER_FOREACH(ia) {
248 if ((in.s_addr & ia->ia_subnetmask) == ia->ia_subnet) {
249 localaddr = 1;
250 break;
251 }
252 }
253 }
254 pserialize_read_exit(s);
255
256 return localaddr;
257 }
258
259 /*
260 * like in_localaddr() but can specify ifp.
261 */
262 int
263 in_direct(struct in_addr in, struct ifnet *ifp)
264 {
265 struct ifaddr *ifa;
266 int localaddr = 0;
267 int s;
268
269 KASSERT(ifp != NULL);
270
271 #define ia (ifatoia(ifa))
272 s = pserialize_read_enter();
273 if (subnetsarelocal) {
274 IFADDR_READER_FOREACH(ifa, ifp) {
275 if (ifa->ifa_addr->sa_family == AF_INET &&
276 ((in.s_addr & ia->ia_netmask) == ia->ia_net)) {
277 localaddr = 1;
278 break;
279 }
280 }
281 } else {
282 IFADDR_READER_FOREACH(ifa, ifp) {
283 if (ifa->ifa_addr->sa_family == AF_INET &&
284 (in.s_addr & ia->ia_subnetmask) == ia->ia_subnet) {
285 localaddr = 1;
286 break;
287 }
288 }
289 }
290 pserialize_read_exit(s);
291
292 return localaddr;
293 #undef ia
294 }
295
296 /*
297 * Determine whether an IP address is in a reserved set of addresses
298 * that may not be forwarded, or whether datagrams to that destination
299 * may be forwarded.
300 */
301 int
302 in_canforward(struct in_addr in)
303 {
304 u_int32_t net;
305
306 if (IN_EXPERIMENTAL(in.s_addr) || IN_MULTICAST(in.s_addr))
307 return (0);
308 if (IN_CLASSA(in.s_addr)) {
309 net = in.s_addr & IN_CLASSA_NET;
310 if (net == 0 || net == htonl(IN_LOOPBACKNET << IN_CLASSA_NSHIFT))
311 return (0);
312 }
313 return (1);
314 }
315
316 /*
317 * Trim a mask in a sockaddr
318 */
319 void
320 in_socktrim(struct sockaddr_in *ap)
321 {
322 char *cplim = (char *) &ap->sin_addr;
323 char *cp = (char *) (&ap->sin_addr + 1);
324
325 ap->sin_len = 0;
326 while (--cp >= cplim)
327 if (*cp) {
328 (ap)->sin_len = cp - (char *) (ap) + 1;
329 break;
330 }
331 }
332
333 /*
334 * Maintain the "in_maxmtu" variable, which is the largest
335 * mtu for non-local interfaces with AF_INET addresses assigned
336 * to them that are up.
337 */
338 unsigned long in_maxmtu;
339
340 void
341 in_setmaxmtu(void)
342 {
343 struct in_ifaddr *ia;
344 struct ifnet *ifp;
345 unsigned long maxmtu = 0;
346 int s = pserialize_read_enter();
347
348 IN_ADDRLIST_READER_FOREACH(ia) {
349 if ((ifp = ia->ia_ifp) == 0)
350 continue;
351 if ((ifp->if_flags & (IFF_UP|IFF_LOOPBACK)) != IFF_UP)
352 continue;
353 if (ifp->if_mtu > maxmtu)
354 maxmtu = ifp->if_mtu;
355 }
356 if (maxmtu)
357 in_maxmtu = maxmtu;
358 pserialize_read_exit(s);
359 }
360
361 static u_int
362 in_mask2len(struct in_addr *mask)
363 {
364 u_int x, y;
365 u_char *p;
366
367 p = (u_char *)mask;
368 for (x = 0; x < sizeof(*mask); x++) {
369 if (p[x] != 0xff)
370 break;
371 }
372 y = 0;
373 if (x < sizeof(*mask)) {
374 for (y = 0; y < NBBY; y++) {
375 if ((p[x] & (0x80 >> y)) == 0)
376 break;
377 }
378 }
379 return x * NBBY + y;
380 }
381
382 void
383 in_len2mask(struct in_addr *mask, u_int len)
384 {
385 u_int i;
386 u_char *p;
387
388 p = (u_char *)mask;
389 memset(mask, 0, sizeof(*mask));
390 for (i = 0; i < len / NBBY; i++)
391 p[i] = 0xff;
392 if (len % NBBY)
393 p[i] = (0xff00 >> (len % NBBY)) & 0xff;
394 }
395
396 /*
397 * Generic internet control operations (ioctl's).
398 * Ifp is 0 if not an interface-specific ioctl.
399 */
400 /* ARGSUSED */
401 static int
402 in_control0(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
403 {
404 struct ifreq *ifr = (struct ifreq *)data;
405 struct in_ifaddr *ia = NULL;
406 struct in_aliasreq *ifra = (struct in_aliasreq *)data;
407 struct sockaddr_in oldaddr, *new_dstaddr;
408 int error, hostIsNew, maskIsNew;
409 int newifaddr = 0;
410 bool run_hook = false;
411 bool need_reinsert = false;
412 struct psref psref;
413 int bound;
414
415 switch (cmd) {
416 case SIOCALIFADDR:
417 case SIOCDLIFADDR:
418 case SIOCGLIFADDR:
419 if (ifp == NULL)
420 return EINVAL;
421 return in_lifaddr_ioctl(so, cmd, data, ifp);
422 case SIOCGIFADDRPREF:
423 case SIOCSIFADDRPREF:
424 if (ifp == NULL)
425 return EINVAL;
426 return ifaddrpref_ioctl(so, cmd, data, ifp);
427 #if NARP > 0
428 case SIOCGNBRINFO:
429 {
430 struct in_nbrinfo *nbi = (struct in_nbrinfo *)data;
431 struct llentry *ln;
432 struct in_addr nb_addr = nbi->addr; /* make local for safety */
433
434 ln = arplookup(ifp, &nb_addr, NULL, 0);
435 if (ln == NULL)
436 return EINVAL;
437 nbi->state = ln->ln_state;
438 nbi->asked = ln->ln_asked;
439 nbi->expire = ln->ln_expire ?
440 time_mono_to_wall(ln->ln_expire) : 0;
441 LLE_RUNLOCK(ln);
442 return 0;
443 }
444 #endif
445 }
446
447 bound = curlwp_bind();
448 /*
449 * Find address for this interface, if it exists.
450 */
451 if (ifp != NULL)
452 ia = in_get_ia_from_ifp_psref(ifp, &psref);
453
454 hostIsNew = 1; /* moved here to appease gcc */
455 switch (cmd) {
456 case SIOCAIFADDR:
457 case SIOCDIFADDR:
458 case SIOCGIFALIAS:
459 case SIOCGIFAFLAG_IN:
460 if (ifra->ifra_addr.sin_family == AF_INET) {
461 int s;
462
463 if (ia != NULL)
464 ia4_release(ia, &psref);
465 s = pserialize_read_enter();
466 IN_ADDRHASH_READER_FOREACH(ia,
467 ifra->ifra_addr.sin_addr.s_addr) {
468 if (ia->ia_ifp == ifp &&
469 in_hosteq(ia->ia_addr.sin_addr,
470 ifra->ifra_addr.sin_addr))
471 break;
472 }
473 if (ia != NULL)
474 ia4_acquire(ia, &psref);
475 pserialize_read_exit(s);
476 }
477 if ((cmd == SIOCDIFADDR ||
478 cmd == SIOCGIFALIAS ||
479 cmd == SIOCGIFAFLAG_IN) &&
480 ia == NULL) {
481 error = EADDRNOTAVAIL;
482 goto out;
483 }
484
485 if (cmd == SIOCDIFADDR &&
486 ifra->ifra_addr.sin_family == AF_UNSPEC) {
487 ifra->ifra_addr.sin_family = AF_INET;
488 }
489 /* FALLTHROUGH */
490 case SIOCSIFADDR:
491 if (ia == NULL || ia->ia_addr.sin_family != AF_INET)
492 ;
493 else if (ifra->ifra_addr.sin_len == 0) {
494 ifra->ifra_addr = ia->ia_addr;
495 hostIsNew = 0;
496 } else if (in_hosteq(ia->ia_addr.sin_addr,
497 ifra->ifra_addr.sin_addr))
498 hostIsNew = 0;
499 if (ifra->ifra_addr.sin_family != AF_INET) {
500 error = EAFNOSUPPORT;
501 goto out;
502 }
503 /* FALLTHROUGH */
504 case SIOCSIFDSTADDR:
505 if (cmd == SIOCSIFDSTADDR &&
506 ifreq_getaddr(cmd, ifr)->sa_family != AF_INET) {
507 error = EAFNOSUPPORT;
508 goto out;
509 }
510 /* FALLTHROUGH */
511 case SIOCSIFNETMASK:
512 if (ifp == NULL)
513 panic("in_control");
514
515 if (cmd == SIOCGIFALIAS || cmd == SIOCGIFAFLAG_IN)
516 break;
517
518 if (ia == NULL &&
519 (cmd == SIOCSIFNETMASK || cmd == SIOCSIFDSTADDR)) {
520 error = EADDRNOTAVAIL;
521 goto out;
522 }
523
524 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
525 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
526 NULL) != 0) {
527 error = EPERM;
528 goto out;
529 }
530
531 if (ia == NULL) {
532 ia = malloc(sizeof(*ia), M_IFADDR, M_WAITOK|M_ZERO);
533 if (ia == NULL) {
534 error = ENOBUFS;
535 goto out;
536 }
537 ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
538 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
539 ia->ia_ifa.ifa_netmask = sintosa(&ia->ia_sockmask);
540 #ifdef IPSELSRC
541 ia->ia_ifa.ifa_getifa = in_getifa;
542 #else /* IPSELSRC */
543 ia->ia_ifa.ifa_getifa = NULL;
544 #endif /* IPSELSRC */
545 ia->ia_sockmask.sin_len = 8;
546 ia->ia_sockmask.sin_family = AF_INET;
547 if (ifp->if_flags & IFF_BROADCAST) {
548 ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr);
549 ia->ia_broadaddr.sin_family = AF_INET;
550 }
551 ia->ia_ifp = ifp;
552 ia->ia_idsalt = cprng_fast32() % 65535;
553 LIST_INIT(&ia->ia_multiaddrs);
554 IN_ADDRHASH_ENTRY_INIT(ia);
555 IN_ADDRLIST_ENTRY_INIT(ia);
556 ifa_psref_init(&ia->ia_ifa);
557 /*
558 * We need a reference to make ia survive over in_ifinit
559 * that does ifaref and ifafree.
560 */
561 ifaref(&ia->ia_ifa);
562
563 newifaddr = 1;
564 }
565 break;
566
567 case SIOCSIFBRDADDR:
568 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
569 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
570 NULL) != 0) {
571 error = EPERM;
572 goto out;
573 }
574 /* FALLTHROUGH */
575
576 case SIOCGIFADDR:
577 case SIOCGIFNETMASK:
578 case SIOCGIFDSTADDR:
579 case SIOCGIFBRDADDR:
580 if (ia == NULL) {
581 error = EADDRNOTAVAIL;
582 goto out;
583 }
584 break;
585 }
586 error = 0;
587 switch (cmd) {
588
589 case SIOCGIFADDR:
590 ifreq_setaddr(cmd, ifr, sintocsa(&ia->ia_addr));
591 break;
592
593 case SIOCGIFBRDADDR:
594 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
595 error = EINVAL;
596 goto out;
597 }
598 ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_broadaddr));
599 break;
600
601 case SIOCGIFDSTADDR:
602 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
603 error = EINVAL;
604 goto out;
605 }
606 ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_dstaddr));
607 break;
608
609 case SIOCGIFNETMASK:
610 /*
611 * We keep the number of trailing zero bytes the sin_len field
612 * of ia_sockmask, so we fix this before we pass it back to
613 * userland.
614 */
615 oldaddr = ia->ia_sockmask;
616 oldaddr.sin_len = sizeof(struct sockaddr_in);
617 ifreq_setaddr(cmd, ifr, (const void *)&oldaddr);
618 break;
619
620 case SIOCSIFDSTADDR:
621 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
622 error = EINVAL;
623 goto out;
624 }
625 oldaddr = ia->ia_dstaddr;
626 ia->ia_dstaddr = *satocsin(ifreq_getdstaddr(cmd, ifr));
627 if ((error = if_addr_init(ifp, &ia->ia_ifa, false)) != 0) {
628 ia->ia_dstaddr = oldaddr;
629 goto out;
630 }
631 if (ia->ia_flags & IFA_ROUTE) {
632 ia->ia_ifa.ifa_dstaddr = sintosa(&oldaddr);
633 rtinit(&ia->ia_ifa, RTM_DELETE, RTF_HOST);
634 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
635 rtinit(&ia->ia_ifa, RTM_ADD, RTF_HOST|RTF_UP);
636 }
637 break;
638
639 case SIOCSIFBRDADDR:
640 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
641 error = EINVAL;
642 goto out;
643 }
644 ia->ia_broadaddr = *satocsin(ifreq_getbroadaddr(cmd, ifr));
645 break;
646
647 case SIOCSIFADDR:
648 if (!newifaddr) {
649 in_addrhash_remove(ia);
650 need_reinsert = true;
651 }
652 error = in_ifinit(ifp, ia, satocsin(ifreq_getaddr(cmd, ifr)),
653 NULL, 1);
654
655 run_hook = true;
656 break;
657
658 case SIOCSIFNETMASK:
659 in_scrubprefix(ia);
660 ia->ia_sockmask = *satocsin(ifreq_getaddr(cmd, ifr));
661 ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr;
662 if (!newifaddr) {
663 in_addrhash_remove(ia);
664 need_reinsert = true;
665 }
666 error = in_ifinit(ifp, ia, NULL, NULL, 0);
667 break;
668
669 case SIOCAIFADDR:
670 maskIsNew = 0;
671 if (ifra->ifra_mask.sin_len) {
672 in_scrubprefix(ia);
673 ia->ia_sockmask = ifra->ifra_mask;
674 ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr;
675 maskIsNew = 1;
676 }
677 if ((ifp->if_flags & IFF_POINTOPOINT) &&
678 (ifra->ifra_dstaddr.sin_family == AF_INET)) {
679 new_dstaddr = &ifra->ifra_dstaddr;
680 maskIsNew = 1; /* We lie; but the effect's the same */
681 } else
682 new_dstaddr = NULL;
683 if (ifra->ifra_addr.sin_family == AF_INET &&
684 (hostIsNew || maskIsNew)) {
685 if (!newifaddr) {
686 in_addrhash_remove(ia);
687 need_reinsert = true;
688 }
689 error = in_ifinit(ifp, ia, &ifra->ifra_addr,
690 new_dstaddr, 0);
691 }
692 if ((ifp->if_flags & IFF_BROADCAST) &&
693 (ifra->ifra_broadaddr.sin_family == AF_INET))
694 ia->ia_broadaddr = ifra->ifra_broadaddr;
695 run_hook = true;
696 break;
697
698 case SIOCGIFALIAS:
699 ifra->ifra_mask = ia->ia_sockmask;
700 if ((ifp->if_flags & IFF_POINTOPOINT) &&
701 (ia->ia_dstaddr.sin_family == AF_INET))
702 ifra->ifra_dstaddr = ia->ia_dstaddr;
703 else if ((ifp->if_flags & IFF_BROADCAST) &&
704 (ia->ia_broadaddr.sin_family == AF_INET))
705 ifra->ifra_broadaddr = ia->ia_broadaddr;
706 else
707 memset(&ifra->ifra_broadaddr, 0,
708 sizeof(ifra->ifra_broadaddr));
709 break;
710
711 case SIOCGIFAFLAG_IN:
712 ifr->ifr_addrflags = ia->ia4_flags;
713 break;
714
715 case SIOCDIFADDR:
716 ia4_release(ia, &psref);
717 ifaref(&ia->ia_ifa);
718 in_purgeaddr(&ia->ia_ifa);
719 pfil_run_addrhooks(if_pfil, cmd, &ia->ia_ifa);
720 ifafree(&ia->ia_ifa);
721 ia = NULL;
722 break;
723
724 #ifdef MROUTING
725 case SIOCGETVIFCNT:
726 case SIOCGETSGCNT:
727 error = mrt_ioctl(so, cmd, data);
728 break;
729 #endif /* MROUTING */
730
731 default:
732 error = ENOTTY;
733 goto out;
734 }
735
736 /*
737 * XXX insert regardless of error to make in_purgeaddr below work.
738 * Need to improve.
739 */
740 if (newifaddr) {
741 ifaref(&ia->ia_ifa);
742 ifa_insert(ifp, &ia->ia_ifa);
743
744 mutex_enter(&in_ifaddr_lock);
745 TAILQ_INSERT_TAIL(&in_ifaddrhead, ia, ia_list);
746 IN_ADDRLIST_WRITER_INSERT_TAIL(ia);
747 in_addrhash_insert_locked(ia);
748 /* Release a reference that is held just after creation. */
749 ifafree(&ia->ia_ifa);
750 mutex_exit(&in_ifaddr_lock);
751 } else if (need_reinsert) {
752 in_addrhash_insert(ia);
753 }
754
755 if (error == 0) {
756 if (run_hook)
757 pfil_run_addrhooks(if_pfil, cmd, &ia->ia_ifa);
758 } else if (newifaddr) {
759 KASSERT(ia != NULL);
760 in_purgeaddr(&ia->ia_ifa);
761 ia = NULL;
762 }
763
764 out:
765 if (!newifaddr && ia != NULL)
766 ia4_release(ia, &psref);
767 curlwp_bindx(bound);
768 return error;
769 }
770
771 int
772 in_control(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
773 {
774 int error;
775
776 #ifndef NET_MPSAFE
777 KASSERT(KERNEL_LOCKED_P());
778 #endif
779 error = in_control0(so, cmd, data, ifp);
780
781 return error;
782 }
783
784 /* Add ownaddr as loopback rtentry. */
785 static void
786 in_ifaddlocal(struct ifaddr *ifa)
787 {
788 struct in_ifaddr *ia;
789
790 ia = (struct in_ifaddr *)ifa;
791 if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY ||
792 (ia->ia_ifp->if_flags & IFF_POINTOPOINT &&
793 in_hosteq(ia->ia_dstaddr.sin_addr, ia->ia_addr.sin_addr)))
794 {
795 rt_addrmsg(RTM_NEWADDR, ifa);
796 return;
797 }
798
799 rt_ifa_addlocal(ifa);
800 }
801
802 /* Remove loopback entry of ownaddr */
803 static void
804 in_ifremlocal(struct ifaddr *ifa)
805 {
806 struct in_ifaddr *ia, *p;
807 struct ifaddr *alt_ifa = NULL;
808 int ia_count = 0;
809 int s;
810 struct psref psref;
811 int bound = curlwp_bind();
812
813 ia = (struct in_ifaddr *)ifa;
814 /* Delete the entry if exactly one ifaddr matches the
815 * address, ifa->ifa_addr. */
816 s = pserialize_read_enter();
817 IN_ADDRLIST_READER_FOREACH(p) {
818 if (!in_hosteq(p->ia_addr.sin_addr, ia->ia_addr.sin_addr))
819 continue;
820 if (p->ia_ifp != ia->ia_ifp)
821 alt_ifa = &p->ia_ifa;
822 if (++ia_count > 1 && alt_ifa != NULL)
823 break;
824 }
825 if (alt_ifa != NULL && ia_count > 1)
826 ifa_acquire(alt_ifa, &psref);
827 pserialize_read_exit(s);
828
829 if (ia_count == 0)
830 goto out;
831
832 rt_ifa_remlocal(ifa, ia_count == 1 ? NULL : alt_ifa);
833 if (alt_ifa != NULL && ia_count > 1)
834 ifa_release(alt_ifa, &psref);
835 out:
836 curlwp_bindx(bound);
837 }
838
839 static void
840 in_scrubaddr(struct in_ifaddr *ia)
841 {
842
843 /* stop DAD processing */
844 if (ia->ia_dad_stop != NULL)
845 ia->ia_dad_stop(&ia->ia_ifa);
846
847 in_scrubprefix(ia);
848 in_ifremlocal(&ia->ia_ifa);
849
850 mutex_enter(&in_ifaddr_lock);
851 if (ia->ia_allhosts != NULL) {
852 in_delmulti(ia->ia_allhosts);
853 ia->ia_allhosts = NULL;
854 }
855 mutex_exit(&in_ifaddr_lock);
856 }
857
858 /*
859 * Depends on it isn't called in concurrent. It should be guaranteed
860 * by ifa->ifa_ifp's ioctl lock. The possible callers are in_control
861 * and if_purgeaddrs; the former is called iva ifa->ifa_ifp's ioctl
862 * and the latter is called via ifa->ifa_ifp's if_detach. The functions
863 * never be executed in concurrent.
864 */
865 void
866 in_purgeaddr(struct ifaddr *ifa)
867 {
868 struct in_ifaddr *ia = (void *) ifa;
869 struct ifnet *ifp = ifa->ifa_ifp;
870
871 /* KASSERT(!ifa_held(ifa)); XXX need ifa_not_held (psref_not_held) */
872
873 ifa->ifa_flags |= IFA_DESTROYING;
874 in_scrubaddr(ia);
875
876 mutex_enter(&in_ifaddr_lock);
877 in_addrhash_remove_locked(ia);
878 TAILQ_REMOVE(&in_ifaddrhead, ia, ia_list);
879 IN_ADDRLIST_WRITER_REMOVE(ia);
880 ifa_remove(ifp, &ia->ia_ifa);
881 /* Assume ifa_remove called pserialize_perform and psref_destroy */
882 mutex_exit(&in_ifaddr_lock);
883 IN_ADDRHASH_ENTRY_DESTROY(ia);
884 IN_ADDRLIST_ENTRY_DESTROY(ia);
885 ifafree(&ia->ia_ifa);
886 in_setmaxmtu();
887 }
888
889 static void
890 in_addrhash_insert_locked(struct in_ifaddr *ia)
891 {
892
893 KASSERT(mutex_owned(&in_ifaddr_lock));
894
895 LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr), ia,
896 ia_hash);
897 IN_ADDRHASH_ENTRY_INIT(ia);
898 IN_ADDRHASH_WRITER_INSERT_HEAD(ia);
899 }
900
901 void
902 in_addrhash_insert(struct in_ifaddr *ia)
903 {
904
905 mutex_enter(&in_ifaddr_lock);
906 in_addrhash_insert_locked(ia);
907 mutex_exit(&in_ifaddr_lock);
908 }
909
910 static void
911 in_addrhash_remove_locked(struct in_ifaddr *ia)
912 {
913
914 KASSERT(mutex_owned(&in_ifaddr_lock));
915
916 LIST_REMOVE(ia, ia_hash);
917 IN_ADDRHASH_WRITER_REMOVE(ia);
918 }
919
920 void
921 in_addrhash_remove(struct in_ifaddr *ia)
922 {
923
924 mutex_enter(&in_ifaddr_lock);
925 in_addrhash_remove_locked(ia);
926 #ifdef NET_MPSAFE
927 pserialize_perform(in_ifaddrhash_psz);
928 #endif
929 mutex_exit(&in_ifaddr_lock);
930 IN_ADDRHASH_ENTRY_DESTROY(ia);
931 }
932
933 void
934 in_purgeif(struct ifnet *ifp) /* MUST be called at splsoftnet() */
935 {
936
937 IFNET_LOCK(ifp);
938 if_purgeaddrs(ifp, AF_INET, in_purgeaddr);
939 igmp_purgeif(ifp); /* manipulates pools */
940 #ifdef MROUTING
941 ip_mrouter_detach(ifp);
942 #endif
943 IFNET_UNLOCK(ifp);
944 }
945
946 /*
947 * SIOC[GAD]LIFADDR.
948 * SIOCGLIFADDR: get first address. (???)
949 * SIOCGLIFADDR with IFLR_PREFIX:
950 * get first address that matches the specified prefix.
951 * SIOCALIFADDR: add the specified address.
952 * SIOCALIFADDR with IFLR_PREFIX:
953 * EINVAL since we can't deduce hostid part of the address.
954 * SIOCDLIFADDR: delete the specified address.
955 * SIOCDLIFADDR with IFLR_PREFIX:
956 * delete the first address that matches the specified prefix.
957 * return values:
958 * EINVAL on invalid parameters
959 * EADDRNOTAVAIL on prefix match failed/specified address not found
960 * other values may be returned from in_ioctl()
961 */
962 static int
963 in_lifaddr_ioctl(struct socket *so, u_long cmd, void *data,
964 struct ifnet *ifp)
965 {
966 struct if_laddrreq *iflr = (struct if_laddrreq *)data;
967 struct ifaddr *ifa;
968 struct sockaddr *sa;
969
970 /* sanity checks */
971 if (data == NULL || ifp == NULL) {
972 panic("invalid argument to in_lifaddr_ioctl");
973 /*NOTRECHED*/
974 }
975
976 switch (cmd) {
977 case SIOCGLIFADDR:
978 /* address must be specified on GET with IFLR_PREFIX */
979 if ((iflr->flags & IFLR_PREFIX) == 0)
980 break;
981 /*FALLTHROUGH*/
982 case SIOCALIFADDR:
983 case SIOCDLIFADDR:
984 /* address must be specified on ADD and DELETE */
985 sa = (struct sockaddr *)&iflr->addr;
986 if (sa->sa_family != AF_INET)
987 return EINVAL;
988 if (sa->sa_len != sizeof(struct sockaddr_in))
989 return EINVAL;
990 /* XXX need improvement */
991 sa = (struct sockaddr *)&iflr->dstaddr;
992 if (sa->sa_family != AF_UNSPEC && sa->sa_family != AF_INET)
993 return EINVAL;
994 if (sa->sa_len != 0 && sa->sa_len != sizeof(struct sockaddr_in))
995 return EINVAL;
996 break;
997 default: /*shouldn't happen*/
998 #if 0
999 panic("invalid cmd to in_lifaddr_ioctl");
1000 /*NOTREACHED*/
1001 #else
1002 return EOPNOTSUPP;
1003 #endif
1004 }
1005 if (sizeof(struct in_addr) * NBBY < iflr->prefixlen)
1006 return EINVAL;
1007
1008 switch (cmd) {
1009 case SIOCALIFADDR:
1010 {
1011 struct in_aliasreq ifra;
1012
1013 if (iflr->flags & IFLR_PREFIX)
1014 return EINVAL;
1015
1016 /* copy args to in_aliasreq, perform ioctl(SIOCAIFADDR). */
1017 memset(&ifra, 0, sizeof(ifra));
1018 memcpy(ifra.ifra_name, iflr->iflr_name,
1019 sizeof(ifra.ifra_name));
1020
1021 memcpy(&ifra.ifra_addr, &iflr->addr,
1022 ((struct sockaddr *)&iflr->addr)->sa_len);
1023
1024 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/
1025 memcpy(&ifra.ifra_dstaddr, &iflr->dstaddr,
1026 ((struct sockaddr *)&iflr->dstaddr)->sa_len);
1027 }
1028
1029 ifra.ifra_mask.sin_family = AF_INET;
1030 ifra.ifra_mask.sin_len = sizeof(struct sockaddr_in);
1031 in_len2mask(&ifra.ifra_mask.sin_addr, iflr->prefixlen);
1032
1033 return in_control(so, SIOCAIFADDR, &ifra, ifp);
1034 }
1035 case SIOCGLIFADDR:
1036 case SIOCDLIFADDR:
1037 {
1038 struct in_ifaddr *ia;
1039 struct in_addr mask, candidate, match;
1040 struct sockaddr_in *sin;
1041 int cmp, s;
1042
1043 memset(&mask, 0, sizeof(mask));
1044 memset(&match, 0, sizeof(match)); /* XXX gcc */
1045 if (iflr->flags & IFLR_PREFIX) {
1046 /* lookup a prefix rather than address. */
1047 in_len2mask(&mask, iflr->prefixlen);
1048
1049 sin = (struct sockaddr_in *)&iflr->addr;
1050 match.s_addr = sin->sin_addr.s_addr;
1051 match.s_addr &= mask.s_addr;
1052
1053 /* if you set extra bits, that's wrong */
1054 if (match.s_addr != sin->sin_addr.s_addr)
1055 return EINVAL;
1056
1057 cmp = 1;
1058 } else {
1059 if (cmd == SIOCGLIFADDR) {
1060 /* on getting an address, take the 1st match */
1061 cmp = 0; /*XXX*/
1062 } else {
1063 /* on deleting an address, do exact match */
1064 in_len2mask(&mask, 32);
1065 sin = (struct sockaddr_in *)&iflr->addr;
1066 match.s_addr = sin->sin_addr.s_addr;
1067
1068 cmp = 1;
1069 }
1070 }
1071
1072 s = pserialize_read_enter();
1073 IFADDR_READER_FOREACH(ifa, ifp) {
1074 if (ifa->ifa_addr->sa_family != AF_INET)
1075 continue;
1076 if (cmp == 0)
1077 break;
1078 candidate.s_addr = ((struct sockaddr_in *)ifa->ifa_addr)->sin_addr.s_addr;
1079 candidate.s_addr &= mask.s_addr;
1080 if (candidate.s_addr == match.s_addr)
1081 break;
1082 }
1083 if (ifa == NULL) {
1084 pserialize_read_exit(s);
1085 return EADDRNOTAVAIL;
1086 }
1087 ia = (struct in_ifaddr *)ifa;
1088
1089 if (cmd == SIOCGLIFADDR) {
1090 /* fill in the if_laddrreq structure */
1091 memcpy(&iflr->addr, &ia->ia_addr, ia->ia_addr.sin_len);
1092
1093 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1094 memcpy(&iflr->dstaddr, &ia->ia_dstaddr,
1095 ia->ia_dstaddr.sin_len);
1096 } else
1097 memset(&iflr->dstaddr, 0, sizeof(iflr->dstaddr));
1098
1099 iflr->prefixlen =
1100 in_mask2len(&ia->ia_sockmask.sin_addr);
1101
1102 iflr->flags = 0; /*XXX*/
1103 pserialize_read_exit(s);
1104
1105 return 0;
1106 } else {
1107 struct in_aliasreq ifra;
1108
1109 /* fill in_aliasreq and do ioctl(SIOCDIFADDR) */
1110 memset(&ifra, 0, sizeof(ifra));
1111 memcpy(ifra.ifra_name, iflr->iflr_name,
1112 sizeof(ifra.ifra_name));
1113
1114 memcpy(&ifra.ifra_addr, &ia->ia_addr,
1115 ia->ia_addr.sin_len);
1116 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1117 memcpy(&ifra.ifra_dstaddr, &ia->ia_dstaddr,
1118 ia->ia_dstaddr.sin_len);
1119 }
1120 memcpy(&ifra.ifra_dstaddr, &ia->ia_sockmask,
1121 ia->ia_sockmask.sin_len);
1122 pserialize_read_exit(s);
1123
1124 return in_control(so, SIOCDIFADDR, &ifra, ifp);
1125 }
1126 }
1127 }
1128
1129 return EOPNOTSUPP; /*just for safety*/
1130 }
1131
1132 /*
1133 * Initialize an interface's internet address
1134 * and routing table entry.
1135 */
1136 int
1137 in_ifinit(struct ifnet *ifp, struct in_ifaddr *ia,
1138 const struct sockaddr_in *sin, const struct sockaddr_in *dst, int scrub)
1139 {
1140 u_int32_t i;
1141 struct sockaddr_in oldaddr, olddst;
1142 int s, oldflags, flags = RTF_UP, error, hostIsNew;
1143
1144 if (sin == NULL)
1145 sin = &ia->ia_addr;
1146 if (dst == NULL)
1147 dst = &ia->ia_dstaddr;
1148
1149 /*
1150 * Set up new addresses.
1151 */
1152 oldaddr = ia->ia_addr;
1153 olddst = ia->ia_dstaddr;
1154 oldflags = ia->ia4_flags;
1155 ia->ia_addr = *sin;
1156 ia->ia_dstaddr = *dst;
1157 hostIsNew = oldaddr.sin_family != AF_INET ||
1158 !in_hosteq(ia->ia_addr.sin_addr, oldaddr.sin_addr);
1159 if (!scrub)
1160 scrub = oldaddr.sin_family != ia->ia_dstaddr.sin_family ||
1161 !in_hosteq(ia->ia_dstaddr.sin_addr, olddst.sin_addr);
1162
1163 /*
1164 * Configure address flags.
1165 * We need to do this early because they may be adjusted
1166 * by if_addr_init depending on the address.
1167 */
1168 if (ia->ia4_flags & IN_IFF_DUPLICATED) {
1169 ia->ia4_flags &= ~IN_IFF_DUPLICATED;
1170 hostIsNew = 1;
1171 }
1172 if (ifp->if_link_state == LINK_STATE_DOWN) {
1173 ia->ia4_flags |= IN_IFF_DETACHED;
1174 ia->ia4_flags &= ~IN_IFF_TENTATIVE;
1175 } else if (hostIsNew && if_do_dad(ifp) && ip_dad_enabled())
1176 ia->ia4_flags |= IN_IFF_TRYTENTATIVE;
1177
1178 /*
1179 * Give the interface a chance to initialize
1180 * if this is its first address,
1181 * and to validate the address if necessary.
1182 */
1183 s = splsoftnet();
1184 error = if_addr_init(ifp, &ia->ia_ifa, true);
1185 splx(s);
1186 /* Now clear the try tentative flag, its job is done. */
1187 ia->ia4_flags &= ~IN_IFF_TRYTENTATIVE;
1188 if (error != 0) {
1189 ia->ia_addr = oldaddr;
1190 ia->ia_dstaddr = olddst;
1191 ia->ia4_flags = oldflags;
1192 return error;
1193 }
1194
1195 if (scrub || hostIsNew) {
1196 int newflags = ia->ia4_flags;
1197
1198 ia->ia_ifa.ifa_addr = sintosa(&oldaddr);
1199 ia->ia_ifa.ifa_dstaddr = sintosa(&olddst);
1200 ia->ia4_flags = oldflags;
1201 if (hostIsNew)
1202 in_scrubaddr(ia);
1203 else if (scrub)
1204 in_scrubprefix(ia);
1205 ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
1206 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
1207 ia->ia4_flags = newflags;
1208 }
1209
1210 i = ia->ia_addr.sin_addr.s_addr;
1211 if (ifp->if_flags & IFF_POINTOPOINT)
1212 ia->ia_netmask = INADDR_BROADCAST; /* default to /32 */
1213 else if (IN_CLASSA(i))
1214 ia->ia_netmask = IN_CLASSA_NET;
1215 else if (IN_CLASSB(i))
1216 ia->ia_netmask = IN_CLASSB_NET;
1217 else
1218 ia->ia_netmask = IN_CLASSC_NET;
1219 /*
1220 * The subnet mask usually includes at least the standard network part,
1221 * but may may be smaller in the case of supernetting.
1222 * If it is set, we believe it.
1223 */
1224 if (ia->ia_subnetmask == 0) {
1225 ia->ia_subnetmask = ia->ia_netmask;
1226 ia->ia_sockmask.sin_addr.s_addr = ia->ia_subnetmask;
1227 } else
1228 ia->ia_netmask &= ia->ia_subnetmask;
1229
1230 ia->ia_net = i & ia->ia_netmask;
1231 ia->ia_subnet = i & ia->ia_subnetmask;
1232 in_socktrim(&ia->ia_sockmask);
1233
1234 /* re-calculate the "in_maxmtu" value */
1235 in_setmaxmtu();
1236
1237 ia->ia_ifa.ifa_metric = ifp->if_metric;
1238 if (ifp->if_flags & IFF_BROADCAST) {
1239 if (ia->ia_subnetmask == IN_RFC3021_MASK) {
1240 ia->ia_broadaddr.sin_addr.s_addr = INADDR_BROADCAST;
1241 ia->ia_netbroadcast.s_addr = INADDR_BROADCAST;
1242 } else {
1243 ia->ia_broadaddr.sin_addr.s_addr =
1244 ia->ia_subnet | ~ia->ia_subnetmask;
1245 ia->ia_netbroadcast.s_addr =
1246 ia->ia_net | ~ia->ia_netmask;
1247 }
1248 } else if (ifp->if_flags & IFF_LOOPBACK) {
1249 ia->ia_dstaddr = ia->ia_addr;
1250 flags |= RTF_HOST;
1251 } else if (ifp->if_flags & IFF_POINTOPOINT) {
1252 if (ia->ia_dstaddr.sin_family != AF_INET)
1253 return (0);
1254 flags |= RTF_HOST;
1255 }
1256
1257 /* Add the local route to the address */
1258 in_ifaddlocal(&ia->ia_ifa);
1259
1260 /* Add the prefix route for the address */
1261 error = in_addprefix(ia, flags);
1262
1263 /*
1264 * If the interface supports multicast, join the "all hosts"
1265 * multicast group on that interface.
1266 */
1267 mutex_enter(&in_ifaddr_lock);
1268 if ((ifp->if_flags & IFF_MULTICAST) != 0 && ia->ia_allhosts == NULL) {
1269 struct in_addr addr;
1270
1271 addr.s_addr = INADDR_ALLHOSTS_GROUP;
1272 ia->ia_allhosts = in_addmulti(&addr, ifp);
1273 }
1274 mutex_exit(&in_ifaddr_lock);
1275
1276 if (hostIsNew &&
1277 ia->ia4_flags & IN_IFF_TENTATIVE &&
1278 if_do_dad(ifp))
1279 ia->ia_dad_start((struct ifaddr *)ia);
1280
1281 return error;
1282 }
1283
1284 #define rtinitflags(x) \
1285 ((((x)->ia_ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) != 0) \
1286 ? RTF_HOST : 0)
1287
1288 /*
1289 * add a route to prefix ("connected route" in cisco terminology).
1290 * does nothing if there's some interface address with the same prefix already.
1291 */
1292 static int
1293 in_addprefix(struct in_ifaddr *target, int flags)
1294 {
1295 struct in_ifaddr *ia;
1296 struct in_addr prefix, mask, p;
1297 int error;
1298 int s;
1299
1300 if ((flags & RTF_HOST) != 0)
1301 prefix = target->ia_dstaddr.sin_addr;
1302 else {
1303 prefix = target->ia_addr.sin_addr;
1304 mask = target->ia_sockmask.sin_addr;
1305 prefix.s_addr &= mask.s_addr;
1306 }
1307
1308 s = pserialize_read_enter();
1309 IN_ADDRLIST_READER_FOREACH(ia) {
1310 if (rtinitflags(ia))
1311 p = ia->ia_dstaddr.sin_addr;
1312 else {
1313 p = ia->ia_addr.sin_addr;
1314 p.s_addr &= ia->ia_sockmask.sin_addr.s_addr;
1315 }
1316
1317 if (prefix.s_addr != p.s_addr)
1318 continue;
1319
1320 /*
1321 * if we got a matching prefix route inserted by other
1322 * interface address, we don't need to bother
1323 *
1324 * XXX RADIX_MPATH implications here? -dyoung
1325 */
1326 if (ia->ia_flags & IFA_ROUTE) {
1327 pserialize_read_exit(s);
1328 return 0;
1329 }
1330 }
1331 pserialize_read_exit(s);
1332
1333 /*
1334 * noone seem to have prefix route. insert it.
1335 */
1336 error = rtinit(&target->ia_ifa, RTM_ADD, flags);
1337 if (error == 0)
1338 target->ia_flags |= IFA_ROUTE;
1339 else if (error == EEXIST) {
1340 /*
1341 * the fact the route already exists is not an error.
1342 */
1343 error = 0;
1344 }
1345 return error;
1346 }
1347
1348 /*
1349 * remove a route to prefix ("connected route" in cisco terminology).
1350 * re-installs the route by using another interface address, if there's one
1351 * with the same prefix (otherwise we lose the route mistakenly).
1352 */
1353 static int
1354 in_scrubprefix(struct in_ifaddr *target)
1355 {
1356 struct in_ifaddr *ia;
1357 struct in_addr prefix, mask, p;
1358 int error;
1359 int s;
1360
1361 /* If we don't have IFA_ROUTE we have nothing to do */
1362 if ((target->ia_flags & IFA_ROUTE) == 0)
1363 return 0;
1364
1365 if (rtinitflags(target))
1366 prefix = target->ia_dstaddr.sin_addr;
1367 else {
1368 prefix = target->ia_addr.sin_addr;
1369 mask = target->ia_sockmask.sin_addr;
1370 prefix.s_addr &= mask.s_addr;
1371 }
1372
1373 s = pserialize_read_enter();
1374 IN_ADDRLIST_READER_FOREACH(ia) {
1375 if (rtinitflags(ia))
1376 p = ia->ia_dstaddr.sin_addr;
1377 else {
1378 p = ia->ia_addr.sin_addr;
1379 p.s_addr &= ia->ia_sockmask.sin_addr.s_addr;
1380 }
1381
1382 if (prefix.s_addr != p.s_addr)
1383 continue;
1384
1385 /*
1386 * if we got a matching prefix route, move IFA_ROUTE to him
1387 */
1388 if ((ia->ia_flags & IFA_ROUTE) == 0) {
1389 struct psref psref;
1390 int bound = curlwp_bind();
1391
1392 ia4_acquire(ia, &psref);
1393 pserialize_read_exit(s);
1394
1395 rtinit(&target->ia_ifa, RTM_DELETE,
1396 rtinitflags(target));
1397 target->ia_flags &= ~IFA_ROUTE;
1398
1399 error = rtinit(&ia->ia_ifa, RTM_ADD,
1400 rtinitflags(ia) | RTF_UP);
1401 if (error == 0)
1402 ia->ia_flags |= IFA_ROUTE;
1403
1404 ia4_release(ia, &psref);
1405 curlwp_bindx(bound);
1406
1407 return error;
1408 }
1409 }
1410 pserialize_read_exit(s);
1411
1412 /*
1413 * noone seem to have prefix route. remove it.
1414 */
1415 rtinit(&target->ia_ifa, RTM_DELETE, rtinitflags(target));
1416 target->ia_flags &= ~IFA_ROUTE;
1417 return 0;
1418 }
1419
1420 #undef rtinitflags
1421
1422 /*
1423 * Return 1 if the address might be a local broadcast address.
1424 */
1425 int
1426 in_broadcast(struct in_addr in, struct ifnet *ifp)
1427 {
1428 struct ifaddr *ifa;
1429 int s;
1430
1431 KASSERT(ifp != NULL);
1432
1433 if (in.s_addr == INADDR_BROADCAST ||
1434 in_nullhost(in))
1435 return 1;
1436 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1437 return 0;
1438 /*
1439 * Look through the list of addresses for a match
1440 * with a broadcast address.
1441 */
1442 #define ia (ifatoia(ifa))
1443 s = pserialize_read_enter();
1444 IFADDR_READER_FOREACH(ifa, ifp) {
1445 if (ifa->ifa_addr->sa_family == AF_INET &&
1446 !in_hosteq(in, ia->ia_addr.sin_addr) &&
1447 (in_hosteq(in, ia->ia_broadaddr.sin_addr) ||
1448 in_hosteq(in, ia->ia_netbroadcast) ||
1449 (hostzeroisbroadcast &&
1450 /*
1451 * Check for old-style (host 0) broadcast, but
1452 * taking into account that RFC 3021 obsoletes it.
1453 */
1454 ia->ia_subnetmask != IN_RFC3021_MASK &&
1455 (in.s_addr == ia->ia_subnet ||
1456 in.s_addr == ia->ia_net)))) {
1457 pserialize_read_exit(s);
1458 return 1;
1459 }
1460 }
1461 pserialize_read_exit(s);
1462 return (0);
1463 #undef ia
1464 }
1465
1466 /*
1467 * perform DAD when interface becomes IFF_UP.
1468 */
1469 void
1470 in_if_link_up(struct ifnet *ifp)
1471 {
1472 struct ifaddr *ifa;
1473 struct in_ifaddr *ia;
1474 int s, bound;
1475
1476 /* Ensure it's sane to run DAD */
1477 if (ifp->if_link_state == LINK_STATE_DOWN)
1478 return;
1479 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING))
1480 return;
1481
1482 bound = curlwp_bind();
1483 s = pserialize_read_enter();
1484 IFADDR_READER_FOREACH(ifa, ifp) {
1485 struct psref psref;
1486
1487 if (ifa->ifa_addr->sa_family != AF_INET)
1488 continue;
1489 ifa_acquire(ifa, &psref);
1490 pserialize_read_exit(s);
1491
1492 ia = (struct in_ifaddr *)ifa;
1493
1494 /* If detached then mark as tentative */
1495 if (ia->ia4_flags & IN_IFF_DETACHED) {
1496 ia->ia4_flags &= ~IN_IFF_DETACHED;
1497 if (ip_dad_enabled() && if_do_dad(ifp) &&
1498 ia->ia_dad_start != NULL)
1499 ia->ia4_flags |= IN_IFF_TENTATIVE;
1500 else if ((ia->ia4_flags & IN_IFF_TENTATIVE) == 0)
1501 rt_addrmsg(RTM_NEWADDR, ifa);
1502 }
1503
1504 if (ia->ia4_flags & IN_IFF_TENTATIVE) {
1505 /* Clear the duplicated flag as we're starting DAD. */
1506 ia->ia4_flags &= ~IN_IFF_DUPLICATED;
1507 ia->ia_dad_start(ifa);
1508 }
1509
1510 s = pserialize_read_enter();
1511 ifa_release(ifa, &psref);
1512 }
1513 pserialize_read_exit(s);
1514 curlwp_bindx(bound);
1515 }
1516
1517 void
1518 in_if_up(struct ifnet *ifp)
1519 {
1520
1521 /* interface may not support link state, so bring it up also */
1522 in_if_link_up(ifp);
1523 }
1524
1525 /*
1526 * Mark all addresses as detached.
1527 */
1528 void
1529 in_if_link_down(struct ifnet *ifp)
1530 {
1531 struct ifaddr *ifa;
1532 struct in_ifaddr *ia;
1533 int s, bound;
1534
1535 bound = curlwp_bind();
1536 s = pserialize_read_enter();
1537 IFADDR_READER_FOREACH(ifa, ifp) {
1538 struct psref psref;
1539
1540 if (ifa->ifa_addr->sa_family != AF_INET)
1541 continue;
1542 ifa_acquire(ifa, &psref);
1543 pserialize_read_exit(s);
1544
1545 ia = (struct in_ifaddr *)ifa;
1546
1547 /* Stop DAD processing */
1548 if (ia->ia_dad_stop != NULL)
1549 ia->ia_dad_stop(ifa);
1550
1551 /*
1552 * Mark the address as detached.
1553 */
1554 if (!(ia->ia4_flags & IN_IFF_DETACHED)) {
1555 ia->ia4_flags |= IN_IFF_DETACHED;
1556 ia->ia4_flags &=
1557 ~(IN_IFF_TENTATIVE | IN_IFF_DUPLICATED);
1558 rt_addrmsg(RTM_NEWADDR, ifa);
1559 }
1560
1561 s = pserialize_read_enter();
1562 ifa_release(ifa, &psref);
1563 }
1564 pserialize_read_exit(s);
1565 curlwp_bindx(bound);
1566 }
1567
1568 void
1569 in_if_down(struct ifnet *ifp)
1570 {
1571
1572 in_if_link_down(ifp);
1573 #if NARP > 0
1574 lltable_purge_entries(LLTABLE(ifp));
1575 #endif
1576 }
1577
1578 void
1579 in_if_link_state_change(struct ifnet *ifp, int link_state)
1580 {
1581
1582 switch (link_state) {
1583 case LINK_STATE_DOWN:
1584 in_if_link_down(ifp);
1585 break;
1586 case LINK_STATE_UP:
1587 in_if_link_up(ifp);
1588 break;
1589 }
1590 }
1591
1592 /*
1593 * in_lookup_multi: look up the in_multi record for a given IP
1594 * multicast address on a given interface. If no matching record is
1595 * found, return NULL.
1596 */
1597 struct in_multi *
1598 in_lookup_multi(struct in_addr addr, ifnet_t *ifp)
1599 {
1600 struct in_multi *inm;
1601
1602 KASSERT(rw_lock_held(&in_multilock));
1603
1604 LIST_FOREACH(inm, &IN_MULTI_HASH(addr.s_addr, ifp), inm_list) {
1605 if (in_hosteq(inm->inm_addr, addr) && inm->inm_ifp == ifp)
1606 break;
1607 }
1608 return inm;
1609 }
1610
1611 /*
1612 * in_multi_group: check whether the address belongs to an IP multicast
1613 * group we are joined on this interface. Returns true or false.
1614 */
1615 bool
1616 in_multi_group(struct in_addr addr, ifnet_t *ifp, int flags)
1617 {
1618 bool ingroup;
1619
1620 if (__predict_true(flags & IP_IGMP_MCAST) == 0) {
1621 rw_enter(&in_multilock, RW_READER);
1622 ingroup = in_lookup_multi(addr, ifp) != NULL;
1623 rw_exit(&in_multilock);
1624 } else {
1625 /* XXX Recursive call from ip_output(). */
1626 KASSERT(rw_lock_held(&in_multilock));
1627 ingroup = in_lookup_multi(addr, ifp) != NULL;
1628 }
1629 return ingroup;
1630 }
1631
1632 /*
1633 * Add an address to the list of IP multicast addresses for a given interface.
1634 */
1635 struct in_multi *
1636 in_addmulti(struct in_addr *ap, ifnet_t *ifp)
1637 {
1638 struct sockaddr_in sin;
1639 struct in_multi *inm;
1640
1641 /*
1642 * See if address already in list.
1643 */
1644 rw_enter(&in_multilock, RW_WRITER);
1645 inm = in_lookup_multi(*ap, ifp);
1646 if (inm != NULL) {
1647 /*
1648 * Found it; just increment the reference count.
1649 */
1650 inm->inm_refcount++;
1651 rw_exit(&in_multilock);
1652 return inm;
1653 }
1654
1655 /*
1656 * New address; allocate a new multicast record.
1657 */
1658 inm = pool_get(&inmulti_pool, PR_NOWAIT);
1659 if (inm == NULL) {
1660 rw_exit(&in_multilock);
1661 return NULL;
1662 }
1663 inm->inm_addr = *ap;
1664 inm->inm_ifp = ifp;
1665 inm->inm_refcount = 1;
1666
1667 /*
1668 * Ask the network driver to update its multicast reception
1669 * filter appropriately for the new address.
1670 */
1671 sockaddr_in_init(&sin, ap, 0);
1672 if (if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin)) != 0) {
1673 rw_exit(&in_multilock);
1674 pool_put(&inmulti_pool, inm);
1675 return NULL;
1676 }
1677
1678 /*
1679 * Let IGMP know that we have joined a new IP multicast group.
1680 */
1681 if (igmp_joingroup(inm) != 0) {
1682 rw_exit(&in_multilock);
1683 pool_put(&inmulti_pool, inm);
1684 return NULL;
1685 }
1686 LIST_INSERT_HEAD(
1687 &IN_MULTI_HASH(inm->inm_addr.s_addr, ifp),
1688 inm, inm_list);
1689 in_multientries++;
1690 rw_exit(&in_multilock);
1691
1692 return inm;
1693 }
1694
1695 /*
1696 * Delete a multicast address record.
1697 */
1698 void
1699 in_delmulti(struct in_multi *inm)
1700 {
1701 struct sockaddr_in sin;
1702
1703 rw_enter(&in_multilock, RW_WRITER);
1704 if (--inm->inm_refcount > 0) {
1705 rw_exit(&in_multilock);
1706 return;
1707 }
1708
1709 /*
1710 * No remaining claims to this record; let IGMP know that
1711 * we are leaving the multicast group.
1712 */
1713 igmp_leavegroup(inm);
1714
1715 /*
1716 * Notify the network driver to update its multicast reception
1717 * filter.
1718 */
1719 sockaddr_in_init(&sin, &inm->inm_addr, 0);
1720 if_mcast_op(inm->inm_ifp, SIOCDELMULTI, sintosa(&sin));
1721
1722 /*
1723 * Unlink from list.
1724 */
1725 LIST_REMOVE(inm, inm_list);
1726 in_multientries--;
1727 rw_exit(&in_multilock);
1728
1729 pool_put(&inmulti_pool, inm);
1730 }
1731
1732 /*
1733 * in_next_multi: step through all of the in_multi records, one at a time.
1734 * The current position is remembered in "step", which the caller must
1735 * provide. in_first_multi(), below, must be called to initialize "step"
1736 * and get the first record. Both macros return a NULL "inm" when there
1737 * are no remaining records.
1738 */
1739 struct in_multi *
1740 in_next_multi(struct in_multistep *step)
1741 {
1742 struct in_multi *inm;
1743
1744 KASSERT(rw_lock_held(&in_multilock));
1745
1746 while (step->i_inm == NULL && step->i_n < IN_MULTI_HASH_SIZE) {
1747 step->i_inm = LIST_FIRST(&in_multihashtbl[++step->i_n]);
1748 }
1749 if ((inm = step->i_inm) != NULL) {
1750 step->i_inm = LIST_NEXT(inm, inm_list);
1751 }
1752 return inm;
1753 }
1754
1755 struct in_multi *
1756 in_first_multi(struct in_multistep *step)
1757 {
1758 KASSERT(rw_lock_held(&in_multilock));
1759
1760 step->i_n = 0;
1761 step->i_inm = LIST_FIRST(&in_multihashtbl[0]);
1762 return in_next_multi(step);
1763 }
1764
1765 void
1766 in_multi_lock(int op)
1767 {
1768 rw_enter(&in_multilock, op);
1769 }
1770
1771 void
1772 in_multi_unlock(void)
1773 {
1774 rw_exit(&in_multilock);
1775 }
1776
1777 int
1778 in_multi_lock_held(void)
1779 {
1780 return rw_lock_held(&in_multilock);
1781 }
1782
1783 struct in_ifaddr *
1784 in_selectsrc(struct sockaddr_in *sin, struct route *ro,
1785 int soopts, struct ip_moptions *mopts, int *errorp, struct psref *psref)
1786 {
1787 struct rtentry *rt = NULL;
1788 struct in_ifaddr *ia = NULL;
1789
1790 KASSERT(ISSET(curlwp->l_pflag, LP_BOUND));
1791 /*
1792 * If route is known or can be allocated now, take the
1793 * source address from the interface. Otherwise, punt.
1794 */
1795 if ((soopts & SO_DONTROUTE) != 0)
1796 rtcache_free(ro);
1797 else {
1798 union {
1799 struct sockaddr dst;
1800 struct sockaddr_in dst4;
1801 } u;
1802
1803 sockaddr_in_init(&u.dst4, &sin->sin_addr, 0);
1804 rt = rtcache_lookup(ro, &u.dst);
1805 }
1806 /*
1807 * If we found a route, use the address
1808 * corresponding to the outgoing interface
1809 * unless it is the loopback (in case a route
1810 * to our address on another net goes to loopback).
1811 *
1812 * XXX Is this still true? Do we care?
1813 */
1814 if (rt != NULL && (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
1815 int s;
1816 struct ifaddr *ifa;
1817 /*
1818 * Just in case. May not need to do this workaround.
1819 * Revisit when working on rtentry MP-ification.
1820 */
1821 s = pserialize_read_enter();
1822 IFADDR_READER_FOREACH(ifa, rt->rt_ifp) {
1823 if (ifa == rt->rt_ifa)
1824 break;
1825 }
1826 if (ifa != NULL)
1827 ifa_acquire(ifa, psref);
1828 pserialize_read_exit(s);
1829
1830 ia = ifatoia(ifa);
1831 }
1832 if (ia == NULL) {
1833 u_int16_t fport = sin->sin_port;
1834 struct ifaddr *ifa;
1835 int s;
1836
1837 sin->sin_port = 0;
1838 ifa = ifa_ifwithladdr_psref(sintosa(sin), psref);
1839 sin->sin_port = fport;
1840 if (ifa == NULL) {
1841 /* Find 1st non-loopback AF_INET address */
1842 s = pserialize_read_enter();
1843 IN_ADDRLIST_READER_FOREACH(ia) {
1844 if (!(ia->ia_ifp->if_flags & IFF_LOOPBACK))
1845 break;
1846 }
1847 if (ia != NULL)
1848 ia4_acquire(ia, psref);
1849 pserialize_read_exit(s);
1850 } else {
1851 /* ia is already referenced by psref */
1852 ia = ifatoia(ifa);
1853 }
1854 if (ia == NULL) {
1855 *errorp = EADDRNOTAVAIL;
1856 goto out;
1857 }
1858 }
1859 /*
1860 * If the destination address is multicast and an outgoing
1861 * interface has been set as a multicast option, use the
1862 * address of that interface as our source address.
1863 */
1864 if (IN_MULTICAST(sin->sin_addr.s_addr) && mopts != NULL) {
1865 struct ip_moptions *imo;
1866
1867 imo = mopts;
1868 if (imo->imo_multicast_if_index != 0) {
1869 struct ifnet *ifp;
1870 int s;
1871
1872 if (ia != NULL)
1873 ia4_release(ia, psref);
1874 s = pserialize_read_enter();
1875 ifp = if_byindex(imo->imo_multicast_if_index);
1876 if (ifp != NULL) {
1877 /* XXX */
1878 ia = in_get_ia_from_ifp_psref(ifp, psref);
1879 } else
1880 ia = NULL;
1881 if (ia == NULL || ia->ia4_flags & IN_IFF_NOTREADY) {
1882 pserialize_read_exit(s);
1883 if (ia != NULL)
1884 ia4_release(ia, psref);
1885 *errorp = EADDRNOTAVAIL;
1886 ia = NULL;
1887 goto out;
1888 }
1889 pserialize_read_exit(s);
1890 }
1891 }
1892 if (ia->ia_ifa.ifa_getifa != NULL) {
1893 ia = ifatoia((*ia->ia_ifa.ifa_getifa)(&ia->ia_ifa,
1894 sintosa(sin)));
1895 if (ia == NULL) {
1896 *errorp = EADDRNOTAVAIL;
1897 goto out;
1898 }
1899 /* FIXME NOMPSAFE */
1900 ia4_acquire(ia, psref);
1901 }
1902 #ifdef GETIFA_DEBUG
1903 else
1904 printf("%s: missing ifa_getifa\n", __func__);
1905 #endif
1906 out:
1907 rtcache_unref(rt, ro);
1908 return ia;
1909 }
1910
1911 int
1912 in_tunnel_validate(const struct ip *ip, struct in_addr src, struct in_addr dst)
1913 {
1914 struct in_ifaddr *ia4;
1915 int s;
1916
1917 /* check for address match */
1918 if (src.s_addr != ip->ip_dst.s_addr ||
1919 dst.s_addr != ip->ip_src.s_addr)
1920 return 0;
1921
1922 /* martian filters on outer source - NOT done in ip_input! */
1923 if (IN_MULTICAST(ip->ip_src.s_addr))
1924 return 0;
1925 switch ((ntohl(ip->ip_src.s_addr) & 0xff000000) >> 24) {
1926 case 0:
1927 case 127:
1928 case 255:
1929 return 0;
1930 }
1931 /* reject packets with broadcast on source */
1932 s = pserialize_read_enter();
1933 IN_ADDRLIST_READER_FOREACH(ia4) {
1934 if ((ia4->ia_ifa.ifa_ifp->if_flags & IFF_BROADCAST) == 0)
1935 continue;
1936 if (ip->ip_src.s_addr == ia4->ia_broadaddr.sin_addr.s_addr) {
1937 pserialize_read_exit(s);
1938 return 0;
1939 }
1940 }
1941 pserialize_read_exit(s);
1942
1943 /* NOTE: packet may dropped by uRPF */
1944
1945 /* return valid bytes length */
1946 return sizeof(src) + sizeof(dst);
1947 }
1948
1949 #if NARP > 0
1950
1951 #define IN_LLTBL_DEFAULT_HSIZE 32
1952 #define IN_LLTBL_HASH(k, h) \
1953 (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1))
1954
1955 /*
1956 * Do actual deallocation of @lle.
1957 * Called by LLE_FREE_LOCKED when number of references
1958 * drops to zero.
1959 */
1960 static void
1961 in_lltable_destroy_lle(struct llentry *lle)
1962 {
1963
1964 KASSERTMSG(lle->la_numheld == 0, "la_numheld=%d", lle->la_numheld);
1965
1966 LLE_WUNLOCK(lle);
1967 LLE_LOCK_DESTROY(lle);
1968 llentry_pool_put(lle);
1969 }
1970
1971 static struct llentry *
1972 in_lltable_new(struct in_addr addr4, u_int flags)
1973 {
1974 struct llentry *lle;
1975
1976 lle = llentry_pool_get(PR_NOWAIT);
1977 if (lle == NULL) /* NB: caller generates msg */
1978 return NULL;
1979
1980 lle->r_l3addr.addr4 = addr4;
1981 lle->lle_refcnt = 1;
1982 lle->lle_free = in_lltable_destroy_lle;
1983 LLE_LOCK_INIT(lle);
1984 callout_init(&lle->la_timer, CALLOUT_MPSAFE);
1985
1986 return lle;
1987 }
1988
1989 #define IN_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \
1990 (((ntohl((d).s_addr) ^ (a)->sin_addr.s_addr) & (m)->sin_addr.s_addr)) == 0 )
1991
1992 static int
1993 in_lltable_match_prefix(const struct sockaddr *prefix,
1994 const struct sockaddr *mask, u_int flags, struct llentry *lle)
1995 {
1996 const struct sockaddr_in *pfx = (const struct sockaddr_in *)prefix;
1997 const struct sockaddr_in *msk = (const struct sockaddr_in *)mask;
1998 struct in_addr lle_addr;
1999
2000 lle_addr.s_addr = ntohl(lle->r_l3addr.addr4.s_addr);
2001
2002 /*
2003 * (flags & LLE_STATIC) means deleting all entries
2004 * including static ARP entries.
2005 */
2006 if (IN_ARE_MASKED_ADDR_EQUAL(lle_addr, pfx, msk) &&
2007 ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC)))
2008 return (1);
2009
2010 return (0);
2011 }
2012
2013 static void
2014 in_lltable_free_entry(struct lltable *llt, struct llentry *lle)
2015 {
2016 size_t pkts_dropped;
2017
2018 LLE_WLOCK_ASSERT(lle);
2019 KASSERT(llt != NULL);
2020
2021 pkts_dropped = llentry_free(lle);
2022 arp_stat_add(ARP_STAT_DFRDROPPED, (uint64_t)pkts_dropped);
2023 }
2024
2025 static int
2026 in_lltable_rtcheck(struct ifnet *ifp, u_int flags, const struct sockaddr *l3addr,
2027 const struct rtentry *rt)
2028 {
2029 int error = EINVAL;
2030
2031 if (rt == NULL)
2032 return error;
2033
2034 /*
2035 * If the gateway for an existing host route matches the target L3
2036 * address, which is a special route inserted by some implementation
2037 * such as MANET, and the interface is of the correct type, then
2038 * allow for ARP to proceed.
2039 */
2040 if (rt->rt_flags & RTF_GATEWAY) {
2041 if (!(rt->rt_flags & RTF_HOST) || !rt->rt_ifp ||
2042 rt->rt_ifp->if_type != IFT_ETHER ||
2043 (rt->rt_ifp->if_flags & IFF_NOARP) != 0 ||
2044 memcmp(rt->rt_gateway->sa_data, l3addr->sa_data,
2045 sizeof(in_addr_t)) != 0) {
2046 goto error;
2047 }
2048 }
2049
2050 /*
2051 * Make sure that at least the destination address is covered
2052 * by the route. This is for handling the case where 2 or more
2053 * interfaces have the same prefix. An incoming packet arrives
2054 * on one interface and the corresponding outgoing packet leaves
2055 * another interface.
2056 */
2057 if (!(rt->rt_flags & RTF_HOST) && rt->rt_ifp != ifp) {
2058 const char *sa, *mask, *addr, *lim;
2059 int len;
2060
2061 mask = (const char *)rt_mask(rt);
2062 /*
2063 * Just being extra cautious to avoid some custom
2064 * code getting into trouble.
2065 */
2066 if (mask == NULL)
2067 goto error;
2068
2069 sa = (const char *)rt_getkey(rt);
2070 addr = (const char *)l3addr;
2071 len = ((const struct sockaddr_in *)l3addr)->sin_len;
2072 lim = addr + len;
2073
2074 for ( ; addr < lim; sa++, mask++, addr++) {
2075 if ((*sa ^ *addr) & *mask) {
2076 #ifdef DIAGNOSTIC
2077 log(LOG_INFO, "IPv4 address: \"%s\" is not on the network\n",
2078 inet_ntoa(((const struct sockaddr_in *)l3addr)->sin_addr));
2079 #endif
2080 goto error;
2081 }
2082 }
2083 }
2084
2085 error = 0;
2086 error:
2087 return error;
2088 }
2089
2090 static inline uint32_t
2091 in_lltable_hash_dst(const struct in_addr dst, uint32_t hsize)
2092 {
2093
2094 return (IN_LLTBL_HASH(dst.s_addr, hsize));
2095 }
2096
2097 static uint32_t
2098 in_lltable_hash(const struct llentry *lle, uint32_t hsize)
2099 {
2100
2101 return (in_lltable_hash_dst(lle->r_l3addr.addr4, hsize));
2102 }
2103
2104 static void
2105 in_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa)
2106 {
2107 struct sockaddr_in *sin;
2108
2109 sin = (struct sockaddr_in *)sa;
2110 memset(sin, 0, sizeof(*sin));
2111 sin->sin_family = AF_INET;
2112 sin->sin_len = sizeof(*sin);
2113 sin->sin_addr = lle->r_l3addr.addr4;
2114 }
2115
2116 static inline struct llentry *
2117 in_lltable_find_dst(struct lltable *llt, struct in_addr dst)
2118 {
2119 struct llentry *lle;
2120 struct llentries *lleh;
2121 u_int hashidx;
2122
2123 hashidx = in_lltable_hash_dst(dst, llt->llt_hsize);
2124 lleh = &llt->lle_head[hashidx];
2125 LIST_FOREACH(lle, lleh, lle_next) {
2126 if (lle->la_flags & LLE_DELETED)
2127 continue;
2128 if (lle->r_l3addr.addr4.s_addr == dst.s_addr)
2129 break;
2130 }
2131
2132 return (lle);
2133 }
2134
2135 static int
2136 in_lltable_delete(struct lltable *llt, u_int flags,
2137 const struct sockaddr *l3addr)
2138 {
2139 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
2140 struct ifnet *ifp __diagused = llt->llt_ifp;
2141 struct llentry *lle;
2142
2143 IF_AFDATA_WLOCK_ASSERT(ifp);
2144 KASSERTMSG(l3addr->sa_family == AF_INET,
2145 "sin_family %d", l3addr->sa_family);
2146
2147 lle = in_lltable_find_dst(llt, sin->sin_addr);
2148 if (lle == NULL) {
2149 #ifdef LLTABLE_DEBUG
2150 char buf[64];
2151 sockaddr_format(l3addr, buf, sizeof(buf));
2152 log(LOG_INFO, "%s: cache for %s is not found\n",
2153 __func__, buf);
2154 #endif
2155 return (ENOENT);
2156 }
2157
2158 LLE_WLOCK(lle);
2159 #ifdef LLTABLE_DEBUG
2160 {
2161 char buf[64];
2162 sockaddr_format(l3addr, buf, sizeof(buf));
2163 log(LOG_INFO, "%s: cache for %s (%p) is deleted\n",
2164 __func__, buf, lle);
2165 }
2166 #endif
2167 llentry_free(lle);
2168
2169 return (0);
2170 }
2171
2172 static struct llentry *
2173 in_lltable_create(struct lltable *llt, u_int flags, const struct sockaddr *l3addr,
2174 const struct rtentry *rt)
2175 {
2176 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
2177 struct ifnet *ifp = llt->llt_ifp;
2178 struct llentry *lle;
2179
2180 IF_AFDATA_WLOCK_ASSERT(ifp);
2181 KASSERTMSG(l3addr->sa_family == AF_INET,
2182 "sin_family %d", l3addr->sa_family);
2183
2184 lle = in_lltable_find_dst(llt, sin->sin_addr);
2185
2186 if (lle != NULL) {
2187 LLE_WLOCK(lle);
2188 return (lle);
2189 }
2190
2191 /* no existing record, we need to create new one */
2192
2193 /*
2194 * A route that covers the given address must have
2195 * been installed 1st because we are doing a resolution,
2196 * verify this.
2197 */
2198 if (!(flags & LLE_IFADDR) &&
2199 in_lltable_rtcheck(ifp, flags, l3addr, rt) != 0)
2200 return (NULL);
2201
2202 lle = in_lltable_new(sin->sin_addr, flags);
2203 if (lle == NULL) {
2204 log(LOG_INFO, "lla_lookup: new lle malloc failed\n");
2205 return (NULL);
2206 }
2207 lle->la_flags = flags;
2208 if ((flags & LLE_IFADDR) == LLE_IFADDR) {
2209 memcpy(&lle->ll_addr, CLLADDR(ifp->if_sadl), ifp->if_addrlen);
2210 lle->la_flags |= (LLE_VALID | LLE_STATIC);
2211 }
2212
2213 lltable_link_entry(llt, lle);
2214 LLE_WLOCK(lle);
2215
2216 return (lle);
2217 }
2218
2219 /*
2220 * Return NULL if not found or marked for deletion.
2221 * If found return lle read locked.
2222 */
2223 static struct llentry *
2224 in_lltable_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr)
2225 {
2226 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
2227 struct llentry *lle;
2228
2229 IF_AFDATA_LOCK_ASSERT(llt->llt_ifp);
2230 KASSERTMSG(l3addr->sa_family == AF_INET,
2231 "sin_family %d", l3addr->sa_family);
2232
2233 lle = in_lltable_find_dst(llt, sin->sin_addr);
2234
2235 if (lle == NULL)
2236 return NULL;
2237
2238 if (flags & LLE_EXCLUSIVE)
2239 LLE_WLOCK(lle);
2240 else
2241 LLE_RLOCK(lle);
2242
2243 return lle;
2244 }
2245
2246 static int
2247 in_lltable_dump_entry(struct lltable *llt, struct llentry *lle,
2248 struct rt_walkarg *w)
2249 {
2250 struct sockaddr_in sin;
2251
2252 LLTABLE_LOCK_ASSERT();
2253
2254 /* skip deleted entries */
2255 if (lle->la_flags & LLE_DELETED)
2256 return 0;
2257
2258 sockaddr_in_init(&sin, &lle->r_l3addr.addr4, 0);
2259
2260 return lltable_dump_entry(llt, lle, w, sintosa(&sin));
2261 }
2262
2263 #endif /* NARP > 0 */
2264
2265 static int
2266 in_multicast_sysctl(SYSCTLFN_ARGS)
2267 {
2268 struct ifnet *ifp;
2269 struct ifaddr *ifa;
2270 struct in_ifaddr *ifa4;
2271 struct in_multi *inm;
2272 uint32_t tmp;
2273 int error;
2274 size_t written;
2275 struct psref psref;
2276 int bound;
2277
2278 if (namelen != 1)
2279 return EINVAL;
2280
2281 bound = curlwp_bind();
2282 ifp = if_get_byindex(name[0], &psref);
2283 if (ifp == NULL) {
2284 curlwp_bindx(bound);
2285 return ENODEV;
2286 }
2287
2288 if (oldp == NULL) {
2289 *oldlenp = 0;
2290 IFADDR_FOREACH(ifa, ifp) {
2291 if (ifa->ifa_addr->sa_family != AF_INET)
2292 continue;
2293 ifa4 = (void *)ifa;
2294 LIST_FOREACH(inm, &ifa4->ia_multiaddrs, inm_list) {
2295 *oldlenp += 2 * sizeof(struct in_addr) +
2296 sizeof(uint32_t);
2297 }
2298 }
2299 if_put(ifp, &psref);
2300 curlwp_bindx(bound);
2301 return 0;
2302 }
2303
2304 error = 0;
2305 written = 0;
2306 IFADDR_FOREACH(ifa, ifp) {
2307 if (ifa->ifa_addr->sa_family != AF_INET)
2308 continue;
2309 ifa4 = (void *)ifa;
2310 LIST_FOREACH(inm, &ifa4->ia_multiaddrs, inm_list) {
2311 if (written + 2 * sizeof(struct in_addr) +
2312 sizeof(uint32_t) > *oldlenp)
2313 goto done;
2314 error = sysctl_copyout(l, &ifa4->ia_addr.sin_addr,
2315 oldp, sizeof(struct in_addr));
2316 if (error)
2317 goto done;
2318 oldp = (char *)oldp + sizeof(struct in_addr);
2319 written += sizeof(struct in_addr);
2320 error = sysctl_copyout(l, &inm->inm_addr,
2321 oldp, sizeof(struct in_addr));
2322 if (error)
2323 goto done;
2324 oldp = (char *)oldp + sizeof(struct in_addr);
2325 written += sizeof(struct in_addr);
2326 tmp = inm->inm_refcount;
2327 error = sysctl_copyout(l, &tmp, oldp, sizeof(tmp));
2328 if (error)
2329 goto done;
2330 oldp = (char *)oldp + sizeof(tmp);
2331 written += sizeof(tmp);
2332 }
2333 }
2334 done:
2335 if_put(ifp, &psref);
2336 curlwp_bindx(bound);
2337 *oldlenp = written;
2338 return error;
2339 }
2340
2341 static void
2342 in_sysctl_init(struct sysctllog **clog)
2343 {
2344 sysctl_createv(clog, 0, NULL, NULL,
2345 CTLFLAG_PERMANENT,
2346 CTLTYPE_NODE, "inet",
2347 SYSCTL_DESCR("PF_INET related settings"),
2348 NULL, 0, NULL, 0,
2349 CTL_NET, PF_INET, CTL_EOL);
2350 sysctl_createv(clog, 0, NULL, NULL,
2351 CTLFLAG_PERMANENT,
2352 CTLTYPE_NODE, "multicast",
2353 SYSCTL_DESCR("Multicast information"),
2354 in_multicast_sysctl, 0, NULL, 0,
2355 CTL_NET, PF_INET, CTL_CREATE, CTL_EOL);
2356 sysctl_createv(clog, 0, NULL, NULL,
2357 CTLFLAG_PERMANENT,
2358 CTLTYPE_NODE, "ip",
2359 SYSCTL_DESCR("IPv4 related settings"),
2360 NULL, 0, NULL, 0,
2361 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2362
2363 sysctl_createv(clog, 0, NULL, NULL,
2364 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2365 CTLTYPE_INT, "subnetsarelocal",
2366 SYSCTL_DESCR("Whether logical subnets are considered "
2367 "local"),
2368 NULL, 0, &subnetsarelocal, 0,
2369 CTL_NET, PF_INET, IPPROTO_IP,
2370 IPCTL_SUBNETSARELOCAL, CTL_EOL);
2371 sysctl_createv(clog, 0, NULL, NULL,
2372 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2373 CTLTYPE_INT, "hostzerobroadcast",
2374 SYSCTL_DESCR("All zeroes address is broadcast address"),
2375 NULL, 0, &hostzeroisbroadcast, 0,
2376 CTL_NET, PF_INET, IPPROTO_IP,
2377 IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2378 }
2379
2380 #if NARP > 0
2381
2382 static struct lltable *
2383 in_lltattach(struct ifnet *ifp)
2384 {
2385 struct lltable *llt;
2386
2387 llt = lltable_allocate_htbl(IN_LLTBL_DEFAULT_HSIZE);
2388 llt->llt_af = AF_INET;
2389 llt->llt_ifp = ifp;
2390
2391 llt->llt_lookup = in_lltable_lookup;
2392 llt->llt_create = in_lltable_create;
2393 llt->llt_delete = in_lltable_delete;
2394 llt->llt_dump_entry = in_lltable_dump_entry;
2395 llt->llt_hash = in_lltable_hash;
2396 llt->llt_fill_sa_entry = in_lltable_fill_sa_entry;
2397 llt->llt_free_entry = in_lltable_free_entry;
2398 llt->llt_match_prefix = in_lltable_match_prefix;
2399 lltable_link(llt);
2400
2401 return (llt);
2402 }
2403
2404 #endif /* NARP > 0 */
2405
2406 void *
2407 in_domifattach(struct ifnet *ifp)
2408 {
2409 struct in_ifinfo *ii;
2410
2411 ii = kmem_zalloc(sizeof(struct in_ifinfo), KM_SLEEP);
2412
2413 #if NARP > 0
2414 ii->ii_llt = in_lltattach(ifp);
2415 #endif
2416
2417 #ifdef IPSELSRC
2418 ii->ii_selsrc = in_selsrc_domifattach(ifp);
2419 KASSERT(ii->ii_selsrc != NULL);
2420 #endif
2421
2422 return ii;
2423 }
2424
2425 void
2426 in_domifdetach(struct ifnet *ifp, void *aux)
2427 {
2428 struct in_ifinfo *ii = aux;
2429
2430 #ifdef IPSELSRC
2431 in_selsrc_domifdetach(ifp, ii->ii_selsrc);
2432 #endif
2433 #if NARP > 0
2434 lltable_free(ii->ii_llt);
2435 #endif
2436 kmem_free(ii, sizeof(struct in_ifinfo));
2437 }
2438