in.c revision 1.43 1 /* $NetBSD: in.c,v 1.43 1998/09/06 17:52:28 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Public Access Networks Corporation ("Panix"). It was developed under
9 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by the University of
55 * California, Berkeley and its contributors.
56 * 4. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)in.c 8.4 (Berkeley) 1/9/95
73 */
74
75 #include "opt_inet.h"
76 #include "opt_mrouting.h"
77
78 #include <sys/param.h>
79 #include <sys/ioctl.h>
80 #include <sys/errno.h>
81 #include <sys/malloc.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/systm.h>
85 #include <sys/proc.h>
86
87 #include <net/if.h>
88 #include <net/route.h>
89
90 #include <net/if_ether.h>
91
92 #include <netinet/in_systm.h>
93 #include <netinet/in.h>
94 #include <netinet/in_var.h>
95 #include <netinet/if_inarp.h>
96 #include <netinet/ip_mroute.h>
97 #include <netinet/igmp_var.h>
98
99 #ifdef INET
100
101 #ifndef SUBNETSARELOCAL
102 #define SUBNETSARELOCAL 1
103 #endif
104 int subnetsarelocal = SUBNETSARELOCAL;
105
106 /*
107 * Return 1 if an internet address is for a ``local'' host
108 * (one to which we have a connection). If subnetsarelocal
109 * is true, this includes other subnets of the local net.
110 * Otherwise, it includes only the directly-connected (sub)nets.
111 */
112 int
113 in_localaddr(in)
114 struct in_addr in;
115 {
116 register struct in_ifaddr *ia;
117
118 if (subnetsarelocal) {
119 for (ia = in_ifaddr.tqh_first; ia != 0; ia = ia->ia_list.tqe_next)
120 if ((in.s_addr & ia->ia_netmask) == ia->ia_net)
121 return (1);
122 } else {
123 for (ia = in_ifaddr.tqh_first; ia != 0; ia = ia->ia_list.tqe_next)
124 if ((in.s_addr & ia->ia_subnetmask) == ia->ia_subnet)
125 return (1);
126 }
127 return (0);
128 }
129
130 /*
131 * Determine whether an IP address is in a reserved set of addresses
132 * that may not be forwarded, or whether datagrams to that destination
133 * may be forwarded.
134 */
135 int
136 in_canforward(in)
137 struct in_addr in;
138 {
139 register u_int32_t net;
140
141 if (IN_EXPERIMENTAL(in.s_addr) || IN_MULTICAST(in.s_addr))
142 return (0);
143 if (IN_CLASSA(in.s_addr)) {
144 net = in.s_addr & IN_CLASSA_NET;
145 if (net == 0 || net == htonl(IN_LOOPBACKNET << IN_CLASSA_NSHIFT))
146 return (0);
147 }
148 return (1);
149 }
150
151 /*
152 * Trim a mask in a sockaddr
153 */
154 void
155 in_socktrim(ap)
156 struct sockaddr_in *ap;
157 {
158 register char *cplim = (char *) &ap->sin_addr;
159 register char *cp = (char *) (&ap->sin_addr + 1);
160
161 ap->sin_len = 0;
162 while (--cp >= cplim)
163 if (*cp) {
164 (ap)->sin_len = cp - (char *) (ap) + 1;
165 break;
166 }
167 }
168
169 /*
170 * Routine to take an Internet address and convert into a
171 * "dotted quad" representation for printing.
172 */
173 const char *
174 in_fmtaddr(addr)
175 struct in_addr addr;
176 {
177 static char buf[sizeof("123.456.789.123")];
178
179 addr.s_addr = ntohl(addr.s_addr);
180
181 sprintf(buf, "%d.%d.%d.%d",
182 (addr.s_addr >> 24) & 0xFF,
183 (addr.s_addr >> 16) & 0xFF,
184 (addr.s_addr >> 8) & 0xFF,
185 (addr.s_addr >> 0) & 0xFF);
186 return buf;
187 }
188
189 /*
190 * Maintain the "in_maxmtu" variable, which is the largest
191 * mtu for non-local interfaces with AF_INET addresses assigned
192 * to them that are up.
193 */
194 unsigned long in_maxmtu;
195
196 void
197 in_setmaxmtu()
198 {
199 register struct in_ifaddr *ia;
200 register struct ifnet *ifp;
201 unsigned long maxmtu = 0;
202
203 for (ia = in_ifaddr.tqh_first; ia != 0; ia = ia->ia_list.tqe_next) {
204 if ((ifp = ia->ia_ifp) == 0)
205 continue;
206 if ((ifp->if_flags & (IFF_UP|IFF_LOOPBACK)) != IFF_UP)
207 continue;
208 if (ifp->if_mtu > maxmtu)
209 maxmtu = ifp->if_mtu;
210 }
211 if (maxmtu)
212 in_maxmtu = maxmtu;
213 }
214
215 int in_interfaces; /* number of external internet interfaces */
216
217 /*
218 * Generic internet control operations (ioctl's).
219 * Ifp is 0 if not an interface-specific ioctl.
220 */
221 /* ARGSUSED */
222 int
223 in_control(so, cmd, data, ifp, p)
224 struct socket *so;
225 u_long cmd;
226 caddr_t data;
227 register struct ifnet *ifp;
228 struct proc *p;
229 {
230 register struct ifreq *ifr = (struct ifreq *)data;
231 register struct in_ifaddr *ia = 0;
232 struct in_aliasreq *ifra = (struct in_aliasreq *)data;
233 struct sockaddr_in oldaddr;
234 int error, hostIsNew, maskIsNew;
235
236 /*
237 * Find address for this interface, if it exists.
238 */
239 if (ifp)
240 IFP_TO_IA(ifp, ia);
241
242 switch (cmd) {
243
244 case SIOCAIFADDR:
245 case SIOCDIFADDR:
246 case SIOCGIFALIAS:
247 if (ifra->ifra_addr.sin_family == AF_INET)
248 for (ia = IN_IFADDR_HASH(ifra->ifra_addr.sin_addr.s_addr).lh_first;
249 ia != 0; ia = ia->ia_hash.le_next) {
250 if (ia->ia_ifp == ifp &&
251 in_hosteq(ia->ia_addr.sin_addr,
252 ifra->ifra_addr.sin_addr))
253 break;
254 }
255 if (cmd == SIOCDIFADDR && ia == 0)
256 return (EADDRNOTAVAIL);
257 /* FALLTHROUGH */
258 case SIOCSIFADDR:
259 case SIOCSIFNETMASK:
260 case SIOCSIFDSTADDR:
261 if (p == 0 || (error = suser(p->p_ucred, &p->p_acflag)))
262 return (EPERM);
263
264 if (ifp == 0)
265 panic("in_control");
266 if (ia == 0) {
267 MALLOC(ia, struct in_ifaddr *, sizeof(*ia),
268 M_IFADDR, M_WAITOK);
269 if (ia == 0)
270 return (ENOBUFS);
271 bzero((caddr_t)ia, sizeof *ia);
272 TAILQ_INSERT_TAIL(&in_ifaddr, ia, ia_list);
273 TAILQ_INSERT_TAIL(&ifp->if_addrlist, (struct ifaddr *)ia,
274 ifa_list);
275 ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
276 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
277 ia->ia_ifa.ifa_netmask = sintosa(&ia->ia_sockmask);
278 ia->ia_sockmask.sin_len = 8;
279 if (ifp->if_flags & IFF_BROADCAST) {
280 ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr);
281 ia->ia_broadaddr.sin_family = AF_INET;
282 }
283 ia->ia_ifp = ifp;
284 LIST_INIT(&ia->ia_multiaddrs);
285 if ((ifp->if_flags & IFF_LOOPBACK) == 0)
286 in_interfaces++;
287 }
288 break;
289
290 case SIOCSIFBRDADDR:
291 if (p == 0 || (error = suser(p->p_ucred, &p->p_acflag)))
292 return (EPERM);
293 /* FALLTHROUGH */
294
295 case SIOCGIFADDR:
296 case SIOCGIFNETMASK:
297 case SIOCGIFDSTADDR:
298 case SIOCGIFBRDADDR:
299 if (ia == 0)
300 return (EADDRNOTAVAIL);
301 break;
302 }
303 switch (cmd) {
304
305 case SIOCGIFADDR:
306 *satosin(&ifr->ifr_addr) = ia->ia_addr;
307 break;
308
309 case SIOCGIFBRDADDR:
310 if ((ifp->if_flags & IFF_BROADCAST) == 0)
311 return (EINVAL);
312 *satosin(&ifr->ifr_dstaddr) = ia->ia_broadaddr;
313 break;
314
315 case SIOCGIFDSTADDR:
316 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
317 return (EINVAL);
318 *satosin(&ifr->ifr_dstaddr) = ia->ia_dstaddr;
319 break;
320
321 case SIOCGIFNETMASK:
322 *satosin(&ifr->ifr_addr) = ia->ia_sockmask;
323 break;
324
325 case SIOCSIFDSTADDR:
326 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
327 return (EINVAL);
328 oldaddr = ia->ia_dstaddr;
329 ia->ia_dstaddr = *satosin(&ifr->ifr_dstaddr);
330 if (ifp->if_ioctl && (error = (*ifp->if_ioctl)
331 (ifp, SIOCSIFDSTADDR, (caddr_t)ia))) {
332 ia->ia_dstaddr = oldaddr;
333 return (error);
334 }
335 if (ia->ia_flags & IFA_ROUTE) {
336 ia->ia_ifa.ifa_dstaddr = sintosa(&oldaddr);
337 rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST);
338 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
339 rtinit(&(ia->ia_ifa), (int)RTM_ADD, RTF_HOST|RTF_UP);
340 }
341 break;
342
343 case SIOCSIFBRDADDR:
344 if ((ifp->if_flags & IFF_BROADCAST) == 0)
345 return (EINVAL);
346 ia->ia_broadaddr = *satosin(&ifr->ifr_broadaddr);
347 break;
348
349 case SIOCSIFADDR:
350 return (in_ifinit(ifp, ia, satosin(&ifr->ifr_addr), 1));
351
352 case SIOCSIFNETMASK:
353 ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr =
354 ifra->ifra_addr.sin_addr.s_addr;
355 break;
356
357 case SIOCAIFADDR:
358 maskIsNew = 0;
359 hostIsNew = 1;
360 error = 0;
361 if (ia->ia_addr.sin_family == AF_INET) {
362 if (ifra->ifra_addr.sin_len == 0) {
363 ifra->ifra_addr = ia->ia_addr;
364 hostIsNew = 0;
365 } else if (in_hosteq(ia->ia_addr.sin_addr, ifra->ifra_addr.sin_addr))
366 hostIsNew = 0;
367 }
368 if (ifra->ifra_mask.sin_len) {
369 in_ifscrub(ifp, ia);
370 ia->ia_sockmask = ifra->ifra_mask;
371 ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr;
372 maskIsNew = 1;
373 }
374 if ((ifp->if_flags & IFF_POINTOPOINT) &&
375 (ifra->ifra_dstaddr.sin_family == AF_INET)) {
376 in_ifscrub(ifp, ia);
377 ia->ia_dstaddr = ifra->ifra_dstaddr;
378 maskIsNew = 1; /* We lie; but the effect's the same */
379 }
380 if (ifra->ifra_addr.sin_family == AF_INET &&
381 (hostIsNew || maskIsNew))
382 error = in_ifinit(ifp, ia, &ifra->ifra_addr, 0);
383 if ((ifp->if_flags & IFF_BROADCAST) &&
384 (ifra->ifra_broadaddr.sin_family == AF_INET))
385 ia->ia_broadaddr = ifra->ifra_broadaddr;
386 return (error);
387
388 case SIOCGIFALIAS:
389 ifra->ifra_mask = ia->ia_sockmask;
390 if ((ifp->if_flags & IFF_POINTOPOINT) &&
391 (ia->ia_dstaddr.sin_family == AF_INET))
392 ifra->ifra_dstaddr = ia->ia_dstaddr;
393 else if ((ifp->if_flags & IFF_BROADCAST) &&
394 (ia->ia_broadaddr.sin_family == AF_INET))
395 ifra->ifra_broadaddr = ia->ia_broadaddr;
396 else
397 memset(&ifra->ifra_broadaddr, 0,
398 sizeof(ifra->ifra_broadaddr));
399 return 0;
400
401 case SIOCDIFADDR:
402 in_ifscrub(ifp, ia);
403 LIST_REMOVE(ia, ia_hash);
404 TAILQ_REMOVE(&ifp->if_addrlist, (struct ifaddr *)ia, ifa_list);
405 TAILQ_REMOVE(&in_ifaddr, ia, ia_list);
406 IFAFREE((&ia->ia_ifa));
407 in_setmaxmtu();
408 break;
409
410 #ifdef MROUTING
411 case SIOCGETVIFCNT:
412 case SIOCGETSGCNT:
413 return (mrt_ioctl(so, cmd, data));
414 #endif /* MROUTING */
415
416 default:
417 if (ifp == 0 || ifp->if_ioctl == 0)
418 return (EOPNOTSUPP);
419 error = (*ifp->if_ioctl)(ifp, cmd, data);
420 in_setmaxmtu();
421 return(error);
422 }
423 return (0);
424 }
425
426 /*
427 * Delete any existing route for an interface.
428 */
429 void
430 in_ifscrub(ifp, ia)
431 register struct ifnet *ifp;
432 register struct in_ifaddr *ia;
433 {
434
435 if ((ia->ia_flags & IFA_ROUTE) == 0)
436 return;
437 if (ifp->if_flags & (IFF_LOOPBACK|IFF_POINTOPOINT))
438 rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST);
439 else
440 rtinit(&(ia->ia_ifa), (int)RTM_DELETE, 0);
441 ia->ia_flags &= ~IFA_ROUTE;
442 }
443
444 /*
445 * Initialize an interface's internet address
446 * and routing table entry.
447 */
448 int
449 in_ifinit(ifp, ia, sin, scrub)
450 register struct ifnet *ifp;
451 register struct in_ifaddr *ia;
452 struct sockaddr_in *sin;
453 int scrub;
454 {
455 register u_int32_t i = sin->sin_addr.s_addr;
456 struct sockaddr_in oldaddr;
457 int s = splimp(), flags = RTF_UP, error;
458
459 /*
460 * Set up new addresses.
461 */
462 oldaddr = ia->ia_addr;
463 if (ia->ia_addr.sin_family == AF_INET)
464 LIST_REMOVE(ia, ia_hash);
465 ia->ia_addr = *sin;
466 LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr), ia, ia_hash);
467
468 /*
469 * Give the interface a chance to initialize
470 * if this is its first address,
471 * and to validate the address if necessary.
472 */
473 if (ifp->if_ioctl &&
474 (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia)))
475 goto bad;
476 splx(s);
477 if (scrub) {
478 ia->ia_ifa.ifa_addr = sintosa(&oldaddr);
479 in_ifscrub(ifp, ia);
480 ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
481 }
482
483 if (IN_CLASSA(i))
484 ia->ia_netmask = IN_CLASSA_NET;
485 else if (IN_CLASSB(i))
486 ia->ia_netmask = IN_CLASSB_NET;
487 else
488 ia->ia_netmask = IN_CLASSC_NET;
489 /*
490 * The subnet mask usually includes at least the standard network part,
491 * but may may be smaller in the case of supernetting.
492 * If it is set, we believe it.
493 */
494 if (ia->ia_subnetmask == 0) {
495 ia->ia_subnetmask = ia->ia_netmask;
496 ia->ia_sockmask.sin_addr.s_addr = ia->ia_subnetmask;
497 } else
498 ia->ia_netmask &= ia->ia_subnetmask;
499
500 ia->ia_net = i & ia->ia_netmask;
501 ia->ia_subnet = i & ia->ia_subnetmask;
502 in_socktrim(&ia->ia_sockmask);
503 /* re-calculate the "in_maxmtu" value */
504 in_setmaxmtu();
505 /*
506 * Add route for the network.
507 */
508 ia->ia_ifa.ifa_metric = ifp->if_metric;
509 if (ifp->if_flags & IFF_BROADCAST) {
510 ia->ia_broadaddr.sin_addr.s_addr =
511 ia->ia_subnet | ~ia->ia_subnetmask;
512 ia->ia_netbroadcast.s_addr =
513 ia->ia_net | ~ia->ia_netmask;
514 } else if (ifp->if_flags & IFF_LOOPBACK) {
515 ia->ia_ifa.ifa_dstaddr = ia->ia_ifa.ifa_addr;
516 flags |= RTF_HOST;
517 } else if (ifp->if_flags & IFF_POINTOPOINT) {
518 if (ia->ia_dstaddr.sin_family != AF_INET)
519 return (0);
520 flags |= RTF_HOST;
521 }
522 error = rtinit(&ia->ia_ifa, (int)RTM_ADD, flags);
523 if (!error)
524 ia->ia_flags |= IFA_ROUTE;
525 /*
526 * If the interface supports multicast, join the "all hosts"
527 * multicast group on that interface.
528 */
529 if (ifp->if_flags & IFF_MULTICAST) {
530 struct in_addr addr;
531
532 addr.s_addr = INADDR_ALLHOSTS_GROUP;
533 in_addmulti(&addr, ifp);
534 }
535 return (error);
536 bad:
537 splx(s);
538 LIST_REMOVE(ia, ia_hash);
539 ia->ia_addr = oldaddr;
540 if (ia->ia_addr.sin_family == AF_INET)
541 LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr),
542 ia, ia_hash);
543 return (error);
544 }
545
546 /*
547 * Return 1 if the address might be a local broadcast address.
548 */
549 int
550 in_broadcast(in, ifp)
551 struct in_addr in;
552 struct ifnet *ifp;
553 {
554 register struct ifaddr *ifa;
555
556 if (in.s_addr == INADDR_BROADCAST ||
557 in_nullhost(in))
558 return 1;
559 if ((ifp->if_flags & IFF_BROADCAST) == 0)
560 return 0;
561 /*
562 * Look through the list of addresses for a match
563 * with a broadcast address.
564 */
565 #define ia (ifatoia(ifa))
566 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
567 if (ifa->ifa_addr->sa_family == AF_INET &&
568 (in_hosteq(in, ia->ia_broadaddr.sin_addr) ||
569 in_hosteq(in, ia->ia_netbroadcast) ||
570 /*
571 * Check for old-style (host 0) broadcast.
572 */
573 in.s_addr == ia->ia_subnet ||
574 in.s_addr == ia->ia_net))
575 return 1;
576 return (0);
577 #undef ia
578 }
579
580 /*
581 * Add an address to the list of IP multicast addresses for a given interface.
582 */
583 struct in_multi *
584 in_addmulti(ap, ifp)
585 register struct in_addr *ap;
586 register struct ifnet *ifp;
587 {
588 register struct in_multi *inm;
589 struct ifreq ifr;
590 struct in_ifaddr *ia;
591 int s = splsoftnet();
592
593 /*
594 * See if address already in list.
595 */
596 IN_LOOKUP_MULTI(*ap, ifp, inm);
597 if (inm != NULL) {
598 /*
599 * Found it; just increment the reference count.
600 */
601 ++inm->inm_refcount;
602 } else {
603 /*
604 * New address; allocate a new multicast record
605 * and link it into the interface's multicast list.
606 */
607 inm = (struct in_multi *)malloc(sizeof(*inm),
608 M_IPMADDR, M_NOWAIT);
609 if (inm == NULL) {
610 splx(s);
611 return (NULL);
612 }
613 inm->inm_addr = *ap;
614 inm->inm_ifp = ifp;
615 inm->inm_refcount = 1;
616 IFP_TO_IA(ifp, ia);
617 if (ia == NULL) {
618 free(inm, M_IPMADDR);
619 splx(s);
620 return (NULL);
621 }
622 inm->inm_ia = ia;
623 LIST_INSERT_HEAD(&ia->ia_multiaddrs, inm, inm_list);
624 /*
625 * Ask the network driver to update its multicast reception
626 * filter appropriately for the new address.
627 */
628 satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
629 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
630 satosin(&ifr.ifr_addr)->sin_addr = *ap;
631 if ((ifp->if_ioctl == NULL) ||
632 (*ifp->if_ioctl)(ifp, SIOCADDMULTI,(caddr_t)&ifr) != 0) {
633 LIST_REMOVE(inm, inm_list);
634 free(inm, M_IPMADDR);
635 splx(s);
636 return (NULL);
637 }
638 /*
639 * Let IGMP know that we have joined a new IP multicast group.
640 */
641 igmp_joingroup(inm);
642 }
643 splx(s);
644 return (inm);
645 }
646
647 /*
648 * Delete a multicast address record.
649 */
650 void
651 in_delmulti(inm)
652 register struct in_multi *inm;
653 {
654 struct ifreq ifr;
655 int s = splsoftnet();
656
657 if (--inm->inm_refcount == 0) {
658 /*
659 * No remaining claims to this record; let IGMP know that
660 * we are leaving the multicast group.
661 */
662 igmp_leavegroup(inm);
663 /*
664 * Unlink from list.
665 */
666 LIST_REMOVE(inm, inm_list);
667 /*
668 * Notify the network driver to update its multicast reception
669 * filter.
670 */
671 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
672 satosin(&ifr.ifr_addr)->sin_addr = inm->inm_addr;
673 (*inm->inm_ifp->if_ioctl)(inm->inm_ifp, SIOCDELMULTI,
674 (caddr_t)&ifr);
675 free(inm, M_IPMADDR);
676 }
677 splx(s);
678 }
679 #endif
680