ip_encap.c revision 1.20 1 /* $KAME: ip_encap.c,v 1.73 2001/10/02 08:30:58 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31 /*
32 * My grandfather said that there's a devil inside tunnelling technology...
33 *
34 * We have surprisingly many protocols that want packets with IP protocol
35 * #4 or #41. Here's a list of protocols that want protocol #41:
36 * RFC1933 configured tunnel
37 * RFC1933 automatic tunnel
38 * RFC2401 IPsec tunnel
39 * RFC2473 IPv6 generic packet tunnelling
40 * RFC2529 6over4 tunnel
41 * RFC3056 6to4 tunnel
42 * isatap tunnel
43 * mobile-ip6 (uses RFC2473)
44 * Here's a list of protocol that want protocol #4:
45 * RFC1853 IPv4-in-IPv4 tunnelling
46 * RFC2003 IPv4 encapsulation within IPv4
47 * RFC2344 reverse tunnelling for mobile-ip4
48 * RFC2401 IPsec tunnel
49 * Well, what can I say. They impose different en/decapsulation mechanism
50 * from each other, so they need separate protocol handler. The only one
51 * we can easily determine by protocol # is IPsec, which always has
52 * AH/ESP/IPComp header right after outer IP header.
53 *
54 * So, clearly good old protosw does not work for protocol #4 and #41.
55 * The code will let you match protocol via src/dst address pair.
56 */
57 /* XXX is M_NETADDR correct? */
58
59 /*
60 * With USE_RADIX the code will use radix table for tunnel lookup, for
61 * tunnels registered with encap_attach() with a addr/mask pair.
62 * Faster on machines with thousands of tunnel registerations (= interfaces).
63 *
64 * The code assumes that radix table code can handle non-continuous netmask,
65 * as it will pass radix table memory region with (src + dst) sockaddr pair.
66 *
67 * FreeBSD is excluded here as they make max_keylen a static variable, and
68 * thus forbid definition of radix table other than proper domains.
69 */
70 #define USE_RADIX
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: ip_encap.c,v 1.20 2005/01/24 02:42:49 itojun Exp $");
74
75 #include "opt_mrouting.h"
76 #include "opt_inet.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/socket.h>
81 #include <sys/sockio.h>
82 #include <sys/mbuf.h>
83 #include <sys/errno.h>
84 #include <sys/protosw.h>
85 #include <sys/queue.h>
86
87 #include <net/if.h>
88 #include <net/route.h>
89
90 #include <netinet/in.h>
91 #include <netinet/in_systm.h>
92 #include <netinet/ip.h>
93 #include <netinet/ip_var.h>
94 #include <netinet/ip_encap.h>
95 #ifdef MROUTING
96 #include <netinet/ip_mroute.h>
97 #endif /* MROUTING */
98
99 #ifdef INET6
100 #include <netinet/ip6.h>
101 #include <netinet6/ip6_var.h>
102 #include <netinet6/ip6protosw.h>
103 #include <netinet6/in6_var.h>
104 #include <netinet6/in6_pcb.h>
105 #include <netinet/icmp6.h>
106 #endif
107
108 #include <machine/stdarg.h>
109
110 #include <net/net_osdep.h>
111
112 /* to lookup a pair of address using radix tree */
113 struct sockaddr_pack {
114 u_int8_t sp_len;
115 u_int8_t sp_family; /* not really used */
116 /* followed by variable-length data */
117 };
118
119 struct pack4 {
120 struct sockaddr_pack p;
121 struct sockaddr_in mine;
122 struct sockaddr_in yours;
123 };
124 struct pack6 {
125 struct sockaddr_pack p;
126 struct sockaddr_in6 mine;
127 struct sockaddr_in6 yours;
128 };
129
130 enum direction { INBOUND, OUTBOUND };
131
132 #ifdef INET
133 static struct encaptab *encap4_lookup __P((struct mbuf *, int, int,
134 enum direction));
135 #endif
136 #ifdef INET6
137 static struct encaptab *encap6_lookup __P((struct mbuf *, int, int,
138 enum direction));
139 #endif
140 static int encap_add __P((struct encaptab *));
141 static int encap_remove __P((struct encaptab *));
142 static int encap_afcheck __P((int, const struct sockaddr *, const struct sockaddr *));
143 #ifdef USE_RADIX
144 static struct radix_node_head *encap_rnh __P((int));
145 static int mask_matchlen __P((const struct sockaddr *));
146 #endif
147 #ifndef USE_RADIX
148 static int mask_match __P((const struct encaptab *, const struct sockaddr *,
149 const struct sockaddr *));
150 #endif
151 static void encap_fillarg __P((struct mbuf *, const struct encaptab *));
152
153 LIST_HEAD(, encaptab) encaptab = LIST_HEAD_INITIALIZER(&encaptab);
154
155 #ifdef USE_RADIX
156 extern int max_keylen; /* radix.c */
157 struct radix_node_head *encap_head[2]; /* 0 for AF_INET, 1 for AF_INET6 */
158 #endif
159
160 void
161 encap_setkeylen()
162 {
163 #ifdef USE_RADIX
164 if (sizeof(struct pack4) > max_keylen)
165 max_keylen = sizeof(struct pack4);
166 #ifdef INET6
167 if (sizeof(struct pack6) > max_keylen)
168 max_keylen = sizeof(struct pack6);
169 #endif
170 #endif
171 }
172
173 void
174 encap_init()
175 {
176 static int initialized = 0;
177
178 if (initialized)
179 return;
180 initialized++;
181 #if 0
182 /*
183 * we cannot use LIST_INIT() here, since drivers may want to call
184 * encap_attach(), on driver attach. encap_init() will be called
185 * on AF_INET{,6} initialization, which happens after driver
186 * initialization - using LIST_INIT() here can nuke encap_attach()
187 * from drivers.
188 */
189 LIST_INIT(&encaptab);
190 #endif
191
192 #ifdef USE_RADIX
193 /*
194 * initialize radix lookup table.
195 * max_keylen initialization should happen before the call to rn_init().
196 */
197 rn_inithead((void *)&encap_head[0], sizeof(struct sockaddr_pack) << 3);
198 #ifdef INET6
199 rn_inithead((void *)&encap_head[1], sizeof(struct sockaddr_pack) << 3);
200 #endif
201 #endif
202 }
203
204 #ifdef INET
205 static struct encaptab *
206 encap4_lookup(m, off, proto, dir)
207 struct mbuf *m;
208 int off;
209 int proto;
210 enum direction dir;
211 {
212 struct ip *ip;
213 struct pack4 pack;
214 struct encaptab *ep, *match;
215 int prio, matchprio;
216 #ifdef USE_RADIX
217 struct radix_node_head *rnh = encap_rnh(AF_INET);
218 struct radix_node *rn;
219 #endif
220
221 #ifdef DIAGNOSTIC
222 if (m->m_len < sizeof(*ip))
223 panic("encap4_lookup");
224 #endif
225 ip = mtod(m, struct ip *);
226
227 bzero(&pack, sizeof(pack));
228 pack.p.sp_len = sizeof(pack);
229 pack.mine.sin_family = pack.yours.sin_family = AF_INET;
230 pack.mine.sin_len = pack.yours.sin_len = sizeof(struct sockaddr_in);
231 if (dir == INBOUND) {
232 pack.mine.sin_addr = ip->ip_dst;
233 pack.yours.sin_addr = ip->ip_src;
234 } else {
235 pack.mine.sin_addr = ip->ip_src;
236 pack.yours.sin_addr = ip->ip_dst;
237 }
238
239 match = NULL;
240 matchprio = 0;
241
242 #ifdef USE_RADIX
243 rn = rnh->rnh_matchaddr((caddr_t)&pack, rnh);
244 if (rn && (rn->rn_flags & RNF_ROOT) == 0) {
245 match = (struct encaptab *)rn;
246 matchprio = mask_matchlen(match->srcmask) +
247 mask_matchlen(match->dstmask);
248 }
249 #endif
250
251 for (ep = LIST_FIRST(&encaptab); ep; ep = LIST_NEXT(ep, chain)) {
252 if (ep->af != AF_INET)
253 continue;
254 if (ep->proto >= 0 && ep->proto != proto)
255 continue;
256 if (ep->func)
257 prio = (*ep->func)(m, off, proto, ep->arg);
258 else {
259 #ifdef USE_RADIX
260 continue;
261 #else
262 prio = mask_match(ep, (struct sockaddr *)&pack.mine,
263 (struct sockaddr *)&pack.yours);
264 #endif
265 }
266
267 /*
268 * We prioritize the matches by using bit length of the
269 * matches. mask_match() and user-supplied matching function
270 * should return the bit length of the matches (for example,
271 * if both src/dst are matched for IPv4, 64 should be returned).
272 * 0 or negative return value means "it did not match".
273 *
274 * The question is, since we have two "mask" portion, we
275 * cannot really define total order between entries.
276 * For example, which of these should be preferred?
277 * mask_match() returns 48 (32 + 16) for both of them.
278 * src=3ffe::/16, dst=3ffe:501::/32
279 * src=3ffe:501::/32, dst=3ffe::/16
280 *
281 * We need to loop through all the possible candidates
282 * to get the best match - the search takes O(n) for
283 * n attachments (i.e. interfaces).
284 *
285 * For radix-based lookup, I guess source takes precedence.
286 * See rn_{refines,lexobetter} for the correct answer.
287 */
288 if (prio <= 0)
289 continue;
290 if (prio > matchprio) {
291 matchprio = prio;
292 match = ep;
293 }
294 }
295
296 return match;
297 #undef s
298 #undef d
299 }
300
301 void
302 encap4_input(struct mbuf *m, ...)
303 {
304 int off, proto;
305 va_list ap;
306 const struct protosw *psw;
307 struct encaptab *match;
308
309 va_start(ap, m);
310 off = va_arg(ap, int);
311 proto = va_arg(ap, int);
312 va_end(ap);
313
314 match = encap4_lookup(m, off, proto, INBOUND);
315
316 if (match) {
317 /* found a match, "match" has the best one */
318 psw = match->psw;
319 if (psw && psw->pr_input) {
320 encap_fillarg(m, match);
321 (*psw->pr_input)(m, off, proto);
322 } else
323 m_freem(m);
324 return;
325 }
326
327 /* last resort: inject to raw socket */
328 rip_input(m, off, proto);
329 }
330 #endif
331
332 #ifdef INET6
333 static struct encaptab *
334 encap6_lookup(m, off, proto, dir)
335 struct mbuf *m;
336 int off;
337 int proto;
338 enum direction dir;
339 {
340 struct ip6_hdr *ip6;
341 struct pack6 pack;
342 int prio, matchprio;
343 struct encaptab *ep, *match;
344 #ifdef USE_RADIX
345 struct radix_node_head *rnh = encap_rnh(AF_INET6);
346 struct radix_node *rn;
347 #endif
348
349 #ifdef DIAGNOSTIC
350 if (m->m_len < sizeof(*ip6))
351 panic("encap6_lookup");
352 #endif
353 ip6 = mtod(m, struct ip6_hdr *);
354
355 bzero(&pack, sizeof(pack));
356 pack.p.sp_len = sizeof(pack);
357 pack.mine.sin6_family = pack.yours.sin6_family = AF_INET6;
358 pack.mine.sin6_len = pack.yours.sin6_len = sizeof(struct sockaddr_in6);
359 if (dir == INBOUND) {
360 pack.mine.sin6_addr = ip6->ip6_dst;
361 pack.yours.sin6_addr = ip6->ip6_src;
362 } else {
363 pack.mine.sin6_addr = ip6->ip6_src;
364 pack.yours.sin6_addr = ip6->ip6_dst;
365 }
366
367 match = NULL;
368 matchprio = 0;
369
370 #ifdef USE_RADIX
371 rn = rnh->rnh_matchaddr((caddr_t)&pack, rnh);
372 if (rn && (rn->rn_flags & RNF_ROOT) == 0) {
373 match = (struct encaptab *)rn;
374 matchprio = mask_matchlen(match->srcmask) +
375 mask_matchlen(match->dstmask);
376 }
377 #endif
378
379 for (ep = LIST_FIRST(&encaptab); ep; ep = LIST_NEXT(ep, chain)) {
380 if (ep->af != AF_INET6)
381 continue;
382 if (ep->proto >= 0 && ep->proto != proto)
383 continue;
384 if (ep->func)
385 prio = (*ep->func)(m, off, proto, ep->arg);
386 else {
387 #ifdef USE_RADIX
388 continue;
389 #else
390 prio = mask_match(ep, (struct sockaddr *)&pack.mine,
391 (struct sockaddr *)&pack.yours);
392 #endif
393 }
394
395 /* see encap4_lookup() for issues here */
396 if (prio <= 0)
397 continue;
398 if (prio > matchprio) {
399 matchprio = prio;
400 match = ep;
401 }
402 }
403
404 return match;
405 #undef s
406 #undef d
407 }
408
409 int
410 encap6_input(mp, offp, proto)
411 struct mbuf **mp;
412 int *offp;
413 int proto;
414 {
415 struct mbuf *m = *mp;
416 const struct ip6protosw *psw;
417 struct encaptab *match;
418
419 match = encap6_lookup(m, *offp, proto, INBOUND);
420
421 if (match) {
422 /* found a match */
423 psw = (const struct ip6protosw *)match->psw;
424 if (psw && psw->pr_input) {
425 encap_fillarg(m, match);
426 return (*psw->pr_input)(mp, offp, proto);
427 } else {
428 m_freem(m);
429 return IPPROTO_DONE;
430 }
431 }
432
433 /* last resort: inject to raw socket */
434 return rip6_input(mp, offp, proto);
435 }
436 #endif
437
438 static int
439 encap_add(ep)
440 struct encaptab *ep;
441 {
442 #ifdef USE_RADIX
443 struct radix_node_head *rnh = encap_rnh(ep->af);
444 #endif
445 int error = 0;
446
447 LIST_INSERT_HEAD(&encaptab, ep, chain);
448 #ifdef USE_RADIX
449 if (!ep->func && rnh) {
450 if (!rnh->rnh_addaddr((caddr_t)ep->addrpack,
451 (caddr_t)ep->maskpack, rnh, ep->nodes)) {
452 error = EEXIST;
453 goto fail;
454 }
455 }
456 #endif
457 return error;
458
459 fail:
460 LIST_REMOVE(ep, chain);
461 return error;
462 }
463
464 static int
465 encap_remove(ep)
466 struct encaptab *ep;
467 {
468 #ifdef USE_RADIX
469 struct radix_node_head *rnh = encap_rnh(ep->af);
470 #endif
471 int error = 0;
472
473 LIST_REMOVE(ep, chain);
474 #ifdef USE_RADIX
475 if (!ep->func && rnh) {
476 if (!rnh->rnh_deladdr((caddr_t)ep->addrpack,
477 (caddr_t)ep->maskpack, rnh))
478 error = ESRCH;
479 }
480 #endif
481 return error;
482 }
483
484 static int
485 encap_afcheck(af, sp, dp)
486 int af;
487 const struct sockaddr *sp;
488 const struct sockaddr *dp;
489 {
490 if (sp && dp) {
491 if (sp->sa_len != dp->sa_len)
492 return EINVAL;
493 if (af != sp->sa_family || af != dp->sa_family)
494 return EINVAL;
495 } else if (!sp && !dp)
496 ;
497 else
498 return EINVAL;
499
500 switch (af) {
501 case AF_INET:
502 if (sp && sp->sa_len != sizeof(struct sockaddr_in))
503 return EINVAL;
504 if (dp && dp->sa_len != sizeof(struct sockaddr_in))
505 return EINVAL;
506 break;
507 #ifdef INET6
508 case AF_INET6:
509 if (sp && sp->sa_len != sizeof(struct sockaddr_in6))
510 return EINVAL;
511 if (dp && dp->sa_len != sizeof(struct sockaddr_in6))
512 return EINVAL;
513 break;
514 #endif
515 default:
516 return EAFNOSUPPORT;
517 }
518
519 return 0;
520 }
521
522 /*
523 * sp (src ptr) is always my side, and dp (dst ptr) is always remote side.
524 * length of mask (sm and dm) is assumed to be same as sp/dp.
525 * Return value will be necessary as input (cookie) for encap_detach().
526 */
527 const struct encaptab *
528 encap_attach(af, proto, sp, sm, dp, dm, psw, arg)
529 int af;
530 int proto;
531 const struct sockaddr *sp, *sm;
532 const struct sockaddr *dp, *dm;
533 const struct protosw *psw;
534 void *arg;
535 {
536 struct encaptab *ep;
537 int error;
538 int s;
539 size_t l;
540 struct pack4 *pack4;
541 #ifdef INET6
542 struct pack6 *pack6;
543 #endif
544
545 s = splsoftnet();
546 /* sanity check on args */
547 error = encap_afcheck(af, sp, dp);
548 if (error)
549 goto fail;
550
551 /* check if anyone have already attached with exactly same config */
552 for (ep = LIST_FIRST(&encaptab); ep; ep = LIST_NEXT(ep, chain)) {
553 if (ep->af != af)
554 continue;
555 if (ep->proto != proto)
556 continue;
557 if (ep->func)
558 continue;
559 #ifdef DIAGNOSTIC
560 if (!ep->src || !ep->dst || !ep->srcmask || !ep->dstmask)
561 panic("null pointers in encaptab");
562 #endif
563 if (ep->src->sa_len != sp->sa_len ||
564 bcmp(ep->src, sp, sp->sa_len) != 0 ||
565 bcmp(ep->srcmask, sm, sp->sa_len) != 0)
566 continue;
567 if (ep->dst->sa_len != dp->sa_len ||
568 bcmp(ep->dst, dp, dp->sa_len) != 0 ||
569 bcmp(ep->dstmask, dm, dp->sa_len) != 0)
570 continue;
571
572 error = EEXIST;
573 goto fail;
574 }
575
576 switch (af) {
577 case AF_INET:
578 l = sizeof(*pack4);
579 break;
580 #ifdef INET6
581 case AF_INET6:
582 l = sizeof(*pack6);
583 break;
584 #endif
585 default:
586 goto fail;
587 }
588
589 #ifdef DIAGNOSTIC
590 /* if l exceeds the value sa_len can possibly express, it's wrong. */
591 if (l > (1 << (8 * sizeof(ep->addrpack->sa_len)))) {
592 error = EINVAL;
593 goto fail;
594 }
595 #endif
596
597 /* M_NETADDR ok? */
598 ep = malloc(sizeof(*ep), M_NETADDR, M_NOWAIT|M_ZERO);
599 if (ep == NULL) {
600 error = ENOBUFS;
601 goto fail;
602 }
603 ep->addrpack = malloc(l, M_NETADDR, M_NOWAIT|M_ZERO);
604 if (ep->addrpack == NULL) {
605 error = ENOBUFS;
606 goto gc;
607 }
608 ep->maskpack = malloc(l, M_NETADDR, M_NOWAIT|M_ZERO);
609 if (ep->maskpack == NULL) {
610 error = ENOBUFS;
611 goto gc;
612 }
613
614 ep->af = af;
615 ep->proto = proto;
616 ep->addrpack->sa_len = l & 0xff;
617 ep->maskpack->sa_len = l & 0xff;
618 switch (af) {
619 case AF_INET:
620 pack4 = (struct pack4 *)ep->addrpack;
621 ep->src = (struct sockaddr *)&pack4->mine;
622 ep->dst = (struct sockaddr *)&pack4->yours;
623 pack4 = (struct pack4 *)ep->maskpack;
624 ep->srcmask = (struct sockaddr *)&pack4->mine;
625 ep->dstmask = (struct sockaddr *)&pack4->yours;
626 break;
627 #ifdef INET6
628 case AF_INET6:
629 pack6 = (struct pack6 *)ep->addrpack;
630 ep->src = (struct sockaddr *)&pack6->mine;
631 ep->dst = (struct sockaddr *)&pack6->yours;
632 pack6 = (struct pack6 *)ep->maskpack;
633 ep->srcmask = (struct sockaddr *)&pack6->mine;
634 ep->dstmask = (struct sockaddr *)&pack6->yours;
635 break;
636 #endif
637 }
638
639 bcopy(sp, ep->src, sp->sa_len);
640 bcopy(sm, ep->srcmask, sp->sa_len);
641 bcopy(dp, ep->dst, dp->sa_len);
642 bcopy(dm, ep->dstmask, dp->sa_len);
643 ep->psw = psw;
644 ep->arg = arg;
645
646 error = encap_add(ep);
647 if (error)
648 goto gc;
649
650 error = 0;
651 splx(s);
652 return ep;
653
654 gc:
655 if (ep->addrpack)
656 free(ep->addrpack, M_NETADDR);
657 if (ep->maskpack)
658 free(ep->maskpack, M_NETADDR);
659 if (ep)
660 free(ep, M_NETADDR);
661 fail:
662 splx(s);
663 return NULL;
664 }
665
666 const struct encaptab *
667 encap_attach_func(af, proto, func, psw, arg)
668 int af;
669 int proto;
670 int (*func) __P((const struct mbuf *, int, int, void *));
671 const struct protosw *psw;
672 void *arg;
673 {
674 struct encaptab *ep;
675 int error;
676 int s;
677
678 s = splsoftnet();
679 /* sanity check on args */
680 if (!func) {
681 error = EINVAL;
682 goto fail;
683 }
684
685 error = encap_afcheck(af, NULL, NULL);
686 if (error)
687 goto fail;
688
689 ep = malloc(sizeof(*ep), M_NETADDR, M_NOWAIT); /*XXX*/
690 if (ep == NULL) {
691 error = ENOBUFS;
692 goto fail;
693 }
694 bzero(ep, sizeof(*ep));
695
696 ep->af = af;
697 ep->proto = proto;
698 ep->func = func;
699 ep->psw = psw;
700 ep->arg = arg;
701
702 error = encap_add(ep);
703 if (error)
704 goto fail;
705
706 error = 0;
707 splx(s);
708 return ep;
709
710 fail:
711 splx(s);
712 return NULL;
713 }
714
715 /* XXX encap4_ctlinput() is necessary if we set DF=1 on outer IPv4 header */
716
717 #ifdef INET6
718 void
719 encap6_ctlinput(cmd, sa, d0)
720 int cmd;
721 struct sockaddr *sa;
722 void *d0;
723 {
724 void *d = d0;
725 struct ip6_hdr *ip6;
726 struct mbuf *m;
727 int off;
728 struct ip6ctlparam *ip6cp = NULL;
729 int nxt;
730 struct encaptab *ep;
731 const struct ip6protosw *psw;
732
733 if (sa->sa_family != AF_INET6 ||
734 sa->sa_len != sizeof(struct sockaddr_in6))
735 return;
736
737 if ((unsigned)cmd >= PRC_NCMDS)
738 return;
739 if (cmd == PRC_HOSTDEAD)
740 d = NULL;
741 else if (cmd == PRC_MSGSIZE)
742 ; /* special code is present, see below */
743 else if (inet6ctlerrmap[cmd] == 0)
744 return;
745
746 /* if the parameter is from icmp6, decode it. */
747 if (d != NULL) {
748 ip6cp = (struct ip6ctlparam *)d;
749 m = ip6cp->ip6c_m;
750 ip6 = ip6cp->ip6c_ip6;
751 off = ip6cp->ip6c_off;
752 nxt = ip6cp->ip6c_nxt;
753
754 if (ip6 && cmd == PRC_MSGSIZE) {
755 int valid = 0;
756 struct encaptab *match;
757
758 /*
759 * Check to see if we have a valid encap configuration.
760 */
761 match = encap6_lookup(m, off, nxt, OUTBOUND);
762 if (match)
763 valid++;
764
765 /*
766 * Depending on the value of "valid" and routing table
767 * size (mtudisc_{hi,lo}wat), we will:
768 * - recalcurate the new MTU and create the
769 * corresponding routing entry, or
770 * - ignore the MTU change notification.
771 */
772 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
773 }
774 } else {
775 m = NULL;
776 ip6 = NULL;
777 nxt = -1;
778 }
779
780 /* inform all listeners */
781 for (ep = LIST_FIRST(&encaptab); ep; ep = LIST_NEXT(ep, chain)) {
782 if (ep->af != AF_INET6)
783 continue;
784 if (ep->proto >= 0 && ep->proto != nxt)
785 continue;
786
787 /* should optimize by looking at address pairs */
788
789 /* XXX need to pass ep->arg or ep itself to listeners */
790 psw = (const struct ip6protosw *)ep->psw;
791 if (psw && psw->pr_ctlinput)
792 (*psw->pr_ctlinput)(cmd, sa, d);
793 }
794
795 rip6_ctlinput(cmd, sa, d0);
796 }
797 #endif
798
799 int
800 encap_detach(cookie)
801 const struct encaptab *cookie;
802 {
803 const struct encaptab *ep = cookie;
804 struct encaptab *p;
805 int error;
806
807 for (p = LIST_FIRST(&encaptab); p; p = LIST_NEXT(p, chain)) {
808 if (p == ep) {
809 error = encap_remove(p);
810 if (error)
811 return error;
812 if (!ep->func) {
813 free(p->addrpack, M_NETADDR);
814 free(p->maskpack, M_NETADDR);
815 }
816 free(p, M_NETADDR); /*XXX*/
817 return 0;
818 }
819 }
820
821 return ENOENT;
822 }
823
824 #ifdef USE_RADIX
825 static struct radix_node_head *
826 encap_rnh(af)
827 int af;
828 {
829
830 switch (af) {
831 case AF_INET:
832 return encap_head[0];
833 #ifdef INET6
834 case AF_INET6:
835 return encap_head[1];
836 #endif
837 default:
838 return NULL;
839 }
840 }
841
842 static int
843 mask_matchlen(sa)
844 const struct sockaddr *sa;
845 {
846 const char *p, *ep;
847 int l;
848
849 p = (const char *)sa;
850 ep = p + sa->sa_len;
851 p += 2; /* sa_len + sa_family */
852
853 l = 0;
854 while (p < ep) {
855 l += (*p ? 8 : 0); /* estimate */
856 p++;
857 }
858 return l;
859 }
860 #endif
861
862 #ifndef USE_RADIX
863 static int
864 mask_match(ep, sp, dp)
865 const struct encaptab *ep;
866 const struct sockaddr *sp;
867 const struct sockaddr *dp;
868 {
869 struct sockaddr_storage s;
870 struct sockaddr_storage d;
871 int i;
872 const u_int8_t *p, *q;
873 u_int8_t *r;
874 int matchlen;
875
876 #ifdef DIAGNOSTIC
877 if (ep->func)
878 panic("wrong encaptab passed to mask_match");
879 #endif
880 if (sp->sa_len > sizeof(s) || dp->sa_len > sizeof(d))
881 return 0;
882 if (sp->sa_family != ep->af || dp->sa_family != ep->af)
883 return 0;
884 if (sp->sa_len != ep->src->sa_len || dp->sa_len != ep->dst->sa_len)
885 return 0;
886
887 matchlen = 0;
888
889 p = (const u_int8_t *)sp;
890 q = (const u_int8_t *)ep->srcmask;
891 r = (u_int8_t *)&s;
892 for (i = 0 ; i < sp->sa_len; i++) {
893 r[i] = p[i] & q[i];
894 /* XXX estimate */
895 matchlen += (q[i] ? 8 : 0);
896 }
897
898 p = (const u_int8_t *)dp;
899 q = (const u_int8_t *)ep->dstmask;
900 r = (u_int8_t *)&d;
901 for (i = 0 ; i < dp->sa_len; i++) {
902 r[i] = p[i] & q[i];
903 /* XXX rough estimate */
904 matchlen += (q[i] ? 8 : 0);
905 }
906
907 /* need to overwrite len/family portion as we don't compare them */
908 s.ss_len = sp->sa_len;
909 s.ss_family = sp->sa_family;
910 d.ss_len = dp->sa_len;
911 d.ss_family = dp->sa_family;
912
913 if (bcmp(&s, ep->src, ep->src->sa_len) == 0 &&
914 bcmp(&d, ep->dst, ep->dst->sa_len) == 0) {
915 return matchlen;
916 } else
917 return 0;
918 }
919 #endif
920
921 static void
922 encap_fillarg(m, ep)
923 struct mbuf *m;
924 const struct encaptab *ep;
925 {
926 struct m_tag *mtag;
927
928 mtag = m_tag_get(PACKET_TAG_ENCAP, sizeof(void *), M_NOWAIT);
929 if (mtag) {
930 *(void **)(mtag + 1) = ep->arg;
931 m_tag_prepend(m, mtag);
932 }
933 }
934
935 void *
936 encap_getarg(m)
937 struct mbuf *m;
938 {
939 void *p;
940 struct m_tag *mtag;
941
942 p = NULL;
943 mtag = m_tag_find(m, PACKET_TAG_ENCAP, NULL);
944 if (mtag != NULL) {
945 p = *(void **)(mtag + 1);
946 m_tag_delete(m, mtag);
947 }
948 return p;
949 }
950