ip_encap.c revision 1.62 1 /* $NetBSD: ip_encap.c,v 1.62 2016/12/22 04:54:54 knakahara Exp $ */
2 /* $KAME: ip_encap.c,v 1.73 2001/10/02 08:30:58 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32 /*
33 * My grandfather said that there's a devil inside tunnelling technology...
34 *
35 * We have surprisingly many protocols that want packets with IP protocol
36 * #4 or #41. Here's a list of protocols that want protocol #41:
37 * RFC1933 configured tunnel
38 * RFC1933 automatic tunnel
39 * RFC2401 IPsec tunnel
40 * RFC2473 IPv6 generic packet tunnelling
41 * RFC2529 6over4 tunnel
42 * RFC3056 6to4 tunnel
43 * isatap tunnel
44 * mobile-ip6 (uses RFC2473)
45 * Here's a list of protocol that want protocol #4:
46 * RFC1853 IPv4-in-IPv4 tunnelling
47 * RFC2003 IPv4 encapsulation within IPv4
48 * RFC2344 reverse tunnelling for mobile-ip4
49 * RFC2401 IPsec tunnel
50 * Well, what can I say. They impose different en/decapsulation mechanism
51 * from each other, so they need separate protocol handler. The only one
52 * we can easily determine by protocol # is IPsec, which always has
53 * AH/ESP/IPComp header right after outer IP header.
54 *
55 * So, clearly good old protosw does not work for protocol #4 and #41.
56 * The code will let you match protocol via src/dst address pair.
57 */
58 /* XXX is M_NETADDR correct? */
59
60 /*
61 * With USE_RADIX the code will use radix table for tunnel lookup, for
62 * tunnels registered with encap_attach() with a addr/mask pair.
63 * Faster on machines with thousands of tunnel registerations (= interfaces).
64 *
65 * The code assumes that radix table code can handle non-continuous netmask,
66 * as it will pass radix table memory region with (src + dst) sockaddr pair.
67 */
68 #define USE_RADIX
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: ip_encap.c,v 1.62 2016/12/22 04:54:54 knakahara Exp $");
72
73 #ifdef _KERNEL_OPT
74 #include "opt_mrouting.h"
75 #include "opt_inet.h"
76 #include "opt_net_mpsafe.h"
77 #endif
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/socket.h>
82 #include <sys/sockio.h>
83 #include <sys/mbuf.h>
84 #include <sys/errno.h>
85 #include <sys/queue.h>
86 #include <sys/kmem.h>
87 #include <sys/mutex.h>
88 #include <sys/condvar.h>
89 #include <sys/psref.h>
90 #include <sys/pslist.h>
91
92 #include <net/if.h>
93
94 #include <netinet/in.h>
95 #include <netinet/in_systm.h>
96 #include <netinet/ip.h>
97 #include <netinet/ip_var.h>
98 #include <netinet/ip_encap.h>
99 #ifdef MROUTING
100 #include <netinet/ip_mroute.h>
101 #endif /* MROUTING */
102
103 #ifdef INET6
104 #include <netinet/ip6.h>
105 #include <netinet6/ip6_var.h>
106 #include <netinet6/ip6protosw.h> /* for struct ip6ctlparam */
107 #include <netinet6/in6_var.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet/icmp6.h>
110 #endif
111
112 #include <net/net_osdep.h>
113
114 #ifdef NET_MPSAFE
115 #define ENCAP_MPSAFE 1
116 #endif
117
118 enum direction { INBOUND, OUTBOUND };
119
120 #ifdef INET
121 static struct encaptab *encap4_lookup(struct mbuf *, int, int, enum direction,
122 struct psref *);
123 #endif
124 #ifdef INET6
125 static struct encaptab *encap6_lookup(struct mbuf *, int, int, enum direction,
126 struct psref *);
127 #endif
128 static int encap_add(struct encaptab *);
129 static int encap_remove(struct encaptab *);
130 static int encap_afcheck(int, const struct sockaddr *, const struct sockaddr *);
131 #ifdef USE_RADIX
132 static struct radix_node_head *encap_rnh(int);
133 static int mask_matchlen(const struct sockaddr *);
134 #else
135 static int mask_match(const struct encaptab *, const struct sockaddr *,
136 const struct sockaddr *);
137 #endif
138 static void encap_fillarg(struct mbuf *, const struct encaptab *);
139
140 /*
141 * In encap[46]_lookup(), ep->func can sleep(e.g. rtalloc1) while walking
142 * encap_table. So, it cannot use pserialize_read_enter()
143 */
144 static struct {
145 struct pslist_head list;
146 pserialize_t psz;
147 struct psref_class *elem_class; /* for the element of et_list */
148 } encaptab __cacheline_aligned = {
149 .list = PSLIST_INITIALIZER,
150 };
151 #define encap_table encaptab.list
152
153 static struct {
154 kmutex_t lock;
155 kcondvar_t cv;
156 struct lwp *busy;
157 } encap_whole __cacheline_aligned;
158
159 #ifdef USE_RADIX
160 struct radix_node_head *encap_head[2]; /* 0 for AF_INET, 1 for AF_INET6 */
161 static bool encap_head_updating = false;
162 #endif
163
164 /*
165 * must be done before other encap interfaces initialization.
166 */
167 void
168 encapinit(void)
169 {
170
171 encaptab.psz = pserialize_create();
172 encaptab.elem_class = psref_class_create("encapelem", IPL_SOFTNET);
173 if (encaptab.elem_class == NULL)
174 panic("encaptab.elem_class cannot be allocated.\n");
175
176 mutex_init(&encap_whole.lock, MUTEX_DEFAULT, IPL_NONE);
177 cv_init(&encap_whole.cv, "ip_encap cv");
178 encap_whole.busy = NULL;
179 }
180
181 void
182 encap_init(void)
183 {
184 static int initialized = 0;
185
186 if (initialized)
187 return;
188 initialized++;
189 #if 0
190 /*
191 * we cannot use LIST_INIT() here, since drivers may want to call
192 * encap_attach(), on driver attach. encap_init() will be called
193 * on AF_INET{,6} initialization, which happens after driver
194 * initialization - using LIST_INIT() here can nuke encap_attach()
195 * from drivers.
196 */
197 PSLIST_INIT(&encap_table);
198 #endif
199
200 #ifdef USE_RADIX
201 /*
202 * initialize radix lookup table when the radix subsystem is inited.
203 */
204 rn_delayedinit((void *)&encap_head[0],
205 sizeof(struct sockaddr_pack) << 3);
206 #ifdef INET6
207 rn_delayedinit((void *)&encap_head[1],
208 sizeof(struct sockaddr_pack) << 3);
209 #endif
210 #endif
211 }
212
213 #ifdef INET
214 static struct encaptab *
215 encap4_lookup(struct mbuf *m, int off, int proto, enum direction dir,
216 struct psref *match_psref)
217 {
218 struct ip *ip;
219 struct ip_pack4 pack;
220 struct encaptab *ep, *match;
221 int prio, matchprio;
222 int s;
223 #ifdef USE_RADIX
224 struct radix_node_head *rnh = encap_rnh(AF_INET);
225 struct radix_node *rn;
226 #endif
227
228 KASSERT(m->m_len >= sizeof(*ip));
229
230 ip = mtod(m, struct ip *);
231
232 memset(&pack, 0, sizeof(pack));
233 pack.p.sp_len = sizeof(pack);
234 pack.mine.sin_family = pack.yours.sin_family = AF_INET;
235 pack.mine.sin_len = pack.yours.sin_len = sizeof(struct sockaddr_in);
236 if (dir == INBOUND) {
237 pack.mine.sin_addr = ip->ip_dst;
238 pack.yours.sin_addr = ip->ip_src;
239 } else {
240 pack.mine.sin_addr = ip->ip_src;
241 pack.yours.sin_addr = ip->ip_dst;
242 }
243
244 match = NULL;
245 matchprio = 0;
246
247 s = pserialize_read_enter();
248 #ifdef USE_RADIX
249 if (encap_head_updating) {
250 /*
251 * Update in progress. Do nothing.
252 */
253 pserialize_read_exit(s);
254 return NULL;
255 }
256
257 rn = rnh->rnh_matchaddr((void *)&pack, rnh);
258 if (rn && (rn->rn_flags & RNF_ROOT) == 0) {
259 struct encaptab *encapp = (struct encaptab *)rn;
260
261 psref_acquire(match_psref, &encapp->psref,
262 encaptab.elem_class);
263 match = encapp;
264 matchprio = mask_matchlen(match->srcmask) +
265 mask_matchlen(match->dstmask);
266 }
267 #endif
268 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
269 struct psref elem_psref;
270
271 membar_datadep_consumer();
272
273 if (ep->af != AF_INET)
274 continue;
275 if (ep->proto >= 0 && ep->proto != proto)
276 continue;
277
278 psref_acquire(&elem_psref, &ep->psref,
279 encaptab.elem_class);
280 if (ep->func) {
281 pserialize_read_exit(s);
282 /* ep->func is sleepable. e.g. rtalloc1 */
283 prio = (*ep->func)(m, off, proto, ep->arg);
284 s = pserialize_read_enter();
285 } else {
286 #ifdef USE_RADIX
287 psref_release(&elem_psref, &ep->psref,
288 encaptab.elem_class);
289 continue;
290 #else
291 prio = mask_match(ep, (struct sockaddr *)&pack.mine,
292 (struct sockaddr *)&pack.yours);
293 #endif
294 }
295
296 /*
297 * We prioritize the matches by using bit length of the
298 * matches. mask_match() and user-supplied matching function
299 * should return the bit length of the matches (for example,
300 * if both src/dst are matched for IPv4, 64 should be returned).
301 * 0 or negative return value means "it did not match".
302 *
303 * The question is, since we have two "mask" portion, we
304 * cannot really define total order between entries.
305 * For example, which of these should be preferred?
306 * mask_match() returns 48 (32 + 16) for both of them.
307 * src=3ffe::/16, dst=3ffe:501::/32
308 * src=3ffe:501::/32, dst=3ffe::/16
309 *
310 * We need to loop through all the possible candidates
311 * to get the best match - the search takes O(n) for
312 * n attachments (i.e. interfaces).
313 *
314 * For radix-based lookup, I guess source takes precedence.
315 * See rn_{refines,lexobetter} for the correct answer.
316 */
317 if (prio <= 0) {
318 psref_release(&elem_psref, &ep->psref,
319 encaptab.elem_class);
320 continue;
321 }
322 if (prio > matchprio) {
323 /* release last matched ep */
324 if (match != NULL)
325 psref_release(match_psref, &match->psref,
326 encaptab.elem_class);
327
328 psref_copy(match_psref, &elem_psref,
329 encaptab.elem_class);
330 matchprio = prio;
331 match = ep;
332 }
333 KASSERTMSG((match == NULL) || psref_held(&match->psref,
334 encaptab.elem_class),
335 "current match = %p, but not hold its psref", match);
336
337 psref_release(&elem_psref, &ep->psref,
338 encaptab.elem_class);
339 }
340 pserialize_read_exit(s);
341
342 return match;
343 }
344
345 void
346 encap4_input(struct mbuf *m, ...)
347 {
348 int off, proto;
349 va_list ap;
350 const struct encapsw *esw;
351 struct encaptab *match;
352 struct psref match_psref;
353
354 va_start(ap, m);
355 off = va_arg(ap, int);
356 proto = va_arg(ap, int);
357 va_end(ap);
358
359 match = encap4_lookup(m, off, proto, INBOUND, &match_psref);
360 if (match) {
361 /* found a match, "match" has the best one */
362 esw = match->esw;
363 if (esw && esw->encapsw4.pr_input) {
364 encap_fillarg(m, match);
365 (*esw->encapsw4.pr_input)(m, off, proto);
366 psref_release(&match_psref, &match->psref,
367 encaptab.elem_class);
368 } else {
369 psref_release(&match_psref, &match->psref,
370 encaptab.elem_class);
371 m_freem(m);
372 }
373 return;
374 }
375
376 /* last resort: inject to raw socket */
377 rip_input(m, off, proto);
378 }
379 #endif
380
381 #ifdef INET6
382 static struct encaptab *
383 encap6_lookup(struct mbuf *m, int off, int proto, enum direction dir,
384 struct psref *match_psref)
385 {
386 struct ip6_hdr *ip6;
387 struct ip_pack6 pack;
388 int prio, matchprio;
389 int s;
390 struct encaptab *ep, *match;
391 #ifdef USE_RADIX
392 struct radix_node_head *rnh = encap_rnh(AF_INET6);
393 struct radix_node *rn;
394 #endif
395
396 KASSERT(m->m_len >= sizeof(*ip6));
397
398 ip6 = mtod(m, struct ip6_hdr *);
399
400 memset(&pack, 0, sizeof(pack));
401 pack.p.sp_len = sizeof(pack);
402 pack.mine.sin6_family = pack.yours.sin6_family = AF_INET6;
403 pack.mine.sin6_len = pack.yours.sin6_len = sizeof(struct sockaddr_in6);
404 if (dir == INBOUND) {
405 pack.mine.sin6_addr = ip6->ip6_dst;
406 pack.yours.sin6_addr = ip6->ip6_src;
407 } else {
408 pack.mine.sin6_addr = ip6->ip6_src;
409 pack.yours.sin6_addr = ip6->ip6_dst;
410 }
411
412 match = NULL;
413 matchprio = 0;
414
415 s = pserialize_read_enter();
416 #ifdef USE_RADIX
417 if (encap_head_updating) {
418 /*
419 * Update in progress. Do nothing.
420 */
421 pserialize_read_exit(s);
422 return NULL;
423 }
424
425 rn = rnh->rnh_matchaddr((void *)&pack, rnh);
426 if (rn && (rn->rn_flags & RNF_ROOT) == 0) {
427 struct encaptab *encapp = (struct encaptab *)rn;
428
429 psref_acquire(match_psref, &encapp->psref,
430 encaptab.elem_class);
431 match = encapp;
432 matchprio = mask_matchlen(match->srcmask) +
433 mask_matchlen(match->dstmask);
434 }
435 #endif
436 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
437 struct psref elem_psref;
438
439 membar_datadep_consumer();
440
441 if (ep->af != AF_INET6)
442 continue;
443 if (ep->proto >= 0 && ep->proto != proto)
444 continue;
445
446 psref_acquire(&elem_psref, &ep->psref,
447 encaptab.elem_class);
448
449 if (ep->func) {
450 pserialize_read_exit(s);
451 /* ep->func is sleepable. e.g. rtalloc1 */
452 prio = (*ep->func)(m, off, proto, ep->arg);
453 s = pserialize_read_enter();
454 } else {
455 #ifdef USE_RADIX
456 psref_release(&elem_psref, &ep->psref,
457 encaptab.elem_class);
458 continue;
459 #else
460 prio = mask_match(ep, (struct sockaddr *)&pack.mine,
461 (struct sockaddr *)&pack.yours);
462 #endif
463 }
464
465 /* see encap4_lookup() for issues here */
466 if (prio <= 0) {
467 psref_release(&elem_psref, &ep->psref,
468 encaptab.elem_class);
469 continue;
470 }
471 if (prio > matchprio) {
472 /* release last matched ep */
473 if (match != NULL)
474 psref_release(match_psref, &match->psref,
475 encaptab.elem_class);
476
477 psref_copy(match_psref, &elem_psref,
478 encaptab.elem_class);
479 matchprio = prio;
480 match = ep;
481 }
482 KASSERTMSG((match == NULL) || psref_held(&match->psref,
483 encaptab.elem_class),
484 "current match = %p, but not hold its psref", match);
485
486 psref_release(&elem_psref, &ep->psref,
487 encaptab.elem_class);
488 }
489 pserialize_read_exit(s);
490
491 return match;
492 }
493
494 int
495 encap6_input(struct mbuf **mp, int *offp, int proto)
496 {
497 struct mbuf *m = *mp;
498 const struct encapsw *esw;
499 struct encaptab *match;
500 struct psref match_psref;
501
502 match = encap6_lookup(m, *offp, proto, INBOUND, &match_psref);
503
504 if (match) {
505 /* found a match */
506 esw = match->esw;
507 if (esw && esw->encapsw6.pr_input) {
508 int ret;
509 encap_fillarg(m, match);
510 ret = (*esw->encapsw6.pr_input)(mp, offp, proto);
511 psref_release(&match_psref, &match->psref,
512 encaptab.elem_class);
513 return ret;
514 } else {
515 psref_release(&match_psref, &match->psref,
516 encaptab.elem_class);
517 m_freem(m);
518 return IPPROTO_DONE;
519 }
520 }
521
522 /* last resort: inject to raw socket */
523 return rip6_input(mp, offp, proto);
524 }
525 #endif
526
527 /*
528 * XXX
529 * The encaptab list and the rnh radix tree must be manipulated atomically.
530 */
531 static int
532 encap_add(struct encaptab *ep)
533 {
534 #ifdef USE_RADIX
535 struct radix_node_head *rnh = encap_rnh(ep->af);
536 #endif
537
538 KASSERT(encap_lock_held());
539
540 #ifdef USE_RADIX
541 if (!ep->func && rnh) {
542 /* Disable access to the radix tree for reader. */
543 encap_head_updating = true;
544 /* Wait for all readers to drain. */
545 pserialize_perform(encaptab.psz);
546
547 if (!rnh->rnh_addaddr((void *)ep->addrpack,
548 (void *)ep->maskpack, rnh, ep->nodes)) {
549 encap_head_updating = false;
550 return EEXIST;
551 }
552
553 /*
554 * The ep added to the radix tree must be skipped while
555 * encap[46]_lookup walks encaptab list. In other words,
556 * encap_add() does not need to care whether the ep has
557 * been added encaptab list or not yet.
558 * So, we can re-enable access to the radix tree for now.
559 */
560 encap_head_updating = false;
561 }
562 #endif
563 PSLIST_WRITER_INSERT_HEAD(&encap_table, ep, chain);
564
565 return 0;
566 }
567
568 /*
569 * XXX
570 * The encaptab list and the rnh radix tree must be manipulated atomically.
571 */
572 static int
573 encap_remove(struct encaptab *ep)
574 {
575 #ifdef USE_RADIX
576 struct radix_node_head *rnh = encap_rnh(ep->af);
577 #endif
578 int error = 0;
579
580 KASSERT(encap_lock_held());
581
582 #ifdef USE_RADIX
583 if (!ep->func && rnh) {
584 /* Disable access to the radix tree for reader. */
585 encap_head_updating = true;
586 /* Wait for all readers to drain. */
587 pserialize_perform(encaptab.psz);
588
589 if (!rnh->rnh_deladdr((void *)ep->addrpack,
590 (void *)ep->maskpack, rnh))
591 error = ESRCH;
592
593 /*
594 * The ep added to the radix tree must be skipped while
595 * encap[46]_lookup walks encaptab list. In other words,
596 * encap_add() does not need to care whether the ep has
597 * been added encaptab list or not yet.
598 * So, we can re-enable access to the radix tree for now.
599 */
600 encap_head_updating = false;
601 }
602 #endif
603 PSLIST_WRITER_REMOVE(ep, chain);
604
605 return error;
606 }
607
608 static int
609 encap_afcheck(int af, const struct sockaddr *sp, const struct sockaddr *dp)
610 {
611 if (sp && dp) {
612 if (sp->sa_len != dp->sa_len)
613 return EINVAL;
614 if (af != sp->sa_family || af != dp->sa_family)
615 return EINVAL;
616 } else if (!sp && !dp)
617 ;
618 else
619 return EINVAL;
620
621 switch (af) {
622 case AF_INET:
623 if (sp && sp->sa_len != sizeof(struct sockaddr_in))
624 return EINVAL;
625 if (dp && dp->sa_len != sizeof(struct sockaddr_in))
626 return EINVAL;
627 break;
628 #ifdef INET6
629 case AF_INET6:
630 if (sp && sp->sa_len != sizeof(struct sockaddr_in6))
631 return EINVAL;
632 if (dp && dp->sa_len != sizeof(struct sockaddr_in6))
633 return EINVAL;
634 break;
635 #endif
636 default:
637 return EAFNOSUPPORT;
638 }
639
640 return 0;
641 }
642
643 /*
644 * sp (src ptr) is always my side, and dp (dst ptr) is always remote side.
645 * length of mask (sm and dm) is assumed to be same as sp/dp.
646 * Return value will be necessary as input (cookie) for encap_detach().
647 */
648 const struct encaptab *
649 encap_attach(int af, int proto,
650 const struct sockaddr *sp, const struct sockaddr *sm,
651 const struct sockaddr *dp, const struct sockaddr *dm,
652 const struct encapsw *esw, void *arg)
653 {
654 struct encaptab *ep;
655 int error;
656 int pss;
657 size_t l;
658 struct ip_pack4 *pack4;
659 #ifdef INET6
660 struct ip_pack6 *pack6;
661 #endif
662 #ifndef ENCAP_MPSAFE
663 int s;
664
665 s = splsoftnet();
666 #endif
667 /* sanity check on args */
668 error = encap_afcheck(af, sp, dp);
669 if (error)
670 goto fail;
671
672 /* check if anyone have already attached with exactly same config */
673 pss = pserialize_read_enter();
674 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
675 membar_datadep_consumer();
676
677 if (ep->af != af)
678 continue;
679 if (ep->proto != proto)
680 continue;
681 if (ep->func)
682 continue;
683
684 KASSERT(ep->src != NULL);
685 KASSERT(ep->dst != NULL);
686 KASSERT(ep->srcmask != NULL);
687 KASSERT(ep->dstmask != NULL);
688
689 if (ep->src->sa_len != sp->sa_len ||
690 memcmp(ep->src, sp, sp->sa_len) != 0 ||
691 memcmp(ep->srcmask, sm, sp->sa_len) != 0)
692 continue;
693 if (ep->dst->sa_len != dp->sa_len ||
694 memcmp(ep->dst, dp, dp->sa_len) != 0 ||
695 memcmp(ep->dstmask, dm, dp->sa_len) != 0)
696 continue;
697
698 error = EEXIST;
699 pserialize_read_exit(pss);
700 goto fail;
701 }
702 pserialize_read_exit(pss);
703
704 switch (af) {
705 case AF_INET:
706 l = sizeof(*pack4);
707 break;
708 #ifdef INET6
709 case AF_INET6:
710 l = sizeof(*pack6);
711 break;
712 #endif
713 default:
714 goto fail;
715 }
716
717 /* M_NETADDR ok? */
718 ep = kmem_zalloc(sizeof(*ep), KM_NOSLEEP);
719 if (ep == NULL) {
720 error = ENOBUFS;
721 goto fail;
722 }
723 ep->addrpack = kmem_zalloc(l, KM_NOSLEEP);
724 if (ep->addrpack == NULL) {
725 error = ENOBUFS;
726 goto gc;
727 }
728 ep->maskpack = kmem_zalloc(l, KM_NOSLEEP);
729 if (ep->maskpack == NULL) {
730 error = ENOBUFS;
731 goto gc;
732 }
733
734 ep->af = af;
735 ep->proto = proto;
736 ep->addrpack->sa_len = l & 0xff;
737 ep->maskpack->sa_len = l & 0xff;
738 switch (af) {
739 case AF_INET:
740 pack4 = (struct ip_pack4 *)ep->addrpack;
741 ep->src = (struct sockaddr *)&pack4->mine;
742 ep->dst = (struct sockaddr *)&pack4->yours;
743 pack4 = (struct ip_pack4 *)ep->maskpack;
744 ep->srcmask = (struct sockaddr *)&pack4->mine;
745 ep->dstmask = (struct sockaddr *)&pack4->yours;
746 break;
747 #ifdef INET6
748 case AF_INET6:
749 pack6 = (struct ip_pack6 *)ep->addrpack;
750 ep->src = (struct sockaddr *)&pack6->mine;
751 ep->dst = (struct sockaddr *)&pack6->yours;
752 pack6 = (struct ip_pack6 *)ep->maskpack;
753 ep->srcmask = (struct sockaddr *)&pack6->mine;
754 ep->dstmask = (struct sockaddr *)&pack6->yours;
755 break;
756 #endif
757 }
758
759 memcpy(ep->src, sp, sp->sa_len);
760 memcpy(ep->srcmask, sm, sp->sa_len);
761 memcpy(ep->dst, dp, dp->sa_len);
762 memcpy(ep->dstmask, dm, dp->sa_len);
763 ep->esw = esw;
764 ep->arg = arg;
765 psref_target_init(&ep->psref, encaptab.elem_class);
766
767 error = encap_add(ep);
768 if (error)
769 goto gc;
770
771 error = 0;
772 #ifndef ENCAP_MPSAFE
773 splx(s);
774 #endif
775 return ep;
776
777 gc:
778 if (ep->addrpack)
779 kmem_free(ep->addrpack, l);
780 if (ep->maskpack)
781 kmem_free(ep->maskpack, l);
782 if (ep)
783 kmem_free(ep, sizeof(*ep));
784 fail:
785 #ifndef ENCAP_MPSAFE
786 splx(s);
787 #endif
788 return NULL;
789 }
790
791 const struct encaptab *
792 encap_attach_func(int af, int proto,
793 int (*func)(struct mbuf *, int, int, void *),
794 const struct encapsw *esw, void *arg)
795 {
796 struct encaptab *ep;
797 int error;
798 #ifndef ENCAP_MPSAFE
799 int s;
800
801 s = splsoftnet();
802 #endif
803 /* sanity check on args */
804 if (!func) {
805 error = EINVAL;
806 goto fail;
807 }
808
809 error = encap_afcheck(af, NULL, NULL);
810 if (error)
811 goto fail;
812
813 ep = kmem_alloc(sizeof(*ep), KM_NOSLEEP); /*XXX*/
814 if (ep == NULL) {
815 error = ENOBUFS;
816 goto fail;
817 }
818 memset(ep, 0, sizeof(*ep));
819
820 ep->af = af;
821 ep->proto = proto;
822 ep->func = func;
823 ep->esw = esw;
824 ep->arg = arg;
825 psref_target_init(&ep->psref, encaptab.elem_class);
826
827 error = encap_add(ep);
828 if (error)
829 goto fail;
830
831 error = 0;
832 #ifndef ENCAP_MPSAFE
833 splx(s);
834 #endif
835 return ep;
836
837 fail:
838 #ifndef ENCAP_MPSAFE
839 splx(s);
840 #endif
841 return NULL;
842 }
843
844 /* XXX encap4_ctlinput() is necessary if we set DF=1 on outer IPv4 header */
845
846 #ifdef INET6
847 void *
848 encap6_ctlinput(int cmd, const struct sockaddr *sa, void *d0)
849 {
850 void *d = d0;
851 struct ip6_hdr *ip6;
852 struct mbuf *m;
853 int off;
854 struct ip6ctlparam *ip6cp = NULL;
855 int nxt;
856 int s;
857 struct encaptab *ep;
858 const struct encapsw *esw;
859
860 if (sa->sa_family != AF_INET6 ||
861 sa->sa_len != sizeof(struct sockaddr_in6))
862 return NULL;
863
864 if ((unsigned)cmd >= PRC_NCMDS)
865 return NULL;
866 if (cmd == PRC_HOSTDEAD)
867 d = NULL;
868 else if (cmd == PRC_MSGSIZE)
869 ; /* special code is present, see below */
870 else if (inet6ctlerrmap[cmd] == 0)
871 return NULL;
872
873 /* if the parameter is from icmp6, decode it. */
874 if (d != NULL) {
875 ip6cp = (struct ip6ctlparam *)d;
876 m = ip6cp->ip6c_m;
877 ip6 = ip6cp->ip6c_ip6;
878 off = ip6cp->ip6c_off;
879 nxt = ip6cp->ip6c_nxt;
880
881 if (ip6 && cmd == PRC_MSGSIZE) {
882 int valid = 0;
883 struct encaptab *match;
884 struct psref elem_psref;
885
886 /*
887 * Check to see if we have a valid encap configuration.
888 */
889 match = encap6_lookup(m, off, nxt, OUTBOUND,
890 &elem_psref);
891 if (match)
892 valid++;
893 psref_release(&elem_psref, &match->psref,
894 encaptab.elem_class);
895
896 /*
897 * Depending on the value of "valid" and routing table
898 * size (mtudisc_{hi,lo}wat), we will:
899 * - recalcurate the new MTU and create the
900 * corresponding routing entry, or
901 * - ignore the MTU change notification.
902 */
903 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
904 }
905 } else {
906 m = NULL;
907 ip6 = NULL;
908 nxt = -1;
909 }
910
911 /* inform all listeners */
912
913 s = pserialize_read_enter();
914 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
915 struct psref elem_psref;
916
917 membar_datadep_consumer();
918
919 if (ep->af != AF_INET6)
920 continue;
921 if (ep->proto >= 0 && ep->proto != nxt)
922 continue;
923
924 /* should optimize by looking at address pairs */
925
926 /* XXX need to pass ep->arg or ep itself to listeners */
927 psref_acquire(&elem_psref, &ep->psref,
928 encaptab.elem_class);
929 esw = ep->esw;
930 if (esw && esw->encapsw6.pr_ctlinput) {
931 pserialize_read_exit(s);
932 /* pr_ctlinput is sleepable. e.g. rtcache_free */
933 (*esw->encapsw6.pr_ctlinput)(cmd, sa, d, ep->arg);
934 s = pserialize_read_enter();
935 }
936 psref_release(&elem_psref, &ep->psref,
937 encaptab.elem_class);
938 }
939 pserialize_read_exit(s);
940
941 rip6_ctlinput(cmd, sa, d0);
942 return NULL;
943 }
944 #endif
945
946 int
947 encap_detach(const struct encaptab *cookie)
948 {
949 const struct encaptab *ep = cookie;
950 struct encaptab *p;
951 int error;
952
953 KASSERT(encap_lock_held());
954
955 PSLIST_WRITER_FOREACH(p, &encap_table, struct encaptab, chain) {
956 membar_datadep_consumer();
957
958 if (p == ep) {
959 error = encap_remove(p);
960 if (error)
961 return error;
962 else
963 break;
964 }
965 }
966 if (p == NULL)
967 return ENOENT;
968
969 pserialize_perform(encaptab.psz);
970 psref_target_destroy(&p->psref,
971 encaptab.elem_class);
972 if (!ep->func) {
973 kmem_free(p->addrpack, ep->addrpack->sa_len);
974 kmem_free(p->maskpack, ep->maskpack->sa_len);
975 }
976 kmem_free(p, sizeof(*p));
977
978 return 0;
979 }
980
981 #ifdef USE_RADIX
982 static struct radix_node_head *
983 encap_rnh(int af)
984 {
985
986 switch (af) {
987 case AF_INET:
988 return encap_head[0];
989 #ifdef INET6
990 case AF_INET6:
991 return encap_head[1];
992 #endif
993 default:
994 return NULL;
995 }
996 }
997
998 static int
999 mask_matchlen(const struct sockaddr *sa)
1000 {
1001 const char *p, *ep;
1002 int l;
1003
1004 p = (const char *)sa;
1005 ep = p + sa->sa_len;
1006 p += 2; /* sa_len + sa_family */
1007
1008 l = 0;
1009 while (p < ep) {
1010 l += (*p ? 8 : 0); /* estimate */
1011 p++;
1012 }
1013 return l;
1014 }
1015 #endif
1016
1017 #ifndef USE_RADIX
1018 static int
1019 mask_match(const struct encaptab *ep,
1020 const struct sockaddr *sp,
1021 const struct sockaddr *dp)
1022 {
1023 struct sockaddr_storage s;
1024 struct sockaddr_storage d;
1025 int i;
1026 const u_int8_t *p, *q;
1027 u_int8_t *r;
1028 int matchlen;
1029
1030 KASSERTMSG(ep->func == NULL, "wrong encaptab passed to mask_match");
1031
1032 if (sp->sa_len > sizeof(s) || dp->sa_len > sizeof(d))
1033 return 0;
1034 if (sp->sa_family != ep->af || dp->sa_family != ep->af)
1035 return 0;
1036 if (sp->sa_len != ep->src->sa_len || dp->sa_len != ep->dst->sa_len)
1037 return 0;
1038
1039 matchlen = 0;
1040
1041 p = (const u_int8_t *)sp;
1042 q = (const u_int8_t *)ep->srcmask;
1043 r = (u_int8_t *)&s;
1044 for (i = 0 ; i < sp->sa_len; i++) {
1045 r[i] = p[i] & q[i];
1046 /* XXX estimate */
1047 matchlen += (q[i] ? 8 : 0);
1048 }
1049
1050 p = (const u_int8_t *)dp;
1051 q = (const u_int8_t *)ep->dstmask;
1052 r = (u_int8_t *)&d;
1053 for (i = 0 ; i < dp->sa_len; i++) {
1054 r[i] = p[i] & q[i];
1055 /* XXX rough estimate */
1056 matchlen += (q[i] ? 8 : 0);
1057 }
1058
1059 /* need to overwrite len/family portion as we don't compare them */
1060 s.ss_len = sp->sa_len;
1061 s.ss_family = sp->sa_family;
1062 d.ss_len = dp->sa_len;
1063 d.ss_family = dp->sa_family;
1064
1065 if (memcmp(&s, ep->src, ep->src->sa_len) == 0 &&
1066 memcmp(&d, ep->dst, ep->dst->sa_len) == 0) {
1067 return matchlen;
1068 } else
1069 return 0;
1070 }
1071 #endif
1072
1073 static void
1074 encap_fillarg(struct mbuf *m, const struct encaptab *ep)
1075 {
1076 struct m_tag *mtag;
1077
1078 mtag = m_tag_get(PACKET_TAG_ENCAP, sizeof(void *), M_NOWAIT);
1079 if (mtag) {
1080 *(void **)(mtag + 1) = ep->arg;
1081 m_tag_prepend(m, mtag);
1082 }
1083 }
1084
1085 void *
1086 encap_getarg(struct mbuf *m)
1087 {
1088 void *p;
1089 struct m_tag *mtag;
1090
1091 p = NULL;
1092 mtag = m_tag_find(m, PACKET_TAG_ENCAP, NULL);
1093 if (mtag != NULL) {
1094 p = *(void **)(mtag + 1);
1095 m_tag_delete(m, mtag);
1096 }
1097 return p;
1098 }
1099
1100 int
1101 encap_lock_enter(void)
1102 {
1103 int error;
1104
1105 mutex_enter(&encap_whole.lock);
1106 while (encap_whole.busy != NULL) {
1107 error = cv_wait_sig(&encap_whole.cv, &encap_whole.lock);
1108 if (error) {
1109 mutex_exit(&encap_whole.lock);
1110 return error;
1111 }
1112 }
1113 KASSERT(encap_whole.busy == NULL);
1114 encap_whole.busy = curlwp;
1115 mutex_exit(&encap_whole.lock);
1116
1117 return 0;
1118 }
1119
1120 void
1121 encap_lock_exit(void)
1122 {
1123
1124 mutex_enter(&encap_whole.lock);
1125 KASSERT(encap_whole.busy == curlwp);
1126 encap_whole.busy = NULL;
1127 cv_broadcast(&encap_whole.cv);
1128 mutex_exit(&encap_whole.lock);
1129 }
1130
1131 bool
1132 encap_lock_held(void)
1133 {
1134
1135 return (encap_whole.busy == curlwp);
1136 }
1137