ip_encap.c revision 1.62.2.1 1 /* $NetBSD: ip_encap.c,v 1.62.2.1 2017/04/21 16:54:06 bouyer Exp $ */
2 /* $KAME: ip_encap.c,v 1.73 2001/10/02 08:30:58 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32 /*
33 * My grandfather said that there's a devil inside tunnelling technology...
34 *
35 * We have surprisingly many protocols that want packets with IP protocol
36 * #4 or #41. Here's a list of protocols that want protocol #41:
37 * RFC1933 configured tunnel
38 * RFC1933 automatic tunnel
39 * RFC2401 IPsec tunnel
40 * RFC2473 IPv6 generic packet tunnelling
41 * RFC2529 6over4 tunnel
42 * RFC3056 6to4 tunnel
43 * isatap tunnel
44 * mobile-ip6 (uses RFC2473)
45 * Here's a list of protocol that want protocol #4:
46 * RFC1853 IPv4-in-IPv4 tunnelling
47 * RFC2003 IPv4 encapsulation within IPv4
48 * RFC2344 reverse tunnelling for mobile-ip4
49 * RFC2401 IPsec tunnel
50 * Well, what can I say. They impose different en/decapsulation mechanism
51 * from each other, so they need separate protocol handler. The only one
52 * we can easily determine by protocol # is IPsec, which always has
53 * AH/ESP/IPComp header right after outer IP header.
54 *
55 * So, clearly good old protosw does not work for protocol #4 and #41.
56 * The code will let you match protocol via src/dst address pair.
57 */
58 /* XXX is M_NETADDR correct? */
59
60 /*
61 * With USE_RADIX the code will use radix table for tunnel lookup, for
62 * tunnels registered with encap_attach() with a addr/mask pair.
63 * Faster on machines with thousands of tunnel registerations (= interfaces).
64 *
65 * The code assumes that radix table code can handle non-continuous netmask,
66 * as it will pass radix table memory region with (src + dst) sockaddr pair.
67 */
68 #define USE_RADIX
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: ip_encap.c,v 1.62.2.1 2017/04/21 16:54:06 bouyer Exp $");
72
73 #ifdef _KERNEL_OPT
74 #include "opt_mrouting.h"
75 #include "opt_inet.h"
76 #include "opt_net_mpsafe.h"
77 #endif
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/socket.h>
82 #include <sys/sockio.h>
83 #include <sys/mbuf.h>
84 #include <sys/errno.h>
85 #include <sys/queue.h>
86 #include <sys/kmem.h>
87 #include <sys/mutex.h>
88 #include <sys/condvar.h>
89 #include <sys/psref.h>
90 #include <sys/pslist.h>
91
92 #include <net/if.h>
93
94 #include <netinet/in.h>
95 #include <netinet/in_systm.h>
96 #include <netinet/ip.h>
97 #include <netinet/ip_var.h>
98 #include <netinet/ip_encap.h>
99 #ifdef MROUTING
100 #include <netinet/ip_mroute.h>
101 #endif /* MROUTING */
102
103 #ifdef INET6
104 #include <netinet/ip6.h>
105 #include <netinet6/ip6_var.h>
106 #include <netinet6/ip6protosw.h> /* for struct ip6ctlparam */
107 #include <netinet6/in6_var.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet/icmp6.h>
110 #endif
111
112 #include <net/net_osdep.h>
113
114 #ifdef NET_MPSAFE
115 #define ENCAP_MPSAFE 1
116 #endif
117
118 enum direction { INBOUND, OUTBOUND };
119
120 #ifdef INET
121 static struct encaptab *encap4_lookup(struct mbuf *, int, int, enum direction,
122 struct psref *);
123 #endif
124 #ifdef INET6
125 static struct encaptab *encap6_lookup(struct mbuf *, int, int, enum direction,
126 struct psref *);
127 #endif
128 static int encap_add(struct encaptab *);
129 static int encap_remove(struct encaptab *);
130 static int encap_afcheck(int, const struct sockaddr *, const struct sockaddr *);
131 #ifdef USE_RADIX
132 static struct radix_node_head *encap_rnh(int);
133 static int mask_matchlen(const struct sockaddr *);
134 #else
135 static int mask_match(const struct encaptab *, const struct sockaddr *,
136 const struct sockaddr *);
137 #endif
138 static void encap_fillarg(struct mbuf *, const struct encaptab *);
139
140 /*
141 * In encap[46]_lookup(), ep->func can sleep(e.g. rtalloc1) while walking
142 * encap_table. So, it cannot use pserialize_read_enter()
143 */
144 static struct {
145 struct pslist_head list;
146 pserialize_t psz;
147 struct psref_class *elem_class; /* for the element of et_list */
148 } encaptab __cacheline_aligned = {
149 .list = PSLIST_INITIALIZER,
150 };
151 #define encap_table encaptab.list
152
153 static struct {
154 kmutex_t lock;
155 kcondvar_t cv;
156 struct lwp *busy;
157 } encap_whole __cacheline_aligned;
158
159 #ifdef USE_RADIX
160 struct radix_node_head *encap_head[2]; /* 0 for AF_INET, 1 for AF_INET6 */
161 static bool encap_head_updating = false;
162 #endif
163
164 static bool encap_initialized = false;
165 /*
166 * must be done before other encap interfaces initialization.
167 */
168 void
169 encapinit(void)
170 {
171
172 if (encap_initialized)
173 return;
174
175 encaptab.psz = pserialize_create();
176 encaptab.elem_class = psref_class_create("encapelem", IPL_SOFTNET);
177 if (encaptab.elem_class == NULL)
178 panic("encaptab.elem_class cannot be allocated.\n");
179
180 mutex_init(&encap_whole.lock, MUTEX_DEFAULT, IPL_NONE);
181 cv_init(&encap_whole.cv, "ip_encap cv");
182 encap_whole.busy = NULL;
183
184 encap_initialized = true;
185 }
186
187 void
188 encap_init(void)
189 {
190 static int initialized = 0;
191
192 if (initialized)
193 return;
194 initialized++;
195 #if 0
196 /*
197 * we cannot use LIST_INIT() here, since drivers may want to call
198 * encap_attach(), on driver attach. encap_init() will be called
199 * on AF_INET{,6} initialization, which happens after driver
200 * initialization - using LIST_INIT() here can nuke encap_attach()
201 * from drivers.
202 */
203 PSLIST_INIT(&encap_table);
204 #endif
205
206 #ifdef USE_RADIX
207 /*
208 * initialize radix lookup table when the radix subsystem is inited.
209 */
210 rn_delayedinit((void *)&encap_head[0],
211 sizeof(struct sockaddr_pack) << 3);
212 #ifdef INET6
213 rn_delayedinit((void *)&encap_head[1],
214 sizeof(struct sockaddr_pack) << 3);
215 #endif
216 #endif
217 }
218
219 #ifdef INET
220 static struct encaptab *
221 encap4_lookup(struct mbuf *m, int off, int proto, enum direction dir,
222 struct psref *match_psref)
223 {
224 struct ip *ip;
225 struct ip_pack4 pack;
226 struct encaptab *ep, *match;
227 int prio, matchprio;
228 int s;
229 #ifdef USE_RADIX
230 struct radix_node_head *rnh = encap_rnh(AF_INET);
231 struct radix_node *rn;
232 #endif
233
234 KASSERT(m->m_len >= sizeof(*ip));
235
236 ip = mtod(m, struct ip *);
237
238 memset(&pack, 0, sizeof(pack));
239 pack.p.sp_len = sizeof(pack);
240 pack.mine.sin_family = pack.yours.sin_family = AF_INET;
241 pack.mine.sin_len = pack.yours.sin_len = sizeof(struct sockaddr_in);
242 if (dir == INBOUND) {
243 pack.mine.sin_addr = ip->ip_dst;
244 pack.yours.sin_addr = ip->ip_src;
245 } else {
246 pack.mine.sin_addr = ip->ip_src;
247 pack.yours.sin_addr = ip->ip_dst;
248 }
249
250 match = NULL;
251 matchprio = 0;
252
253 s = pserialize_read_enter();
254 #ifdef USE_RADIX
255 if (encap_head_updating) {
256 /*
257 * Update in progress. Do nothing.
258 */
259 pserialize_read_exit(s);
260 return NULL;
261 }
262
263 rn = rnh->rnh_matchaddr((void *)&pack, rnh);
264 if (rn && (rn->rn_flags & RNF_ROOT) == 0) {
265 struct encaptab *encapp = (struct encaptab *)rn;
266
267 psref_acquire(match_psref, &encapp->psref,
268 encaptab.elem_class);
269 match = encapp;
270 matchprio = mask_matchlen(match->srcmask) +
271 mask_matchlen(match->dstmask);
272 }
273 #endif
274 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
275 struct psref elem_psref;
276
277 if (ep->af != AF_INET)
278 continue;
279 if (ep->proto >= 0 && ep->proto != proto)
280 continue;
281
282 psref_acquire(&elem_psref, &ep->psref,
283 encaptab.elem_class);
284 if (ep->func) {
285 pserialize_read_exit(s);
286 /* ep->func is sleepable. e.g. rtalloc1 */
287 prio = (*ep->func)(m, off, proto, ep->arg);
288 s = pserialize_read_enter();
289 } else {
290 #ifdef USE_RADIX
291 psref_release(&elem_psref, &ep->psref,
292 encaptab.elem_class);
293 continue;
294 #else
295 prio = mask_match(ep, (struct sockaddr *)&pack.mine,
296 (struct sockaddr *)&pack.yours);
297 #endif
298 }
299
300 /*
301 * We prioritize the matches by using bit length of the
302 * matches. mask_match() and user-supplied matching function
303 * should return the bit length of the matches (for example,
304 * if both src/dst are matched for IPv4, 64 should be returned).
305 * 0 or negative return value means "it did not match".
306 *
307 * The question is, since we have two "mask" portion, we
308 * cannot really define total order between entries.
309 * For example, which of these should be preferred?
310 * mask_match() returns 48 (32 + 16) for both of them.
311 * src=3ffe::/16, dst=3ffe:501::/32
312 * src=3ffe:501::/32, dst=3ffe::/16
313 *
314 * We need to loop through all the possible candidates
315 * to get the best match - the search takes O(n) for
316 * n attachments (i.e. interfaces).
317 *
318 * For radix-based lookup, I guess source takes precedence.
319 * See rn_{refines,lexobetter} for the correct answer.
320 */
321 if (prio <= 0) {
322 psref_release(&elem_psref, &ep->psref,
323 encaptab.elem_class);
324 continue;
325 }
326 if (prio > matchprio) {
327 /* release last matched ep */
328 if (match != NULL)
329 psref_release(match_psref, &match->psref,
330 encaptab.elem_class);
331
332 psref_copy(match_psref, &elem_psref,
333 encaptab.elem_class);
334 matchprio = prio;
335 match = ep;
336 }
337 KASSERTMSG((match == NULL) || psref_held(&match->psref,
338 encaptab.elem_class),
339 "current match = %p, but not hold its psref", match);
340
341 psref_release(&elem_psref, &ep->psref,
342 encaptab.elem_class);
343 }
344 pserialize_read_exit(s);
345
346 return match;
347 }
348
349 void
350 encap4_input(struct mbuf *m, ...)
351 {
352 int off, proto;
353 va_list ap;
354 const struct encapsw *esw;
355 struct encaptab *match;
356 struct psref match_psref;
357
358 va_start(ap, m);
359 off = va_arg(ap, int);
360 proto = va_arg(ap, int);
361 va_end(ap);
362
363 match = encap4_lookup(m, off, proto, INBOUND, &match_psref);
364 if (match) {
365 /* found a match, "match" has the best one */
366 esw = match->esw;
367 if (esw && esw->encapsw4.pr_input) {
368 encap_fillarg(m, match);
369 (*esw->encapsw4.pr_input)(m, off, proto);
370 psref_release(&match_psref, &match->psref,
371 encaptab.elem_class);
372 } else {
373 psref_release(&match_psref, &match->psref,
374 encaptab.elem_class);
375 m_freem(m);
376 }
377 return;
378 }
379
380 /* last resort: inject to raw socket */
381 rip_input(m, off, proto);
382 }
383 #endif
384
385 #ifdef INET6
386 static struct encaptab *
387 encap6_lookup(struct mbuf *m, int off, int proto, enum direction dir,
388 struct psref *match_psref)
389 {
390 struct ip6_hdr *ip6;
391 struct ip_pack6 pack;
392 int prio, matchprio;
393 int s;
394 struct encaptab *ep, *match;
395 #ifdef USE_RADIX
396 struct radix_node_head *rnh = encap_rnh(AF_INET6);
397 struct radix_node *rn;
398 #endif
399
400 KASSERT(m->m_len >= sizeof(*ip6));
401
402 ip6 = mtod(m, struct ip6_hdr *);
403
404 memset(&pack, 0, sizeof(pack));
405 pack.p.sp_len = sizeof(pack);
406 pack.mine.sin6_family = pack.yours.sin6_family = AF_INET6;
407 pack.mine.sin6_len = pack.yours.sin6_len = sizeof(struct sockaddr_in6);
408 if (dir == INBOUND) {
409 pack.mine.sin6_addr = ip6->ip6_dst;
410 pack.yours.sin6_addr = ip6->ip6_src;
411 } else {
412 pack.mine.sin6_addr = ip6->ip6_src;
413 pack.yours.sin6_addr = ip6->ip6_dst;
414 }
415
416 match = NULL;
417 matchprio = 0;
418
419 s = pserialize_read_enter();
420 #ifdef USE_RADIX
421 if (encap_head_updating) {
422 /*
423 * Update in progress. Do nothing.
424 */
425 pserialize_read_exit(s);
426 return NULL;
427 }
428
429 rn = rnh->rnh_matchaddr((void *)&pack, rnh);
430 if (rn && (rn->rn_flags & RNF_ROOT) == 0) {
431 struct encaptab *encapp = (struct encaptab *)rn;
432
433 psref_acquire(match_psref, &encapp->psref,
434 encaptab.elem_class);
435 match = encapp;
436 matchprio = mask_matchlen(match->srcmask) +
437 mask_matchlen(match->dstmask);
438 }
439 #endif
440 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
441 struct psref elem_psref;
442
443 if (ep->af != AF_INET6)
444 continue;
445 if (ep->proto >= 0 && ep->proto != proto)
446 continue;
447
448 psref_acquire(&elem_psref, &ep->psref,
449 encaptab.elem_class);
450
451 if (ep->func) {
452 pserialize_read_exit(s);
453 /* ep->func is sleepable. e.g. rtalloc1 */
454 prio = (*ep->func)(m, off, proto, ep->arg);
455 s = pserialize_read_enter();
456 } else {
457 #ifdef USE_RADIX
458 psref_release(&elem_psref, &ep->psref,
459 encaptab.elem_class);
460 continue;
461 #else
462 prio = mask_match(ep, (struct sockaddr *)&pack.mine,
463 (struct sockaddr *)&pack.yours);
464 #endif
465 }
466
467 /* see encap4_lookup() for issues here */
468 if (prio <= 0) {
469 psref_release(&elem_psref, &ep->psref,
470 encaptab.elem_class);
471 continue;
472 }
473 if (prio > matchprio) {
474 /* release last matched ep */
475 if (match != NULL)
476 psref_release(match_psref, &match->psref,
477 encaptab.elem_class);
478
479 psref_copy(match_psref, &elem_psref,
480 encaptab.elem_class);
481 matchprio = prio;
482 match = ep;
483 }
484 KASSERTMSG((match == NULL) || psref_held(&match->psref,
485 encaptab.elem_class),
486 "current match = %p, but not hold its psref", match);
487
488 psref_release(&elem_psref, &ep->psref,
489 encaptab.elem_class);
490 }
491 pserialize_read_exit(s);
492
493 return match;
494 }
495
496 int
497 encap6_input(struct mbuf **mp, int *offp, int proto)
498 {
499 struct mbuf *m = *mp;
500 const struct encapsw *esw;
501 struct encaptab *match;
502 struct psref match_psref;
503
504 match = encap6_lookup(m, *offp, proto, INBOUND, &match_psref);
505
506 if (match) {
507 /* found a match */
508 esw = match->esw;
509 if (esw && esw->encapsw6.pr_input) {
510 int ret;
511 encap_fillarg(m, match);
512 ret = (*esw->encapsw6.pr_input)(mp, offp, proto);
513 psref_release(&match_psref, &match->psref,
514 encaptab.elem_class);
515 return ret;
516 } else {
517 psref_release(&match_psref, &match->psref,
518 encaptab.elem_class);
519 m_freem(m);
520 return IPPROTO_DONE;
521 }
522 }
523
524 /* last resort: inject to raw socket */
525 return rip6_input(mp, offp, proto);
526 }
527 #endif
528
529 /*
530 * XXX
531 * The encaptab list and the rnh radix tree must be manipulated atomically.
532 */
533 static int
534 encap_add(struct encaptab *ep)
535 {
536 #ifdef USE_RADIX
537 struct radix_node_head *rnh = encap_rnh(ep->af);
538 #endif
539
540 KASSERT(encap_lock_held());
541
542 #ifdef USE_RADIX
543 if (!ep->func && rnh) {
544 /* Disable access to the radix tree for reader. */
545 encap_head_updating = true;
546 /* Wait for all readers to drain. */
547 pserialize_perform(encaptab.psz);
548
549 if (!rnh->rnh_addaddr((void *)ep->addrpack,
550 (void *)ep->maskpack, rnh, ep->nodes)) {
551 encap_head_updating = false;
552 return EEXIST;
553 }
554
555 /*
556 * The ep added to the radix tree must be skipped while
557 * encap[46]_lookup walks encaptab list. In other words,
558 * encap_add() does not need to care whether the ep has
559 * been added encaptab list or not yet.
560 * So, we can re-enable access to the radix tree for now.
561 */
562 encap_head_updating = false;
563 }
564 #endif
565 PSLIST_WRITER_INSERT_HEAD(&encap_table, ep, chain);
566
567 return 0;
568 }
569
570 /*
571 * XXX
572 * The encaptab list and the rnh radix tree must be manipulated atomically.
573 */
574 static int
575 encap_remove(struct encaptab *ep)
576 {
577 #ifdef USE_RADIX
578 struct radix_node_head *rnh = encap_rnh(ep->af);
579 #endif
580 int error = 0;
581
582 KASSERT(encap_lock_held());
583
584 #ifdef USE_RADIX
585 if (!ep->func && rnh) {
586 /* Disable access to the radix tree for reader. */
587 encap_head_updating = true;
588 /* Wait for all readers to drain. */
589 pserialize_perform(encaptab.psz);
590
591 if (!rnh->rnh_deladdr((void *)ep->addrpack,
592 (void *)ep->maskpack, rnh))
593 error = ESRCH;
594
595 /*
596 * The ep added to the radix tree must be skipped while
597 * encap[46]_lookup walks encaptab list. In other words,
598 * encap_add() does not need to care whether the ep has
599 * been added encaptab list or not yet.
600 * So, we can re-enable access to the radix tree for now.
601 */
602 encap_head_updating = false;
603 }
604 #endif
605 PSLIST_WRITER_REMOVE(ep, chain);
606
607 return error;
608 }
609
610 static int
611 encap_afcheck(int af, const struct sockaddr *sp, const struct sockaddr *dp)
612 {
613 if (sp && dp) {
614 if (sp->sa_len != dp->sa_len)
615 return EINVAL;
616 if (af != sp->sa_family || af != dp->sa_family)
617 return EINVAL;
618 } else if (!sp && !dp)
619 ;
620 else
621 return EINVAL;
622
623 switch (af) {
624 case AF_INET:
625 if (sp && sp->sa_len != sizeof(struct sockaddr_in))
626 return EINVAL;
627 if (dp && dp->sa_len != sizeof(struct sockaddr_in))
628 return EINVAL;
629 break;
630 #ifdef INET6
631 case AF_INET6:
632 if (sp && sp->sa_len != sizeof(struct sockaddr_in6))
633 return EINVAL;
634 if (dp && dp->sa_len != sizeof(struct sockaddr_in6))
635 return EINVAL;
636 break;
637 #endif
638 default:
639 return EAFNOSUPPORT;
640 }
641
642 return 0;
643 }
644
645 /*
646 * sp (src ptr) is always my side, and dp (dst ptr) is always remote side.
647 * length of mask (sm and dm) is assumed to be same as sp/dp.
648 * Return value will be necessary as input (cookie) for encap_detach().
649 */
650 const struct encaptab *
651 encap_attach(int af, int proto,
652 const struct sockaddr *sp, const struct sockaddr *sm,
653 const struct sockaddr *dp, const struct sockaddr *dm,
654 const struct encapsw *esw, void *arg)
655 {
656 struct encaptab *ep;
657 int error;
658 int pss;
659 size_t l;
660 struct ip_pack4 *pack4;
661 #ifdef INET6
662 struct ip_pack6 *pack6;
663 #endif
664 #ifndef ENCAP_MPSAFE
665 int s;
666
667 s = splsoftnet();
668 #endif
669 /* sanity check on args */
670 error = encap_afcheck(af, sp, dp);
671 if (error)
672 goto fail;
673
674 /* check if anyone have already attached with exactly same config */
675 pss = pserialize_read_enter();
676 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
677 if (ep->af != af)
678 continue;
679 if (ep->proto != proto)
680 continue;
681 if (ep->func)
682 continue;
683
684 KASSERT(ep->src != NULL);
685 KASSERT(ep->dst != NULL);
686 KASSERT(ep->srcmask != NULL);
687 KASSERT(ep->dstmask != NULL);
688
689 if (ep->src->sa_len != sp->sa_len ||
690 memcmp(ep->src, sp, sp->sa_len) != 0 ||
691 memcmp(ep->srcmask, sm, sp->sa_len) != 0)
692 continue;
693 if (ep->dst->sa_len != dp->sa_len ||
694 memcmp(ep->dst, dp, dp->sa_len) != 0 ||
695 memcmp(ep->dstmask, dm, dp->sa_len) != 0)
696 continue;
697
698 error = EEXIST;
699 pserialize_read_exit(pss);
700 goto fail;
701 }
702 pserialize_read_exit(pss);
703
704 switch (af) {
705 case AF_INET:
706 l = sizeof(*pack4);
707 break;
708 #ifdef INET6
709 case AF_INET6:
710 l = sizeof(*pack6);
711 break;
712 #endif
713 default:
714 goto fail;
715 }
716
717 /* M_NETADDR ok? */
718 ep = kmem_zalloc(sizeof(*ep), KM_NOSLEEP);
719 if (ep == NULL) {
720 error = ENOBUFS;
721 goto fail;
722 }
723 ep->addrpack = kmem_zalloc(l, KM_NOSLEEP);
724 if (ep->addrpack == NULL) {
725 error = ENOBUFS;
726 goto gc;
727 }
728 ep->maskpack = kmem_zalloc(l, KM_NOSLEEP);
729 if (ep->maskpack == NULL) {
730 error = ENOBUFS;
731 goto gc;
732 }
733
734 ep->af = af;
735 ep->proto = proto;
736 ep->addrpack->sa_len = l & 0xff;
737 ep->maskpack->sa_len = l & 0xff;
738 switch (af) {
739 case AF_INET:
740 pack4 = (struct ip_pack4 *)ep->addrpack;
741 ep->src = (struct sockaddr *)&pack4->mine;
742 ep->dst = (struct sockaddr *)&pack4->yours;
743 pack4 = (struct ip_pack4 *)ep->maskpack;
744 ep->srcmask = (struct sockaddr *)&pack4->mine;
745 ep->dstmask = (struct sockaddr *)&pack4->yours;
746 break;
747 #ifdef INET6
748 case AF_INET6:
749 pack6 = (struct ip_pack6 *)ep->addrpack;
750 ep->src = (struct sockaddr *)&pack6->mine;
751 ep->dst = (struct sockaddr *)&pack6->yours;
752 pack6 = (struct ip_pack6 *)ep->maskpack;
753 ep->srcmask = (struct sockaddr *)&pack6->mine;
754 ep->dstmask = (struct sockaddr *)&pack6->yours;
755 break;
756 #endif
757 }
758
759 memcpy(ep->src, sp, sp->sa_len);
760 memcpy(ep->srcmask, sm, sp->sa_len);
761 memcpy(ep->dst, dp, dp->sa_len);
762 memcpy(ep->dstmask, dm, dp->sa_len);
763 ep->esw = esw;
764 ep->arg = arg;
765 psref_target_init(&ep->psref, encaptab.elem_class);
766
767 error = encap_add(ep);
768 if (error)
769 goto gc;
770
771 error = 0;
772 #ifndef ENCAP_MPSAFE
773 splx(s);
774 #endif
775 return ep;
776
777 gc:
778 if (ep->addrpack)
779 kmem_free(ep->addrpack, l);
780 if (ep->maskpack)
781 kmem_free(ep->maskpack, l);
782 if (ep)
783 kmem_free(ep, sizeof(*ep));
784 fail:
785 #ifndef ENCAP_MPSAFE
786 splx(s);
787 #endif
788 return NULL;
789 }
790
791 const struct encaptab *
792 encap_attach_func(int af, int proto,
793 int (*func)(struct mbuf *, int, int, void *),
794 const struct encapsw *esw, void *arg)
795 {
796 struct encaptab *ep;
797 int error;
798 #ifndef ENCAP_MPSAFE
799 int s;
800
801 s = splsoftnet();
802 #endif
803 /* sanity check on args */
804 if (!func) {
805 error = EINVAL;
806 goto fail;
807 }
808
809 error = encap_afcheck(af, NULL, NULL);
810 if (error)
811 goto fail;
812
813 ep = kmem_alloc(sizeof(*ep), KM_NOSLEEP); /*XXX*/
814 if (ep == NULL) {
815 error = ENOBUFS;
816 goto fail;
817 }
818 memset(ep, 0, sizeof(*ep));
819
820 ep->af = af;
821 ep->proto = proto;
822 ep->func = func;
823 ep->esw = esw;
824 ep->arg = arg;
825 psref_target_init(&ep->psref, encaptab.elem_class);
826
827 error = encap_add(ep);
828 if (error)
829 goto fail;
830
831 error = 0;
832 #ifndef ENCAP_MPSAFE
833 splx(s);
834 #endif
835 return ep;
836
837 fail:
838 #ifndef ENCAP_MPSAFE
839 splx(s);
840 #endif
841 return NULL;
842 }
843
844 /* XXX encap4_ctlinput() is necessary if we set DF=1 on outer IPv4 header */
845
846 #ifdef INET6
847 void *
848 encap6_ctlinput(int cmd, const struct sockaddr *sa, void *d0)
849 {
850 void *d = d0;
851 struct ip6_hdr *ip6;
852 struct mbuf *m;
853 int off;
854 struct ip6ctlparam *ip6cp = NULL;
855 int nxt;
856 int s;
857 struct encaptab *ep;
858 const struct encapsw *esw;
859
860 if (sa->sa_family != AF_INET6 ||
861 sa->sa_len != sizeof(struct sockaddr_in6))
862 return NULL;
863
864 if ((unsigned)cmd >= PRC_NCMDS)
865 return NULL;
866 if (cmd == PRC_HOSTDEAD)
867 d = NULL;
868 else if (cmd == PRC_MSGSIZE)
869 ; /* special code is present, see below */
870 else if (inet6ctlerrmap[cmd] == 0)
871 return NULL;
872
873 /* if the parameter is from icmp6, decode it. */
874 if (d != NULL) {
875 ip6cp = (struct ip6ctlparam *)d;
876 m = ip6cp->ip6c_m;
877 ip6 = ip6cp->ip6c_ip6;
878 off = ip6cp->ip6c_off;
879 nxt = ip6cp->ip6c_nxt;
880
881 if (ip6 && cmd == PRC_MSGSIZE) {
882 int valid = 0;
883 struct encaptab *match;
884 struct psref elem_psref;
885
886 /*
887 * Check to see if we have a valid encap configuration.
888 */
889 match = encap6_lookup(m, off, nxt, OUTBOUND,
890 &elem_psref);
891 if (match)
892 valid++;
893 psref_release(&elem_psref, &match->psref,
894 encaptab.elem_class);
895
896 /*
897 * Depending on the value of "valid" and routing table
898 * size (mtudisc_{hi,lo}wat), we will:
899 * - recalcurate the new MTU and create the
900 * corresponding routing entry, or
901 * - ignore the MTU change notification.
902 */
903 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
904 }
905 } else {
906 m = NULL;
907 ip6 = NULL;
908 nxt = -1;
909 }
910
911 /* inform all listeners */
912
913 s = pserialize_read_enter();
914 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
915 struct psref elem_psref;
916
917 if (ep->af != AF_INET6)
918 continue;
919 if (ep->proto >= 0 && ep->proto != nxt)
920 continue;
921
922 /* should optimize by looking at address pairs */
923
924 /* XXX need to pass ep->arg or ep itself to listeners */
925 psref_acquire(&elem_psref, &ep->psref,
926 encaptab.elem_class);
927 esw = ep->esw;
928 if (esw && esw->encapsw6.pr_ctlinput) {
929 pserialize_read_exit(s);
930 /* pr_ctlinput is sleepable. e.g. rtcache_free */
931 (*esw->encapsw6.pr_ctlinput)(cmd, sa, d, ep->arg);
932 s = pserialize_read_enter();
933 }
934 psref_release(&elem_psref, &ep->psref,
935 encaptab.elem_class);
936 }
937 pserialize_read_exit(s);
938
939 rip6_ctlinput(cmd, sa, d0);
940 return NULL;
941 }
942 #endif
943
944 int
945 encap_detach(const struct encaptab *cookie)
946 {
947 const struct encaptab *ep = cookie;
948 struct encaptab *p;
949 int error;
950
951 KASSERT(encap_lock_held());
952
953 PSLIST_WRITER_FOREACH(p, &encap_table, struct encaptab, chain) {
954 if (p == ep) {
955 error = encap_remove(p);
956 if (error)
957 return error;
958 else
959 break;
960 }
961 }
962 if (p == NULL)
963 return ENOENT;
964
965 pserialize_perform(encaptab.psz);
966 psref_target_destroy(&p->psref,
967 encaptab.elem_class);
968 if (!ep->func) {
969 kmem_free(p->addrpack, ep->addrpack->sa_len);
970 kmem_free(p->maskpack, ep->maskpack->sa_len);
971 }
972 kmem_free(p, sizeof(*p));
973
974 return 0;
975 }
976
977 #ifdef USE_RADIX
978 static struct radix_node_head *
979 encap_rnh(int af)
980 {
981
982 switch (af) {
983 case AF_INET:
984 return encap_head[0];
985 #ifdef INET6
986 case AF_INET6:
987 return encap_head[1];
988 #endif
989 default:
990 return NULL;
991 }
992 }
993
994 static int
995 mask_matchlen(const struct sockaddr *sa)
996 {
997 const char *p, *ep;
998 int l;
999
1000 p = (const char *)sa;
1001 ep = p + sa->sa_len;
1002 p += 2; /* sa_len + sa_family */
1003
1004 l = 0;
1005 while (p < ep) {
1006 l += (*p ? 8 : 0); /* estimate */
1007 p++;
1008 }
1009 return l;
1010 }
1011 #endif
1012
1013 #ifndef USE_RADIX
1014 static int
1015 mask_match(const struct encaptab *ep,
1016 const struct sockaddr *sp,
1017 const struct sockaddr *dp)
1018 {
1019 struct sockaddr_storage s;
1020 struct sockaddr_storage d;
1021 int i;
1022 const u_int8_t *p, *q;
1023 u_int8_t *r;
1024 int matchlen;
1025
1026 KASSERTMSG(ep->func == NULL, "wrong encaptab passed to mask_match");
1027
1028 if (sp->sa_len > sizeof(s) || dp->sa_len > sizeof(d))
1029 return 0;
1030 if (sp->sa_family != ep->af || dp->sa_family != ep->af)
1031 return 0;
1032 if (sp->sa_len != ep->src->sa_len || dp->sa_len != ep->dst->sa_len)
1033 return 0;
1034
1035 matchlen = 0;
1036
1037 p = (const u_int8_t *)sp;
1038 q = (const u_int8_t *)ep->srcmask;
1039 r = (u_int8_t *)&s;
1040 for (i = 0 ; i < sp->sa_len; i++) {
1041 r[i] = p[i] & q[i];
1042 /* XXX estimate */
1043 matchlen += (q[i] ? 8 : 0);
1044 }
1045
1046 p = (const u_int8_t *)dp;
1047 q = (const u_int8_t *)ep->dstmask;
1048 r = (u_int8_t *)&d;
1049 for (i = 0 ; i < dp->sa_len; i++) {
1050 r[i] = p[i] & q[i];
1051 /* XXX rough estimate */
1052 matchlen += (q[i] ? 8 : 0);
1053 }
1054
1055 /* need to overwrite len/family portion as we don't compare them */
1056 s.ss_len = sp->sa_len;
1057 s.ss_family = sp->sa_family;
1058 d.ss_len = dp->sa_len;
1059 d.ss_family = dp->sa_family;
1060
1061 if (memcmp(&s, ep->src, ep->src->sa_len) == 0 &&
1062 memcmp(&d, ep->dst, ep->dst->sa_len) == 0) {
1063 return matchlen;
1064 } else
1065 return 0;
1066 }
1067 #endif
1068
1069 static void
1070 encap_fillarg(struct mbuf *m, const struct encaptab *ep)
1071 {
1072 struct m_tag *mtag;
1073
1074 mtag = m_tag_get(PACKET_TAG_ENCAP, sizeof(void *), M_NOWAIT);
1075 if (mtag) {
1076 *(void **)(mtag + 1) = ep->arg;
1077 m_tag_prepend(m, mtag);
1078 }
1079 }
1080
1081 void *
1082 encap_getarg(struct mbuf *m)
1083 {
1084 void *p;
1085 struct m_tag *mtag;
1086
1087 p = NULL;
1088 mtag = m_tag_find(m, PACKET_TAG_ENCAP, NULL);
1089 if (mtag != NULL) {
1090 p = *(void **)(mtag + 1);
1091 m_tag_delete(m, mtag);
1092 }
1093 return p;
1094 }
1095
1096 int
1097 encap_lock_enter(void)
1098 {
1099 int error;
1100
1101 mutex_enter(&encap_whole.lock);
1102 while (encap_whole.busy != NULL) {
1103 error = cv_wait_sig(&encap_whole.cv, &encap_whole.lock);
1104 if (error) {
1105 mutex_exit(&encap_whole.lock);
1106 return error;
1107 }
1108 }
1109 KASSERT(encap_whole.busy == NULL);
1110 encap_whole.busy = curlwp;
1111 mutex_exit(&encap_whole.lock);
1112
1113 return 0;
1114 }
1115
1116 void
1117 encap_lock_exit(void)
1118 {
1119
1120 mutex_enter(&encap_whole.lock);
1121 KASSERT(encap_whole.busy == curlwp);
1122 encap_whole.busy = NULL;
1123 cv_broadcast(&encap_whole.cv);
1124 mutex_exit(&encap_whole.lock);
1125 }
1126
1127 bool
1128 encap_lock_held(void)
1129 {
1130
1131 return (encap_whole.busy == curlwp);
1132 }
1133