ip_encap.c revision 1.65 1 /* $NetBSD: ip_encap.c,v 1.65 2017/06/01 02:45:14 chs Exp $ */
2 /* $KAME: ip_encap.c,v 1.73 2001/10/02 08:30:58 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32 /*
33 * My grandfather said that there's a devil inside tunnelling technology...
34 *
35 * We have surprisingly many protocols that want packets with IP protocol
36 * #4 or #41. Here's a list of protocols that want protocol #41:
37 * RFC1933 configured tunnel
38 * RFC1933 automatic tunnel
39 * RFC2401 IPsec tunnel
40 * RFC2473 IPv6 generic packet tunnelling
41 * RFC2529 6over4 tunnel
42 * RFC3056 6to4 tunnel
43 * isatap tunnel
44 * mobile-ip6 (uses RFC2473)
45 * Here's a list of protocol that want protocol #4:
46 * RFC1853 IPv4-in-IPv4 tunnelling
47 * RFC2003 IPv4 encapsulation within IPv4
48 * RFC2344 reverse tunnelling for mobile-ip4
49 * RFC2401 IPsec tunnel
50 * Well, what can I say. They impose different en/decapsulation mechanism
51 * from each other, so they need separate protocol handler. The only one
52 * we can easily determine by protocol # is IPsec, which always has
53 * AH/ESP/IPComp header right after outer IP header.
54 *
55 * So, clearly good old protosw does not work for protocol #4 and #41.
56 * The code will let you match protocol via src/dst address pair.
57 */
58 /* XXX is M_NETADDR correct? */
59
60 /*
61 * With USE_RADIX the code will use radix table for tunnel lookup, for
62 * tunnels registered with encap_attach() with a addr/mask pair.
63 * Faster on machines with thousands of tunnel registerations (= interfaces).
64 *
65 * The code assumes that radix table code can handle non-continuous netmask,
66 * as it will pass radix table memory region with (src + dst) sockaddr pair.
67 */
68 #define USE_RADIX
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: ip_encap.c,v 1.65 2017/06/01 02:45:14 chs Exp $");
72
73 #ifdef _KERNEL_OPT
74 #include "opt_mrouting.h"
75 #include "opt_inet.h"
76 #include "opt_net_mpsafe.h"
77 #endif
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/socket.h>
82 #include <sys/sockio.h>
83 #include <sys/mbuf.h>
84 #include <sys/errno.h>
85 #include <sys/queue.h>
86 #include <sys/kmem.h>
87 #include <sys/mutex.h>
88 #include <sys/condvar.h>
89 #include <sys/psref.h>
90 #include <sys/pslist.h>
91
92 #include <net/if.h>
93
94 #include <netinet/in.h>
95 #include <netinet/in_systm.h>
96 #include <netinet/ip.h>
97 #include <netinet/ip_var.h>
98 #include <netinet/ip_encap.h>
99 #ifdef MROUTING
100 #include <netinet/ip_mroute.h>
101 #endif /* MROUTING */
102
103 #ifdef INET6
104 #include <netinet/ip6.h>
105 #include <netinet6/ip6_var.h>
106 #include <netinet6/ip6protosw.h> /* for struct ip6ctlparam */
107 #include <netinet6/in6_var.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet/icmp6.h>
110 #endif
111
112 #include <net/net_osdep.h>
113
114 #ifdef NET_MPSAFE
115 #define ENCAP_MPSAFE 1
116 #endif
117
118 enum direction { INBOUND, OUTBOUND };
119
120 #ifdef INET
121 static struct encaptab *encap4_lookup(struct mbuf *, int, int, enum direction,
122 struct psref *);
123 #endif
124 #ifdef INET6
125 static struct encaptab *encap6_lookup(struct mbuf *, int, int, enum direction,
126 struct psref *);
127 #endif
128 static int encap_add(struct encaptab *);
129 static int encap_remove(struct encaptab *);
130 static int encap_afcheck(int, const struct sockaddr *, const struct sockaddr *);
131 #ifdef USE_RADIX
132 static struct radix_node_head *encap_rnh(int);
133 static int mask_matchlen(const struct sockaddr *);
134 #else
135 static int mask_match(const struct encaptab *, const struct sockaddr *,
136 const struct sockaddr *);
137 #endif
138 static void encap_fillarg(struct mbuf *, const struct encaptab *);
139
140 /*
141 * In encap[46]_lookup(), ep->func can sleep(e.g. rtalloc1) while walking
142 * encap_table. So, it cannot use pserialize_read_enter()
143 */
144 static struct {
145 struct pslist_head list;
146 pserialize_t psz;
147 struct psref_class *elem_class; /* for the element of et_list */
148 } encaptab __cacheline_aligned = {
149 .list = PSLIST_INITIALIZER,
150 };
151 #define encap_table encaptab.list
152
153 static struct {
154 kmutex_t lock;
155 kcondvar_t cv;
156 struct lwp *busy;
157 } encap_whole __cacheline_aligned;
158
159 #ifdef USE_RADIX
160 struct radix_node_head *encap_head[2]; /* 0 for AF_INET, 1 for AF_INET6 */
161 static bool encap_head_updating = false;
162 #endif
163
164 static bool encap_initialized = false;
165 /*
166 * must be done before other encap interfaces initialization.
167 */
168 void
169 encapinit(void)
170 {
171
172 if (encap_initialized)
173 return;
174
175 encaptab.psz = pserialize_create();
176 encaptab.elem_class = psref_class_create("encapelem", IPL_SOFTNET);
177
178 mutex_init(&encap_whole.lock, MUTEX_DEFAULT, IPL_NONE);
179 cv_init(&encap_whole.cv, "ip_encap cv");
180 encap_whole.busy = NULL;
181
182 encap_initialized = true;
183 }
184
185 void
186 encap_init(void)
187 {
188 static int initialized = 0;
189
190 if (initialized)
191 return;
192 initialized++;
193 #if 0
194 /*
195 * we cannot use LIST_INIT() here, since drivers may want to call
196 * encap_attach(), on driver attach. encap_init() will be called
197 * on AF_INET{,6} initialization, which happens after driver
198 * initialization - using LIST_INIT() here can nuke encap_attach()
199 * from drivers.
200 */
201 PSLIST_INIT(&encap_table);
202 #endif
203
204 #ifdef USE_RADIX
205 /*
206 * initialize radix lookup table when the radix subsystem is inited.
207 */
208 rn_delayedinit((void *)&encap_head[0],
209 sizeof(struct sockaddr_pack) << 3);
210 #ifdef INET6
211 rn_delayedinit((void *)&encap_head[1],
212 sizeof(struct sockaddr_pack) << 3);
213 #endif
214 #endif
215 }
216
217 #ifdef INET
218 static struct encaptab *
219 encap4_lookup(struct mbuf *m, int off, int proto, enum direction dir,
220 struct psref *match_psref)
221 {
222 struct ip *ip;
223 struct ip_pack4 pack;
224 struct encaptab *ep, *match;
225 int prio, matchprio;
226 int s;
227 #ifdef USE_RADIX
228 struct radix_node_head *rnh = encap_rnh(AF_INET);
229 struct radix_node *rn;
230 #endif
231
232 KASSERT(m->m_len >= sizeof(*ip));
233
234 ip = mtod(m, struct ip *);
235
236 memset(&pack, 0, sizeof(pack));
237 pack.p.sp_len = sizeof(pack);
238 pack.mine.sin_family = pack.yours.sin_family = AF_INET;
239 pack.mine.sin_len = pack.yours.sin_len = sizeof(struct sockaddr_in);
240 if (dir == INBOUND) {
241 pack.mine.sin_addr = ip->ip_dst;
242 pack.yours.sin_addr = ip->ip_src;
243 } else {
244 pack.mine.sin_addr = ip->ip_src;
245 pack.yours.sin_addr = ip->ip_dst;
246 }
247
248 match = NULL;
249 matchprio = 0;
250
251 s = pserialize_read_enter();
252 #ifdef USE_RADIX
253 if (encap_head_updating) {
254 /*
255 * Update in progress. Do nothing.
256 */
257 pserialize_read_exit(s);
258 return NULL;
259 }
260
261 rn = rnh->rnh_matchaddr((void *)&pack, rnh);
262 if (rn && (rn->rn_flags & RNF_ROOT) == 0) {
263 struct encaptab *encapp = (struct encaptab *)rn;
264
265 psref_acquire(match_psref, &encapp->psref,
266 encaptab.elem_class);
267 match = encapp;
268 matchprio = mask_matchlen(match->srcmask) +
269 mask_matchlen(match->dstmask);
270 }
271 #endif
272 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
273 struct psref elem_psref;
274
275 if (ep->af != AF_INET)
276 continue;
277 if (ep->proto >= 0 && ep->proto != proto)
278 continue;
279
280 psref_acquire(&elem_psref, &ep->psref,
281 encaptab.elem_class);
282 if (ep->func) {
283 pserialize_read_exit(s);
284 /* ep->func is sleepable. e.g. rtalloc1 */
285 prio = (*ep->func)(m, off, proto, ep->arg);
286 s = pserialize_read_enter();
287 } else {
288 #ifdef USE_RADIX
289 psref_release(&elem_psref, &ep->psref,
290 encaptab.elem_class);
291 continue;
292 #else
293 prio = mask_match(ep, (struct sockaddr *)&pack.mine,
294 (struct sockaddr *)&pack.yours);
295 #endif
296 }
297
298 /*
299 * We prioritize the matches by using bit length of the
300 * matches. mask_match() and user-supplied matching function
301 * should return the bit length of the matches (for example,
302 * if both src/dst are matched for IPv4, 64 should be returned).
303 * 0 or negative return value means "it did not match".
304 *
305 * The question is, since we have two "mask" portion, we
306 * cannot really define total order between entries.
307 * For example, which of these should be preferred?
308 * mask_match() returns 48 (32 + 16) for both of them.
309 * src=3ffe::/16, dst=3ffe:501::/32
310 * src=3ffe:501::/32, dst=3ffe::/16
311 *
312 * We need to loop through all the possible candidates
313 * to get the best match - the search takes O(n) for
314 * n attachments (i.e. interfaces).
315 *
316 * For radix-based lookup, I guess source takes precedence.
317 * See rn_{refines,lexobetter} for the correct answer.
318 */
319 if (prio <= 0) {
320 psref_release(&elem_psref, &ep->psref,
321 encaptab.elem_class);
322 continue;
323 }
324 if (prio > matchprio) {
325 /* release last matched ep */
326 if (match != NULL)
327 psref_release(match_psref, &match->psref,
328 encaptab.elem_class);
329
330 psref_copy(match_psref, &elem_psref,
331 encaptab.elem_class);
332 matchprio = prio;
333 match = ep;
334 }
335 KASSERTMSG((match == NULL) || psref_held(&match->psref,
336 encaptab.elem_class),
337 "current match = %p, but not hold its psref", match);
338
339 psref_release(&elem_psref, &ep->psref,
340 encaptab.elem_class);
341 }
342 pserialize_read_exit(s);
343
344 return match;
345 }
346
347 void
348 encap4_input(struct mbuf *m, ...)
349 {
350 int off, proto;
351 va_list ap;
352 const struct encapsw *esw;
353 struct encaptab *match;
354 struct psref match_psref;
355
356 va_start(ap, m);
357 off = va_arg(ap, int);
358 proto = va_arg(ap, int);
359 va_end(ap);
360
361 match = encap4_lookup(m, off, proto, INBOUND, &match_psref);
362 if (match) {
363 /* found a match, "match" has the best one */
364 esw = match->esw;
365 if (esw && esw->encapsw4.pr_input) {
366 encap_fillarg(m, match);
367 (*esw->encapsw4.pr_input)(m, off, proto);
368 psref_release(&match_psref, &match->psref,
369 encaptab.elem_class);
370 } else {
371 psref_release(&match_psref, &match->psref,
372 encaptab.elem_class);
373 m_freem(m);
374 }
375 return;
376 }
377
378 /* last resort: inject to raw socket */
379 rip_input(m, off, proto);
380 }
381 #endif
382
383 #ifdef INET6
384 static struct encaptab *
385 encap6_lookup(struct mbuf *m, int off, int proto, enum direction dir,
386 struct psref *match_psref)
387 {
388 struct ip6_hdr *ip6;
389 struct ip_pack6 pack;
390 int prio, matchprio;
391 int s;
392 struct encaptab *ep, *match;
393 #ifdef USE_RADIX
394 struct radix_node_head *rnh = encap_rnh(AF_INET6);
395 struct radix_node *rn;
396 #endif
397
398 KASSERT(m->m_len >= sizeof(*ip6));
399
400 ip6 = mtod(m, struct ip6_hdr *);
401
402 memset(&pack, 0, sizeof(pack));
403 pack.p.sp_len = sizeof(pack);
404 pack.mine.sin6_family = pack.yours.sin6_family = AF_INET6;
405 pack.mine.sin6_len = pack.yours.sin6_len = sizeof(struct sockaddr_in6);
406 if (dir == INBOUND) {
407 pack.mine.sin6_addr = ip6->ip6_dst;
408 pack.yours.sin6_addr = ip6->ip6_src;
409 } else {
410 pack.mine.sin6_addr = ip6->ip6_src;
411 pack.yours.sin6_addr = ip6->ip6_dst;
412 }
413
414 match = NULL;
415 matchprio = 0;
416
417 s = pserialize_read_enter();
418 #ifdef USE_RADIX
419 if (encap_head_updating) {
420 /*
421 * Update in progress. Do nothing.
422 */
423 pserialize_read_exit(s);
424 return NULL;
425 }
426
427 rn = rnh->rnh_matchaddr((void *)&pack, rnh);
428 if (rn && (rn->rn_flags & RNF_ROOT) == 0) {
429 struct encaptab *encapp = (struct encaptab *)rn;
430
431 psref_acquire(match_psref, &encapp->psref,
432 encaptab.elem_class);
433 match = encapp;
434 matchprio = mask_matchlen(match->srcmask) +
435 mask_matchlen(match->dstmask);
436 }
437 #endif
438 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
439 struct psref elem_psref;
440
441 if (ep->af != AF_INET6)
442 continue;
443 if (ep->proto >= 0 && ep->proto != proto)
444 continue;
445
446 psref_acquire(&elem_psref, &ep->psref,
447 encaptab.elem_class);
448
449 if (ep->func) {
450 pserialize_read_exit(s);
451 /* ep->func is sleepable. e.g. rtalloc1 */
452 prio = (*ep->func)(m, off, proto, ep->arg);
453 s = pserialize_read_enter();
454 } else {
455 #ifdef USE_RADIX
456 psref_release(&elem_psref, &ep->psref,
457 encaptab.elem_class);
458 continue;
459 #else
460 prio = mask_match(ep, (struct sockaddr *)&pack.mine,
461 (struct sockaddr *)&pack.yours);
462 #endif
463 }
464
465 /* see encap4_lookup() for issues here */
466 if (prio <= 0) {
467 psref_release(&elem_psref, &ep->psref,
468 encaptab.elem_class);
469 continue;
470 }
471 if (prio > matchprio) {
472 /* release last matched ep */
473 if (match != NULL)
474 psref_release(match_psref, &match->psref,
475 encaptab.elem_class);
476
477 psref_copy(match_psref, &elem_psref,
478 encaptab.elem_class);
479 matchprio = prio;
480 match = ep;
481 }
482 KASSERTMSG((match == NULL) || psref_held(&match->psref,
483 encaptab.elem_class),
484 "current match = %p, but not hold its psref", match);
485
486 psref_release(&elem_psref, &ep->psref,
487 encaptab.elem_class);
488 }
489 pserialize_read_exit(s);
490
491 return match;
492 }
493
494 int
495 encap6_input(struct mbuf **mp, int *offp, int proto)
496 {
497 struct mbuf *m = *mp;
498 const struct encapsw *esw;
499 struct encaptab *match;
500 struct psref match_psref;
501
502 match = encap6_lookup(m, *offp, proto, INBOUND, &match_psref);
503
504 if (match) {
505 /* found a match */
506 esw = match->esw;
507 if (esw && esw->encapsw6.pr_input) {
508 int ret;
509 encap_fillarg(m, match);
510 ret = (*esw->encapsw6.pr_input)(mp, offp, proto);
511 psref_release(&match_psref, &match->psref,
512 encaptab.elem_class);
513 return ret;
514 } else {
515 psref_release(&match_psref, &match->psref,
516 encaptab.elem_class);
517 m_freem(m);
518 return IPPROTO_DONE;
519 }
520 }
521
522 /* last resort: inject to raw socket */
523 return rip6_input(mp, offp, proto);
524 }
525 #endif
526
527 /*
528 * XXX
529 * The encaptab list and the rnh radix tree must be manipulated atomically.
530 */
531 static int
532 encap_add(struct encaptab *ep)
533 {
534 #ifdef USE_RADIX
535 struct radix_node_head *rnh = encap_rnh(ep->af);
536 #endif
537
538 KASSERT(encap_lock_held());
539
540 #ifdef USE_RADIX
541 if (!ep->func && rnh) {
542 /* Disable access to the radix tree for reader. */
543 encap_head_updating = true;
544 /* Wait for all readers to drain. */
545 pserialize_perform(encaptab.psz);
546
547 if (!rnh->rnh_addaddr((void *)ep->addrpack,
548 (void *)ep->maskpack, rnh, ep->nodes)) {
549 encap_head_updating = false;
550 return EEXIST;
551 }
552
553 /*
554 * The ep added to the radix tree must be skipped while
555 * encap[46]_lookup walks encaptab list. In other words,
556 * encap_add() does not need to care whether the ep has
557 * been added encaptab list or not yet.
558 * So, we can re-enable access to the radix tree for now.
559 */
560 encap_head_updating = false;
561 }
562 #endif
563 PSLIST_WRITER_INSERT_HEAD(&encap_table, ep, chain);
564
565 return 0;
566 }
567
568 /*
569 * XXX
570 * The encaptab list and the rnh radix tree must be manipulated atomically.
571 */
572 static int
573 encap_remove(struct encaptab *ep)
574 {
575 #ifdef USE_RADIX
576 struct radix_node_head *rnh = encap_rnh(ep->af);
577 #endif
578 int error = 0;
579
580 KASSERT(encap_lock_held());
581
582 #ifdef USE_RADIX
583 if (!ep->func && rnh) {
584 /* Disable access to the radix tree for reader. */
585 encap_head_updating = true;
586 /* Wait for all readers to drain. */
587 pserialize_perform(encaptab.psz);
588
589 if (!rnh->rnh_deladdr((void *)ep->addrpack,
590 (void *)ep->maskpack, rnh))
591 error = ESRCH;
592
593 /*
594 * The ep added to the radix tree must be skipped while
595 * encap[46]_lookup walks encaptab list. In other words,
596 * encap_add() does not need to care whether the ep has
597 * been added encaptab list or not yet.
598 * So, we can re-enable access to the radix tree for now.
599 */
600 encap_head_updating = false;
601 }
602 #endif
603 PSLIST_WRITER_REMOVE(ep, chain);
604
605 return error;
606 }
607
608 static int
609 encap_afcheck(int af, const struct sockaddr *sp, const struct sockaddr *dp)
610 {
611 if (sp && dp) {
612 if (sp->sa_len != dp->sa_len)
613 return EINVAL;
614 if (af != sp->sa_family || af != dp->sa_family)
615 return EINVAL;
616 } else if (!sp && !dp)
617 ;
618 else
619 return EINVAL;
620
621 switch (af) {
622 case AF_INET:
623 if (sp && sp->sa_len != sizeof(struct sockaddr_in))
624 return EINVAL;
625 if (dp && dp->sa_len != sizeof(struct sockaddr_in))
626 return EINVAL;
627 break;
628 #ifdef INET6
629 case AF_INET6:
630 if (sp && sp->sa_len != sizeof(struct sockaddr_in6))
631 return EINVAL;
632 if (dp && dp->sa_len != sizeof(struct sockaddr_in6))
633 return EINVAL;
634 break;
635 #endif
636 default:
637 return EAFNOSUPPORT;
638 }
639
640 return 0;
641 }
642
643 /*
644 * sp (src ptr) is always my side, and dp (dst ptr) is always remote side.
645 * length of mask (sm and dm) is assumed to be same as sp/dp.
646 * Return value will be necessary as input (cookie) for encap_detach().
647 */
648 const struct encaptab *
649 encap_attach(int af, int proto,
650 const struct sockaddr *sp, const struct sockaddr *sm,
651 const struct sockaddr *dp, const struct sockaddr *dm,
652 const struct encapsw *esw, void *arg)
653 {
654 struct encaptab *ep;
655 int error;
656 int pss;
657 size_t l;
658 struct ip_pack4 *pack4;
659 #ifdef INET6
660 struct ip_pack6 *pack6;
661 #endif
662 #ifndef ENCAP_MPSAFE
663 int s;
664
665 s = splsoftnet();
666 #endif
667 /* sanity check on args */
668 error = encap_afcheck(af, sp, dp);
669 if (error)
670 goto fail;
671
672 /* check if anyone have already attached with exactly same config */
673 pss = pserialize_read_enter();
674 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
675 if (ep->af != af)
676 continue;
677 if (ep->proto != proto)
678 continue;
679 if (ep->func)
680 continue;
681
682 KASSERT(ep->src != NULL);
683 KASSERT(ep->dst != NULL);
684 KASSERT(ep->srcmask != NULL);
685 KASSERT(ep->dstmask != NULL);
686
687 if (ep->src->sa_len != sp->sa_len ||
688 memcmp(ep->src, sp, sp->sa_len) != 0 ||
689 memcmp(ep->srcmask, sm, sp->sa_len) != 0)
690 continue;
691 if (ep->dst->sa_len != dp->sa_len ||
692 memcmp(ep->dst, dp, dp->sa_len) != 0 ||
693 memcmp(ep->dstmask, dm, dp->sa_len) != 0)
694 continue;
695
696 error = EEXIST;
697 pserialize_read_exit(pss);
698 goto fail;
699 }
700 pserialize_read_exit(pss);
701
702 switch (af) {
703 case AF_INET:
704 l = sizeof(*pack4);
705 break;
706 #ifdef INET6
707 case AF_INET6:
708 l = sizeof(*pack6);
709 break;
710 #endif
711 default:
712 goto fail;
713 }
714
715 /* M_NETADDR ok? */
716 ep = kmem_zalloc(sizeof(*ep), KM_NOSLEEP);
717 if (ep == NULL) {
718 error = ENOBUFS;
719 goto fail;
720 }
721 ep->addrpack = kmem_zalloc(l, KM_NOSLEEP);
722 if (ep->addrpack == NULL) {
723 error = ENOBUFS;
724 goto gc;
725 }
726 ep->maskpack = kmem_zalloc(l, KM_NOSLEEP);
727 if (ep->maskpack == NULL) {
728 error = ENOBUFS;
729 goto gc;
730 }
731
732 ep->af = af;
733 ep->proto = proto;
734 ep->addrpack->sa_len = l & 0xff;
735 ep->maskpack->sa_len = l & 0xff;
736 switch (af) {
737 case AF_INET:
738 pack4 = (struct ip_pack4 *)ep->addrpack;
739 ep->src = (struct sockaddr *)&pack4->mine;
740 ep->dst = (struct sockaddr *)&pack4->yours;
741 pack4 = (struct ip_pack4 *)ep->maskpack;
742 ep->srcmask = (struct sockaddr *)&pack4->mine;
743 ep->dstmask = (struct sockaddr *)&pack4->yours;
744 break;
745 #ifdef INET6
746 case AF_INET6:
747 pack6 = (struct ip_pack6 *)ep->addrpack;
748 ep->src = (struct sockaddr *)&pack6->mine;
749 ep->dst = (struct sockaddr *)&pack6->yours;
750 pack6 = (struct ip_pack6 *)ep->maskpack;
751 ep->srcmask = (struct sockaddr *)&pack6->mine;
752 ep->dstmask = (struct sockaddr *)&pack6->yours;
753 break;
754 #endif
755 }
756
757 memcpy(ep->src, sp, sp->sa_len);
758 memcpy(ep->srcmask, sm, sp->sa_len);
759 memcpy(ep->dst, dp, dp->sa_len);
760 memcpy(ep->dstmask, dm, dp->sa_len);
761 ep->esw = esw;
762 ep->arg = arg;
763 psref_target_init(&ep->psref, encaptab.elem_class);
764
765 error = encap_add(ep);
766 if (error)
767 goto gc;
768
769 error = 0;
770 #ifndef ENCAP_MPSAFE
771 splx(s);
772 #endif
773 return ep;
774
775 gc:
776 if (ep->addrpack)
777 kmem_free(ep->addrpack, l);
778 if (ep->maskpack)
779 kmem_free(ep->maskpack, l);
780 if (ep)
781 kmem_free(ep, sizeof(*ep));
782 fail:
783 #ifndef ENCAP_MPSAFE
784 splx(s);
785 #endif
786 return NULL;
787 }
788
789 const struct encaptab *
790 encap_attach_func(int af, int proto,
791 int (*func)(struct mbuf *, int, int, void *),
792 const struct encapsw *esw, void *arg)
793 {
794 struct encaptab *ep;
795 int error;
796 #ifndef ENCAP_MPSAFE
797 int s;
798
799 s = splsoftnet();
800 #endif
801 /* sanity check on args */
802 if (!func) {
803 error = EINVAL;
804 goto fail;
805 }
806
807 error = encap_afcheck(af, NULL, NULL);
808 if (error)
809 goto fail;
810
811 ep = kmem_alloc(sizeof(*ep), KM_NOSLEEP); /*XXX*/
812 if (ep == NULL) {
813 error = ENOBUFS;
814 goto fail;
815 }
816 memset(ep, 0, sizeof(*ep));
817
818 ep->af = af;
819 ep->proto = proto;
820 ep->func = func;
821 ep->esw = esw;
822 ep->arg = arg;
823 psref_target_init(&ep->psref, encaptab.elem_class);
824
825 error = encap_add(ep);
826 if (error)
827 goto fail;
828
829 error = 0;
830 #ifndef ENCAP_MPSAFE
831 splx(s);
832 #endif
833 return ep;
834
835 fail:
836 #ifndef ENCAP_MPSAFE
837 splx(s);
838 #endif
839 return NULL;
840 }
841
842 /* XXX encap4_ctlinput() is necessary if we set DF=1 on outer IPv4 header */
843
844 #ifdef INET6
845 void *
846 encap6_ctlinput(int cmd, const struct sockaddr *sa, void *d0)
847 {
848 void *d = d0;
849 struct ip6_hdr *ip6;
850 struct mbuf *m;
851 int off;
852 struct ip6ctlparam *ip6cp = NULL;
853 int nxt;
854 int s;
855 struct encaptab *ep;
856 const struct encapsw *esw;
857
858 if (sa->sa_family != AF_INET6 ||
859 sa->sa_len != sizeof(struct sockaddr_in6))
860 return NULL;
861
862 if ((unsigned)cmd >= PRC_NCMDS)
863 return NULL;
864 if (cmd == PRC_HOSTDEAD)
865 d = NULL;
866 else if (cmd == PRC_MSGSIZE)
867 ; /* special code is present, see below */
868 else if (inet6ctlerrmap[cmd] == 0)
869 return NULL;
870
871 /* if the parameter is from icmp6, decode it. */
872 if (d != NULL) {
873 ip6cp = (struct ip6ctlparam *)d;
874 m = ip6cp->ip6c_m;
875 ip6 = ip6cp->ip6c_ip6;
876 off = ip6cp->ip6c_off;
877 nxt = ip6cp->ip6c_nxt;
878
879 if (ip6 && cmd == PRC_MSGSIZE) {
880 int valid = 0;
881 struct encaptab *match;
882 struct psref elem_psref;
883
884 /*
885 * Check to see if we have a valid encap configuration.
886 */
887 match = encap6_lookup(m, off, nxt, OUTBOUND,
888 &elem_psref);
889 if (match)
890 valid++;
891 psref_release(&elem_psref, &match->psref,
892 encaptab.elem_class);
893
894 /*
895 * Depending on the value of "valid" and routing table
896 * size (mtudisc_{hi,lo}wat), we will:
897 * - recalcurate the new MTU and create the
898 * corresponding routing entry, or
899 * - ignore the MTU change notification.
900 */
901 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
902 }
903 } else {
904 m = NULL;
905 ip6 = NULL;
906 nxt = -1;
907 }
908
909 /* inform all listeners */
910
911 s = pserialize_read_enter();
912 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
913 struct psref elem_psref;
914
915 if (ep->af != AF_INET6)
916 continue;
917 if (ep->proto >= 0 && ep->proto != nxt)
918 continue;
919
920 /* should optimize by looking at address pairs */
921
922 /* XXX need to pass ep->arg or ep itself to listeners */
923 psref_acquire(&elem_psref, &ep->psref,
924 encaptab.elem_class);
925 esw = ep->esw;
926 if (esw && esw->encapsw6.pr_ctlinput) {
927 pserialize_read_exit(s);
928 /* pr_ctlinput is sleepable. e.g. rtcache_free */
929 (*esw->encapsw6.pr_ctlinput)(cmd, sa, d, ep->arg);
930 s = pserialize_read_enter();
931 }
932 psref_release(&elem_psref, &ep->psref,
933 encaptab.elem_class);
934 }
935 pserialize_read_exit(s);
936
937 rip6_ctlinput(cmd, sa, d0);
938 return NULL;
939 }
940 #endif
941
942 int
943 encap_detach(const struct encaptab *cookie)
944 {
945 const struct encaptab *ep = cookie;
946 struct encaptab *p;
947 int error;
948
949 KASSERT(encap_lock_held());
950
951 PSLIST_WRITER_FOREACH(p, &encap_table, struct encaptab, chain) {
952 if (p == ep) {
953 error = encap_remove(p);
954 if (error)
955 return error;
956 else
957 break;
958 }
959 }
960 if (p == NULL)
961 return ENOENT;
962
963 pserialize_perform(encaptab.psz);
964 psref_target_destroy(&p->psref,
965 encaptab.elem_class);
966 if (!ep->func) {
967 kmem_free(p->addrpack, ep->addrpack->sa_len);
968 kmem_free(p->maskpack, ep->maskpack->sa_len);
969 }
970 kmem_free(p, sizeof(*p));
971
972 return 0;
973 }
974
975 #ifdef USE_RADIX
976 static struct radix_node_head *
977 encap_rnh(int af)
978 {
979
980 switch (af) {
981 case AF_INET:
982 return encap_head[0];
983 #ifdef INET6
984 case AF_INET6:
985 return encap_head[1];
986 #endif
987 default:
988 return NULL;
989 }
990 }
991
992 static int
993 mask_matchlen(const struct sockaddr *sa)
994 {
995 const char *p, *ep;
996 int l;
997
998 p = (const char *)sa;
999 ep = p + sa->sa_len;
1000 p += 2; /* sa_len + sa_family */
1001
1002 l = 0;
1003 while (p < ep) {
1004 l += (*p ? 8 : 0); /* estimate */
1005 p++;
1006 }
1007 return l;
1008 }
1009 #endif
1010
1011 #ifndef USE_RADIX
1012 static int
1013 mask_match(const struct encaptab *ep,
1014 const struct sockaddr *sp,
1015 const struct sockaddr *dp)
1016 {
1017 struct sockaddr_storage s;
1018 struct sockaddr_storage d;
1019 int i;
1020 const u_int8_t *p, *q;
1021 u_int8_t *r;
1022 int matchlen;
1023
1024 KASSERTMSG(ep->func == NULL, "wrong encaptab passed to mask_match");
1025
1026 if (sp->sa_len > sizeof(s) || dp->sa_len > sizeof(d))
1027 return 0;
1028 if (sp->sa_family != ep->af || dp->sa_family != ep->af)
1029 return 0;
1030 if (sp->sa_len != ep->src->sa_len || dp->sa_len != ep->dst->sa_len)
1031 return 0;
1032
1033 matchlen = 0;
1034
1035 p = (const u_int8_t *)sp;
1036 q = (const u_int8_t *)ep->srcmask;
1037 r = (u_int8_t *)&s;
1038 for (i = 0 ; i < sp->sa_len; i++) {
1039 r[i] = p[i] & q[i];
1040 /* XXX estimate */
1041 matchlen += (q[i] ? 8 : 0);
1042 }
1043
1044 p = (const u_int8_t *)dp;
1045 q = (const u_int8_t *)ep->dstmask;
1046 r = (u_int8_t *)&d;
1047 for (i = 0 ; i < dp->sa_len; i++) {
1048 r[i] = p[i] & q[i];
1049 /* XXX rough estimate */
1050 matchlen += (q[i] ? 8 : 0);
1051 }
1052
1053 /* need to overwrite len/family portion as we don't compare them */
1054 s.ss_len = sp->sa_len;
1055 s.ss_family = sp->sa_family;
1056 d.ss_len = dp->sa_len;
1057 d.ss_family = dp->sa_family;
1058
1059 if (memcmp(&s, ep->src, ep->src->sa_len) == 0 &&
1060 memcmp(&d, ep->dst, ep->dst->sa_len) == 0) {
1061 return matchlen;
1062 } else
1063 return 0;
1064 }
1065 #endif
1066
1067 static void
1068 encap_fillarg(struct mbuf *m, const struct encaptab *ep)
1069 {
1070 struct m_tag *mtag;
1071
1072 mtag = m_tag_get(PACKET_TAG_ENCAP, sizeof(void *), M_NOWAIT);
1073 if (mtag) {
1074 *(void **)(mtag + 1) = ep->arg;
1075 m_tag_prepend(m, mtag);
1076 }
1077 }
1078
1079 void *
1080 encap_getarg(struct mbuf *m)
1081 {
1082 void *p;
1083 struct m_tag *mtag;
1084
1085 p = NULL;
1086 mtag = m_tag_find(m, PACKET_TAG_ENCAP, NULL);
1087 if (mtag != NULL) {
1088 p = *(void **)(mtag + 1);
1089 m_tag_delete(m, mtag);
1090 }
1091 return p;
1092 }
1093
1094 int
1095 encap_lock_enter(void)
1096 {
1097 int error;
1098
1099 mutex_enter(&encap_whole.lock);
1100 while (encap_whole.busy != NULL) {
1101 error = cv_wait_sig(&encap_whole.cv, &encap_whole.lock);
1102 if (error) {
1103 mutex_exit(&encap_whole.lock);
1104 return error;
1105 }
1106 }
1107 KASSERT(encap_whole.busy == NULL);
1108 encap_whole.busy = curlwp;
1109 mutex_exit(&encap_whole.lock);
1110
1111 return 0;
1112 }
1113
1114 void
1115 encap_lock_exit(void)
1116 {
1117
1118 mutex_enter(&encap_whole.lock);
1119 KASSERT(encap_whole.busy == curlwp);
1120 encap_whole.busy = NULL;
1121 cv_broadcast(&encap_whole.cv);
1122 mutex_exit(&encap_whole.lock);
1123 }
1124
1125 bool
1126 encap_lock_held(void)
1127 {
1128
1129 return (encap_whole.busy == curlwp);
1130 }
1131