ip_encap.c revision 1.67.2.2 1 /* $NetBSD: ip_encap.c,v 1.67.2.2 2018/06/25 07:26:06 pgoyette Exp $ */
2 /* $KAME: ip_encap.c,v 1.73 2001/10/02 08:30:58 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32 /*
33 * My grandfather said that there's a devil inside tunnelling technology...
34 *
35 * We have surprisingly many protocols that want packets with IP protocol
36 * #4 or #41. Here's a list of protocols that want protocol #41:
37 * RFC1933 configured tunnel
38 * RFC1933 automatic tunnel
39 * RFC2401 IPsec tunnel
40 * RFC2473 IPv6 generic packet tunnelling
41 * RFC2529 6over4 tunnel
42 * RFC3056 6to4 tunnel
43 * isatap tunnel
44 * mobile-ip6 (uses RFC2473)
45 * Here's a list of protocol that want protocol #4:
46 * RFC1853 IPv4-in-IPv4 tunnelling
47 * RFC2003 IPv4 encapsulation within IPv4
48 * RFC2344 reverse tunnelling for mobile-ip4
49 * RFC2401 IPsec tunnel
50 * Well, what can I say. They impose different en/decapsulation mechanism
51 * from each other, so they need separate protocol handler. The only one
52 * we can easily determine by protocol # is IPsec, which always has
53 * AH/ESP/IPComp header right after outer IP header.
54 *
55 * So, clearly good old protosw does not work for protocol #4 and #41.
56 * The code will let you match protocol via src/dst address pair.
57 */
58 /* XXX is M_NETADDR correct? */
59
60 /*
61 * With USE_RADIX the code will use radix table for tunnel lookup, for
62 * tunnels registered with encap_attach() with a addr/mask pair.
63 * Faster on machines with thousands of tunnel registerations (= interfaces).
64 *
65 * The code assumes that radix table code can handle non-continuous netmask,
66 * as it will pass radix table memory region with (src + dst) sockaddr pair.
67 */
68 #define USE_RADIX
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: ip_encap.c,v 1.67.2.2 2018/06/25 07:26:06 pgoyette Exp $");
72
73 #ifdef _KERNEL_OPT
74 #include "opt_mrouting.h"
75 #include "opt_inet.h"
76 #include "opt_net_mpsafe.h"
77 #endif
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/socket.h>
82 #include <sys/sockio.h>
83 #include <sys/mbuf.h>
84 #include <sys/errno.h>
85 #include <sys/queue.h>
86 #include <sys/kmem.h>
87 #include <sys/mutex.h>
88 #include <sys/condvar.h>
89 #include <sys/psref.h>
90 #include <sys/pslist.h>
91
92 #include <net/if.h>
93
94 #include <netinet/in.h>
95 #include <netinet/in_systm.h>
96 #include <netinet/ip.h>
97 #include <netinet/ip_var.h>
98 #include <netinet/ip_encap.h>
99 #ifdef MROUTING
100 #include <netinet/ip_mroute.h>
101 #endif /* MROUTING */
102
103 #ifdef INET6
104 #include <netinet/ip6.h>
105 #include <netinet6/ip6_var.h>
106 #include <netinet6/ip6protosw.h> /* for struct ip6ctlparam */
107 #include <netinet6/in6_var.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet/icmp6.h>
110 #endif
111
112 #ifdef NET_MPSAFE
113 #define ENCAP_MPSAFE 1
114 #endif
115
116 enum direction { INBOUND, OUTBOUND };
117
118 #ifdef INET
119 static struct encaptab *encap4_lookup(struct mbuf *, int, int, enum direction,
120 struct psref *);
121 #endif
122 #ifdef INET6
123 static struct encaptab *encap6_lookup(struct mbuf *, int, int, enum direction,
124 struct psref *);
125 #endif
126 static int encap_add(struct encaptab *);
127 static int encap_remove(struct encaptab *);
128 static int encap_afcheck(int, const struct sockaddr *, const struct sockaddr *);
129 #ifdef USE_RADIX
130 static struct radix_node_head *encap_rnh(int);
131 static int mask_matchlen(const struct sockaddr *);
132 #else
133 static int mask_match(const struct encaptab *, const struct sockaddr *,
134 const struct sockaddr *);
135 #endif
136
137 /*
138 * In encap[46]_lookup(), ep->func can sleep(e.g. rtalloc1) while walking
139 * encap_table. So, it cannot use pserialize_read_enter()
140 */
141 static struct {
142 struct pslist_head list;
143 pserialize_t psz;
144 struct psref_class *elem_class; /* for the element of et_list */
145 } encaptab __cacheline_aligned = {
146 .list = PSLIST_INITIALIZER,
147 };
148 #define encap_table encaptab.list
149
150 static struct {
151 kmutex_t lock;
152 kcondvar_t cv;
153 struct lwp *busy;
154 } encap_whole __cacheline_aligned;
155
156 #ifdef USE_RADIX
157 struct radix_node_head *encap_head[2]; /* 0 for AF_INET, 1 for AF_INET6 */
158 static bool encap_head_updating = false;
159 #endif
160
161 static bool encap_initialized = false;
162 /*
163 * must be done before other encap interfaces initialization.
164 */
165 void
166 encapinit(void)
167 {
168
169 if (encap_initialized)
170 return;
171
172 encaptab.psz = pserialize_create();
173 encaptab.elem_class = psref_class_create("encapelem", IPL_SOFTNET);
174
175 mutex_init(&encap_whole.lock, MUTEX_DEFAULT, IPL_NONE);
176 cv_init(&encap_whole.cv, "ip_encap cv");
177 encap_whole.busy = NULL;
178
179 encap_initialized = true;
180 }
181
182 void
183 encap_init(void)
184 {
185 static int initialized = 0;
186
187 if (initialized)
188 return;
189 initialized++;
190 #if 0
191 /*
192 * we cannot use LIST_INIT() here, since drivers may want to call
193 * encap_attach(), on driver attach. encap_init() will be called
194 * on AF_INET{,6} initialization, which happens after driver
195 * initialization - using LIST_INIT() here can nuke encap_attach()
196 * from drivers.
197 */
198 PSLIST_INIT(&encap_table);
199 #endif
200
201 #ifdef USE_RADIX
202 /*
203 * initialize radix lookup table when the radix subsystem is inited.
204 */
205 rn_delayedinit((void *)&encap_head[0],
206 sizeof(struct sockaddr_pack) << 3);
207 #ifdef INET6
208 rn_delayedinit((void *)&encap_head[1],
209 sizeof(struct sockaddr_pack) << 3);
210 #endif
211 #endif
212 }
213
214 #ifdef INET
215 static struct encaptab *
216 encap4_lookup(struct mbuf *m, int off, int proto, enum direction dir,
217 struct psref *match_psref)
218 {
219 struct ip *ip;
220 struct ip_pack4 pack;
221 struct encaptab *ep, *match;
222 int prio, matchprio;
223 int s;
224 #ifdef USE_RADIX
225 struct radix_node_head *rnh = encap_rnh(AF_INET);
226 struct radix_node *rn;
227 #endif
228
229 KASSERT(m->m_len >= sizeof(*ip));
230
231 ip = mtod(m, struct ip *);
232
233 memset(&pack, 0, sizeof(pack));
234 pack.p.sp_len = sizeof(pack);
235 pack.mine.sin_family = pack.yours.sin_family = AF_INET;
236 pack.mine.sin_len = pack.yours.sin_len = sizeof(struct sockaddr_in);
237 if (dir == INBOUND) {
238 pack.mine.sin_addr = ip->ip_dst;
239 pack.yours.sin_addr = ip->ip_src;
240 } else {
241 pack.mine.sin_addr = ip->ip_src;
242 pack.yours.sin_addr = ip->ip_dst;
243 }
244
245 match = NULL;
246 matchprio = 0;
247
248 s = pserialize_read_enter();
249 #ifdef USE_RADIX
250 if (encap_head_updating) {
251 /*
252 * Update in progress. Do nothing.
253 */
254 pserialize_read_exit(s);
255 return NULL;
256 }
257
258 rn = rnh->rnh_matchaddr((void *)&pack, rnh);
259 if (rn && (rn->rn_flags & RNF_ROOT) == 0) {
260 struct encaptab *encapp = (struct encaptab *)rn;
261
262 psref_acquire(match_psref, &encapp->psref,
263 encaptab.elem_class);
264 match = encapp;
265 matchprio = mask_matchlen(match->srcmask) +
266 mask_matchlen(match->dstmask);
267 }
268 #endif
269 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
270 struct psref elem_psref;
271
272 if (ep->af != AF_INET)
273 continue;
274 if (ep->proto >= 0 && ep->proto != proto)
275 continue;
276
277 psref_acquire(&elem_psref, &ep->psref,
278 encaptab.elem_class);
279 if (ep->func) {
280 pserialize_read_exit(s);
281 /* ep->func is sleepable. e.g. rtalloc1 */
282 prio = (*ep->func)(m, off, proto, ep->arg);
283 s = pserialize_read_enter();
284 } else {
285 #ifdef USE_RADIX
286 psref_release(&elem_psref, &ep->psref,
287 encaptab.elem_class);
288 continue;
289 #else
290 prio = mask_match(ep, (struct sockaddr *)&pack.mine,
291 (struct sockaddr *)&pack.yours);
292 #endif
293 }
294
295 /*
296 * We prioritize the matches by using bit length of the
297 * matches. mask_match() and user-supplied matching function
298 * should return the bit length of the matches (for example,
299 * if both src/dst are matched for IPv4, 64 should be returned).
300 * 0 or negative return value means "it did not match".
301 *
302 * The question is, since we have two "mask" portion, we
303 * cannot really define total order between entries.
304 * For example, which of these should be preferred?
305 * mask_match() returns 48 (32 + 16) for both of them.
306 * src=3ffe::/16, dst=3ffe:501::/32
307 * src=3ffe:501::/32, dst=3ffe::/16
308 *
309 * We need to loop through all the possible candidates
310 * to get the best match - the search takes O(n) for
311 * n attachments (i.e. interfaces).
312 *
313 * For radix-based lookup, I guess source takes precedence.
314 * See rn_{refines,lexobetter} for the correct answer.
315 */
316 if (prio <= 0) {
317 psref_release(&elem_psref, &ep->psref,
318 encaptab.elem_class);
319 continue;
320 }
321 if (prio > matchprio) {
322 /* release last matched ep */
323 if (match != NULL)
324 psref_release(match_psref, &match->psref,
325 encaptab.elem_class);
326
327 psref_copy(match_psref, &elem_psref,
328 encaptab.elem_class);
329 matchprio = prio;
330 match = ep;
331 }
332 KASSERTMSG((match == NULL) || psref_held(&match->psref,
333 encaptab.elem_class),
334 "current match = %p, but not hold its psref", match);
335
336 psref_release(&elem_psref, &ep->psref,
337 encaptab.elem_class);
338 }
339 pserialize_read_exit(s);
340
341 return match;
342 }
343
344 void
345 encap4_input(struct mbuf *m, ...)
346 {
347 int off, proto;
348 va_list ap;
349 const struct encapsw *esw;
350 struct encaptab *match;
351 struct psref match_psref;
352
353 va_start(ap, m);
354 off = va_arg(ap, int);
355 proto = va_arg(ap, int);
356 va_end(ap);
357
358 match = encap4_lookup(m, off, proto, INBOUND, &match_psref);
359 if (match) {
360 /* found a match, "match" has the best one */
361 esw = match->esw;
362 if (esw && esw->encapsw4.pr_input) {
363 (*esw->encapsw4.pr_input)(m, off, proto, match->arg);
364 psref_release(&match_psref, &match->psref,
365 encaptab.elem_class);
366 } else {
367 psref_release(&match_psref, &match->psref,
368 encaptab.elem_class);
369 m_freem(m);
370 }
371 return;
372 }
373
374 /* last resort: inject to raw socket */
375 SOFTNET_LOCK_IF_NET_MPSAFE();
376 rip_input(m, off, proto);
377 SOFTNET_UNLOCK_IF_NET_MPSAFE();
378 }
379 #endif
380
381 #ifdef INET6
382 static struct encaptab *
383 encap6_lookup(struct mbuf *m, int off, int proto, enum direction dir,
384 struct psref *match_psref)
385 {
386 struct ip6_hdr *ip6;
387 struct ip_pack6 pack;
388 int prio, matchprio;
389 int s;
390 struct encaptab *ep, *match;
391 #ifdef USE_RADIX
392 struct radix_node_head *rnh = encap_rnh(AF_INET6);
393 struct radix_node *rn;
394 #endif
395
396 KASSERT(m->m_len >= sizeof(*ip6));
397
398 ip6 = mtod(m, struct ip6_hdr *);
399
400 memset(&pack, 0, sizeof(pack));
401 pack.p.sp_len = sizeof(pack);
402 pack.mine.sin6_family = pack.yours.sin6_family = AF_INET6;
403 pack.mine.sin6_len = pack.yours.sin6_len = sizeof(struct sockaddr_in6);
404 if (dir == INBOUND) {
405 pack.mine.sin6_addr = ip6->ip6_dst;
406 pack.yours.sin6_addr = ip6->ip6_src;
407 } else {
408 pack.mine.sin6_addr = ip6->ip6_src;
409 pack.yours.sin6_addr = ip6->ip6_dst;
410 }
411
412 match = NULL;
413 matchprio = 0;
414
415 s = pserialize_read_enter();
416 #ifdef USE_RADIX
417 if (encap_head_updating) {
418 /*
419 * Update in progress. Do nothing.
420 */
421 pserialize_read_exit(s);
422 return NULL;
423 }
424
425 rn = rnh->rnh_matchaddr((void *)&pack, rnh);
426 if (rn && (rn->rn_flags & RNF_ROOT) == 0) {
427 struct encaptab *encapp = (struct encaptab *)rn;
428
429 psref_acquire(match_psref, &encapp->psref,
430 encaptab.elem_class);
431 match = encapp;
432 matchprio = mask_matchlen(match->srcmask) +
433 mask_matchlen(match->dstmask);
434 }
435 #endif
436 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
437 struct psref elem_psref;
438
439 if (ep->af != AF_INET6)
440 continue;
441 if (ep->proto >= 0 && ep->proto != proto)
442 continue;
443
444 psref_acquire(&elem_psref, &ep->psref,
445 encaptab.elem_class);
446
447 if (ep->func) {
448 pserialize_read_exit(s);
449 /* ep->func is sleepable. e.g. rtalloc1 */
450 prio = (*ep->func)(m, off, proto, ep->arg);
451 s = pserialize_read_enter();
452 } else {
453 #ifdef USE_RADIX
454 psref_release(&elem_psref, &ep->psref,
455 encaptab.elem_class);
456 continue;
457 #else
458 prio = mask_match(ep, (struct sockaddr *)&pack.mine,
459 (struct sockaddr *)&pack.yours);
460 #endif
461 }
462
463 /* see encap4_lookup() for issues here */
464 if (prio <= 0) {
465 psref_release(&elem_psref, &ep->psref,
466 encaptab.elem_class);
467 continue;
468 }
469 if (prio > matchprio) {
470 /* release last matched ep */
471 if (match != NULL)
472 psref_release(match_psref, &match->psref,
473 encaptab.elem_class);
474
475 psref_copy(match_psref, &elem_psref,
476 encaptab.elem_class);
477 matchprio = prio;
478 match = ep;
479 }
480 KASSERTMSG((match == NULL) || psref_held(&match->psref,
481 encaptab.elem_class),
482 "current match = %p, but not hold its psref", match);
483
484 psref_release(&elem_psref, &ep->psref,
485 encaptab.elem_class);
486 }
487 pserialize_read_exit(s);
488
489 return match;
490 }
491
492 int
493 encap6_input(struct mbuf **mp, int *offp, int proto)
494 {
495 struct mbuf *m = *mp;
496 const struct encapsw *esw;
497 struct encaptab *match;
498 struct psref match_psref;
499 int rv;
500
501 match = encap6_lookup(m, *offp, proto, INBOUND, &match_psref);
502
503 if (match) {
504 /* found a match */
505 esw = match->esw;
506 if (esw && esw->encapsw6.pr_input) {
507 int ret;
508 ret = (*esw->encapsw6.pr_input)(mp, offp, proto,
509 match->arg);
510 psref_release(&match_psref, &match->psref,
511 encaptab.elem_class);
512 return ret;
513 } else {
514 psref_release(&match_psref, &match->psref,
515 encaptab.elem_class);
516 m_freem(m);
517 return IPPROTO_DONE;
518 }
519 }
520
521 /* last resort: inject to raw socket */
522 SOFTNET_LOCK_IF_NET_MPSAFE();
523 rv = rip6_input(mp, offp, proto);
524 SOFTNET_UNLOCK_IF_NET_MPSAFE();
525 return rv;
526 }
527 #endif
528
529 /*
530 * XXX
531 * The encaptab list and the rnh radix tree must be manipulated atomically.
532 */
533 static int
534 encap_add(struct encaptab *ep)
535 {
536 #ifdef USE_RADIX
537 struct radix_node_head *rnh = encap_rnh(ep->af);
538 #endif
539
540 KASSERT(encap_lock_held());
541
542 #ifdef USE_RADIX
543 if (!ep->func && rnh) {
544 /* Disable access to the radix tree for reader. */
545 encap_head_updating = true;
546 /* Wait for all readers to drain. */
547 pserialize_perform(encaptab.psz);
548
549 if (!rnh->rnh_addaddr((void *)ep->addrpack,
550 (void *)ep->maskpack, rnh, ep->nodes)) {
551 encap_head_updating = false;
552 return EEXIST;
553 }
554
555 /*
556 * The ep added to the radix tree must be skipped while
557 * encap[46]_lookup walks encaptab list. In other words,
558 * encap_add() does not need to care whether the ep has
559 * been added encaptab list or not yet.
560 * So, we can re-enable access to the radix tree for now.
561 */
562 encap_head_updating = false;
563 }
564 #endif
565 PSLIST_WRITER_INSERT_HEAD(&encap_table, ep, chain);
566
567 return 0;
568 }
569
570 /*
571 * XXX
572 * The encaptab list and the rnh radix tree must be manipulated atomically.
573 */
574 static int
575 encap_remove(struct encaptab *ep)
576 {
577 #ifdef USE_RADIX
578 struct radix_node_head *rnh = encap_rnh(ep->af);
579 #endif
580 int error = 0;
581
582 KASSERT(encap_lock_held());
583
584 #ifdef USE_RADIX
585 if (!ep->func && rnh) {
586 /* Disable access to the radix tree for reader. */
587 encap_head_updating = true;
588 /* Wait for all readers to drain. */
589 pserialize_perform(encaptab.psz);
590
591 if (!rnh->rnh_deladdr((void *)ep->addrpack,
592 (void *)ep->maskpack, rnh))
593 error = ESRCH;
594
595 /*
596 * The ep added to the radix tree must be skipped while
597 * encap[46]_lookup walks encaptab list. In other words,
598 * encap_add() does not need to care whether the ep has
599 * been added encaptab list or not yet.
600 * So, we can re-enable access to the radix tree for now.
601 */
602 encap_head_updating = false;
603 }
604 #endif
605 PSLIST_WRITER_REMOVE(ep, chain);
606
607 return error;
608 }
609
610 static int
611 encap_afcheck(int af, const struct sockaddr *sp, const struct sockaddr *dp)
612 {
613 if (sp && dp) {
614 if (sp->sa_len != dp->sa_len)
615 return EINVAL;
616 if (af != sp->sa_family || af != dp->sa_family)
617 return EINVAL;
618 } else if (!sp && !dp)
619 ;
620 else
621 return EINVAL;
622
623 switch (af) {
624 case AF_INET:
625 if (sp && sp->sa_len != sizeof(struct sockaddr_in))
626 return EINVAL;
627 if (dp && dp->sa_len != sizeof(struct sockaddr_in))
628 return EINVAL;
629 break;
630 #ifdef INET6
631 case AF_INET6:
632 if (sp && sp->sa_len != sizeof(struct sockaddr_in6))
633 return EINVAL;
634 if (dp && dp->sa_len != sizeof(struct sockaddr_in6))
635 return EINVAL;
636 break;
637 #endif
638 default:
639 return EAFNOSUPPORT;
640 }
641
642 return 0;
643 }
644
645 /*
646 * sp (src ptr) is always my side, and dp (dst ptr) is always remote side.
647 * length of mask (sm and dm) is assumed to be same as sp/dp.
648 * Return value will be necessary as input (cookie) for encap_detach().
649 */
650 const struct encaptab *
651 encap_attach(int af, int proto,
652 const struct sockaddr *sp, const struct sockaddr *sm,
653 const struct sockaddr *dp, const struct sockaddr *dm,
654 const struct encapsw *esw, void *arg)
655 {
656 struct encaptab *ep;
657 int error;
658 int pss;
659 size_t l;
660 struct ip_pack4 *pack4;
661 #ifdef INET6
662 struct ip_pack6 *pack6;
663 #endif
664 #ifndef ENCAP_MPSAFE
665 int s;
666
667 s = splsoftnet();
668 #endif
669 /* sanity check on args */
670 error = encap_afcheck(af, sp, dp);
671 if (error)
672 goto fail;
673
674 /* check if anyone have already attached with exactly same config */
675 pss = pserialize_read_enter();
676 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
677 if (ep->af != af)
678 continue;
679 if (ep->proto != proto)
680 continue;
681 if (ep->func)
682 continue;
683
684 KASSERT(ep->src != NULL);
685 KASSERT(ep->dst != NULL);
686 KASSERT(ep->srcmask != NULL);
687 KASSERT(ep->dstmask != NULL);
688
689 if (ep->src->sa_len != sp->sa_len ||
690 memcmp(ep->src, sp, sp->sa_len) != 0 ||
691 memcmp(ep->srcmask, sm, sp->sa_len) != 0)
692 continue;
693 if (ep->dst->sa_len != dp->sa_len ||
694 memcmp(ep->dst, dp, dp->sa_len) != 0 ||
695 memcmp(ep->dstmask, dm, dp->sa_len) != 0)
696 continue;
697
698 error = EEXIST;
699 pserialize_read_exit(pss);
700 goto fail;
701 }
702 pserialize_read_exit(pss);
703
704 switch (af) {
705 case AF_INET:
706 l = sizeof(*pack4);
707 break;
708 #ifdef INET6
709 case AF_INET6:
710 l = sizeof(*pack6);
711 break;
712 #endif
713 default:
714 goto fail;
715 }
716
717 /* M_NETADDR ok? */
718 ep = kmem_zalloc(sizeof(*ep), KM_NOSLEEP);
719 if (ep == NULL) {
720 error = ENOBUFS;
721 goto fail;
722 }
723 ep->addrpack = kmem_zalloc(l, KM_NOSLEEP);
724 if (ep->addrpack == NULL) {
725 error = ENOBUFS;
726 goto gc;
727 }
728 ep->maskpack = kmem_zalloc(l, KM_NOSLEEP);
729 if (ep->maskpack == NULL) {
730 error = ENOBUFS;
731 goto gc;
732 }
733
734 ep->af = af;
735 ep->proto = proto;
736 ep->addrpack->sa_len = l & 0xff;
737 ep->maskpack->sa_len = l & 0xff;
738 switch (af) {
739 case AF_INET:
740 pack4 = (struct ip_pack4 *)ep->addrpack;
741 ep->src = (struct sockaddr *)&pack4->mine;
742 ep->dst = (struct sockaddr *)&pack4->yours;
743 pack4 = (struct ip_pack4 *)ep->maskpack;
744 ep->srcmask = (struct sockaddr *)&pack4->mine;
745 ep->dstmask = (struct sockaddr *)&pack4->yours;
746 break;
747 #ifdef INET6
748 case AF_INET6:
749 pack6 = (struct ip_pack6 *)ep->addrpack;
750 ep->src = (struct sockaddr *)&pack6->mine;
751 ep->dst = (struct sockaddr *)&pack6->yours;
752 pack6 = (struct ip_pack6 *)ep->maskpack;
753 ep->srcmask = (struct sockaddr *)&pack6->mine;
754 ep->dstmask = (struct sockaddr *)&pack6->yours;
755 break;
756 #endif
757 }
758
759 memcpy(ep->src, sp, sp->sa_len);
760 memcpy(ep->srcmask, sm, sp->sa_len);
761 memcpy(ep->dst, dp, dp->sa_len);
762 memcpy(ep->dstmask, dm, dp->sa_len);
763 ep->esw = esw;
764 ep->arg = arg;
765 psref_target_init(&ep->psref, encaptab.elem_class);
766
767 error = encap_add(ep);
768 if (error)
769 goto gc;
770
771 error = 0;
772 #ifndef ENCAP_MPSAFE
773 splx(s);
774 #endif
775 return ep;
776
777 gc:
778 if (ep->addrpack)
779 kmem_free(ep->addrpack, l);
780 if (ep->maskpack)
781 kmem_free(ep->maskpack, l);
782 if (ep)
783 kmem_free(ep, sizeof(*ep));
784 fail:
785 #ifndef ENCAP_MPSAFE
786 splx(s);
787 #endif
788 return NULL;
789 }
790
791 const struct encaptab *
792 encap_attach_func(int af, int proto,
793 int (*func)(struct mbuf *, int, int, void *),
794 const struct encapsw *esw, void *arg)
795 {
796 struct encaptab *ep;
797 int error;
798 #ifndef ENCAP_MPSAFE
799 int s;
800
801 s = splsoftnet();
802 #endif
803 /* sanity check on args */
804 if (!func) {
805 error = EINVAL;
806 goto fail;
807 }
808
809 error = encap_afcheck(af, NULL, NULL);
810 if (error)
811 goto fail;
812
813 ep = kmem_alloc(sizeof(*ep), KM_NOSLEEP); /*XXX*/
814 if (ep == NULL) {
815 error = ENOBUFS;
816 goto fail;
817 }
818 memset(ep, 0, sizeof(*ep));
819
820 ep->af = af;
821 ep->proto = proto;
822 ep->func = func;
823 ep->esw = esw;
824 ep->arg = arg;
825 psref_target_init(&ep->psref, encaptab.elem_class);
826
827 error = encap_add(ep);
828 if (error)
829 goto gc;
830
831 error = 0;
832 #ifndef ENCAP_MPSAFE
833 splx(s);
834 #endif
835 return ep;
836
837 gc:
838 kmem_free(ep, sizeof(*ep));
839 fail:
840 #ifndef ENCAP_MPSAFE
841 splx(s);
842 #endif
843 return NULL;
844 }
845
846 /* XXX encap4_ctlinput() is necessary if we set DF=1 on outer IPv4 header */
847
848 #ifdef INET6
849 void *
850 encap6_ctlinput(int cmd, const struct sockaddr *sa, void *d0)
851 {
852 void *d = d0;
853 struct ip6_hdr *ip6;
854 struct mbuf *m;
855 int off;
856 struct ip6ctlparam *ip6cp = NULL;
857 int nxt;
858 int s;
859 struct encaptab *ep;
860 const struct encapsw *esw;
861
862 if (sa->sa_family != AF_INET6 ||
863 sa->sa_len != sizeof(struct sockaddr_in6))
864 return NULL;
865
866 if ((unsigned)cmd >= PRC_NCMDS)
867 return NULL;
868 if (cmd == PRC_HOSTDEAD)
869 d = NULL;
870 else if (cmd == PRC_MSGSIZE)
871 ; /* special code is present, see below */
872 else if (inet6ctlerrmap[cmd] == 0)
873 return NULL;
874
875 /* if the parameter is from icmp6, decode it. */
876 if (d != NULL) {
877 ip6cp = (struct ip6ctlparam *)d;
878 m = ip6cp->ip6c_m;
879 ip6 = ip6cp->ip6c_ip6;
880 off = ip6cp->ip6c_off;
881 nxt = ip6cp->ip6c_nxt;
882
883 if (ip6 && cmd == PRC_MSGSIZE) {
884 int valid = 0;
885 struct encaptab *match;
886 struct psref elem_psref;
887
888 /*
889 * Check to see if we have a valid encap configuration.
890 */
891 match = encap6_lookup(m, off, nxt, OUTBOUND,
892 &elem_psref);
893 if (match)
894 valid++;
895 psref_release(&elem_psref, &match->psref,
896 encaptab.elem_class);
897
898 /*
899 * Depending on the value of "valid" and routing table
900 * size (mtudisc_{hi,lo}wat), we will:
901 * - recalcurate the new MTU and create the
902 * corresponding routing entry, or
903 * - ignore the MTU change notification.
904 */
905 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
906 }
907 } else {
908 m = NULL;
909 ip6 = NULL;
910 nxt = -1;
911 }
912
913 /* inform all listeners */
914
915 s = pserialize_read_enter();
916 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
917 struct psref elem_psref;
918
919 if (ep->af != AF_INET6)
920 continue;
921 if (ep->proto >= 0 && ep->proto != nxt)
922 continue;
923
924 /* should optimize by looking at address pairs */
925
926 /* XXX need to pass ep->arg or ep itself to listeners */
927 psref_acquire(&elem_psref, &ep->psref,
928 encaptab.elem_class);
929 esw = ep->esw;
930 if (esw && esw->encapsw6.pr_ctlinput) {
931 pserialize_read_exit(s);
932 /* pr_ctlinput is sleepable. e.g. rtcache_free */
933 (*esw->encapsw6.pr_ctlinput)(cmd, sa, d, ep->arg);
934 s = pserialize_read_enter();
935 }
936 psref_release(&elem_psref, &ep->psref,
937 encaptab.elem_class);
938 }
939 pserialize_read_exit(s);
940
941 rip6_ctlinput(cmd, sa, d0);
942 return NULL;
943 }
944 #endif
945
946 int
947 encap_detach(const struct encaptab *cookie)
948 {
949 const struct encaptab *ep = cookie;
950 struct encaptab *p;
951 int error;
952
953 KASSERT(encap_lock_held());
954
955 PSLIST_WRITER_FOREACH(p, &encap_table, struct encaptab, chain) {
956 if (p == ep) {
957 error = encap_remove(p);
958 if (error)
959 return error;
960 else
961 break;
962 }
963 }
964 if (p == NULL)
965 return ENOENT;
966
967 pserialize_perform(encaptab.psz);
968 psref_target_destroy(&p->psref,
969 encaptab.elem_class);
970 if (!ep->func) {
971 kmem_free(p->addrpack, ep->addrpack->sa_len);
972 kmem_free(p->maskpack, ep->maskpack->sa_len);
973 }
974 kmem_free(p, sizeof(*p));
975
976 return 0;
977 }
978
979 #ifdef USE_RADIX
980 static struct radix_node_head *
981 encap_rnh(int af)
982 {
983
984 switch (af) {
985 case AF_INET:
986 return encap_head[0];
987 #ifdef INET6
988 case AF_INET6:
989 return encap_head[1];
990 #endif
991 default:
992 return NULL;
993 }
994 }
995
996 static int
997 mask_matchlen(const struct sockaddr *sa)
998 {
999 const char *p, *ep;
1000 int l;
1001
1002 p = (const char *)sa;
1003 ep = p + sa->sa_len;
1004 p += 2; /* sa_len + sa_family */
1005
1006 l = 0;
1007 while (p < ep) {
1008 l += (*p ? 8 : 0); /* estimate */
1009 p++;
1010 }
1011 return l;
1012 }
1013 #endif
1014
1015 #ifndef USE_RADIX
1016 static int
1017 mask_match(const struct encaptab *ep,
1018 const struct sockaddr *sp,
1019 const struct sockaddr *dp)
1020 {
1021 struct sockaddr_storage s;
1022 struct sockaddr_storage d;
1023 int i;
1024 const u_int8_t *p, *q;
1025 u_int8_t *r;
1026 int matchlen;
1027
1028 KASSERTMSG(ep->func == NULL, "wrong encaptab passed to mask_match");
1029
1030 if (sp->sa_len > sizeof(s) || dp->sa_len > sizeof(d))
1031 return 0;
1032 if (sp->sa_family != ep->af || dp->sa_family != ep->af)
1033 return 0;
1034 if (sp->sa_len != ep->src->sa_len || dp->sa_len != ep->dst->sa_len)
1035 return 0;
1036
1037 matchlen = 0;
1038
1039 p = (const u_int8_t *)sp;
1040 q = (const u_int8_t *)ep->srcmask;
1041 r = (u_int8_t *)&s;
1042 for (i = 0 ; i < sp->sa_len; i++) {
1043 r[i] = p[i] & q[i];
1044 /* XXX estimate */
1045 matchlen += (q[i] ? 8 : 0);
1046 }
1047
1048 p = (const u_int8_t *)dp;
1049 q = (const u_int8_t *)ep->dstmask;
1050 r = (u_int8_t *)&d;
1051 for (i = 0 ; i < dp->sa_len; i++) {
1052 r[i] = p[i] & q[i];
1053 /* XXX rough estimate */
1054 matchlen += (q[i] ? 8 : 0);
1055 }
1056
1057 /* need to overwrite len/family portion as we don't compare them */
1058 s.ss_len = sp->sa_len;
1059 s.ss_family = sp->sa_family;
1060 d.ss_len = dp->sa_len;
1061 d.ss_family = dp->sa_family;
1062
1063 if (memcmp(&s, ep->src, ep->src->sa_len) == 0 &&
1064 memcmp(&d, ep->dst, ep->dst->sa_len) == 0) {
1065 return matchlen;
1066 } else
1067 return 0;
1068 }
1069 #endif
1070
1071 int
1072 encap_lock_enter(void)
1073 {
1074 int error;
1075
1076 mutex_enter(&encap_whole.lock);
1077 while (encap_whole.busy != NULL) {
1078 error = cv_wait_sig(&encap_whole.cv, &encap_whole.lock);
1079 if (error) {
1080 mutex_exit(&encap_whole.lock);
1081 return error;
1082 }
1083 }
1084 KASSERT(encap_whole.busy == NULL);
1085 encap_whole.busy = curlwp;
1086 mutex_exit(&encap_whole.lock);
1087
1088 return 0;
1089 }
1090
1091 void
1092 encap_lock_exit(void)
1093 {
1094
1095 mutex_enter(&encap_whole.lock);
1096 KASSERT(encap_whole.busy == curlwp);
1097 encap_whole.busy = NULL;
1098 cv_broadcast(&encap_whole.cv);
1099 mutex_exit(&encap_whole.lock);
1100 }
1101
1102 bool
1103 encap_lock_held(void)
1104 {
1105
1106 return (encap_whole.busy == curlwp);
1107 }
1108