ip_encap.c revision 1.67.2.3 1 /* $NetBSD: ip_encap.c,v 1.67.2.3 2018/09/30 01:45:56 pgoyette Exp $ */
2 /* $KAME: ip_encap.c,v 1.73 2001/10/02 08:30:58 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32 /*
33 * My grandfather said that there's a devil inside tunnelling technology...
34 *
35 * We have surprisingly many protocols that want packets with IP protocol
36 * #4 or #41. Here's a list of protocols that want protocol #41:
37 * RFC1933 configured tunnel
38 * RFC1933 automatic tunnel
39 * RFC2401 IPsec tunnel
40 * RFC2473 IPv6 generic packet tunnelling
41 * RFC2529 6over4 tunnel
42 * RFC3056 6to4 tunnel
43 * isatap tunnel
44 * mobile-ip6 (uses RFC2473)
45 * Here's a list of protocol that want protocol #4:
46 * RFC1853 IPv4-in-IPv4 tunnelling
47 * RFC2003 IPv4 encapsulation within IPv4
48 * RFC2344 reverse tunnelling for mobile-ip4
49 * RFC2401 IPsec tunnel
50 * Well, what can I say. They impose different en/decapsulation mechanism
51 * from each other, so they need separate protocol handler. The only one
52 * we can easily determine by protocol # is IPsec, which always has
53 * AH/ESP/IPComp header right after outer IP header.
54 *
55 * So, clearly good old protosw does not work for protocol #4 and #41.
56 * The code will let you match protocol via src/dst address pair.
57 */
58 /* XXX is M_NETADDR correct? */
59
60 /*
61 * With USE_RADIX the code will use radix table for tunnel lookup, for
62 * tunnels registered with encap_attach() with a addr/mask pair.
63 * Faster on machines with thousands of tunnel registerations (= interfaces).
64 *
65 * The code assumes that radix table code can handle non-continuous netmask,
66 * as it will pass radix table memory region with (src + dst) sockaddr pair.
67 */
68 #define USE_RADIX
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: ip_encap.c,v 1.67.2.3 2018/09/30 01:45:56 pgoyette Exp $");
72
73 #ifdef _KERNEL_OPT
74 #include "opt_mrouting.h"
75 #include "opt_inet.h"
76 #include "opt_net_mpsafe.h"
77 #endif
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/socket.h>
82 #include <sys/sockio.h>
83 #include <sys/mbuf.h>
84 #include <sys/errno.h>
85 #include <sys/queue.h>
86 #include <sys/kmem.h>
87 #include <sys/mutex.h>
88 #include <sys/condvar.h>
89 #include <sys/psref.h>
90 #include <sys/pslist.h>
91
92 #include <net/if.h>
93
94 #include <netinet/in.h>
95 #include <netinet/in_systm.h>
96 #include <netinet/ip.h>
97 #include <netinet/ip_var.h>
98 #include <netinet/ip_encap.h>
99 #ifdef MROUTING
100 #include <netinet/ip_mroute.h>
101 #endif /* MROUTING */
102
103 #ifdef INET6
104 #include <netinet/ip6.h>
105 #include <netinet6/ip6_var.h>
106 #include <netinet6/ip6protosw.h> /* for struct ip6ctlparam */
107 #include <netinet6/in6_var.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet/icmp6.h>
110 #endif
111
112 #ifdef NET_MPSAFE
113 #define ENCAP_MPSAFE 1
114 #endif
115
116 enum direction { INBOUND, OUTBOUND };
117
118 #ifdef INET
119 static struct encaptab *encap4_lookup(struct mbuf *, int, int, enum direction,
120 struct psref *);
121 #endif
122 #ifdef INET6
123 static struct encaptab *encap6_lookup(struct mbuf *, int, int, enum direction,
124 struct psref *);
125 #endif
126 static int encap_add(struct encaptab *);
127 static int encap_remove(struct encaptab *);
128 static int encap_afcheck(int, const struct sockaddr *, const struct sockaddr *);
129 #ifdef USE_RADIX
130 static struct radix_node_head *encap_rnh(int);
131 static int mask_matchlen(const struct sockaddr *);
132 #else
133 static int mask_match(const struct encaptab *, const struct sockaddr *,
134 const struct sockaddr *);
135 #endif
136
137 /*
138 * In encap[46]_lookup(), ep->func can sleep(e.g. rtalloc1) while walking
139 * encap_table. So, it cannot use pserialize_read_enter()
140 */
141 static struct {
142 struct pslist_head list;
143 pserialize_t psz;
144 struct psref_class *elem_class; /* for the element of et_list */
145 } encaptab __cacheline_aligned = {
146 .list = PSLIST_INITIALIZER,
147 };
148 #define encap_table encaptab.list
149
150 static struct {
151 kmutex_t lock;
152 kcondvar_t cv;
153 struct lwp *busy;
154 } encap_whole __cacheline_aligned;
155
156 #ifdef USE_RADIX
157 struct radix_node_head *encap_head[2]; /* 0 for AF_INET, 1 for AF_INET6 */
158 static bool encap_head_updating = false;
159 #endif
160
161 static bool encap_initialized = false;
162 /*
163 * must be done before other encap interfaces initialization.
164 */
165 void
166 encapinit(void)
167 {
168
169 if (encap_initialized)
170 return;
171
172 encaptab.psz = pserialize_create();
173 encaptab.elem_class = psref_class_create("encapelem", IPL_SOFTNET);
174
175 mutex_init(&encap_whole.lock, MUTEX_DEFAULT, IPL_NONE);
176 cv_init(&encap_whole.cv, "ip_encap cv");
177 encap_whole.busy = NULL;
178
179 encap_initialized = true;
180 }
181
182 void
183 encap_init(void)
184 {
185 static int initialized = 0;
186
187 if (initialized)
188 return;
189 initialized++;
190 #if 0
191 /*
192 * we cannot use LIST_INIT() here, since drivers may want to call
193 * encap_attach(), on driver attach. encap_init() will be called
194 * on AF_INET{,6} initialization, which happens after driver
195 * initialization - using LIST_INIT() here can nuke encap_attach()
196 * from drivers.
197 */
198 PSLIST_INIT(&encap_table);
199 #endif
200
201 #ifdef USE_RADIX
202 /*
203 * initialize radix lookup table when the radix subsystem is inited.
204 */
205 rn_delayedinit((void *)&encap_head[0],
206 sizeof(struct sockaddr_pack) << 3);
207 #ifdef INET6
208 rn_delayedinit((void *)&encap_head[1],
209 sizeof(struct sockaddr_pack) << 3);
210 #endif
211 #endif
212 }
213
214 #ifdef INET
215 static struct encaptab *
216 encap4_lookup(struct mbuf *m, int off, int proto, enum direction dir,
217 struct psref *match_psref)
218 {
219 struct ip *ip;
220 struct ip_pack4 pack;
221 struct encaptab *ep, *match;
222 int prio, matchprio;
223 int s;
224 #ifdef USE_RADIX
225 struct radix_node_head *rnh = encap_rnh(AF_INET);
226 struct radix_node *rn;
227 #endif
228
229 KASSERT(m->m_len >= sizeof(*ip));
230
231 ip = mtod(m, struct ip *);
232
233 memset(&pack, 0, sizeof(pack));
234 pack.p.sp_len = sizeof(pack);
235 pack.mine.sin_family = pack.yours.sin_family = AF_INET;
236 pack.mine.sin_len = pack.yours.sin_len = sizeof(struct sockaddr_in);
237 if (dir == INBOUND) {
238 pack.mine.sin_addr = ip->ip_dst;
239 pack.yours.sin_addr = ip->ip_src;
240 } else {
241 pack.mine.sin_addr = ip->ip_src;
242 pack.yours.sin_addr = ip->ip_dst;
243 }
244
245 match = NULL;
246 matchprio = 0;
247
248 s = pserialize_read_enter();
249 #ifdef USE_RADIX
250 if (encap_head_updating) {
251 /*
252 * Update in progress. Do nothing.
253 */
254 pserialize_read_exit(s);
255 return NULL;
256 }
257
258 rn = rnh->rnh_matchaddr((void *)&pack, rnh);
259 if (rn && (rn->rn_flags & RNF_ROOT) == 0) {
260 struct encaptab *encapp = (struct encaptab *)rn;
261
262 psref_acquire(match_psref, &encapp->psref,
263 encaptab.elem_class);
264 match = encapp;
265 matchprio = mask_matchlen(match->srcmask) +
266 mask_matchlen(match->dstmask);
267 }
268 #endif
269 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
270 struct psref elem_psref;
271
272 if (ep->af != AF_INET)
273 continue;
274 if (ep->proto >= 0 && ep->proto != proto)
275 continue;
276
277 psref_acquire(&elem_psref, &ep->psref,
278 encaptab.elem_class);
279 if (ep->func) {
280 pserialize_read_exit(s);
281 /* ep->func is sleepable. e.g. rtalloc1 */
282 prio = (*ep->func)(m, off, proto, ep->arg);
283 s = pserialize_read_enter();
284 } else {
285 #ifdef USE_RADIX
286 psref_release(&elem_psref, &ep->psref,
287 encaptab.elem_class);
288 continue;
289 #else
290 prio = mask_match(ep, (struct sockaddr *)&pack.mine,
291 (struct sockaddr *)&pack.yours);
292 #endif
293 }
294
295 /*
296 * We prioritize the matches by using bit length of the
297 * matches. mask_match() and user-supplied matching function
298 * should return the bit length of the matches (for example,
299 * if both src/dst are matched for IPv4, 64 should be returned).
300 * 0 or negative return value means "it did not match".
301 *
302 * The question is, since we have two "mask" portion, we
303 * cannot really define total order between entries.
304 * For example, which of these should be preferred?
305 * mask_match() returns 48 (32 + 16) for both of them.
306 * src=3ffe::/16, dst=3ffe:501::/32
307 * src=3ffe:501::/32, dst=3ffe::/16
308 *
309 * We need to loop through all the possible candidates
310 * to get the best match - the search takes O(n) for
311 * n attachments (i.e. interfaces).
312 *
313 * For radix-based lookup, I guess source takes precedence.
314 * See rn_{refines,lexobetter} for the correct answer.
315 */
316 if (prio <= 0) {
317 psref_release(&elem_psref, &ep->psref,
318 encaptab.elem_class);
319 continue;
320 }
321 if (prio > matchprio) {
322 /* release last matched ep */
323 if (match != NULL)
324 psref_release(match_psref, &match->psref,
325 encaptab.elem_class);
326
327 psref_copy(match_psref, &elem_psref,
328 encaptab.elem_class);
329 matchprio = prio;
330 match = ep;
331 }
332 KASSERTMSG((match == NULL) || psref_held(&match->psref,
333 encaptab.elem_class),
334 "current match = %p, but not hold its psref", match);
335
336 psref_release(&elem_psref, &ep->psref,
337 encaptab.elem_class);
338 }
339 pserialize_read_exit(s);
340
341 return match;
342 }
343
344 void
345 encap4_input(struct mbuf *m, int off, int proto)
346 {
347 const struct encapsw *esw;
348 struct encaptab *match;
349 struct psref match_psref;
350
351 match = encap4_lookup(m, off, proto, INBOUND, &match_psref);
352 if (match) {
353 /* found a match, "match" has the best one */
354 esw = match->esw;
355 if (esw && esw->encapsw4.pr_input) {
356 (*esw->encapsw4.pr_input)(m, off, proto, match->arg);
357 psref_release(&match_psref, &match->psref,
358 encaptab.elem_class);
359 } else {
360 psref_release(&match_psref, &match->psref,
361 encaptab.elem_class);
362 m_freem(m);
363 }
364 return;
365 }
366
367 /* last resort: inject to raw socket */
368 SOFTNET_LOCK_IF_NET_MPSAFE();
369 rip_input(m, off, proto);
370 SOFTNET_UNLOCK_IF_NET_MPSAFE();
371 }
372 #endif
373
374 #ifdef INET6
375 static struct encaptab *
376 encap6_lookup(struct mbuf *m, int off, int proto, enum direction dir,
377 struct psref *match_psref)
378 {
379 struct ip6_hdr *ip6;
380 struct ip_pack6 pack;
381 int prio, matchprio;
382 int s;
383 struct encaptab *ep, *match;
384 #ifdef USE_RADIX
385 struct radix_node_head *rnh = encap_rnh(AF_INET6);
386 struct radix_node *rn;
387 #endif
388
389 KASSERT(m->m_len >= sizeof(*ip6));
390
391 ip6 = mtod(m, struct ip6_hdr *);
392
393 memset(&pack, 0, sizeof(pack));
394 pack.p.sp_len = sizeof(pack);
395 pack.mine.sin6_family = pack.yours.sin6_family = AF_INET6;
396 pack.mine.sin6_len = pack.yours.sin6_len = sizeof(struct sockaddr_in6);
397 if (dir == INBOUND) {
398 pack.mine.sin6_addr = ip6->ip6_dst;
399 pack.yours.sin6_addr = ip6->ip6_src;
400 } else {
401 pack.mine.sin6_addr = ip6->ip6_src;
402 pack.yours.sin6_addr = ip6->ip6_dst;
403 }
404
405 match = NULL;
406 matchprio = 0;
407
408 s = pserialize_read_enter();
409 #ifdef USE_RADIX
410 if (encap_head_updating) {
411 /*
412 * Update in progress. Do nothing.
413 */
414 pserialize_read_exit(s);
415 return NULL;
416 }
417
418 rn = rnh->rnh_matchaddr((void *)&pack, rnh);
419 if (rn && (rn->rn_flags & RNF_ROOT) == 0) {
420 struct encaptab *encapp = (struct encaptab *)rn;
421
422 psref_acquire(match_psref, &encapp->psref,
423 encaptab.elem_class);
424 match = encapp;
425 matchprio = mask_matchlen(match->srcmask) +
426 mask_matchlen(match->dstmask);
427 }
428 #endif
429 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
430 struct psref elem_psref;
431
432 if (ep->af != AF_INET6)
433 continue;
434 if (ep->proto >= 0 && ep->proto != proto)
435 continue;
436
437 psref_acquire(&elem_psref, &ep->psref,
438 encaptab.elem_class);
439
440 if (ep->func) {
441 pserialize_read_exit(s);
442 /* ep->func is sleepable. e.g. rtalloc1 */
443 prio = (*ep->func)(m, off, proto, ep->arg);
444 s = pserialize_read_enter();
445 } else {
446 #ifdef USE_RADIX
447 psref_release(&elem_psref, &ep->psref,
448 encaptab.elem_class);
449 continue;
450 #else
451 prio = mask_match(ep, (struct sockaddr *)&pack.mine,
452 (struct sockaddr *)&pack.yours);
453 #endif
454 }
455
456 /* see encap4_lookup() for issues here */
457 if (prio <= 0) {
458 psref_release(&elem_psref, &ep->psref,
459 encaptab.elem_class);
460 continue;
461 }
462 if (prio > matchprio) {
463 /* release last matched ep */
464 if (match != NULL)
465 psref_release(match_psref, &match->psref,
466 encaptab.elem_class);
467
468 psref_copy(match_psref, &elem_psref,
469 encaptab.elem_class);
470 matchprio = prio;
471 match = ep;
472 }
473 KASSERTMSG((match == NULL) || psref_held(&match->psref,
474 encaptab.elem_class),
475 "current match = %p, but not hold its psref", match);
476
477 psref_release(&elem_psref, &ep->psref,
478 encaptab.elem_class);
479 }
480 pserialize_read_exit(s);
481
482 return match;
483 }
484
485 int
486 encap6_input(struct mbuf **mp, int *offp, int proto)
487 {
488 struct mbuf *m = *mp;
489 const struct encapsw *esw;
490 struct encaptab *match;
491 struct psref match_psref;
492 int rv;
493
494 match = encap6_lookup(m, *offp, proto, INBOUND, &match_psref);
495
496 if (match) {
497 /* found a match */
498 esw = match->esw;
499 if (esw && esw->encapsw6.pr_input) {
500 int ret;
501 ret = (*esw->encapsw6.pr_input)(mp, offp, proto,
502 match->arg);
503 psref_release(&match_psref, &match->psref,
504 encaptab.elem_class);
505 return ret;
506 } else {
507 psref_release(&match_psref, &match->psref,
508 encaptab.elem_class);
509 m_freem(m);
510 return IPPROTO_DONE;
511 }
512 }
513
514 /* last resort: inject to raw socket */
515 SOFTNET_LOCK_IF_NET_MPSAFE();
516 rv = rip6_input(mp, offp, proto);
517 SOFTNET_UNLOCK_IF_NET_MPSAFE();
518 return rv;
519 }
520 #endif
521
522 /*
523 * XXX
524 * The encaptab list and the rnh radix tree must be manipulated atomically.
525 */
526 static int
527 encap_add(struct encaptab *ep)
528 {
529 #ifdef USE_RADIX
530 struct radix_node_head *rnh = encap_rnh(ep->af);
531 #endif
532
533 KASSERT(encap_lock_held());
534
535 #ifdef USE_RADIX
536 if (!ep->func && rnh) {
537 /* Disable access to the radix tree for reader. */
538 encap_head_updating = true;
539 /* Wait for all readers to drain. */
540 pserialize_perform(encaptab.psz);
541
542 if (!rnh->rnh_addaddr((void *)ep->addrpack,
543 (void *)ep->maskpack, rnh, ep->nodes)) {
544 encap_head_updating = false;
545 return EEXIST;
546 }
547
548 /*
549 * The ep added to the radix tree must be skipped while
550 * encap[46]_lookup walks encaptab list. In other words,
551 * encap_add() does not need to care whether the ep has
552 * been added encaptab list or not yet.
553 * So, we can re-enable access to the radix tree for now.
554 */
555 encap_head_updating = false;
556 }
557 #endif
558 PSLIST_WRITER_INSERT_HEAD(&encap_table, ep, chain);
559
560 return 0;
561 }
562
563 /*
564 * XXX
565 * The encaptab list and the rnh radix tree must be manipulated atomically.
566 */
567 static int
568 encap_remove(struct encaptab *ep)
569 {
570 #ifdef USE_RADIX
571 struct radix_node_head *rnh = encap_rnh(ep->af);
572 #endif
573 int error = 0;
574
575 KASSERT(encap_lock_held());
576
577 #ifdef USE_RADIX
578 if (!ep->func && rnh) {
579 /* Disable access to the radix tree for reader. */
580 encap_head_updating = true;
581 /* Wait for all readers to drain. */
582 pserialize_perform(encaptab.psz);
583
584 if (!rnh->rnh_deladdr((void *)ep->addrpack,
585 (void *)ep->maskpack, rnh))
586 error = ESRCH;
587
588 /*
589 * The ep added to the radix tree must be skipped while
590 * encap[46]_lookup walks encaptab list. In other words,
591 * encap_add() does not need to care whether the ep has
592 * been added encaptab list or not yet.
593 * So, we can re-enable access to the radix tree for now.
594 */
595 encap_head_updating = false;
596 }
597 #endif
598 PSLIST_WRITER_REMOVE(ep, chain);
599
600 return error;
601 }
602
603 static int
604 encap_afcheck(int af, const struct sockaddr *sp, const struct sockaddr *dp)
605 {
606 if (sp && dp) {
607 if (sp->sa_len != dp->sa_len)
608 return EINVAL;
609 if (af != sp->sa_family || af != dp->sa_family)
610 return EINVAL;
611 } else if (!sp && !dp)
612 ;
613 else
614 return EINVAL;
615
616 switch (af) {
617 case AF_INET:
618 if (sp && sp->sa_len != sizeof(struct sockaddr_in))
619 return EINVAL;
620 if (dp && dp->sa_len != sizeof(struct sockaddr_in))
621 return EINVAL;
622 break;
623 #ifdef INET6
624 case AF_INET6:
625 if (sp && sp->sa_len != sizeof(struct sockaddr_in6))
626 return EINVAL;
627 if (dp && dp->sa_len != sizeof(struct sockaddr_in6))
628 return EINVAL;
629 break;
630 #endif
631 default:
632 return EAFNOSUPPORT;
633 }
634
635 return 0;
636 }
637
638 /*
639 * sp (src ptr) is always my side, and dp (dst ptr) is always remote side.
640 * length of mask (sm and dm) is assumed to be same as sp/dp.
641 * Return value will be necessary as input (cookie) for encap_detach().
642 */
643 const struct encaptab *
644 encap_attach(int af, int proto,
645 const struct sockaddr *sp, const struct sockaddr *sm,
646 const struct sockaddr *dp, const struct sockaddr *dm,
647 const struct encapsw *esw, void *arg)
648 {
649 struct encaptab *ep;
650 int error;
651 int pss;
652 size_t l;
653 struct ip_pack4 *pack4;
654 #ifdef INET6
655 struct ip_pack6 *pack6;
656 #endif
657 #ifndef ENCAP_MPSAFE
658 int s;
659
660 s = splsoftnet();
661 #endif
662 /* sanity check on args */
663 error = encap_afcheck(af, sp, dp);
664 if (error)
665 goto fail;
666
667 /* check if anyone have already attached with exactly same config */
668 pss = pserialize_read_enter();
669 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
670 if (ep->af != af)
671 continue;
672 if (ep->proto != proto)
673 continue;
674 if (ep->func)
675 continue;
676
677 KASSERT(ep->src != NULL);
678 KASSERT(ep->dst != NULL);
679 KASSERT(ep->srcmask != NULL);
680 KASSERT(ep->dstmask != NULL);
681
682 if (ep->src->sa_len != sp->sa_len ||
683 memcmp(ep->src, sp, sp->sa_len) != 0 ||
684 memcmp(ep->srcmask, sm, sp->sa_len) != 0)
685 continue;
686 if (ep->dst->sa_len != dp->sa_len ||
687 memcmp(ep->dst, dp, dp->sa_len) != 0 ||
688 memcmp(ep->dstmask, dm, dp->sa_len) != 0)
689 continue;
690
691 error = EEXIST;
692 pserialize_read_exit(pss);
693 goto fail;
694 }
695 pserialize_read_exit(pss);
696
697 switch (af) {
698 case AF_INET:
699 l = sizeof(*pack4);
700 break;
701 #ifdef INET6
702 case AF_INET6:
703 l = sizeof(*pack6);
704 break;
705 #endif
706 default:
707 goto fail;
708 }
709
710 /* M_NETADDR ok? */
711 ep = kmem_zalloc(sizeof(*ep), KM_NOSLEEP);
712 if (ep == NULL) {
713 error = ENOBUFS;
714 goto fail;
715 }
716 ep->addrpack = kmem_zalloc(l, KM_NOSLEEP);
717 if (ep->addrpack == NULL) {
718 error = ENOBUFS;
719 goto gc;
720 }
721 ep->maskpack = kmem_zalloc(l, KM_NOSLEEP);
722 if (ep->maskpack == NULL) {
723 error = ENOBUFS;
724 goto gc;
725 }
726
727 ep->af = af;
728 ep->proto = proto;
729 ep->addrpack->sa_len = l & 0xff;
730 ep->maskpack->sa_len = l & 0xff;
731 switch (af) {
732 case AF_INET:
733 pack4 = (struct ip_pack4 *)ep->addrpack;
734 ep->src = (struct sockaddr *)&pack4->mine;
735 ep->dst = (struct sockaddr *)&pack4->yours;
736 pack4 = (struct ip_pack4 *)ep->maskpack;
737 ep->srcmask = (struct sockaddr *)&pack4->mine;
738 ep->dstmask = (struct sockaddr *)&pack4->yours;
739 break;
740 #ifdef INET6
741 case AF_INET6:
742 pack6 = (struct ip_pack6 *)ep->addrpack;
743 ep->src = (struct sockaddr *)&pack6->mine;
744 ep->dst = (struct sockaddr *)&pack6->yours;
745 pack6 = (struct ip_pack6 *)ep->maskpack;
746 ep->srcmask = (struct sockaddr *)&pack6->mine;
747 ep->dstmask = (struct sockaddr *)&pack6->yours;
748 break;
749 #endif
750 }
751
752 memcpy(ep->src, sp, sp->sa_len);
753 memcpy(ep->srcmask, sm, sp->sa_len);
754 memcpy(ep->dst, dp, dp->sa_len);
755 memcpy(ep->dstmask, dm, dp->sa_len);
756 ep->esw = esw;
757 ep->arg = arg;
758 psref_target_init(&ep->psref, encaptab.elem_class);
759
760 error = encap_add(ep);
761 if (error)
762 goto gc;
763
764 error = 0;
765 #ifndef ENCAP_MPSAFE
766 splx(s);
767 #endif
768 return ep;
769
770 gc:
771 if (ep->addrpack)
772 kmem_free(ep->addrpack, l);
773 if (ep->maskpack)
774 kmem_free(ep->maskpack, l);
775 if (ep)
776 kmem_free(ep, sizeof(*ep));
777 fail:
778 #ifndef ENCAP_MPSAFE
779 splx(s);
780 #endif
781 return NULL;
782 }
783
784 const struct encaptab *
785 encap_attach_func(int af, int proto,
786 int (*func)(struct mbuf *, int, int, void *),
787 const struct encapsw *esw, void *arg)
788 {
789 struct encaptab *ep;
790 int error;
791 #ifndef ENCAP_MPSAFE
792 int s;
793
794 s = splsoftnet();
795 #endif
796 /* sanity check on args */
797 if (!func) {
798 error = EINVAL;
799 goto fail;
800 }
801
802 error = encap_afcheck(af, NULL, NULL);
803 if (error)
804 goto fail;
805
806 ep = kmem_alloc(sizeof(*ep), KM_NOSLEEP); /*XXX*/
807 if (ep == NULL) {
808 error = ENOBUFS;
809 goto fail;
810 }
811 memset(ep, 0, sizeof(*ep));
812
813 ep->af = af;
814 ep->proto = proto;
815 ep->func = func;
816 ep->esw = esw;
817 ep->arg = arg;
818 psref_target_init(&ep->psref, encaptab.elem_class);
819
820 error = encap_add(ep);
821 if (error)
822 goto gc;
823
824 error = 0;
825 #ifndef ENCAP_MPSAFE
826 splx(s);
827 #endif
828 return ep;
829
830 gc:
831 kmem_free(ep, sizeof(*ep));
832 fail:
833 #ifndef ENCAP_MPSAFE
834 splx(s);
835 #endif
836 return NULL;
837 }
838
839 /* XXX encap4_ctlinput() is necessary if we set DF=1 on outer IPv4 header */
840
841 #ifdef INET6
842 void *
843 encap6_ctlinput(int cmd, const struct sockaddr *sa, void *d0)
844 {
845 void *d = d0;
846 struct ip6_hdr *ip6;
847 struct mbuf *m;
848 int off;
849 struct ip6ctlparam *ip6cp = NULL;
850 int nxt;
851 int s;
852 struct encaptab *ep;
853 const struct encapsw *esw;
854
855 if (sa->sa_family != AF_INET6 ||
856 sa->sa_len != sizeof(struct sockaddr_in6))
857 return NULL;
858
859 if ((unsigned)cmd >= PRC_NCMDS)
860 return NULL;
861 if (cmd == PRC_HOSTDEAD)
862 d = NULL;
863 else if (cmd == PRC_MSGSIZE)
864 ; /* special code is present, see below */
865 else if (inet6ctlerrmap[cmd] == 0)
866 return NULL;
867
868 /* if the parameter is from icmp6, decode it. */
869 if (d != NULL) {
870 ip6cp = (struct ip6ctlparam *)d;
871 m = ip6cp->ip6c_m;
872 ip6 = ip6cp->ip6c_ip6;
873 off = ip6cp->ip6c_off;
874 nxt = ip6cp->ip6c_nxt;
875
876 if (ip6 && cmd == PRC_MSGSIZE) {
877 int valid = 0;
878 struct encaptab *match;
879 struct psref elem_psref;
880
881 /*
882 * Check to see if we have a valid encap configuration.
883 */
884 match = encap6_lookup(m, off, nxt, OUTBOUND,
885 &elem_psref);
886 if (match)
887 valid++;
888 psref_release(&elem_psref, &match->psref,
889 encaptab.elem_class);
890
891 /*
892 * Depending on the value of "valid" and routing table
893 * size (mtudisc_{hi,lo}wat), we will:
894 * - recalcurate the new MTU and create the
895 * corresponding routing entry, or
896 * - ignore the MTU change notification.
897 */
898 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
899 }
900 } else {
901 m = NULL;
902 ip6 = NULL;
903 nxt = -1;
904 }
905
906 /* inform all listeners */
907
908 s = pserialize_read_enter();
909 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
910 struct psref elem_psref;
911
912 if (ep->af != AF_INET6)
913 continue;
914 if (ep->proto >= 0 && ep->proto != nxt)
915 continue;
916
917 /* should optimize by looking at address pairs */
918
919 /* XXX need to pass ep->arg or ep itself to listeners */
920 psref_acquire(&elem_psref, &ep->psref,
921 encaptab.elem_class);
922 esw = ep->esw;
923 if (esw && esw->encapsw6.pr_ctlinput) {
924 pserialize_read_exit(s);
925 /* pr_ctlinput is sleepable. e.g. rtcache_free */
926 (*esw->encapsw6.pr_ctlinput)(cmd, sa, d, ep->arg);
927 s = pserialize_read_enter();
928 }
929 psref_release(&elem_psref, &ep->psref,
930 encaptab.elem_class);
931 }
932 pserialize_read_exit(s);
933
934 rip6_ctlinput(cmd, sa, d0);
935 return NULL;
936 }
937 #endif
938
939 int
940 encap_detach(const struct encaptab *cookie)
941 {
942 const struct encaptab *ep = cookie;
943 struct encaptab *p;
944 int error;
945
946 KASSERT(encap_lock_held());
947
948 PSLIST_WRITER_FOREACH(p, &encap_table, struct encaptab, chain) {
949 if (p == ep) {
950 error = encap_remove(p);
951 if (error)
952 return error;
953 else
954 break;
955 }
956 }
957 if (p == NULL)
958 return ENOENT;
959
960 pserialize_perform(encaptab.psz);
961 psref_target_destroy(&p->psref,
962 encaptab.elem_class);
963 if (!ep->func) {
964 kmem_free(p->addrpack, ep->addrpack->sa_len);
965 kmem_free(p->maskpack, ep->maskpack->sa_len);
966 }
967 kmem_free(p, sizeof(*p));
968
969 return 0;
970 }
971
972 #ifdef USE_RADIX
973 static struct radix_node_head *
974 encap_rnh(int af)
975 {
976
977 switch (af) {
978 case AF_INET:
979 return encap_head[0];
980 #ifdef INET6
981 case AF_INET6:
982 return encap_head[1];
983 #endif
984 default:
985 return NULL;
986 }
987 }
988
989 static int
990 mask_matchlen(const struct sockaddr *sa)
991 {
992 const char *p, *ep;
993 int l;
994
995 p = (const char *)sa;
996 ep = p + sa->sa_len;
997 p += 2; /* sa_len + sa_family */
998
999 l = 0;
1000 while (p < ep) {
1001 l += (*p ? 8 : 0); /* estimate */
1002 p++;
1003 }
1004 return l;
1005 }
1006 #endif
1007
1008 #ifndef USE_RADIX
1009 static int
1010 mask_match(const struct encaptab *ep,
1011 const struct sockaddr *sp,
1012 const struct sockaddr *dp)
1013 {
1014 struct sockaddr_storage s;
1015 struct sockaddr_storage d;
1016 int i;
1017 const u_int8_t *p, *q;
1018 u_int8_t *r;
1019 int matchlen;
1020
1021 KASSERTMSG(ep->func == NULL, "wrong encaptab passed to mask_match");
1022
1023 if (sp->sa_len > sizeof(s) || dp->sa_len > sizeof(d))
1024 return 0;
1025 if (sp->sa_family != ep->af || dp->sa_family != ep->af)
1026 return 0;
1027 if (sp->sa_len != ep->src->sa_len || dp->sa_len != ep->dst->sa_len)
1028 return 0;
1029
1030 matchlen = 0;
1031
1032 p = (const u_int8_t *)sp;
1033 q = (const u_int8_t *)ep->srcmask;
1034 r = (u_int8_t *)&s;
1035 for (i = 0 ; i < sp->sa_len; i++) {
1036 r[i] = p[i] & q[i];
1037 /* XXX estimate */
1038 matchlen += (q[i] ? 8 : 0);
1039 }
1040
1041 p = (const u_int8_t *)dp;
1042 q = (const u_int8_t *)ep->dstmask;
1043 r = (u_int8_t *)&d;
1044 for (i = 0 ; i < dp->sa_len; i++) {
1045 r[i] = p[i] & q[i];
1046 /* XXX rough estimate */
1047 matchlen += (q[i] ? 8 : 0);
1048 }
1049
1050 /* need to overwrite len/family portion as we don't compare them */
1051 s.ss_len = sp->sa_len;
1052 s.ss_family = sp->sa_family;
1053 d.ss_len = dp->sa_len;
1054 d.ss_family = dp->sa_family;
1055
1056 if (memcmp(&s, ep->src, ep->src->sa_len) == 0 &&
1057 memcmp(&d, ep->dst, ep->dst->sa_len) == 0) {
1058 return matchlen;
1059 } else
1060 return 0;
1061 }
1062 #endif
1063
1064 int
1065 encap_lock_enter(void)
1066 {
1067 int error;
1068
1069 mutex_enter(&encap_whole.lock);
1070 while (encap_whole.busy != NULL) {
1071 error = cv_wait_sig(&encap_whole.cv, &encap_whole.lock);
1072 if (error) {
1073 mutex_exit(&encap_whole.lock);
1074 return error;
1075 }
1076 }
1077 KASSERT(encap_whole.busy == NULL);
1078 encap_whole.busy = curlwp;
1079 mutex_exit(&encap_whole.lock);
1080
1081 return 0;
1082 }
1083
1084 void
1085 encap_lock_exit(void)
1086 {
1087
1088 mutex_enter(&encap_whole.lock);
1089 KASSERT(encap_whole.busy == curlwp);
1090 encap_whole.busy = NULL;
1091 cv_broadcast(&encap_whole.cv);
1092 mutex_exit(&encap_whole.lock);
1093 }
1094
1095 bool
1096 encap_lock_held(void)
1097 {
1098
1099 return (encap_whole.busy == curlwp);
1100 }
1101