ip_encap.c revision 1.68 1 /* $NetBSD: ip_encap.c,v 1.68 2018/05/01 07:21:39 maxv Exp $ */
2 /* $KAME: ip_encap.c,v 1.73 2001/10/02 08:30:58 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32 /*
33 * My grandfather said that there's a devil inside tunnelling technology...
34 *
35 * We have surprisingly many protocols that want packets with IP protocol
36 * #4 or #41. Here's a list of protocols that want protocol #41:
37 * RFC1933 configured tunnel
38 * RFC1933 automatic tunnel
39 * RFC2401 IPsec tunnel
40 * RFC2473 IPv6 generic packet tunnelling
41 * RFC2529 6over4 tunnel
42 * RFC3056 6to4 tunnel
43 * isatap tunnel
44 * mobile-ip6 (uses RFC2473)
45 * Here's a list of protocol that want protocol #4:
46 * RFC1853 IPv4-in-IPv4 tunnelling
47 * RFC2003 IPv4 encapsulation within IPv4
48 * RFC2344 reverse tunnelling for mobile-ip4
49 * RFC2401 IPsec tunnel
50 * Well, what can I say. They impose different en/decapsulation mechanism
51 * from each other, so they need separate protocol handler. The only one
52 * we can easily determine by protocol # is IPsec, which always has
53 * AH/ESP/IPComp header right after outer IP header.
54 *
55 * So, clearly good old protosw does not work for protocol #4 and #41.
56 * The code will let you match protocol via src/dst address pair.
57 */
58 /* XXX is M_NETADDR correct? */
59
60 /*
61 * With USE_RADIX the code will use radix table for tunnel lookup, for
62 * tunnels registered with encap_attach() with a addr/mask pair.
63 * Faster on machines with thousands of tunnel registerations (= interfaces).
64 *
65 * The code assumes that radix table code can handle non-continuous netmask,
66 * as it will pass radix table memory region with (src + dst) sockaddr pair.
67 */
68 #define USE_RADIX
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: ip_encap.c,v 1.68 2018/05/01 07:21:39 maxv Exp $");
72
73 #ifdef _KERNEL_OPT
74 #include "opt_mrouting.h"
75 #include "opt_inet.h"
76 #include "opt_net_mpsafe.h"
77 #endif
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/socket.h>
82 #include <sys/sockio.h>
83 #include <sys/mbuf.h>
84 #include <sys/errno.h>
85 #include <sys/queue.h>
86 #include <sys/kmem.h>
87 #include <sys/mutex.h>
88 #include <sys/condvar.h>
89 #include <sys/psref.h>
90 #include <sys/pslist.h>
91
92 #include <net/if.h>
93
94 #include <netinet/in.h>
95 #include <netinet/in_systm.h>
96 #include <netinet/ip.h>
97 #include <netinet/ip_var.h>
98 #include <netinet/ip_encap.h>
99 #ifdef MROUTING
100 #include <netinet/ip_mroute.h>
101 #endif /* MROUTING */
102
103 #ifdef INET6
104 #include <netinet/ip6.h>
105 #include <netinet6/ip6_var.h>
106 #include <netinet6/ip6protosw.h> /* for struct ip6ctlparam */
107 #include <netinet6/in6_var.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet/icmp6.h>
110 #endif
111
112 #ifdef NET_MPSAFE
113 #define ENCAP_MPSAFE 1
114 #endif
115
116 enum direction { INBOUND, OUTBOUND };
117
118 #ifdef INET
119 static struct encaptab *encap4_lookup(struct mbuf *, int, int, enum direction,
120 struct psref *);
121 #endif
122 #ifdef INET6
123 static struct encaptab *encap6_lookup(struct mbuf *, int, int, enum direction,
124 struct psref *);
125 #endif
126 static int encap_add(struct encaptab *);
127 static int encap_remove(struct encaptab *);
128 static int encap_afcheck(int, const struct sockaddr *, const struct sockaddr *);
129 #ifdef USE_RADIX
130 static struct radix_node_head *encap_rnh(int);
131 static int mask_matchlen(const struct sockaddr *);
132 #else
133 static int mask_match(const struct encaptab *, const struct sockaddr *,
134 const struct sockaddr *);
135 #endif
136
137 /*
138 * In encap[46]_lookup(), ep->func can sleep(e.g. rtalloc1) while walking
139 * encap_table. So, it cannot use pserialize_read_enter()
140 */
141 static struct {
142 struct pslist_head list;
143 pserialize_t psz;
144 struct psref_class *elem_class; /* for the element of et_list */
145 } encaptab __cacheline_aligned = {
146 .list = PSLIST_INITIALIZER,
147 };
148 #define encap_table encaptab.list
149
150 static struct {
151 kmutex_t lock;
152 kcondvar_t cv;
153 struct lwp *busy;
154 } encap_whole __cacheline_aligned;
155
156 #ifdef USE_RADIX
157 struct radix_node_head *encap_head[2]; /* 0 for AF_INET, 1 for AF_INET6 */
158 static bool encap_head_updating = false;
159 #endif
160
161 static bool encap_initialized = false;
162 /*
163 * must be done before other encap interfaces initialization.
164 */
165 void
166 encapinit(void)
167 {
168
169 if (encap_initialized)
170 return;
171
172 encaptab.psz = pserialize_create();
173 encaptab.elem_class = psref_class_create("encapelem", IPL_SOFTNET);
174
175 mutex_init(&encap_whole.lock, MUTEX_DEFAULT, IPL_NONE);
176 cv_init(&encap_whole.cv, "ip_encap cv");
177 encap_whole.busy = NULL;
178
179 encap_initialized = true;
180 }
181
182 void
183 encap_init(void)
184 {
185 static int initialized = 0;
186
187 if (initialized)
188 return;
189 initialized++;
190 #if 0
191 /*
192 * we cannot use LIST_INIT() here, since drivers may want to call
193 * encap_attach(), on driver attach. encap_init() will be called
194 * on AF_INET{,6} initialization, which happens after driver
195 * initialization - using LIST_INIT() here can nuke encap_attach()
196 * from drivers.
197 */
198 PSLIST_INIT(&encap_table);
199 #endif
200
201 #ifdef USE_RADIX
202 /*
203 * initialize radix lookup table when the radix subsystem is inited.
204 */
205 rn_delayedinit((void *)&encap_head[0],
206 sizeof(struct sockaddr_pack) << 3);
207 #ifdef INET6
208 rn_delayedinit((void *)&encap_head[1],
209 sizeof(struct sockaddr_pack) << 3);
210 #endif
211 #endif
212 }
213
214 #ifdef INET
215 static struct encaptab *
216 encap4_lookup(struct mbuf *m, int off, int proto, enum direction dir,
217 struct psref *match_psref)
218 {
219 struct ip *ip;
220 struct ip_pack4 pack;
221 struct encaptab *ep, *match;
222 int prio, matchprio;
223 int s;
224 #ifdef USE_RADIX
225 struct radix_node_head *rnh = encap_rnh(AF_INET);
226 struct radix_node *rn;
227 #endif
228
229 KASSERT(m->m_len >= sizeof(*ip));
230
231 ip = mtod(m, struct ip *);
232
233 memset(&pack, 0, sizeof(pack));
234 pack.p.sp_len = sizeof(pack);
235 pack.mine.sin_family = pack.yours.sin_family = AF_INET;
236 pack.mine.sin_len = pack.yours.sin_len = sizeof(struct sockaddr_in);
237 if (dir == INBOUND) {
238 pack.mine.sin_addr = ip->ip_dst;
239 pack.yours.sin_addr = ip->ip_src;
240 } else {
241 pack.mine.sin_addr = ip->ip_src;
242 pack.yours.sin_addr = ip->ip_dst;
243 }
244
245 match = NULL;
246 matchprio = 0;
247
248 s = pserialize_read_enter();
249 #ifdef USE_RADIX
250 if (encap_head_updating) {
251 /*
252 * Update in progress. Do nothing.
253 */
254 pserialize_read_exit(s);
255 return NULL;
256 }
257
258 rn = rnh->rnh_matchaddr((void *)&pack, rnh);
259 if (rn && (rn->rn_flags & RNF_ROOT) == 0) {
260 struct encaptab *encapp = (struct encaptab *)rn;
261
262 psref_acquire(match_psref, &encapp->psref,
263 encaptab.elem_class);
264 match = encapp;
265 matchprio = mask_matchlen(match->srcmask) +
266 mask_matchlen(match->dstmask);
267 }
268 #endif
269 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
270 struct psref elem_psref;
271
272 if (ep->af != AF_INET)
273 continue;
274 if (ep->proto >= 0 && ep->proto != proto)
275 continue;
276
277 psref_acquire(&elem_psref, &ep->psref,
278 encaptab.elem_class);
279 if (ep->func) {
280 pserialize_read_exit(s);
281 /* ep->func is sleepable. e.g. rtalloc1 */
282 prio = (*ep->func)(m, off, proto, ep->arg);
283 s = pserialize_read_enter();
284 } else {
285 #ifdef USE_RADIX
286 psref_release(&elem_psref, &ep->psref,
287 encaptab.elem_class);
288 continue;
289 #else
290 prio = mask_match(ep, (struct sockaddr *)&pack.mine,
291 (struct sockaddr *)&pack.yours);
292 #endif
293 }
294
295 /*
296 * We prioritize the matches by using bit length of the
297 * matches. mask_match() and user-supplied matching function
298 * should return the bit length of the matches (for example,
299 * if both src/dst are matched for IPv4, 64 should be returned).
300 * 0 or negative return value means "it did not match".
301 *
302 * The question is, since we have two "mask" portion, we
303 * cannot really define total order between entries.
304 * For example, which of these should be preferred?
305 * mask_match() returns 48 (32 + 16) for both of them.
306 * src=3ffe::/16, dst=3ffe:501::/32
307 * src=3ffe:501::/32, dst=3ffe::/16
308 *
309 * We need to loop through all the possible candidates
310 * to get the best match - the search takes O(n) for
311 * n attachments (i.e. interfaces).
312 *
313 * For radix-based lookup, I guess source takes precedence.
314 * See rn_{refines,lexobetter} for the correct answer.
315 */
316 if (prio <= 0) {
317 psref_release(&elem_psref, &ep->psref,
318 encaptab.elem_class);
319 continue;
320 }
321 if (prio > matchprio) {
322 /* release last matched ep */
323 if (match != NULL)
324 psref_release(match_psref, &match->psref,
325 encaptab.elem_class);
326
327 psref_copy(match_psref, &elem_psref,
328 encaptab.elem_class);
329 matchprio = prio;
330 match = ep;
331 }
332 KASSERTMSG((match == NULL) || psref_held(&match->psref,
333 encaptab.elem_class),
334 "current match = %p, but not hold its psref", match);
335
336 psref_release(&elem_psref, &ep->psref,
337 encaptab.elem_class);
338 }
339 pserialize_read_exit(s);
340
341 return match;
342 }
343
344 void
345 encap4_input(struct mbuf *m, ...)
346 {
347 int off, proto;
348 va_list ap;
349 const struct encapsw *esw;
350 struct encaptab *match;
351 struct psref match_psref;
352
353 va_start(ap, m);
354 off = va_arg(ap, int);
355 proto = va_arg(ap, int);
356 va_end(ap);
357
358 match = encap4_lookup(m, off, proto, INBOUND, &match_psref);
359 if (match) {
360 /* found a match, "match" has the best one */
361 esw = match->esw;
362 if (esw && esw->encapsw4.pr_input) {
363 (*esw->encapsw4.pr_input)(m, off, proto, match->arg);
364 psref_release(&match_psref, &match->psref,
365 encaptab.elem_class);
366 } else {
367 psref_release(&match_psref, &match->psref,
368 encaptab.elem_class);
369 m_freem(m);
370 }
371 return;
372 }
373
374 /* last resort: inject to raw socket */
375 rip_input(m, off, proto);
376 }
377 #endif
378
379 #ifdef INET6
380 static struct encaptab *
381 encap6_lookup(struct mbuf *m, int off, int proto, enum direction dir,
382 struct psref *match_psref)
383 {
384 struct ip6_hdr *ip6;
385 struct ip_pack6 pack;
386 int prio, matchprio;
387 int s;
388 struct encaptab *ep, *match;
389 #ifdef USE_RADIX
390 struct radix_node_head *rnh = encap_rnh(AF_INET6);
391 struct radix_node *rn;
392 #endif
393
394 KASSERT(m->m_len >= sizeof(*ip6));
395
396 ip6 = mtod(m, struct ip6_hdr *);
397
398 memset(&pack, 0, sizeof(pack));
399 pack.p.sp_len = sizeof(pack);
400 pack.mine.sin6_family = pack.yours.sin6_family = AF_INET6;
401 pack.mine.sin6_len = pack.yours.sin6_len = sizeof(struct sockaddr_in6);
402 if (dir == INBOUND) {
403 pack.mine.sin6_addr = ip6->ip6_dst;
404 pack.yours.sin6_addr = ip6->ip6_src;
405 } else {
406 pack.mine.sin6_addr = ip6->ip6_src;
407 pack.yours.sin6_addr = ip6->ip6_dst;
408 }
409
410 match = NULL;
411 matchprio = 0;
412
413 s = pserialize_read_enter();
414 #ifdef USE_RADIX
415 if (encap_head_updating) {
416 /*
417 * Update in progress. Do nothing.
418 */
419 pserialize_read_exit(s);
420 return NULL;
421 }
422
423 rn = rnh->rnh_matchaddr((void *)&pack, rnh);
424 if (rn && (rn->rn_flags & RNF_ROOT) == 0) {
425 struct encaptab *encapp = (struct encaptab *)rn;
426
427 psref_acquire(match_psref, &encapp->psref,
428 encaptab.elem_class);
429 match = encapp;
430 matchprio = mask_matchlen(match->srcmask) +
431 mask_matchlen(match->dstmask);
432 }
433 #endif
434 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
435 struct psref elem_psref;
436
437 if (ep->af != AF_INET6)
438 continue;
439 if (ep->proto >= 0 && ep->proto != proto)
440 continue;
441
442 psref_acquire(&elem_psref, &ep->psref,
443 encaptab.elem_class);
444
445 if (ep->func) {
446 pserialize_read_exit(s);
447 /* ep->func is sleepable. e.g. rtalloc1 */
448 prio = (*ep->func)(m, off, proto, ep->arg);
449 s = pserialize_read_enter();
450 } else {
451 #ifdef USE_RADIX
452 psref_release(&elem_psref, &ep->psref,
453 encaptab.elem_class);
454 continue;
455 #else
456 prio = mask_match(ep, (struct sockaddr *)&pack.mine,
457 (struct sockaddr *)&pack.yours);
458 #endif
459 }
460
461 /* see encap4_lookup() for issues here */
462 if (prio <= 0) {
463 psref_release(&elem_psref, &ep->psref,
464 encaptab.elem_class);
465 continue;
466 }
467 if (prio > matchprio) {
468 /* release last matched ep */
469 if (match != NULL)
470 psref_release(match_psref, &match->psref,
471 encaptab.elem_class);
472
473 psref_copy(match_psref, &elem_psref,
474 encaptab.elem_class);
475 matchprio = prio;
476 match = ep;
477 }
478 KASSERTMSG((match == NULL) || psref_held(&match->psref,
479 encaptab.elem_class),
480 "current match = %p, but not hold its psref", match);
481
482 psref_release(&elem_psref, &ep->psref,
483 encaptab.elem_class);
484 }
485 pserialize_read_exit(s);
486
487 return match;
488 }
489
490 int
491 encap6_input(struct mbuf **mp, int *offp, int proto)
492 {
493 struct mbuf *m = *mp;
494 const struct encapsw *esw;
495 struct encaptab *match;
496 struct psref match_psref;
497
498 match = encap6_lookup(m, *offp, proto, INBOUND, &match_psref);
499
500 if (match) {
501 /* found a match */
502 esw = match->esw;
503 if (esw && esw->encapsw6.pr_input) {
504 int ret;
505 ret = (*esw->encapsw6.pr_input)(mp, offp, proto,
506 match->arg);
507 psref_release(&match_psref, &match->psref,
508 encaptab.elem_class);
509 return ret;
510 } else {
511 psref_release(&match_psref, &match->psref,
512 encaptab.elem_class);
513 m_freem(m);
514 return IPPROTO_DONE;
515 }
516 }
517
518 /* last resort: inject to raw socket */
519 return rip6_input(mp, offp, proto);
520 }
521 #endif
522
523 /*
524 * XXX
525 * The encaptab list and the rnh radix tree must be manipulated atomically.
526 */
527 static int
528 encap_add(struct encaptab *ep)
529 {
530 #ifdef USE_RADIX
531 struct radix_node_head *rnh = encap_rnh(ep->af);
532 #endif
533
534 KASSERT(encap_lock_held());
535
536 #ifdef USE_RADIX
537 if (!ep->func && rnh) {
538 /* Disable access to the radix tree for reader. */
539 encap_head_updating = true;
540 /* Wait for all readers to drain. */
541 pserialize_perform(encaptab.psz);
542
543 if (!rnh->rnh_addaddr((void *)ep->addrpack,
544 (void *)ep->maskpack, rnh, ep->nodes)) {
545 encap_head_updating = false;
546 return EEXIST;
547 }
548
549 /*
550 * The ep added to the radix tree must be skipped while
551 * encap[46]_lookup walks encaptab list. In other words,
552 * encap_add() does not need to care whether the ep has
553 * been added encaptab list or not yet.
554 * So, we can re-enable access to the radix tree for now.
555 */
556 encap_head_updating = false;
557 }
558 #endif
559 PSLIST_WRITER_INSERT_HEAD(&encap_table, ep, chain);
560
561 return 0;
562 }
563
564 /*
565 * XXX
566 * The encaptab list and the rnh radix tree must be manipulated atomically.
567 */
568 static int
569 encap_remove(struct encaptab *ep)
570 {
571 #ifdef USE_RADIX
572 struct radix_node_head *rnh = encap_rnh(ep->af);
573 #endif
574 int error = 0;
575
576 KASSERT(encap_lock_held());
577
578 #ifdef USE_RADIX
579 if (!ep->func && rnh) {
580 /* Disable access to the radix tree for reader. */
581 encap_head_updating = true;
582 /* Wait for all readers to drain. */
583 pserialize_perform(encaptab.psz);
584
585 if (!rnh->rnh_deladdr((void *)ep->addrpack,
586 (void *)ep->maskpack, rnh))
587 error = ESRCH;
588
589 /*
590 * The ep added to the radix tree must be skipped while
591 * encap[46]_lookup walks encaptab list. In other words,
592 * encap_add() does not need to care whether the ep has
593 * been added encaptab list or not yet.
594 * So, we can re-enable access to the radix tree for now.
595 */
596 encap_head_updating = false;
597 }
598 #endif
599 PSLIST_WRITER_REMOVE(ep, chain);
600
601 return error;
602 }
603
604 static int
605 encap_afcheck(int af, const struct sockaddr *sp, const struct sockaddr *dp)
606 {
607 if (sp && dp) {
608 if (sp->sa_len != dp->sa_len)
609 return EINVAL;
610 if (af != sp->sa_family || af != dp->sa_family)
611 return EINVAL;
612 } else if (!sp && !dp)
613 ;
614 else
615 return EINVAL;
616
617 switch (af) {
618 case AF_INET:
619 if (sp && sp->sa_len != sizeof(struct sockaddr_in))
620 return EINVAL;
621 if (dp && dp->sa_len != sizeof(struct sockaddr_in))
622 return EINVAL;
623 break;
624 #ifdef INET6
625 case AF_INET6:
626 if (sp && sp->sa_len != sizeof(struct sockaddr_in6))
627 return EINVAL;
628 if (dp && dp->sa_len != sizeof(struct sockaddr_in6))
629 return EINVAL;
630 break;
631 #endif
632 default:
633 return EAFNOSUPPORT;
634 }
635
636 return 0;
637 }
638
639 /*
640 * sp (src ptr) is always my side, and dp (dst ptr) is always remote side.
641 * length of mask (sm and dm) is assumed to be same as sp/dp.
642 * Return value will be necessary as input (cookie) for encap_detach().
643 */
644 const struct encaptab *
645 encap_attach(int af, int proto,
646 const struct sockaddr *sp, const struct sockaddr *sm,
647 const struct sockaddr *dp, const struct sockaddr *dm,
648 const struct encapsw *esw, void *arg)
649 {
650 struct encaptab *ep;
651 int error;
652 int pss;
653 size_t l;
654 struct ip_pack4 *pack4;
655 #ifdef INET6
656 struct ip_pack6 *pack6;
657 #endif
658 #ifndef ENCAP_MPSAFE
659 int s;
660
661 s = splsoftnet();
662 #endif
663 /* sanity check on args */
664 error = encap_afcheck(af, sp, dp);
665 if (error)
666 goto fail;
667
668 /* check if anyone have already attached with exactly same config */
669 pss = pserialize_read_enter();
670 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
671 if (ep->af != af)
672 continue;
673 if (ep->proto != proto)
674 continue;
675 if (ep->func)
676 continue;
677
678 KASSERT(ep->src != NULL);
679 KASSERT(ep->dst != NULL);
680 KASSERT(ep->srcmask != NULL);
681 KASSERT(ep->dstmask != NULL);
682
683 if (ep->src->sa_len != sp->sa_len ||
684 memcmp(ep->src, sp, sp->sa_len) != 0 ||
685 memcmp(ep->srcmask, sm, sp->sa_len) != 0)
686 continue;
687 if (ep->dst->sa_len != dp->sa_len ||
688 memcmp(ep->dst, dp, dp->sa_len) != 0 ||
689 memcmp(ep->dstmask, dm, dp->sa_len) != 0)
690 continue;
691
692 error = EEXIST;
693 pserialize_read_exit(pss);
694 goto fail;
695 }
696 pserialize_read_exit(pss);
697
698 switch (af) {
699 case AF_INET:
700 l = sizeof(*pack4);
701 break;
702 #ifdef INET6
703 case AF_INET6:
704 l = sizeof(*pack6);
705 break;
706 #endif
707 default:
708 goto fail;
709 }
710
711 /* M_NETADDR ok? */
712 ep = kmem_zalloc(sizeof(*ep), KM_NOSLEEP);
713 if (ep == NULL) {
714 error = ENOBUFS;
715 goto fail;
716 }
717 ep->addrpack = kmem_zalloc(l, KM_NOSLEEP);
718 if (ep->addrpack == NULL) {
719 error = ENOBUFS;
720 goto gc;
721 }
722 ep->maskpack = kmem_zalloc(l, KM_NOSLEEP);
723 if (ep->maskpack == NULL) {
724 error = ENOBUFS;
725 goto gc;
726 }
727
728 ep->af = af;
729 ep->proto = proto;
730 ep->addrpack->sa_len = l & 0xff;
731 ep->maskpack->sa_len = l & 0xff;
732 switch (af) {
733 case AF_INET:
734 pack4 = (struct ip_pack4 *)ep->addrpack;
735 ep->src = (struct sockaddr *)&pack4->mine;
736 ep->dst = (struct sockaddr *)&pack4->yours;
737 pack4 = (struct ip_pack4 *)ep->maskpack;
738 ep->srcmask = (struct sockaddr *)&pack4->mine;
739 ep->dstmask = (struct sockaddr *)&pack4->yours;
740 break;
741 #ifdef INET6
742 case AF_INET6:
743 pack6 = (struct ip_pack6 *)ep->addrpack;
744 ep->src = (struct sockaddr *)&pack6->mine;
745 ep->dst = (struct sockaddr *)&pack6->yours;
746 pack6 = (struct ip_pack6 *)ep->maskpack;
747 ep->srcmask = (struct sockaddr *)&pack6->mine;
748 ep->dstmask = (struct sockaddr *)&pack6->yours;
749 break;
750 #endif
751 }
752
753 memcpy(ep->src, sp, sp->sa_len);
754 memcpy(ep->srcmask, sm, sp->sa_len);
755 memcpy(ep->dst, dp, dp->sa_len);
756 memcpy(ep->dstmask, dm, dp->sa_len);
757 ep->esw = esw;
758 ep->arg = arg;
759 psref_target_init(&ep->psref, encaptab.elem_class);
760
761 error = encap_add(ep);
762 if (error)
763 goto gc;
764
765 error = 0;
766 #ifndef ENCAP_MPSAFE
767 splx(s);
768 #endif
769 return ep;
770
771 gc:
772 if (ep->addrpack)
773 kmem_free(ep->addrpack, l);
774 if (ep->maskpack)
775 kmem_free(ep->maskpack, l);
776 if (ep)
777 kmem_free(ep, sizeof(*ep));
778 fail:
779 #ifndef ENCAP_MPSAFE
780 splx(s);
781 #endif
782 return NULL;
783 }
784
785 const struct encaptab *
786 encap_attach_func(int af, int proto,
787 int (*func)(struct mbuf *, int, int, void *),
788 const struct encapsw *esw, void *arg)
789 {
790 struct encaptab *ep;
791 int error;
792 #ifndef ENCAP_MPSAFE
793 int s;
794
795 s = splsoftnet();
796 #endif
797 /* sanity check on args */
798 if (!func) {
799 error = EINVAL;
800 goto fail;
801 }
802
803 error = encap_afcheck(af, NULL, NULL);
804 if (error)
805 goto fail;
806
807 ep = kmem_alloc(sizeof(*ep), KM_NOSLEEP); /*XXX*/
808 if (ep == NULL) {
809 error = ENOBUFS;
810 goto fail;
811 }
812 memset(ep, 0, sizeof(*ep));
813
814 ep->af = af;
815 ep->proto = proto;
816 ep->func = func;
817 ep->esw = esw;
818 ep->arg = arg;
819 psref_target_init(&ep->psref, encaptab.elem_class);
820
821 error = encap_add(ep);
822 if (error)
823 goto gc;
824
825 error = 0;
826 #ifndef ENCAP_MPSAFE
827 splx(s);
828 #endif
829 return ep;
830
831 gc:
832 kmem_free(ep, sizeof(*ep));
833 fail:
834 #ifndef ENCAP_MPSAFE
835 splx(s);
836 #endif
837 return NULL;
838 }
839
840 /* XXX encap4_ctlinput() is necessary if we set DF=1 on outer IPv4 header */
841
842 #ifdef INET6
843 void *
844 encap6_ctlinput(int cmd, const struct sockaddr *sa, void *d0)
845 {
846 void *d = d0;
847 struct ip6_hdr *ip6;
848 struct mbuf *m;
849 int off;
850 struct ip6ctlparam *ip6cp = NULL;
851 int nxt;
852 int s;
853 struct encaptab *ep;
854 const struct encapsw *esw;
855
856 if (sa->sa_family != AF_INET6 ||
857 sa->sa_len != sizeof(struct sockaddr_in6))
858 return NULL;
859
860 if ((unsigned)cmd >= PRC_NCMDS)
861 return NULL;
862 if (cmd == PRC_HOSTDEAD)
863 d = NULL;
864 else if (cmd == PRC_MSGSIZE)
865 ; /* special code is present, see below */
866 else if (inet6ctlerrmap[cmd] == 0)
867 return NULL;
868
869 /* if the parameter is from icmp6, decode it. */
870 if (d != NULL) {
871 ip6cp = (struct ip6ctlparam *)d;
872 m = ip6cp->ip6c_m;
873 ip6 = ip6cp->ip6c_ip6;
874 off = ip6cp->ip6c_off;
875 nxt = ip6cp->ip6c_nxt;
876
877 if (ip6 && cmd == PRC_MSGSIZE) {
878 int valid = 0;
879 struct encaptab *match;
880 struct psref elem_psref;
881
882 /*
883 * Check to see if we have a valid encap configuration.
884 */
885 match = encap6_lookup(m, off, nxt, OUTBOUND,
886 &elem_psref);
887 if (match)
888 valid++;
889 psref_release(&elem_psref, &match->psref,
890 encaptab.elem_class);
891
892 /*
893 * Depending on the value of "valid" and routing table
894 * size (mtudisc_{hi,lo}wat), we will:
895 * - recalcurate the new MTU and create the
896 * corresponding routing entry, or
897 * - ignore the MTU change notification.
898 */
899 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
900 }
901 } else {
902 m = NULL;
903 ip6 = NULL;
904 nxt = -1;
905 }
906
907 /* inform all listeners */
908
909 s = pserialize_read_enter();
910 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
911 struct psref elem_psref;
912
913 if (ep->af != AF_INET6)
914 continue;
915 if (ep->proto >= 0 && ep->proto != nxt)
916 continue;
917
918 /* should optimize by looking at address pairs */
919
920 /* XXX need to pass ep->arg or ep itself to listeners */
921 psref_acquire(&elem_psref, &ep->psref,
922 encaptab.elem_class);
923 esw = ep->esw;
924 if (esw && esw->encapsw6.pr_ctlinput) {
925 pserialize_read_exit(s);
926 /* pr_ctlinput is sleepable. e.g. rtcache_free */
927 (*esw->encapsw6.pr_ctlinput)(cmd, sa, d, ep->arg);
928 s = pserialize_read_enter();
929 }
930 psref_release(&elem_psref, &ep->psref,
931 encaptab.elem_class);
932 }
933 pserialize_read_exit(s);
934
935 rip6_ctlinput(cmd, sa, d0);
936 return NULL;
937 }
938 #endif
939
940 int
941 encap_detach(const struct encaptab *cookie)
942 {
943 const struct encaptab *ep = cookie;
944 struct encaptab *p;
945 int error;
946
947 KASSERT(encap_lock_held());
948
949 PSLIST_WRITER_FOREACH(p, &encap_table, struct encaptab, chain) {
950 if (p == ep) {
951 error = encap_remove(p);
952 if (error)
953 return error;
954 else
955 break;
956 }
957 }
958 if (p == NULL)
959 return ENOENT;
960
961 pserialize_perform(encaptab.psz);
962 psref_target_destroy(&p->psref,
963 encaptab.elem_class);
964 if (!ep->func) {
965 kmem_free(p->addrpack, ep->addrpack->sa_len);
966 kmem_free(p->maskpack, ep->maskpack->sa_len);
967 }
968 kmem_free(p, sizeof(*p));
969
970 return 0;
971 }
972
973 #ifdef USE_RADIX
974 static struct radix_node_head *
975 encap_rnh(int af)
976 {
977
978 switch (af) {
979 case AF_INET:
980 return encap_head[0];
981 #ifdef INET6
982 case AF_INET6:
983 return encap_head[1];
984 #endif
985 default:
986 return NULL;
987 }
988 }
989
990 static int
991 mask_matchlen(const struct sockaddr *sa)
992 {
993 const char *p, *ep;
994 int l;
995
996 p = (const char *)sa;
997 ep = p + sa->sa_len;
998 p += 2; /* sa_len + sa_family */
999
1000 l = 0;
1001 while (p < ep) {
1002 l += (*p ? 8 : 0); /* estimate */
1003 p++;
1004 }
1005 return l;
1006 }
1007 #endif
1008
1009 #ifndef USE_RADIX
1010 static int
1011 mask_match(const struct encaptab *ep,
1012 const struct sockaddr *sp,
1013 const struct sockaddr *dp)
1014 {
1015 struct sockaddr_storage s;
1016 struct sockaddr_storage d;
1017 int i;
1018 const u_int8_t *p, *q;
1019 u_int8_t *r;
1020 int matchlen;
1021
1022 KASSERTMSG(ep->func == NULL, "wrong encaptab passed to mask_match");
1023
1024 if (sp->sa_len > sizeof(s) || dp->sa_len > sizeof(d))
1025 return 0;
1026 if (sp->sa_family != ep->af || dp->sa_family != ep->af)
1027 return 0;
1028 if (sp->sa_len != ep->src->sa_len || dp->sa_len != ep->dst->sa_len)
1029 return 0;
1030
1031 matchlen = 0;
1032
1033 p = (const u_int8_t *)sp;
1034 q = (const u_int8_t *)ep->srcmask;
1035 r = (u_int8_t *)&s;
1036 for (i = 0 ; i < sp->sa_len; i++) {
1037 r[i] = p[i] & q[i];
1038 /* XXX estimate */
1039 matchlen += (q[i] ? 8 : 0);
1040 }
1041
1042 p = (const u_int8_t *)dp;
1043 q = (const u_int8_t *)ep->dstmask;
1044 r = (u_int8_t *)&d;
1045 for (i = 0 ; i < dp->sa_len; i++) {
1046 r[i] = p[i] & q[i];
1047 /* XXX rough estimate */
1048 matchlen += (q[i] ? 8 : 0);
1049 }
1050
1051 /* need to overwrite len/family portion as we don't compare them */
1052 s.ss_len = sp->sa_len;
1053 s.ss_family = sp->sa_family;
1054 d.ss_len = dp->sa_len;
1055 d.ss_family = dp->sa_family;
1056
1057 if (memcmp(&s, ep->src, ep->src->sa_len) == 0 &&
1058 memcmp(&d, ep->dst, ep->dst->sa_len) == 0) {
1059 return matchlen;
1060 } else
1061 return 0;
1062 }
1063 #endif
1064
1065 int
1066 encap_lock_enter(void)
1067 {
1068 int error;
1069
1070 mutex_enter(&encap_whole.lock);
1071 while (encap_whole.busy != NULL) {
1072 error = cv_wait_sig(&encap_whole.cv, &encap_whole.lock);
1073 if (error) {
1074 mutex_exit(&encap_whole.lock);
1075 return error;
1076 }
1077 }
1078 KASSERT(encap_whole.busy == NULL);
1079 encap_whole.busy = curlwp;
1080 mutex_exit(&encap_whole.lock);
1081
1082 return 0;
1083 }
1084
1085 void
1086 encap_lock_exit(void)
1087 {
1088
1089 mutex_enter(&encap_whole.lock);
1090 KASSERT(encap_whole.busy == curlwp);
1091 encap_whole.busy = NULL;
1092 cv_broadcast(&encap_whole.cv);
1093 mutex_exit(&encap_whole.lock);
1094 }
1095
1096 bool
1097 encap_lock_held(void)
1098 {
1099
1100 return (encap_whole.busy == curlwp);
1101 }
1102