Home | History | Annotate | Line # | Download | only in netinet
ip_encap.c revision 1.68
      1 /*	$NetBSD: ip_encap.c,v 1.68 2018/05/01 07:21:39 maxv Exp $	*/
      2 /*	$KAME: ip_encap.c,v 1.73 2001/10/02 08:30:58 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 /*
     33  * My grandfather said that there's a devil inside tunnelling technology...
     34  *
     35  * We have surprisingly many protocols that want packets with IP protocol
     36  * #4 or #41.  Here's a list of protocols that want protocol #41:
     37  *	RFC1933 configured tunnel
     38  *	RFC1933 automatic tunnel
     39  *	RFC2401 IPsec tunnel
     40  *	RFC2473 IPv6 generic packet tunnelling
     41  *	RFC2529 6over4 tunnel
     42  *	RFC3056 6to4 tunnel
     43  *	isatap tunnel
     44  *	mobile-ip6 (uses RFC2473)
     45  * Here's a list of protocol that want protocol #4:
     46  *	RFC1853 IPv4-in-IPv4 tunnelling
     47  *	RFC2003 IPv4 encapsulation within IPv4
     48  *	RFC2344 reverse tunnelling for mobile-ip4
     49  *	RFC2401 IPsec tunnel
     50  * Well, what can I say.  They impose different en/decapsulation mechanism
     51  * from each other, so they need separate protocol handler.  The only one
     52  * we can easily determine by protocol # is IPsec, which always has
     53  * AH/ESP/IPComp header right after outer IP header.
     54  *
     55  * So, clearly good old protosw does not work for protocol #4 and #41.
     56  * The code will let you match protocol via src/dst address pair.
     57  */
     58 /* XXX is M_NETADDR correct? */
     59 
     60 /*
     61  * With USE_RADIX the code will use radix table for tunnel lookup, for
     62  * tunnels registered with encap_attach() with a addr/mask pair.
     63  * Faster on machines with thousands of tunnel registerations (= interfaces).
     64  *
     65  * The code assumes that radix table code can handle non-continuous netmask,
     66  * as it will pass radix table memory region with (src + dst) sockaddr pair.
     67  */
     68 #define USE_RADIX
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: ip_encap.c,v 1.68 2018/05/01 07:21:39 maxv Exp $");
     72 
     73 #ifdef _KERNEL_OPT
     74 #include "opt_mrouting.h"
     75 #include "opt_inet.h"
     76 #include "opt_net_mpsafe.h"
     77 #endif
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/socket.h>
     82 #include <sys/sockio.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/errno.h>
     85 #include <sys/queue.h>
     86 #include <sys/kmem.h>
     87 #include <sys/mutex.h>
     88 #include <sys/condvar.h>
     89 #include <sys/psref.h>
     90 #include <sys/pslist.h>
     91 
     92 #include <net/if.h>
     93 
     94 #include <netinet/in.h>
     95 #include <netinet/in_systm.h>
     96 #include <netinet/ip.h>
     97 #include <netinet/ip_var.h>
     98 #include <netinet/ip_encap.h>
     99 #ifdef MROUTING
    100 #include <netinet/ip_mroute.h>
    101 #endif /* MROUTING */
    102 
    103 #ifdef INET6
    104 #include <netinet/ip6.h>
    105 #include <netinet6/ip6_var.h>
    106 #include <netinet6/ip6protosw.h> /* for struct ip6ctlparam */
    107 #include <netinet6/in6_var.h>
    108 #include <netinet6/in6_pcb.h>
    109 #include <netinet/icmp6.h>
    110 #endif
    111 
    112 #ifdef NET_MPSAFE
    113 #define ENCAP_MPSAFE	1
    114 #endif
    115 
    116 enum direction { INBOUND, OUTBOUND };
    117 
    118 #ifdef INET
    119 static struct encaptab *encap4_lookup(struct mbuf *, int, int, enum direction,
    120     struct psref *);
    121 #endif
    122 #ifdef INET6
    123 static struct encaptab *encap6_lookup(struct mbuf *, int, int, enum direction,
    124     struct psref *);
    125 #endif
    126 static int encap_add(struct encaptab *);
    127 static int encap_remove(struct encaptab *);
    128 static int encap_afcheck(int, const struct sockaddr *, const struct sockaddr *);
    129 #ifdef USE_RADIX
    130 static struct radix_node_head *encap_rnh(int);
    131 static int mask_matchlen(const struct sockaddr *);
    132 #else
    133 static int mask_match(const struct encaptab *, const struct sockaddr *,
    134 		const struct sockaddr *);
    135 #endif
    136 
    137 /*
    138  * In encap[46]_lookup(), ep->func can sleep(e.g. rtalloc1) while walking
    139  * encap_table. So, it cannot use pserialize_read_enter()
    140  */
    141 static struct {
    142 	struct pslist_head	list;
    143 	pserialize_t		psz;
    144 	struct psref_class	*elem_class; /* for the element of et_list */
    145 } encaptab  __cacheline_aligned = {
    146 	.list = PSLIST_INITIALIZER,
    147 };
    148 #define encap_table encaptab.list
    149 
    150 static struct {
    151 	kmutex_t	lock;
    152 	kcondvar_t	cv;
    153 	struct lwp	*busy;
    154 } encap_whole __cacheline_aligned;
    155 
    156 #ifdef USE_RADIX
    157 struct radix_node_head *encap_head[2];	/* 0 for AF_INET, 1 for AF_INET6 */
    158 static bool encap_head_updating = false;
    159 #endif
    160 
    161 static bool encap_initialized = false;
    162 /*
    163  * must be done before other encap interfaces initialization.
    164  */
    165 void
    166 encapinit(void)
    167 {
    168 
    169 	if (encap_initialized)
    170 		return;
    171 
    172 	encaptab.psz = pserialize_create();
    173 	encaptab.elem_class = psref_class_create("encapelem", IPL_SOFTNET);
    174 
    175 	mutex_init(&encap_whole.lock, MUTEX_DEFAULT, IPL_NONE);
    176 	cv_init(&encap_whole.cv, "ip_encap cv");
    177 	encap_whole.busy = NULL;
    178 
    179 	encap_initialized = true;
    180 }
    181 
    182 void
    183 encap_init(void)
    184 {
    185 	static int initialized = 0;
    186 
    187 	if (initialized)
    188 		return;
    189 	initialized++;
    190 #if 0
    191 	/*
    192 	 * we cannot use LIST_INIT() here, since drivers may want to call
    193 	 * encap_attach(), on driver attach.  encap_init() will be called
    194 	 * on AF_INET{,6} initialization, which happens after driver
    195 	 * initialization - using LIST_INIT() here can nuke encap_attach()
    196 	 * from drivers.
    197 	 */
    198 	PSLIST_INIT(&encap_table);
    199 #endif
    200 
    201 #ifdef USE_RADIX
    202 	/*
    203 	 * initialize radix lookup table when the radix subsystem is inited.
    204 	 */
    205 	rn_delayedinit((void *)&encap_head[0],
    206 	    sizeof(struct sockaddr_pack) << 3);
    207 #ifdef INET6
    208 	rn_delayedinit((void *)&encap_head[1],
    209 	    sizeof(struct sockaddr_pack) << 3);
    210 #endif
    211 #endif
    212 }
    213 
    214 #ifdef INET
    215 static struct encaptab *
    216 encap4_lookup(struct mbuf *m, int off, int proto, enum direction dir,
    217     struct psref *match_psref)
    218 {
    219 	struct ip *ip;
    220 	struct ip_pack4 pack;
    221 	struct encaptab *ep, *match;
    222 	int prio, matchprio;
    223 	int s;
    224 #ifdef USE_RADIX
    225 	struct radix_node_head *rnh = encap_rnh(AF_INET);
    226 	struct radix_node *rn;
    227 #endif
    228 
    229 	KASSERT(m->m_len >= sizeof(*ip));
    230 
    231 	ip = mtod(m, struct ip *);
    232 
    233 	memset(&pack, 0, sizeof(pack));
    234 	pack.p.sp_len = sizeof(pack);
    235 	pack.mine.sin_family = pack.yours.sin_family = AF_INET;
    236 	pack.mine.sin_len = pack.yours.sin_len = sizeof(struct sockaddr_in);
    237 	if (dir == INBOUND) {
    238 		pack.mine.sin_addr = ip->ip_dst;
    239 		pack.yours.sin_addr = ip->ip_src;
    240 	} else {
    241 		pack.mine.sin_addr = ip->ip_src;
    242 		pack.yours.sin_addr = ip->ip_dst;
    243 	}
    244 
    245 	match = NULL;
    246 	matchprio = 0;
    247 
    248 	s = pserialize_read_enter();
    249 #ifdef USE_RADIX
    250 	if (encap_head_updating) {
    251 		/*
    252 		 * Update in progress. Do nothing.
    253 		 */
    254 		pserialize_read_exit(s);
    255 		return NULL;
    256 	}
    257 
    258 	rn = rnh->rnh_matchaddr((void *)&pack, rnh);
    259 	if (rn && (rn->rn_flags & RNF_ROOT) == 0) {
    260 		struct encaptab *encapp = (struct encaptab *)rn;
    261 
    262 		psref_acquire(match_psref, &encapp->psref,
    263 		    encaptab.elem_class);
    264 		match = encapp;
    265 		matchprio = mask_matchlen(match->srcmask) +
    266 		    mask_matchlen(match->dstmask);
    267 	}
    268 #endif
    269 	PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
    270 		struct psref elem_psref;
    271 
    272 		if (ep->af != AF_INET)
    273 			continue;
    274 		if (ep->proto >= 0 && ep->proto != proto)
    275 			continue;
    276 
    277 		psref_acquire(&elem_psref, &ep->psref,
    278 		    encaptab.elem_class);
    279 		if (ep->func) {
    280 			pserialize_read_exit(s);
    281 			/* ep->func is sleepable. e.g. rtalloc1 */
    282 			prio = (*ep->func)(m, off, proto, ep->arg);
    283 			s = pserialize_read_enter();
    284 		} else {
    285 #ifdef USE_RADIX
    286 			psref_release(&elem_psref, &ep->psref,
    287 			    encaptab.elem_class);
    288 			continue;
    289 #else
    290 			prio = mask_match(ep, (struct sockaddr *)&pack.mine,
    291 			    (struct sockaddr *)&pack.yours);
    292 #endif
    293 		}
    294 
    295 		/*
    296 		 * We prioritize the matches by using bit length of the
    297 		 * matches.  mask_match() and user-supplied matching function
    298 		 * should return the bit length of the matches (for example,
    299 		 * if both src/dst are matched for IPv4, 64 should be returned).
    300 		 * 0 or negative return value means "it did not match".
    301 		 *
    302 		 * The question is, since we have two "mask" portion, we
    303 		 * cannot really define total order between entries.
    304 		 * For example, which of these should be preferred?
    305 		 * mask_match() returns 48 (32 + 16) for both of them.
    306 		 *	src=3ffe::/16, dst=3ffe:501::/32
    307 		 *	src=3ffe:501::/32, dst=3ffe::/16
    308 		 *
    309 		 * We need to loop through all the possible candidates
    310 		 * to get the best match - the search takes O(n) for
    311 		 * n attachments (i.e. interfaces).
    312 		 *
    313 		 * For radix-based lookup, I guess source takes precedence.
    314 		 * See rn_{refines,lexobetter} for the correct answer.
    315 		 */
    316 		if (prio <= 0) {
    317 			psref_release(&elem_psref, &ep->psref,
    318 			    encaptab.elem_class);
    319 			continue;
    320 		}
    321 		if (prio > matchprio) {
    322 			/* release last matched ep */
    323 			if (match != NULL)
    324 				psref_release(match_psref, &match->psref,
    325 				    encaptab.elem_class);
    326 
    327 			psref_copy(match_psref, &elem_psref,
    328 			    encaptab.elem_class);
    329 			matchprio = prio;
    330 			match = ep;
    331 		}
    332 		KASSERTMSG((match == NULL) || psref_held(&match->psref,
    333 			encaptab.elem_class),
    334 		    "current match = %p, but not hold its psref", match);
    335 
    336 		psref_release(&elem_psref, &ep->psref,
    337 		    encaptab.elem_class);
    338 	}
    339 	pserialize_read_exit(s);
    340 
    341 	return match;
    342 }
    343 
    344 void
    345 encap4_input(struct mbuf *m, ...)
    346 {
    347 	int off, proto;
    348 	va_list ap;
    349 	const struct encapsw *esw;
    350 	struct encaptab *match;
    351 	struct psref match_psref;
    352 
    353 	va_start(ap, m);
    354 	off = va_arg(ap, int);
    355 	proto = va_arg(ap, int);
    356 	va_end(ap);
    357 
    358 	match = encap4_lookup(m, off, proto, INBOUND, &match_psref);
    359 	if (match) {
    360 		/* found a match, "match" has the best one */
    361 		esw = match->esw;
    362 		if (esw && esw->encapsw4.pr_input) {
    363 			(*esw->encapsw4.pr_input)(m, off, proto, match->arg);
    364 			psref_release(&match_psref, &match->psref,
    365 			    encaptab.elem_class);
    366 		} else {
    367 			psref_release(&match_psref, &match->psref,
    368 			    encaptab.elem_class);
    369 			m_freem(m);
    370 		}
    371 		return;
    372 	}
    373 
    374 	/* last resort: inject to raw socket */
    375 	rip_input(m, off, proto);
    376 }
    377 #endif
    378 
    379 #ifdef INET6
    380 static struct encaptab *
    381 encap6_lookup(struct mbuf *m, int off, int proto, enum direction dir,
    382     struct psref *match_psref)
    383 {
    384 	struct ip6_hdr *ip6;
    385 	struct ip_pack6 pack;
    386 	int prio, matchprio;
    387 	int s;
    388 	struct encaptab *ep, *match;
    389 #ifdef USE_RADIX
    390 	struct radix_node_head *rnh = encap_rnh(AF_INET6);
    391 	struct radix_node *rn;
    392 #endif
    393 
    394 	KASSERT(m->m_len >= sizeof(*ip6));
    395 
    396 	ip6 = mtod(m, struct ip6_hdr *);
    397 
    398 	memset(&pack, 0, sizeof(pack));
    399 	pack.p.sp_len = sizeof(pack);
    400 	pack.mine.sin6_family = pack.yours.sin6_family = AF_INET6;
    401 	pack.mine.sin6_len = pack.yours.sin6_len = sizeof(struct sockaddr_in6);
    402 	if (dir == INBOUND) {
    403 		pack.mine.sin6_addr = ip6->ip6_dst;
    404 		pack.yours.sin6_addr = ip6->ip6_src;
    405 	} else {
    406 		pack.mine.sin6_addr = ip6->ip6_src;
    407 		pack.yours.sin6_addr = ip6->ip6_dst;
    408 	}
    409 
    410 	match = NULL;
    411 	matchprio = 0;
    412 
    413 	s = pserialize_read_enter();
    414 #ifdef USE_RADIX
    415 	if (encap_head_updating) {
    416 		/*
    417 		 * Update in progress. Do nothing.
    418 		 */
    419 		pserialize_read_exit(s);
    420 		return NULL;
    421 	}
    422 
    423 	rn = rnh->rnh_matchaddr((void *)&pack, rnh);
    424 	if (rn && (rn->rn_flags & RNF_ROOT) == 0) {
    425 		struct encaptab *encapp = (struct encaptab *)rn;
    426 
    427 		psref_acquire(match_psref, &encapp->psref,
    428 		    encaptab.elem_class);
    429 		match = encapp;
    430 		matchprio = mask_matchlen(match->srcmask) +
    431 		    mask_matchlen(match->dstmask);
    432 	}
    433 #endif
    434 	PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
    435 		struct psref elem_psref;
    436 
    437 		if (ep->af != AF_INET6)
    438 			continue;
    439 		if (ep->proto >= 0 && ep->proto != proto)
    440 			continue;
    441 
    442 		psref_acquire(&elem_psref, &ep->psref,
    443 		    encaptab.elem_class);
    444 
    445 		if (ep->func) {
    446 			pserialize_read_exit(s);
    447 			/* ep->func is sleepable. e.g. rtalloc1 */
    448 			prio = (*ep->func)(m, off, proto, ep->arg);
    449 			s = pserialize_read_enter();
    450 		} else {
    451 #ifdef USE_RADIX
    452 			psref_release(&elem_psref, &ep->psref,
    453 			    encaptab.elem_class);
    454 			continue;
    455 #else
    456 			prio = mask_match(ep, (struct sockaddr *)&pack.mine,
    457 			    (struct sockaddr *)&pack.yours);
    458 #endif
    459 		}
    460 
    461 		/* see encap4_lookup() for issues here */
    462 		if (prio <= 0) {
    463 			psref_release(&elem_psref, &ep->psref,
    464 			    encaptab.elem_class);
    465 			continue;
    466 		}
    467 		if (prio > matchprio) {
    468 			/* release last matched ep */
    469 			if (match != NULL)
    470 				psref_release(match_psref, &match->psref,
    471 				    encaptab.elem_class);
    472 
    473 			psref_copy(match_psref, &elem_psref,
    474 			    encaptab.elem_class);
    475 			matchprio = prio;
    476 			match = ep;
    477 		}
    478 		KASSERTMSG((match == NULL) || psref_held(&match->psref,
    479 			encaptab.elem_class),
    480 		    "current match = %p, but not hold its psref", match);
    481 
    482 		psref_release(&elem_psref, &ep->psref,
    483 		    encaptab.elem_class);
    484 	}
    485 	pserialize_read_exit(s);
    486 
    487 	return match;
    488 }
    489 
    490 int
    491 encap6_input(struct mbuf **mp, int *offp, int proto)
    492 {
    493 	struct mbuf *m = *mp;
    494 	const struct encapsw *esw;
    495 	struct encaptab *match;
    496 	struct psref match_psref;
    497 
    498 	match = encap6_lookup(m, *offp, proto, INBOUND, &match_psref);
    499 
    500 	if (match) {
    501 		/* found a match */
    502 		esw = match->esw;
    503 		if (esw && esw->encapsw6.pr_input) {
    504 			int ret;
    505 			ret = (*esw->encapsw6.pr_input)(mp, offp, proto,
    506 			    match->arg);
    507 			psref_release(&match_psref, &match->psref,
    508 			    encaptab.elem_class);
    509 			return ret;
    510 		} else {
    511 			psref_release(&match_psref, &match->psref,
    512 			    encaptab.elem_class);
    513 			m_freem(m);
    514 			return IPPROTO_DONE;
    515 		}
    516 	}
    517 
    518 	/* last resort: inject to raw socket */
    519 	return rip6_input(mp, offp, proto);
    520 }
    521 #endif
    522 
    523 /*
    524  * XXX
    525  * The encaptab list and the rnh radix tree must be manipulated atomically.
    526  */
    527 static int
    528 encap_add(struct encaptab *ep)
    529 {
    530 #ifdef USE_RADIX
    531 	struct radix_node_head *rnh = encap_rnh(ep->af);
    532 #endif
    533 
    534 	KASSERT(encap_lock_held());
    535 
    536 #ifdef USE_RADIX
    537 	if (!ep->func && rnh) {
    538 		/* Disable access to the radix tree for reader. */
    539 		encap_head_updating = true;
    540 		/* Wait for all readers to drain. */
    541 		pserialize_perform(encaptab.psz);
    542 
    543 		if (!rnh->rnh_addaddr((void *)ep->addrpack,
    544 		    (void *)ep->maskpack, rnh, ep->nodes)) {
    545 			encap_head_updating = false;
    546 			return EEXIST;
    547 		}
    548 
    549 		/*
    550 		 * The ep added to the radix tree must be skipped while
    551 		 * encap[46]_lookup walks encaptab list. In other words,
    552 		 * encap_add() does not need to care whether the ep has
    553 		 * been added encaptab list or not yet.
    554 		 * So, we can re-enable access to the radix tree for now.
    555 		 */
    556 		encap_head_updating = false;
    557 	}
    558 #endif
    559 	PSLIST_WRITER_INSERT_HEAD(&encap_table, ep, chain);
    560 
    561 	return 0;
    562 }
    563 
    564 /*
    565  * XXX
    566  * The encaptab list and the rnh radix tree must be manipulated atomically.
    567  */
    568 static int
    569 encap_remove(struct encaptab *ep)
    570 {
    571 #ifdef USE_RADIX
    572 	struct radix_node_head *rnh = encap_rnh(ep->af);
    573 #endif
    574 	int error = 0;
    575 
    576 	KASSERT(encap_lock_held());
    577 
    578 #ifdef USE_RADIX
    579 	if (!ep->func && rnh) {
    580 		/* Disable access to the radix tree for reader. */
    581 		encap_head_updating = true;
    582 		/* Wait for all readers to drain. */
    583 		pserialize_perform(encaptab.psz);
    584 
    585 		if (!rnh->rnh_deladdr((void *)ep->addrpack,
    586 		    (void *)ep->maskpack, rnh))
    587 			error = ESRCH;
    588 
    589 		/*
    590 		 * The ep added to the radix tree must be skipped while
    591 		 * encap[46]_lookup walks encaptab list. In other words,
    592 		 * encap_add() does not need to care whether the ep has
    593 		 * been added encaptab list or not yet.
    594 		 * So, we can re-enable access to the radix tree for now.
    595 		 */
    596 		encap_head_updating = false;
    597 	}
    598 #endif
    599 	PSLIST_WRITER_REMOVE(ep, chain);
    600 
    601 	return error;
    602 }
    603 
    604 static int
    605 encap_afcheck(int af, const struct sockaddr *sp, const struct sockaddr *dp)
    606 {
    607 	if (sp && dp) {
    608 		if (sp->sa_len != dp->sa_len)
    609 			return EINVAL;
    610 		if (af != sp->sa_family || af != dp->sa_family)
    611 			return EINVAL;
    612 	} else if (!sp && !dp)
    613 		;
    614 	else
    615 		return EINVAL;
    616 
    617 	switch (af) {
    618 	case AF_INET:
    619 		if (sp && sp->sa_len != sizeof(struct sockaddr_in))
    620 			return EINVAL;
    621 		if (dp && dp->sa_len != sizeof(struct sockaddr_in))
    622 			return EINVAL;
    623 		break;
    624 #ifdef INET6
    625 	case AF_INET6:
    626 		if (sp && sp->sa_len != sizeof(struct sockaddr_in6))
    627 			return EINVAL;
    628 		if (dp && dp->sa_len != sizeof(struct sockaddr_in6))
    629 			return EINVAL;
    630 		break;
    631 #endif
    632 	default:
    633 		return EAFNOSUPPORT;
    634 	}
    635 
    636 	return 0;
    637 }
    638 
    639 /*
    640  * sp (src ptr) is always my side, and dp (dst ptr) is always remote side.
    641  * length of mask (sm and dm) is assumed to be same as sp/dp.
    642  * Return value will be necessary as input (cookie) for encap_detach().
    643  */
    644 const struct encaptab *
    645 encap_attach(int af, int proto,
    646     const struct sockaddr *sp, const struct sockaddr *sm,
    647     const struct sockaddr *dp, const struct sockaddr *dm,
    648     const struct encapsw *esw, void *arg)
    649 {
    650 	struct encaptab *ep;
    651 	int error;
    652 	int pss;
    653 	size_t l;
    654 	struct ip_pack4 *pack4;
    655 #ifdef INET6
    656 	struct ip_pack6 *pack6;
    657 #endif
    658 #ifndef ENCAP_MPSAFE
    659 	int s;
    660 
    661 	s = splsoftnet();
    662 #endif
    663 	/* sanity check on args */
    664 	error = encap_afcheck(af, sp, dp);
    665 	if (error)
    666 		goto fail;
    667 
    668 	/* check if anyone have already attached with exactly same config */
    669 	pss = pserialize_read_enter();
    670 	PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
    671 		if (ep->af != af)
    672 			continue;
    673 		if (ep->proto != proto)
    674 			continue;
    675 		if (ep->func)
    676 			continue;
    677 
    678 		KASSERT(ep->src != NULL);
    679 		KASSERT(ep->dst != NULL);
    680 		KASSERT(ep->srcmask != NULL);
    681 		KASSERT(ep->dstmask != NULL);
    682 
    683 		if (ep->src->sa_len != sp->sa_len ||
    684 		    memcmp(ep->src, sp, sp->sa_len) != 0 ||
    685 		    memcmp(ep->srcmask, sm, sp->sa_len) != 0)
    686 			continue;
    687 		if (ep->dst->sa_len != dp->sa_len ||
    688 		    memcmp(ep->dst, dp, dp->sa_len) != 0 ||
    689 		    memcmp(ep->dstmask, dm, dp->sa_len) != 0)
    690 			continue;
    691 
    692 		error = EEXIST;
    693 		pserialize_read_exit(pss);
    694 		goto fail;
    695 	}
    696 	pserialize_read_exit(pss);
    697 
    698 	switch (af) {
    699 	case AF_INET:
    700 		l = sizeof(*pack4);
    701 		break;
    702 #ifdef INET6
    703 	case AF_INET6:
    704 		l = sizeof(*pack6);
    705 		break;
    706 #endif
    707 	default:
    708 		goto fail;
    709 	}
    710 
    711 	/* M_NETADDR ok? */
    712 	ep = kmem_zalloc(sizeof(*ep), KM_NOSLEEP);
    713 	if (ep == NULL) {
    714 		error = ENOBUFS;
    715 		goto fail;
    716 	}
    717 	ep->addrpack = kmem_zalloc(l, KM_NOSLEEP);
    718 	if (ep->addrpack == NULL) {
    719 		error = ENOBUFS;
    720 		goto gc;
    721 	}
    722 	ep->maskpack = kmem_zalloc(l, KM_NOSLEEP);
    723 	if (ep->maskpack == NULL) {
    724 		error = ENOBUFS;
    725 		goto gc;
    726 	}
    727 
    728 	ep->af = af;
    729 	ep->proto = proto;
    730 	ep->addrpack->sa_len = l & 0xff;
    731 	ep->maskpack->sa_len = l & 0xff;
    732 	switch (af) {
    733 	case AF_INET:
    734 		pack4 = (struct ip_pack4 *)ep->addrpack;
    735 		ep->src = (struct sockaddr *)&pack4->mine;
    736 		ep->dst = (struct sockaddr *)&pack4->yours;
    737 		pack4 = (struct ip_pack4 *)ep->maskpack;
    738 		ep->srcmask = (struct sockaddr *)&pack4->mine;
    739 		ep->dstmask = (struct sockaddr *)&pack4->yours;
    740 		break;
    741 #ifdef INET6
    742 	case AF_INET6:
    743 		pack6 = (struct ip_pack6 *)ep->addrpack;
    744 		ep->src = (struct sockaddr *)&pack6->mine;
    745 		ep->dst = (struct sockaddr *)&pack6->yours;
    746 		pack6 = (struct ip_pack6 *)ep->maskpack;
    747 		ep->srcmask = (struct sockaddr *)&pack6->mine;
    748 		ep->dstmask = (struct sockaddr *)&pack6->yours;
    749 		break;
    750 #endif
    751 	}
    752 
    753 	memcpy(ep->src, sp, sp->sa_len);
    754 	memcpy(ep->srcmask, sm, sp->sa_len);
    755 	memcpy(ep->dst, dp, dp->sa_len);
    756 	memcpy(ep->dstmask, dm, dp->sa_len);
    757 	ep->esw = esw;
    758 	ep->arg = arg;
    759 	psref_target_init(&ep->psref, encaptab.elem_class);
    760 
    761 	error = encap_add(ep);
    762 	if (error)
    763 		goto gc;
    764 
    765 	error = 0;
    766 #ifndef ENCAP_MPSAFE
    767 	splx(s);
    768 #endif
    769 	return ep;
    770 
    771 gc:
    772 	if (ep->addrpack)
    773 		kmem_free(ep->addrpack, l);
    774 	if (ep->maskpack)
    775 		kmem_free(ep->maskpack, l);
    776 	if (ep)
    777 		kmem_free(ep, sizeof(*ep));
    778 fail:
    779 #ifndef ENCAP_MPSAFE
    780 	splx(s);
    781 #endif
    782 	return NULL;
    783 }
    784 
    785 const struct encaptab *
    786 encap_attach_func(int af, int proto,
    787     int (*func)(struct mbuf *, int, int, void *),
    788     const struct encapsw *esw, void *arg)
    789 {
    790 	struct encaptab *ep;
    791 	int error;
    792 #ifndef ENCAP_MPSAFE
    793 	int s;
    794 
    795 	s = splsoftnet();
    796 #endif
    797 	/* sanity check on args */
    798 	if (!func) {
    799 		error = EINVAL;
    800 		goto fail;
    801 	}
    802 
    803 	error = encap_afcheck(af, NULL, NULL);
    804 	if (error)
    805 		goto fail;
    806 
    807 	ep = kmem_alloc(sizeof(*ep), KM_NOSLEEP);	/*XXX*/
    808 	if (ep == NULL) {
    809 		error = ENOBUFS;
    810 		goto fail;
    811 	}
    812 	memset(ep, 0, sizeof(*ep));
    813 
    814 	ep->af = af;
    815 	ep->proto = proto;
    816 	ep->func = func;
    817 	ep->esw = esw;
    818 	ep->arg = arg;
    819 	psref_target_init(&ep->psref, encaptab.elem_class);
    820 
    821 	error = encap_add(ep);
    822 	if (error)
    823 		goto gc;
    824 
    825 	error = 0;
    826 #ifndef ENCAP_MPSAFE
    827 	splx(s);
    828 #endif
    829 	return ep;
    830 
    831 gc:
    832 	kmem_free(ep, sizeof(*ep));
    833 fail:
    834 #ifndef ENCAP_MPSAFE
    835 	splx(s);
    836 #endif
    837 	return NULL;
    838 }
    839 
    840 /* XXX encap4_ctlinput() is necessary if we set DF=1 on outer IPv4 header */
    841 
    842 #ifdef INET6
    843 void *
    844 encap6_ctlinput(int cmd, const struct sockaddr *sa, void *d0)
    845 {
    846 	void *d = d0;
    847 	struct ip6_hdr *ip6;
    848 	struct mbuf *m;
    849 	int off;
    850 	struct ip6ctlparam *ip6cp = NULL;
    851 	int nxt;
    852 	int s;
    853 	struct encaptab *ep;
    854 	const struct encapsw *esw;
    855 
    856 	if (sa->sa_family != AF_INET6 ||
    857 	    sa->sa_len != sizeof(struct sockaddr_in6))
    858 		return NULL;
    859 
    860 	if ((unsigned)cmd >= PRC_NCMDS)
    861 		return NULL;
    862 	if (cmd == PRC_HOSTDEAD)
    863 		d = NULL;
    864 	else if (cmd == PRC_MSGSIZE)
    865 		; /* special code is present, see below */
    866 	else if (inet6ctlerrmap[cmd] == 0)
    867 		return NULL;
    868 
    869 	/* if the parameter is from icmp6, decode it. */
    870 	if (d != NULL) {
    871 		ip6cp = (struct ip6ctlparam *)d;
    872 		m = ip6cp->ip6c_m;
    873 		ip6 = ip6cp->ip6c_ip6;
    874 		off = ip6cp->ip6c_off;
    875 		nxt = ip6cp->ip6c_nxt;
    876 
    877 		if (ip6 && cmd == PRC_MSGSIZE) {
    878 			int valid = 0;
    879 			struct encaptab *match;
    880 			struct psref elem_psref;
    881 
    882 			/*
    883 		 	* Check to see if we have a valid encap configuration.
    884 		 	*/
    885 			match = encap6_lookup(m, off, nxt, OUTBOUND,
    886 			    &elem_psref);
    887 			if (match)
    888 				valid++;
    889 			psref_release(&elem_psref, &match->psref,
    890 			    encaptab.elem_class);
    891 
    892 			/*
    893 		 	* Depending on the value of "valid" and routing table
    894 		 	* size (mtudisc_{hi,lo}wat), we will:
    895 		 	* - recalcurate the new MTU and create the
    896 		 	*   corresponding routing entry, or
    897 		 	* - ignore the MTU change notification.
    898 		 	*/
    899 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
    900 		}
    901 	} else {
    902 		m = NULL;
    903 		ip6 = NULL;
    904 		nxt = -1;
    905 	}
    906 
    907 	/* inform all listeners */
    908 
    909 	s = pserialize_read_enter();
    910 	PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) {
    911 		struct psref elem_psref;
    912 
    913 		if (ep->af != AF_INET6)
    914 			continue;
    915 		if (ep->proto >= 0 && ep->proto != nxt)
    916 			continue;
    917 
    918 		/* should optimize by looking at address pairs */
    919 
    920 		/* XXX need to pass ep->arg or ep itself to listeners */
    921 		psref_acquire(&elem_psref, &ep->psref,
    922 		    encaptab.elem_class);
    923 		esw = ep->esw;
    924 		if (esw && esw->encapsw6.pr_ctlinput) {
    925 			pserialize_read_exit(s);
    926 			/* pr_ctlinput is sleepable. e.g. rtcache_free */
    927 			(*esw->encapsw6.pr_ctlinput)(cmd, sa, d, ep->arg);
    928 			s = pserialize_read_enter();
    929 		}
    930 		psref_release(&elem_psref, &ep->psref,
    931 		    encaptab.elem_class);
    932 	}
    933 	pserialize_read_exit(s);
    934 
    935 	rip6_ctlinput(cmd, sa, d0);
    936 	return NULL;
    937 }
    938 #endif
    939 
    940 int
    941 encap_detach(const struct encaptab *cookie)
    942 {
    943 	const struct encaptab *ep = cookie;
    944 	struct encaptab *p;
    945 	int error;
    946 
    947 	KASSERT(encap_lock_held());
    948 
    949 	PSLIST_WRITER_FOREACH(p, &encap_table, struct encaptab, chain) {
    950 		if (p == ep) {
    951 			error = encap_remove(p);
    952 			if (error)
    953 				return error;
    954 			else
    955 				break;
    956 		}
    957 	}
    958 	if (p == NULL)
    959 		return ENOENT;
    960 
    961 	pserialize_perform(encaptab.psz);
    962 	psref_target_destroy(&p->psref,
    963 	    encaptab.elem_class);
    964 	if (!ep->func) {
    965 		kmem_free(p->addrpack, ep->addrpack->sa_len);
    966 		kmem_free(p->maskpack, ep->maskpack->sa_len);
    967 	}
    968 	kmem_free(p, sizeof(*p));
    969 
    970 	return 0;
    971 }
    972 
    973 #ifdef USE_RADIX
    974 static struct radix_node_head *
    975 encap_rnh(int af)
    976 {
    977 
    978 	switch (af) {
    979 	case AF_INET:
    980 		return encap_head[0];
    981 #ifdef INET6
    982 	case AF_INET6:
    983 		return encap_head[1];
    984 #endif
    985 	default:
    986 		return NULL;
    987 	}
    988 }
    989 
    990 static int
    991 mask_matchlen(const struct sockaddr *sa)
    992 {
    993 	const char *p, *ep;
    994 	int l;
    995 
    996 	p = (const char *)sa;
    997 	ep = p + sa->sa_len;
    998 	p += 2;	/* sa_len + sa_family */
    999 
   1000 	l = 0;
   1001 	while (p < ep) {
   1002 		l += (*p ? 8 : 0);	/* estimate */
   1003 		p++;
   1004 	}
   1005 	return l;
   1006 }
   1007 #endif
   1008 
   1009 #ifndef USE_RADIX
   1010 static int
   1011 mask_match(const struct encaptab *ep,
   1012 	   const struct sockaddr *sp,
   1013 	   const struct sockaddr *dp)
   1014 {
   1015 	struct sockaddr_storage s;
   1016 	struct sockaddr_storage d;
   1017 	int i;
   1018 	const u_int8_t *p, *q;
   1019 	u_int8_t *r;
   1020 	int matchlen;
   1021 
   1022 	KASSERTMSG(ep->func == NULL, "wrong encaptab passed to mask_match");
   1023 
   1024 	if (sp->sa_len > sizeof(s) || dp->sa_len > sizeof(d))
   1025 		return 0;
   1026 	if (sp->sa_family != ep->af || dp->sa_family != ep->af)
   1027 		return 0;
   1028 	if (sp->sa_len != ep->src->sa_len || dp->sa_len != ep->dst->sa_len)
   1029 		return 0;
   1030 
   1031 	matchlen = 0;
   1032 
   1033 	p = (const u_int8_t *)sp;
   1034 	q = (const u_int8_t *)ep->srcmask;
   1035 	r = (u_int8_t *)&s;
   1036 	for (i = 0 ; i < sp->sa_len; i++) {
   1037 		r[i] = p[i] & q[i];
   1038 		/* XXX estimate */
   1039 		matchlen += (q[i] ? 8 : 0);
   1040 	}
   1041 
   1042 	p = (const u_int8_t *)dp;
   1043 	q = (const u_int8_t *)ep->dstmask;
   1044 	r = (u_int8_t *)&d;
   1045 	for (i = 0 ; i < dp->sa_len; i++) {
   1046 		r[i] = p[i] & q[i];
   1047 		/* XXX rough estimate */
   1048 		matchlen += (q[i] ? 8 : 0);
   1049 	}
   1050 
   1051 	/* need to overwrite len/family portion as we don't compare them */
   1052 	s.ss_len = sp->sa_len;
   1053 	s.ss_family = sp->sa_family;
   1054 	d.ss_len = dp->sa_len;
   1055 	d.ss_family = dp->sa_family;
   1056 
   1057 	if (memcmp(&s, ep->src, ep->src->sa_len) == 0 &&
   1058 	    memcmp(&d, ep->dst, ep->dst->sa_len) == 0) {
   1059 		return matchlen;
   1060 	} else
   1061 		return 0;
   1062 }
   1063 #endif
   1064 
   1065 int
   1066 encap_lock_enter(void)
   1067 {
   1068 	int error;
   1069 
   1070 	mutex_enter(&encap_whole.lock);
   1071 	while (encap_whole.busy != NULL) {
   1072 		error = cv_wait_sig(&encap_whole.cv, &encap_whole.lock);
   1073 		if (error) {
   1074 			mutex_exit(&encap_whole.lock);
   1075 			return error;
   1076 		}
   1077 	}
   1078 	KASSERT(encap_whole.busy == NULL);
   1079 	encap_whole.busy = curlwp;
   1080 	mutex_exit(&encap_whole.lock);
   1081 
   1082 	return 0;
   1083 }
   1084 
   1085 void
   1086 encap_lock_exit(void)
   1087 {
   1088 
   1089 	mutex_enter(&encap_whole.lock);
   1090 	KASSERT(encap_whole.busy == curlwp);
   1091 	encap_whole.busy = NULL;
   1092 	cv_broadcast(&encap_whole.cv);
   1093 	mutex_exit(&encap_whole.lock);
   1094 }
   1095 
   1096 bool
   1097 encap_lock_held(void)
   1098 {
   1099 
   1100 	return (encap_whole.busy == curlwp);
   1101 }
   1102