ip_icmp.c revision 1.163 1 /* $NetBSD: ip_icmp.c,v 1.163 2018/01/19 13:17:29 maxv Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998, 2000 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * This code is derived from software contributed to The NetBSD Foundation
41 * by Jason R. Thorpe of Zembu Labs, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
53 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
54 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
55 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 * POSSIBILITY OF SUCH DAMAGE.
63 */
64
65 /*
66 * Copyright (c) 1982, 1986, 1988, 1993
67 * The Regents of the University of California. All rights reserved.
68 *
69 * Redistribution and use in source and binary forms, with or without
70 * modification, are permitted provided that the following conditions
71 * are met:
72 * 1. Redistributions of source code must retain the above copyright
73 * notice, this list of conditions and the following disclaimer.
74 * 2. Redistributions in binary form must reproduce the above copyright
75 * notice, this list of conditions and the following disclaimer in the
76 * documentation and/or other materials provided with the distribution.
77 * 3. Neither the name of the University nor the names of its contributors
78 * may be used to endorse or promote products derived from this software
79 * without specific prior written permission.
80 *
81 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
82 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
83 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
84 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
85 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
86 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
87 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
88 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
89 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
90 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
91 * SUCH DAMAGE.
92 *
93 * @(#)ip_icmp.c 8.2 (Berkeley) 1/4/94
94 */
95
96 #include <sys/cdefs.h>
97 __KERNEL_RCSID(0, "$NetBSD: ip_icmp.c,v 1.163 2018/01/19 13:17:29 maxv Exp $");
98
99 #ifdef _KERNEL_OPT
100 #include "opt_ipsec.h"
101 #endif
102
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/mbuf.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h> /* For softnet_lock */
109 #include <sys/kmem.h>
110 #include <sys/time.h>
111 #include <sys/kernel.h>
112 #include <sys/syslog.h>
113 #include <sys/sysctl.h>
114
115 #include <net/if.h>
116 #include <net/route.h>
117
118 #include <netinet/in.h>
119 #include <netinet/in_systm.h>
120 #include <netinet/in_var.h>
121 #include <netinet/ip.h>
122 #include <netinet/ip_icmp.h>
123 #include <netinet/ip_var.h>
124 #include <netinet/in_pcb.h>
125 #include <netinet/in_proto.h>
126 #include <netinet/icmp_var.h>
127 #include <netinet/icmp_private.h>
128 #include <netinet/wqinput.h>
129
130 #ifdef IPSEC
131 #include <netipsec/ipsec.h>
132 #include <netipsec/key.h>
133 #endif /* IPSEC*/
134
135 /*
136 * ICMP routines: error generation, receive packet processing, and
137 * routines to turnaround packets back to the originator, and
138 * host table maintenance routines.
139 */
140
141 int icmpmaskrepl = 0;
142 int icmpbmcastecho = 0;
143 #ifdef ICMPPRINTFS
144 int icmpprintfs = 0;
145 #endif
146 int icmpreturndatabytes = 8;
147
148 percpu_t *icmpstat_percpu;
149
150 /*
151 * List of callbacks to notify when Path MTU changes are made.
152 */
153 struct icmp_mtudisc_callback {
154 LIST_ENTRY(icmp_mtudisc_callback) mc_list;
155 void (*mc_func)(struct in_addr);
156 };
157
158 LIST_HEAD(, icmp_mtudisc_callback) icmp_mtudisc_callbacks =
159 LIST_HEAD_INITIALIZER(&icmp_mtudisc_callbacks);
160
161 #if 0
162 static u_int ip_next_mtu(u_int, int);
163 #else
164 /*static*/ u_int ip_next_mtu(u_int, int);
165 #endif
166
167 extern int icmperrppslim;
168 static int icmperrpps_count = 0;
169 static struct timeval icmperrppslim_last;
170 static int icmp_rediraccept = 1;
171 static int icmp_redirtimeout = 600;
172 static struct rttimer_queue *icmp_redirect_timeout_q = NULL;
173
174 /* Protect mtudisc and redirect stuffs */
175 static kmutex_t icmp_mtx __cacheline_aligned;
176
177 static void icmp_mtudisc_timeout(struct rtentry *, struct rttimer *);
178 static void icmp_redirect_timeout(struct rtentry *, struct rttimer *);
179
180 static void sysctl_netinet_icmp_setup(struct sysctllog **);
181
182 /* workqueue-based pr_input */
183 static struct wqinput *icmp_wqinput;
184 static void _icmp_input(struct mbuf *, int, int);
185
186 void
187 icmp_init(void)
188 {
189
190 sysctl_netinet_icmp_setup(NULL);
191
192 mutex_init(&icmp_mtx, MUTEX_DEFAULT, IPL_NONE);
193 /*
194 * This is only useful if the user initializes redirtimeout to
195 * something other than zero.
196 */
197 mutex_enter(&icmp_mtx);
198 icmp_redirect_timeout_q = rt_timer_queue_create(icmp_redirtimeout);
199 mutex_exit(&icmp_mtx);
200
201 icmpstat_percpu = percpu_alloc(sizeof(uint64_t) * ICMP_NSTATS);
202 icmp_wqinput = wqinput_create("icmp", _icmp_input);
203 }
204
205 void
206 icmp_mtudisc_lock(void)
207 {
208
209 mutex_enter(&icmp_mtx);
210 }
211
212 void
213 icmp_mtudisc_unlock(void)
214 {
215
216 mutex_exit(&icmp_mtx);
217 }
218
219 /*
220 * Register a Path MTU Discovery callback.
221 */
222 void
223 icmp_mtudisc_callback_register(void (*func)(struct in_addr))
224 {
225 struct icmp_mtudisc_callback *mc, *new;
226
227 new = kmem_alloc(sizeof(*mc), KM_SLEEP);
228
229 mutex_enter(&icmp_mtx);
230 for (mc = LIST_FIRST(&icmp_mtudisc_callbacks); mc != NULL;
231 mc = LIST_NEXT(mc, mc_list)) {
232 if (mc->mc_func == func) {
233 mutex_exit(&icmp_mtx);
234 kmem_free(new, sizeof(*mc));
235 return;
236 }
237 }
238
239 new->mc_func = func;
240 LIST_INSERT_HEAD(&icmp_mtudisc_callbacks, new, mc_list);
241 mutex_exit(&icmp_mtx);
242 }
243
244 /*
245 * Generate an error packet of type error in response to a bad IP packet. 'n'
246 * contains this packet. We create 'm' and send it.
247 *
248 * As we are not required to return everything we have, we return whatever
249 * we can return at ease.
250 *
251 * Note that ICMP datagrams longer than 576 octets are out of spec according
252 * to RFC1812; the limit on icmpreturndatabytes will keep things below that
253 * limit.
254 */
255 void
256 icmp_error(struct mbuf *n, int type, int code, n_long dest, int destmtu)
257 {
258 struct ip *oip = mtod(n, struct ip *), *nip;
259 const unsigned oiphlen = oip->ip_hl << 2;
260 struct icmp *icp;
261 struct mbuf *m;
262 struct m_tag *mtag;
263 unsigned datalen, mblen;
264 int totlen;
265
266 #ifdef ICMPPRINTFS
267 if (icmpprintfs)
268 printf("icmp_error(%p, type:%d, code:%d)\n", oip, type, code);
269 #endif
270
271 if (type != ICMP_REDIRECT)
272 ICMP_STATINC(ICMP_STAT_ERROR);
273
274 /*
275 * Don't send error if:
276 * - The original packet was encrypted.
277 * - The packet is multicast or broadcast.
278 * - The packet is not the first fragment of the message.
279 * - The packet is an ICMP message with an unknown type.
280 */
281 if (n->m_flags & M_DECRYPTED)
282 goto freeit;
283 if (n->m_flags & (M_BCAST|M_MCAST))
284 goto freeit;
285 if (oip->ip_off &~ htons(IP_MF|IP_DF))
286 goto freeit;
287 if (oip->ip_p == IPPROTO_ICMP && type != ICMP_REDIRECT &&
288 n->m_len >= oiphlen + ICMP_MINLEN) {
289 struct icmp *oicp = (struct icmp *)((char *)oip + oiphlen);
290 if (!ICMP_INFOTYPE(oicp->icmp_type)) {
291 ICMP_STATINC(ICMP_STAT_OLDICMP);
292 goto freeit;
293 }
294 }
295
296 /*
297 * First, do a rate limitation check.
298 */
299 if (icmp_ratelimit(&oip->ip_src, type, code)) {
300 /* XXX stat */
301 goto freeit;
302 }
303
304 /*
305 * Compute the number of bytes we will put in 'icmp_ip'. Truncate
306 * it to the size of the mbuf, if it's too big.
307 */
308 datalen = oiphlen + min(icmpreturndatabytes,
309 ntohs(oip->ip_len) - oiphlen);
310 mblen = 0;
311 for (m = n; m && (mblen < datalen); m = m->m_next)
312 mblen += m->m_len;
313 datalen = min(mblen, datalen);
314
315 /*
316 * Compute the total length of the new packet. Truncate it if it's
317 * bigger than the size of a cluster.
318 */
319 CTASSERT(ICMP_MINLEN + sizeof(struct ip) <= MCLBYTES);
320 totlen = sizeof(struct ip) + ICMP_MINLEN + datalen;
321 if (totlen > MCLBYTES) {
322 datalen = MCLBYTES - ICMP_MINLEN - sizeof(struct ip);
323 totlen = MCLBYTES;
324 }
325
326 /*
327 * Allocate the mbuf for the new packet.
328 */
329 m = m_gethdr(M_DONTWAIT, MT_HEADER);
330 if (m && (totlen > MHLEN)) {
331 MCLGET(m, M_DONTWAIT);
332 if ((m->m_flags & M_EXT) == 0) {
333 m_freem(m);
334 m = NULL;
335 }
336 }
337 if (m == NULL)
338 goto freeit;
339 MCLAIM(m, n->m_owner);
340 m->m_len = totlen;
341 m->m_pkthdr.len = m->m_len;
342 m_copy_rcvif(m, n);
343
344 if ((u_int)type > ICMP_MAXTYPE)
345 panic("icmp_error");
346 ICMP_STATINC(ICMP_STAT_OUTHIST + type);
347
348 /*
349 * Get pointers on the IP header and the ICMP header.
350 */
351 nip = mtod(m, struct ip *);
352 icp = (struct icmp *)(nip + 1);
353
354 /*
355 * Fill in the fields of the ICMP header: icmp_type, icmp_code
356 * and icmp_ip. icmp_cksum gets filled later.
357 */
358 icp->icmp_type = type;
359 if (type == ICMP_REDIRECT) {
360 icp->icmp_gwaddr.s_addr = dest;
361 } else {
362 icp->icmp_void = 0;
363 /*
364 * The following assignments assume an overlay with the
365 * zeroed icmp_void field.
366 */
367 if (type == ICMP_PARAMPROB) {
368 icp->icmp_pptr = code;
369 code = 0;
370 } else if (type == ICMP_UNREACH &&
371 code == ICMP_UNREACH_NEEDFRAG && destmtu)
372 icp->icmp_nextmtu = htons(destmtu);
373 }
374 icp->icmp_code = code;
375 m_copydata(n, 0, datalen, (void *)&icp->icmp_ip);
376
377 /*
378 * Now, copy the old IP header (without options) in front of the
379 * ICMP message. The src/dst fields will be swapped in icmp_reflect.
380 */
381 /* ip_v set in ip_output */
382 nip->ip_hl = sizeof(struct ip) >> 2;
383 nip->ip_tos = 0;
384 nip->ip_len = htons(m->m_len);
385 /* ip_id set in ip_output */
386 nip->ip_off = htons(0);
387 /* ip_ttl set in icmp_reflect */
388 nip->ip_p = IPPROTO_ICMP;
389 nip->ip_src = oip->ip_src;
390 nip->ip_dst = oip->ip_dst;
391 /* move PF m_tag to new packet, if it exists */
392 mtag = m_tag_find(n, PACKET_TAG_PF, NULL);
393 if (mtag != NULL) {
394 m_tag_unlink(n, mtag);
395 m_tag_prepend(m, mtag);
396 }
397
398 icmp_reflect(m);
399
400 freeit:
401 m_freem(n);
402 }
403
404 struct sockaddr_in icmpsrc = {
405 .sin_len = sizeof (struct sockaddr_in),
406 .sin_family = AF_INET,
407 };
408 static struct sockaddr_in icmpdst = {
409 .sin_len = sizeof (struct sockaddr_in),
410 .sin_family = AF_INET,
411 };
412 static struct sockaddr_in icmpgw = {
413 .sin_len = sizeof (struct sockaddr_in),
414 .sin_family = AF_INET,
415 };
416 struct sockaddr_in icmpmask = {
417 .sin_len = 8,
418 .sin_family = 0,
419 };
420
421 /*
422 * Process a received ICMP message.
423 */
424 static void
425 _icmp_input(struct mbuf *m, int hlen, int proto)
426 {
427 struct icmp *icp;
428 struct ip *ip = mtod(m, struct ip *);
429 int icmplen;
430 int i;
431 struct in_ifaddr *ia;
432 void *(*ctlfunc)(int, const struct sockaddr *, void *);
433 int code;
434 struct rtentry *rt;
435
436 /*
437 * Locate icmp structure in mbuf, and check
438 * that not corrupted and of at least minimum length.
439 */
440 icmplen = ntohs(ip->ip_len) - hlen;
441 #ifdef ICMPPRINTFS
442 if (icmpprintfs) {
443 char sbuf[INET_ADDRSTRLEN], dbuf[INET_ADDRSTRLEN];
444 printf("icmp_input from `%s' to `%s', len %d\n",
445 IN_PRINT(sbuf, &ip->ip_src), IN_PRINT(dbuf, &ip->ip_dst),
446 icmplen);
447 }
448 #endif
449 if (icmplen < ICMP_MINLEN) {
450 ICMP_STATINC(ICMP_STAT_TOOSHORT);
451 goto freeit;
452 }
453 i = hlen + min(icmplen, ICMP_ADVLENMIN);
454 if ((m->m_len < i || M_READONLY(m)) && (m = m_pullup(m, i)) == NULL) {
455 ICMP_STATINC(ICMP_STAT_TOOSHORT);
456 return;
457 }
458 ip = mtod(m, struct ip *);
459 m->m_len -= hlen;
460 m->m_data += hlen;
461 icp = mtod(m, struct icmp *);
462 /* Don't need to assert alignment, here. */
463 if (in_cksum(m, icmplen)) {
464 ICMP_STATINC(ICMP_STAT_CHECKSUM);
465 goto freeit;
466 }
467 m->m_len += hlen;
468 m->m_data -= hlen;
469
470 #ifdef ICMPPRINTFS
471 /*
472 * Message type specific processing.
473 */
474 if (icmpprintfs)
475 printf("icmp_input(type:%d, code:%d)\n", icp->icmp_type,
476 icp->icmp_code);
477 #endif
478 if (icp->icmp_type > ICMP_MAXTYPE)
479 goto raw;
480 ICMP_STATINC(ICMP_STAT_INHIST + icp->icmp_type);
481 code = icp->icmp_code;
482 switch (icp->icmp_type) {
483
484 case ICMP_UNREACH:
485 switch (code) {
486 case ICMP_UNREACH_PROTOCOL:
487 code = PRC_UNREACH_PROTOCOL;
488 break;
489
490 case ICMP_UNREACH_PORT:
491 code = PRC_UNREACH_PORT;
492 break;
493
494 case ICMP_UNREACH_SRCFAIL:
495 code = PRC_UNREACH_SRCFAIL;
496 break;
497
498 case ICMP_UNREACH_NEEDFRAG:
499 code = PRC_MSGSIZE;
500 break;
501
502 case ICMP_UNREACH_NET:
503 case ICMP_UNREACH_NET_UNKNOWN:
504 case ICMP_UNREACH_NET_PROHIB:
505 case ICMP_UNREACH_TOSNET:
506 code = PRC_UNREACH_NET;
507 break;
508
509 case ICMP_UNREACH_HOST:
510 case ICMP_UNREACH_HOST_UNKNOWN:
511 case ICMP_UNREACH_ISOLATED:
512 case ICMP_UNREACH_HOST_PROHIB:
513 case ICMP_UNREACH_TOSHOST:
514 case ICMP_UNREACH_ADMIN_PROHIBIT:
515 case ICMP_UNREACH_HOST_PREC:
516 case ICMP_UNREACH_PREC_CUTOFF:
517 code = PRC_UNREACH_HOST;
518 break;
519
520 default:
521 goto badcode;
522 }
523 goto deliver;
524
525 case ICMP_TIMXCEED:
526 if (code > 1)
527 goto badcode;
528 code += PRC_TIMXCEED_INTRANS;
529 goto deliver;
530
531 case ICMP_PARAMPROB:
532 if (code > 1)
533 goto badcode;
534 code = PRC_PARAMPROB;
535 goto deliver;
536
537 case ICMP_SOURCEQUENCH:
538 if (code)
539 goto badcode;
540 code = PRC_QUENCH;
541 goto deliver;
542
543 deliver:
544 /*
545 * Problem with datagram; advise higher level routines.
546 */
547 if (icmplen < ICMP_ADVLENMIN || icmplen < ICMP_ADVLEN(icp) ||
548 icp->icmp_ip.ip_hl < (sizeof(struct ip) >> 2)) {
549 ICMP_STATINC(ICMP_STAT_BADLEN);
550 goto freeit;
551 }
552 if (IN_MULTICAST(icp->icmp_ip.ip_dst.s_addr))
553 goto badcode;
554 #ifdef ICMPPRINTFS
555 if (icmpprintfs)
556 printf("deliver to protocol %d\n", icp->icmp_ip.ip_p);
557 #endif
558 icmpsrc.sin_addr = icp->icmp_ip.ip_dst;
559 ctlfunc = inetsw[ip_protox[icp->icmp_ip.ip_p]].pr_ctlinput;
560 if (ctlfunc)
561 (void) (*ctlfunc)(code, sintosa(&icmpsrc),
562 &icp->icmp_ip);
563 break;
564
565 badcode:
566 ICMP_STATINC(ICMP_STAT_BADCODE);
567 break;
568
569 case ICMP_ECHO:
570 if (!icmpbmcastecho &&
571 (m->m_flags & (M_MCAST | M_BCAST)) != 0) {
572 ICMP_STATINC(ICMP_STAT_BMCASTECHO);
573 break;
574 }
575 icp->icmp_type = ICMP_ECHOREPLY;
576 goto reflect;
577
578 case ICMP_TSTAMP:
579 if (icmplen < ICMP_TSLEN) {
580 ICMP_STATINC(ICMP_STAT_BADLEN);
581 break;
582 }
583 if (!icmpbmcastecho &&
584 (m->m_flags & (M_MCAST | M_BCAST)) != 0) {
585 ICMP_STATINC(ICMP_STAT_BMCASTTSTAMP);
586 break;
587 }
588 icp->icmp_type = ICMP_TSTAMPREPLY;
589 icp->icmp_rtime = iptime();
590 icp->icmp_ttime = icp->icmp_rtime; /* bogus, do later! */
591 goto reflect;
592
593 case ICMP_MASKREQ: {
594 struct ifnet *rcvif;
595 int s, ss;
596 struct ifaddr *ifa = NULL;
597
598 if (icmpmaskrepl == 0)
599 break;
600 /*
601 * We are not able to respond with all ones broadcast
602 * unless we receive it over a point-to-point interface.
603 */
604 if (icmplen < ICMP_MASKLEN) {
605 ICMP_STATINC(ICMP_STAT_BADLEN);
606 break;
607 }
608 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
609 in_nullhost(ip->ip_dst))
610 icmpdst.sin_addr = ip->ip_src;
611 else
612 icmpdst.sin_addr = ip->ip_dst;
613 ss = pserialize_read_enter();
614 rcvif = m_get_rcvif(m, &s);
615 if (__predict_true(rcvif != NULL))
616 ifa = ifaof_ifpforaddr(sintosa(&icmpdst), rcvif);
617 m_put_rcvif(rcvif, &s);
618 if (ifa == NULL) {
619 pserialize_read_exit(ss);
620 break;
621 }
622 ia = ifatoia(ifa);
623 icp->icmp_type = ICMP_MASKREPLY;
624 icp->icmp_mask = ia->ia_sockmask.sin_addr.s_addr;
625 if (in_nullhost(ip->ip_src)) {
626 if (ia->ia_ifp->if_flags & IFF_BROADCAST)
627 ip->ip_src = ia->ia_broadaddr.sin_addr;
628 else if (ia->ia_ifp->if_flags & IFF_POINTOPOINT)
629 ip->ip_src = ia->ia_dstaddr.sin_addr;
630 }
631 pserialize_read_exit(ss);
632 reflect:
633 {
634 uint64_t *icps = percpu_getref(icmpstat_percpu);
635 icps[ICMP_STAT_REFLECT]++;
636 icps[ICMP_STAT_OUTHIST + icp->icmp_type]++;
637 percpu_putref(icmpstat_percpu);
638 }
639 icmp_reflect(m);
640 return;
641 }
642
643 case ICMP_REDIRECT:
644 if (code > 3)
645 goto badcode;
646 if (icmp_rediraccept == 0)
647 goto freeit;
648 if (icmplen < ICMP_ADVLENMIN || icmplen < ICMP_ADVLEN(icp) ||
649 icp->icmp_ip.ip_hl < (sizeof(struct ip) >> 2)) {
650 ICMP_STATINC(ICMP_STAT_BADLEN);
651 break;
652 }
653 /*
654 * Short circuit routing redirects to force
655 * immediate change in the kernel's routing
656 * tables. The message is also handed to anyone
657 * listening on a raw socket (e.g. the routing
658 * daemon for use in updating its tables).
659 */
660 icmpgw.sin_addr = ip->ip_src;
661 icmpdst.sin_addr = icp->icmp_gwaddr;
662 #ifdef ICMPPRINTFS
663 if (icmpprintfs) {
664 char gbuf[INET_ADDRSTRLEN], dbuf[INET_ADDRSTRLEN];
665 printf("redirect dst `%s' to `%s'\n",
666 IN_PRINT(dbuf, &icp->icmp_ip.ip_dst),
667 IN_PRINT(gbuf, &icp->icmp_gwaddr));
668 }
669 #endif
670 icmpsrc.sin_addr = icp->icmp_ip.ip_dst;
671 rt = NULL;
672 rtredirect(sintosa(&icmpsrc), sintosa(&icmpdst),
673 NULL, RTF_GATEWAY | RTF_HOST, sintosa(&icmpgw), &rt);
674 mutex_enter(&icmp_mtx);
675 if (rt != NULL && icmp_redirtimeout != 0) {
676 i = rt_timer_add(rt, icmp_redirect_timeout,
677 icmp_redirect_timeout_q);
678 if (i) {
679 char buf[INET_ADDRSTRLEN];
680 log(LOG_ERR, "ICMP: redirect failed to "
681 "register timeout for route to %s, "
682 "code %d\n",
683 IN_PRINT(buf, &icp->icmp_ip.ip_dst), i);
684 }
685 }
686 mutex_exit(&icmp_mtx);
687 if (rt != NULL)
688 rt_unref(rt);
689
690 pfctlinput(PRC_REDIRECT_HOST, sintosa(&icmpsrc));
691 #if defined(IPSEC)
692 if (ipsec_used)
693 key_sa_routechange((struct sockaddr *)&icmpsrc);
694 #endif
695 break;
696
697 /*
698 * No kernel processing for the following;
699 * just fall through to send to raw listener.
700 */
701 case ICMP_ECHOREPLY:
702 case ICMP_ROUTERADVERT:
703 case ICMP_ROUTERSOLICIT:
704 case ICMP_TSTAMPREPLY:
705 case ICMP_IREQREPLY:
706 case ICMP_MASKREPLY:
707 default:
708 break;
709 }
710
711 raw:
712 rip_input(m, hlen, proto);
713 return;
714
715 freeit:
716 m_freem(m);
717 return;
718 }
719
720 void
721 icmp_input(struct mbuf *m, ...)
722 {
723 int hlen, proto;
724 va_list ap;
725
726 va_start(ap, m);
727 hlen = va_arg(ap, int);
728 proto = va_arg(ap, int);
729 va_end(ap);
730
731 wqinput_input(icmp_wqinput, m, hlen, proto);
732 }
733
734 /*
735 * Reflect the ip packet back to the source
736 */
737 void
738 icmp_reflect(struct mbuf *m)
739 {
740 struct ip *ip = mtod(m, struct ip *);
741 struct in_ifaddr *ia;
742 struct ifaddr *ifa;
743 struct sockaddr_in *sin;
744 struct in_addr t;
745 struct mbuf *opts = NULL;
746 int optlen = (ip->ip_hl << 2) - sizeof(struct ip);
747 struct ifnet *rcvif;
748 struct psref psref, psref_ia;
749 int s;
750 int bound;
751
752 bound = curlwp_bind();
753
754 if (!in_canforward(ip->ip_src) &&
755 ((ip->ip_src.s_addr & IN_CLASSA_NET) !=
756 htonl(IN_LOOPBACKNET << IN_CLASSA_NSHIFT))) {
757 m_freem(m); /* Bad return address */
758 goto done; /* ip_output() will check for broadcast */
759 }
760 t = ip->ip_dst;
761 ip->ip_dst = ip->ip_src;
762 /*
763 * If the incoming packet was addressed directly to us, use
764 * dst as the src for the reply. Otherwise (broadcast or
765 * anonymous), use an address which corresponds to the
766 * incoming interface, with a preference for the address which
767 * corresponds to the route to the destination of the ICMP.
768 */
769
770 /* Look for packet addressed to us */
771 ia = in_get_ia_psref(t, &psref_ia);
772 if (ia && (ia->ia4_flags & IN_IFF_NOTREADY)) {
773 ia4_release(ia, &psref_ia);
774 ia = NULL;
775 }
776
777 rcvif = m_get_rcvif_psref(m, &psref);
778
779 /* look for packet sent to broadcast address */
780 if (ia == NULL && rcvif &&
781 (rcvif->if_flags & IFF_BROADCAST)) {
782 s = pserialize_read_enter();
783 IFADDR_READER_FOREACH(ifa, rcvif) {
784 if (ifa->ifa_addr->sa_family != AF_INET)
785 continue;
786 if (in_hosteq(t,ifatoia(ifa)->ia_broadaddr.sin_addr)) {
787 ia = ifatoia(ifa);
788 if ((ia->ia4_flags & IN_IFF_NOTREADY) == 0)
789 break;
790 ia = NULL;
791 }
792 }
793 if (ia != NULL)
794 ia4_acquire(ia, &psref_ia);
795 pserialize_read_exit(s);
796 }
797
798 sin = ia ? &ia->ia_addr : NULL;
799
800 icmpdst.sin_addr = t;
801
802 /*
803 * if the packet is addressed somewhere else, compute the
804 * source address for packets routed back to the source, and
805 * use that, if it's an address on the interface which
806 * received the packet
807 */
808 if (sin == NULL && rcvif) {
809 struct sockaddr_in sin_dst;
810 struct route icmproute;
811 int errornum;
812
813 sockaddr_in_init(&sin_dst, &ip->ip_dst, 0);
814 memset(&icmproute, 0, sizeof(icmproute));
815 errornum = 0;
816 ia = in_selectsrc(&sin_dst, &icmproute, 0, NULL, &errornum,
817 &psref_ia);
818 /* errornum is never used */
819 rtcache_free(&icmproute);
820 /* check to make sure sin is a source address on rcvif */
821 if (ia != NULL) {
822 sin = &ia->ia_addr;
823 t = sin->sin_addr;
824 sin = NULL;
825 ia4_release(ia, &psref_ia);
826 ia = in_get_ia_on_iface_psref(t, rcvif, &psref_ia);
827 if (ia != NULL)
828 sin = &ia->ia_addr;
829 }
830 }
831
832 /*
833 * if it was not addressed to us, but the route doesn't go out
834 * the source interface, pick an address on the source
835 * interface. This can happen when routing is asymmetric, or
836 * when the incoming packet was encapsulated
837 */
838 if (sin == NULL && rcvif) {
839 KASSERT(ia == NULL);
840 s = pserialize_read_enter();
841 IFADDR_READER_FOREACH(ifa, rcvif) {
842 if (ifa->ifa_addr->sa_family != AF_INET)
843 continue;
844 sin = &(ifatoia(ifa)->ia_addr);
845 ia = ifatoia(ifa);
846 ia4_acquire(ia, &psref_ia);
847 break;
848 }
849 pserialize_read_exit(s);
850 }
851
852 m_put_rcvif_psref(rcvif, &psref);
853
854 /*
855 * The following happens if the packet was not addressed to us,
856 * and was received on an interface with no IP address:
857 * We find the first AF_INET address on the first non-loopback
858 * interface.
859 */
860 if (sin == NULL) {
861 KASSERT(ia == NULL);
862 s = pserialize_read_enter();
863 IN_ADDRLIST_READER_FOREACH(ia) {
864 if (ia->ia_ifp->if_flags & IFF_LOOPBACK)
865 continue;
866 sin = &ia->ia_addr;
867 ia4_acquire(ia, &psref_ia);
868 break;
869 }
870 pserialize_read_exit(s);
871 }
872
873 /*
874 * If we still didn't find an address, punt. We could have an
875 * interface up (and receiving packets) with no address.
876 */
877 if (sin == NULL) {
878 KASSERT(ia == NULL);
879 m_freem(m);
880 goto done;
881 }
882
883 ip->ip_src = sin->sin_addr;
884 ip->ip_ttl = MAXTTL;
885
886 if (ia != NULL)
887 ia4_release(ia, &psref_ia);
888
889 if (optlen > 0) {
890 u_char *cp;
891 int opt, cnt;
892 u_int len;
893
894 /*
895 * Retrieve any source routing from the incoming packet;
896 * add on any record-route or timestamp options.
897 */
898 cp = (u_char *) (ip + 1);
899 if ((opts = ip_srcroute(m)) == NULL &&
900 (opts = m_gethdr(M_DONTWAIT, MT_HEADER))) {
901 MCLAIM(opts, m->m_owner);
902 opts->m_len = sizeof(struct in_addr);
903 *mtod(opts, struct in_addr *) = zeroin_addr;
904 }
905 if (opts) {
906 #ifdef ICMPPRINTFS
907 if (icmpprintfs)
908 printf("icmp_reflect optlen %d rt %d => ",
909 optlen, opts->m_len);
910 #endif
911 for (cnt = optlen; cnt > 0; cnt -= len, cp += len) {
912 opt = cp[IPOPT_OPTVAL];
913 if (opt == IPOPT_EOL)
914 break;
915 if (opt == IPOPT_NOP)
916 len = 1;
917 else {
918 if (cnt < IPOPT_OLEN + sizeof(*cp))
919 break;
920 len = cp[IPOPT_OLEN];
921 if (len < IPOPT_OLEN + sizeof(*cp) ||
922 len > cnt)
923 break;
924 }
925 /*
926 * Should check for overflow, but it "can't happen"
927 */
928 if (opt == IPOPT_RR || opt == IPOPT_TS ||
929 opt == IPOPT_SECURITY) {
930 memmove(mtod(opts, char *) + opts->m_len,
931 cp, len);
932 opts->m_len += len;
933 }
934 }
935 /* Terminate & pad, if necessary */
936 if ((cnt = opts->m_len % 4) != 0) {
937 for (; cnt < 4; cnt++) {
938 *(mtod(opts, char *) + opts->m_len) =
939 IPOPT_EOL;
940 opts->m_len++;
941 }
942 }
943 #ifdef ICMPPRINTFS
944 if (icmpprintfs)
945 printf("%d\n", opts->m_len);
946 #endif
947 }
948 /*
949 * Now strip out original options by copying rest of first
950 * mbuf's data back, and adjust the IP length.
951 */
952 ip->ip_len = htons(ntohs(ip->ip_len) - optlen);
953 ip->ip_hl = sizeof(struct ip) >> 2;
954 m->m_len -= optlen;
955 if (m->m_flags & M_PKTHDR)
956 m->m_pkthdr.len -= optlen;
957 optlen += sizeof(struct ip);
958 memmove(ip + 1, (char *)ip + optlen,
959 (unsigned)(m->m_len - sizeof(struct ip)));
960 }
961 m_tag_delete_nonpersistent(m);
962 m->m_flags &= ~(M_BCAST|M_MCAST);
963
964 /*
965 * Clear any in-bound checksum flags for this packet.
966 */
967 if (m->m_flags & M_PKTHDR)
968 m->m_pkthdr.csum_flags = 0;
969
970 icmp_send(m, opts);
971 done:
972 curlwp_bindx(bound);
973 if (opts)
974 (void)m_free(opts);
975 }
976
977 /*
978 * Send an icmp packet back to the ip level,
979 * after supplying a checksum.
980 */
981 void
982 icmp_send(struct mbuf *m, struct mbuf *opts)
983 {
984 struct ip *ip = mtod(m, struct ip *);
985 int hlen;
986 struct icmp *icp;
987
988 hlen = ip->ip_hl << 2;
989 m->m_data += hlen;
990 m->m_len -= hlen;
991 icp = mtod(m, struct icmp *);
992 icp->icmp_cksum = 0;
993 icp->icmp_cksum = in_cksum(m, ntohs(ip->ip_len) - hlen);
994 m->m_data -= hlen;
995 m->m_len += hlen;
996 #ifdef ICMPPRINTFS
997 if (icmpprintfs) {
998 char sbuf[INET_ADDRSTRLEN], dbuf[INET_ADDRSTRLEN];
999 printf("icmp_send to destination `%s' from `%s'\n",
1000 IN_PRINT(dbuf, &ip->ip_dst), IN_PRINT(sbuf, &ip->ip_src));
1001 }
1002 #endif
1003 (void)ip_output(m, opts, NULL, 0, NULL, NULL);
1004 }
1005
1006 n_time
1007 iptime(void)
1008 {
1009 struct timeval atv;
1010 u_long t;
1011
1012 microtime(&atv);
1013 t = (atv.tv_sec % (24*60*60)) * 1000 + atv.tv_usec / 1000;
1014 return (htonl(t));
1015 }
1016
1017 /*
1018 * sysctl helper routine for net.inet.icmp.returndatabytes. ensures
1019 * that the new value is in the correct range.
1020 */
1021 static int
1022 sysctl_net_inet_icmp_returndatabytes(SYSCTLFN_ARGS)
1023 {
1024 int error, t;
1025 struct sysctlnode node;
1026
1027 node = *rnode;
1028 node.sysctl_data = &t;
1029 t = icmpreturndatabytes;
1030 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1031 if (error || newp == NULL)
1032 return (error);
1033
1034 if (t < 8 || t > 512)
1035 return (EINVAL);
1036 icmpreturndatabytes = t;
1037
1038 return (0);
1039 }
1040
1041 /*
1042 * sysctl helper routine for net.inet.icmp.redirtimeout. ensures that
1043 * the given value is not less than zero and then resets the timeout
1044 * queue.
1045 */
1046 static int
1047 sysctl_net_inet_icmp_redirtimeout(SYSCTLFN_ARGS)
1048 {
1049 int error, tmp;
1050 struct sysctlnode node;
1051
1052 mutex_enter(&icmp_mtx);
1053
1054 node = *rnode;
1055 node.sysctl_data = &tmp;
1056 tmp = icmp_redirtimeout;
1057 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1058 if (error || newp == NULL)
1059 goto out;
1060 if (tmp < 0) {
1061 error = EINVAL;
1062 goto out;
1063 }
1064 icmp_redirtimeout = tmp;
1065
1066 /*
1067 * was it a *defined* side-effect that anyone even *reading*
1068 * this value causes these things to happen?
1069 */
1070 if (icmp_redirect_timeout_q != NULL) {
1071 if (icmp_redirtimeout == 0) {
1072 rt_timer_queue_destroy(icmp_redirect_timeout_q);
1073 icmp_redirect_timeout_q = NULL;
1074 } else {
1075 rt_timer_queue_change(icmp_redirect_timeout_q,
1076 icmp_redirtimeout);
1077 }
1078 } else if (icmp_redirtimeout > 0) {
1079 icmp_redirect_timeout_q =
1080 rt_timer_queue_create(icmp_redirtimeout);
1081 }
1082 error = 0;
1083 out:
1084 mutex_exit(&icmp_mtx);
1085 return error;
1086 }
1087
1088 static int
1089 sysctl_net_inet_icmp_stats(SYSCTLFN_ARGS)
1090 {
1091
1092 return (NETSTAT_SYSCTL(icmpstat_percpu, ICMP_NSTATS));
1093 }
1094
1095 static void
1096 sysctl_netinet_icmp_setup(struct sysctllog **clog)
1097 {
1098
1099 sysctl_createv(clog, 0, NULL, NULL,
1100 CTLFLAG_PERMANENT,
1101 CTLTYPE_NODE, "inet", NULL,
1102 NULL, 0, NULL, 0,
1103 CTL_NET, PF_INET, CTL_EOL);
1104 sysctl_createv(clog, 0, NULL, NULL,
1105 CTLFLAG_PERMANENT,
1106 CTLTYPE_NODE, "icmp",
1107 SYSCTL_DESCR("ICMPv4 related settings"),
1108 NULL, 0, NULL, 0,
1109 CTL_NET, PF_INET, IPPROTO_ICMP, CTL_EOL);
1110
1111 sysctl_createv(clog, 0, NULL, NULL,
1112 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1113 CTLTYPE_INT, "maskrepl",
1114 SYSCTL_DESCR("Respond to ICMP_MASKREQ messages"),
1115 NULL, 0, &icmpmaskrepl, 0,
1116 CTL_NET, PF_INET, IPPROTO_ICMP,
1117 ICMPCTL_MASKREPL, CTL_EOL);
1118 sysctl_createv(clog, 0, NULL, NULL,
1119 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1120 CTLTYPE_INT, "returndatabytes",
1121 SYSCTL_DESCR("Number of bytes to return in an ICMP "
1122 "error message"),
1123 sysctl_net_inet_icmp_returndatabytes, 0,
1124 &icmpreturndatabytes, 0,
1125 CTL_NET, PF_INET, IPPROTO_ICMP,
1126 ICMPCTL_RETURNDATABYTES, CTL_EOL);
1127 sysctl_createv(clog, 0, NULL, NULL,
1128 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1129 CTLTYPE_INT, "errppslimit",
1130 SYSCTL_DESCR("Maximum number of outgoing ICMP error "
1131 "messages per second"),
1132 NULL, 0, &icmperrppslim, 0,
1133 CTL_NET, PF_INET, IPPROTO_ICMP,
1134 ICMPCTL_ERRPPSLIMIT, CTL_EOL);
1135 sysctl_createv(clog, 0, NULL, NULL,
1136 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1137 CTLTYPE_INT, "rediraccept",
1138 SYSCTL_DESCR("Accept ICMP_REDIRECT messages"),
1139 NULL, 0, &icmp_rediraccept, 0,
1140 CTL_NET, PF_INET, IPPROTO_ICMP,
1141 ICMPCTL_REDIRACCEPT, CTL_EOL);
1142 sysctl_createv(clog, 0, NULL, NULL,
1143 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1144 CTLTYPE_INT, "redirtimeout",
1145 SYSCTL_DESCR("Lifetime of ICMP_REDIRECT generated "
1146 "routes"),
1147 sysctl_net_inet_icmp_redirtimeout, 0,
1148 &icmp_redirtimeout, 0,
1149 CTL_NET, PF_INET, IPPROTO_ICMP,
1150 ICMPCTL_REDIRTIMEOUT, CTL_EOL);
1151 sysctl_createv(clog, 0, NULL, NULL,
1152 CTLFLAG_PERMANENT,
1153 CTLTYPE_STRUCT, "stats",
1154 SYSCTL_DESCR("ICMP statistics"),
1155 sysctl_net_inet_icmp_stats, 0, NULL, 0,
1156 CTL_NET, PF_INET, IPPROTO_ICMP, ICMPCTL_STATS,
1157 CTL_EOL);
1158 sysctl_createv(clog, 0, NULL, NULL,
1159 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1160 CTLTYPE_INT, "bmcastecho",
1161 SYSCTL_DESCR("Respond to ICMP_ECHO or ICMP_TIMESTAMP "
1162 "message to the broadcast or multicast"),
1163 NULL, 0, &icmpbmcastecho, 0,
1164 CTL_NET, PF_INET, IPPROTO_ICMP, ICMPCTL_BMCASTECHO,
1165 CTL_EOL);
1166 }
1167
1168 void
1169 icmp_statinc(u_int stat)
1170 {
1171
1172 KASSERT(stat < ICMP_NSTATS);
1173 ICMP_STATINC(stat);
1174 }
1175
1176 /* Table of common MTUs: */
1177
1178 static const u_int mtu_table[] = {
1179 65535, 65280, 32000, 17914, 9180, 8166,
1180 4352, 2002, 1492, 1006, 508, 296, 68, 0
1181 };
1182
1183 void
1184 icmp_mtudisc(struct icmp *icp, struct in_addr faddr)
1185 {
1186 struct icmp_mtudisc_callback *mc;
1187 struct sockaddr *dst = sintosa(&icmpsrc);
1188 struct rtentry *rt;
1189 u_long mtu = ntohs(icp->icmp_nextmtu); /* Why a long? IPv6 */
1190 int error;
1191
1192 rt = rtalloc1(dst, 1);
1193 if (rt == NULL)
1194 return;
1195
1196 /* If we didn't get a host route, allocate one */
1197
1198 if ((rt->rt_flags & RTF_HOST) == 0) {
1199 struct rtentry *nrt;
1200
1201 error = rtrequest(RTM_ADD, dst, rt->rt_gateway, NULL,
1202 RTF_GATEWAY | RTF_HOST | RTF_DYNAMIC, &nrt);
1203 if (error) {
1204 rt_unref(rt);
1205 return;
1206 }
1207 nrt->rt_rmx = rt->rt_rmx;
1208 rt_unref(rt);
1209 rt = nrt;
1210 }
1211
1212 mutex_enter(&icmp_mtx);
1213 error = rt_timer_add(rt, icmp_mtudisc_timeout, ip_mtudisc_timeout_q);
1214 mutex_exit(&icmp_mtx);
1215 if (error) {
1216 rt_unref(rt);
1217 return;
1218 }
1219
1220 if (mtu == 0) {
1221 int i = 0;
1222
1223 mtu = ntohs(icp->icmp_ip.ip_len);
1224 /* Some 4.2BSD-based routers incorrectly adjust the ip_len */
1225 if (mtu > rt->rt_rmx.rmx_mtu && rt->rt_rmx.rmx_mtu != 0)
1226 mtu -= (icp->icmp_ip.ip_hl << 2);
1227
1228 /* If we still can't guess a value, try the route */
1229
1230 if (mtu == 0) {
1231 mtu = rt->rt_rmx.rmx_mtu;
1232
1233 /* If no route mtu, default to the interface mtu */
1234
1235 if (mtu == 0)
1236 mtu = rt->rt_ifp->if_mtu;
1237 }
1238
1239 for (i = 0; i < sizeof(mtu_table) / sizeof(mtu_table[0]); i++)
1240 if (mtu > mtu_table[i]) {
1241 mtu = mtu_table[i];
1242 break;
1243 }
1244 }
1245
1246 /*
1247 * XXX: RTV_MTU is overloaded, since the admin can set it
1248 * to turn off PMTU for a route, and the kernel can
1249 * set it to indicate a serious problem with PMTU
1250 * on a route. We should be using a separate flag
1251 * for the kernel to indicate this.
1252 */
1253
1254 if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0) {
1255 if (mtu < 296 || mtu > rt->rt_ifp->if_mtu)
1256 rt->rt_rmx.rmx_locks |= RTV_MTU;
1257 else if (rt->rt_rmx.rmx_mtu > mtu ||
1258 rt->rt_rmx.rmx_mtu == 0) {
1259 ICMP_STATINC(ICMP_STAT_PMTUCHG);
1260 rt->rt_rmx.rmx_mtu = mtu;
1261 }
1262 }
1263
1264 if (rt != NULL)
1265 rt_unref(rt);
1266
1267 /*
1268 * Notify protocols that the MTU for this destination
1269 * has changed.
1270 */
1271 mutex_enter(&icmp_mtx);
1272 for (mc = LIST_FIRST(&icmp_mtudisc_callbacks); mc != NULL;
1273 mc = LIST_NEXT(mc, mc_list))
1274 (*mc->mc_func)(faddr);
1275 mutex_exit(&icmp_mtx);
1276 }
1277
1278 /*
1279 * Return the next larger or smaller MTU plateau (table from RFC 1191)
1280 * given current value MTU. If DIR is less than zero, a larger plateau
1281 * is returned; otherwise, a smaller value is returned.
1282 */
1283 u_int
1284 ip_next_mtu(u_int mtu, int dir) /* XXX */
1285 {
1286 int i;
1287
1288 for (i = 0; i < (sizeof mtu_table) / (sizeof mtu_table[0]); i++) {
1289 if (mtu >= mtu_table[i])
1290 break;
1291 }
1292
1293 if (dir < 0) {
1294 if (i == 0) {
1295 return 0;
1296 } else {
1297 return mtu_table[i - 1];
1298 }
1299 } else {
1300 if (mtu_table[i] == 0) {
1301 return 0;
1302 } else if (mtu > mtu_table[i]) {
1303 return mtu_table[i];
1304 } else {
1305 return mtu_table[i + 1];
1306 }
1307 }
1308 }
1309
1310 static void
1311 icmp_mtudisc_timeout(struct rtentry *rt, struct rttimer *r)
1312 {
1313
1314 KASSERT(rt != NULL);
1315 rt_assert_referenced(rt);
1316
1317 if ((rt->rt_flags & (RTF_DYNAMIC | RTF_HOST)) ==
1318 (RTF_DYNAMIC | RTF_HOST)) {
1319 rtrequest(RTM_DELETE, rt_getkey(rt),
1320 rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL);
1321 } else {
1322 if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0) {
1323 rt->rt_rmx.rmx_mtu = 0;
1324 }
1325 }
1326 }
1327
1328 static void
1329 icmp_redirect_timeout(struct rtentry *rt, struct rttimer *r)
1330 {
1331
1332 KASSERT(rt != NULL);
1333 rt_assert_referenced(rt);
1334
1335 if ((rt->rt_flags & (RTF_DYNAMIC | RTF_HOST)) ==
1336 (RTF_DYNAMIC | RTF_HOST)) {
1337 rtrequest(RTM_DELETE, rt_getkey(rt),
1338 rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL);
1339 }
1340 }
1341
1342 /*
1343 * Perform rate limit check.
1344 * Returns 0 if it is okay to send the icmp packet.
1345 * Returns 1 if the router SHOULD NOT send this icmp packet due to rate
1346 * limitation.
1347 *
1348 * XXX per-destination/type check necessary?
1349 */
1350 int
1351 icmp_ratelimit(const struct in_addr *dst, const int type,
1352 const int code)
1353 {
1354
1355 /* PPS limit */
1356 if (!ppsratecheck(&icmperrppslim_last, &icmperrpps_count,
1357 icmperrppslim)) {
1358 /* The packet is subject to rate limit */
1359 return 1;
1360 }
1361
1362 /* okay to send */
1363 return 0;
1364 }
1365