ip_icmp.c revision 1.167 1 /* $NetBSD: ip_icmp.c,v 1.167 2018/02/05 08:38:06 maxv Exp $ */
2
3 /*
4 * Copyright (c) 1998, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Public Access Networks Corporation ("Panix"). It was developed under
9 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Jason R. Thorpe of Zembu Labs, Inc.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
38 * All rights reserved.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. Neither the name of the project nor the names of its contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Copyright (c) 1982, 1986, 1988, 1993
67 * The Regents of the University of California. All rights reserved.
68 *
69 * Redistribution and use in source and binary forms, with or without
70 * modification, are permitted provided that the following conditions
71 * are met:
72 * 1. Redistributions of source code must retain the above copyright
73 * notice, this list of conditions and the following disclaimer.
74 * 2. Redistributions in binary form must reproduce the above copyright
75 * notice, this list of conditions and the following disclaimer in the
76 * documentation and/or other materials provided with the distribution.
77 * 3. Neither the name of the University nor the names of its contributors
78 * may be used to endorse or promote products derived from this software
79 * without specific prior written permission.
80 *
81 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
82 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
83 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
84 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
85 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
86 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
87 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
88 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
89 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
90 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
91 * SUCH DAMAGE.
92 *
93 * @(#)ip_icmp.c 8.2 (Berkeley) 1/4/94
94 */
95
96 #include <sys/cdefs.h>
97 __KERNEL_RCSID(0, "$NetBSD: ip_icmp.c,v 1.167 2018/02/05 08:38:06 maxv Exp $");
98
99 #ifdef _KERNEL_OPT
100 #include "opt_ipsec.h"
101 #endif
102
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/mbuf.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h> /* For softnet_lock */
109 #include <sys/kmem.h>
110 #include <sys/time.h>
111 #include <sys/kernel.h>
112 #include <sys/syslog.h>
113 #include <sys/sysctl.h>
114
115 #include <net/if.h>
116 #include <net/route.h>
117
118 #include <netinet/in.h>
119 #include <netinet/in_systm.h>
120 #include <netinet/in_var.h>
121 #include <netinet/ip.h>
122 #include <netinet/ip_icmp.h>
123 #include <netinet/ip_var.h>
124 #include <netinet/in_pcb.h>
125 #include <netinet/in_proto.h>
126 #include <netinet/icmp_var.h>
127 #include <netinet/icmp_private.h>
128 #include <netinet/wqinput.h>
129
130 #ifdef IPSEC
131 #include <netipsec/ipsec.h>
132 #include <netipsec/key.h>
133 #endif
134
135 /*
136 * ICMP routines: error generation, receive packet processing, and
137 * routines to turnaround packets back to the originator, and
138 * host table maintenance routines.
139 */
140
141 int icmpmaskrepl = 0;
142 int icmpbmcastecho = 0;
143 #ifdef ICMPPRINTFS
144 int icmpprintfs = 0;
145 #endif
146 int icmpreturndatabytes = 8;
147
148 percpu_t *icmpstat_percpu;
149
150 /*
151 * List of callbacks to notify when Path MTU changes are made.
152 */
153 struct icmp_mtudisc_callback {
154 LIST_ENTRY(icmp_mtudisc_callback) mc_list;
155 void (*mc_func)(struct in_addr);
156 };
157
158 LIST_HEAD(, icmp_mtudisc_callback) icmp_mtudisc_callbacks =
159 LIST_HEAD_INITIALIZER(&icmp_mtudisc_callbacks);
160
161 /* unused... */
162 u_int ip_next_mtu(u_int, int);
163
164 static int icmperrppslim = 100; /* 100pps */
165 static int icmperrpps_count = 0;
166 static struct timeval icmperrppslim_last;
167 static int icmp_rediraccept = 1;
168 static int icmp_redirtimeout = 600;
169 static struct rttimer_queue *icmp_redirect_timeout_q = NULL;
170
171 /* Protect mtudisc and redirect stuff */
172 static kmutex_t icmp_mtx __cacheline_aligned;
173
174 static void icmp_send(struct mbuf *, struct mbuf *);
175 static void icmp_mtudisc_timeout(struct rtentry *, struct rttimer *);
176 static void icmp_redirect_timeout(struct rtentry *, struct rttimer *);
177
178 static void sysctl_netinet_icmp_setup(struct sysctllog **);
179
180 /* workqueue-based pr_input */
181 static struct wqinput *icmp_wqinput;
182 static void _icmp_input(struct mbuf *, int, int);
183
184 void
185 icmp_init(void)
186 {
187
188 sysctl_netinet_icmp_setup(NULL);
189
190 mutex_init(&icmp_mtx, MUTEX_DEFAULT, IPL_NONE);
191 /*
192 * This is only useful if the user initializes redirtimeout to
193 * something other than zero.
194 */
195 mutex_enter(&icmp_mtx);
196 icmp_redirect_timeout_q = rt_timer_queue_create(icmp_redirtimeout);
197 mutex_exit(&icmp_mtx);
198
199 icmpstat_percpu = percpu_alloc(sizeof(uint64_t) * ICMP_NSTATS);
200 icmp_wqinput = wqinput_create("icmp", _icmp_input);
201 }
202
203 void
204 icmp_mtudisc_lock(void)
205 {
206
207 mutex_enter(&icmp_mtx);
208 }
209
210 void
211 icmp_mtudisc_unlock(void)
212 {
213
214 mutex_exit(&icmp_mtx);
215 }
216
217 /*
218 * Register a Path MTU Discovery callback.
219 */
220 void
221 icmp_mtudisc_callback_register(void (*func)(struct in_addr))
222 {
223 struct icmp_mtudisc_callback *mc, *new;
224
225 new = kmem_alloc(sizeof(*mc), KM_SLEEP);
226
227 mutex_enter(&icmp_mtx);
228 for (mc = LIST_FIRST(&icmp_mtudisc_callbacks); mc != NULL;
229 mc = LIST_NEXT(mc, mc_list)) {
230 if (mc->mc_func == func) {
231 mutex_exit(&icmp_mtx);
232 kmem_free(new, sizeof(*mc));
233 return;
234 }
235 }
236
237 new->mc_func = func;
238 LIST_INSERT_HEAD(&icmp_mtudisc_callbacks, new, mc_list);
239 mutex_exit(&icmp_mtx);
240 }
241
242 /*
243 * Generate an error packet of type error in response to a bad IP packet. 'n'
244 * contains this packet. We create 'm' and send it.
245 *
246 * As we are not required to return everything we have, we return whatever
247 * we can return at ease.
248 *
249 * Note that ICMP datagrams longer than 576 octets are out of spec according
250 * to RFC1812; the limit on icmpreturndatabytes will keep things below that
251 * limit.
252 */
253 void
254 icmp_error(struct mbuf *n, int type, int code, n_long dest, int destmtu)
255 {
256 struct ip *oip = mtod(n, struct ip *), *nip;
257 const unsigned oiphlen = oip->ip_hl << 2;
258 struct icmp *icp;
259 struct mbuf *m;
260 struct m_tag *mtag;
261 unsigned datalen, mblen;
262 int totlen;
263
264 #ifdef ICMPPRINTFS
265 if (icmpprintfs)
266 printf("icmp_error(%p, type:%d, code:%d)\n", oip, type, code);
267 #endif
268
269 if (type != ICMP_REDIRECT)
270 ICMP_STATINC(ICMP_STAT_ERROR);
271
272 /*
273 * Don't send error if:
274 * - The original packet was encrypted.
275 * - The packet is multicast or broadcast.
276 * - The packet is not the first fragment of the message.
277 * - The packet is an ICMP message with an unknown type.
278 */
279 if (n->m_flags & M_DECRYPTED)
280 goto freeit;
281 if (n->m_flags & (M_BCAST|M_MCAST))
282 goto freeit;
283 if (oip->ip_off &~ htons(IP_MF|IP_DF))
284 goto freeit;
285 if (oip->ip_p == IPPROTO_ICMP && type != ICMP_REDIRECT &&
286 n->m_len >= oiphlen + ICMP_MINLEN) {
287 struct icmp *oicp = (struct icmp *)((char *)oip + oiphlen);
288 if (!ICMP_INFOTYPE(oicp->icmp_type)) {
289 ICMP_STATINC(ICMP_STAT_OLDICMP);
290 goto freeit;
291 }
292 }
293
294 /*
295 * First, do a rate limitation check.
296 */
297 if (icmp_ratelimit(&oip->ip_src, type, code)) {
298 /* XXX stat */
299 goto freeit;
300 }
301
302 /*
303 * Compute the number of bytes we will put in 'icmp_ip'. Truncate
304 * it to the size of the mbuf, if it's too big.
305 */
306 datalen = oiphlen + min(icmpreturndatabytes,
307 ntohs(oip->ip_len) - oiphlen);
308 mblen = 0;
309 for (m = n; m && (mblen < datalen); m = m->m_next)
310 mblen += m->m_len;
311 datalen = min(mblen, datalen);
312
313 /*
314 * Compute the total length of the new packet. Truncate it if it's
315 * bigger than the size of a cluster.
316 */
317 CTASSERT(ICMP_MINLEN + sizeof(struct ip) <= MCLBYTES);
318 totlen = sizeof(struct ip) + ICMP_MINLEN + datalen;
319 if (totlen > MCLBYTES) {
320 datalen = MCLBYTES - ICMP_MINLEN - sizeof(struct ip);
321 totlen = MCLBYTES;
322 }
323
324 /*
325 * Allocate the mbuf for the new packet.
326 */
327 m = m_gethdr(M_DONTWAIT, MT_HEADER);
328 if (m && (totlen > MHLEN)) {
329 MCLGET(m, M_DONTWAIT);
330 if ((m->m_flags & M_EXT) == 0) {
331 m_freem(m);
332 m = NULL;
333 }
334 }
335 if (m == NULL)
336 goto freeit;
337 MCLAIM(m, n->m_owner);
338 m->m_len = totlen;
339 m->m_pkthdr.len = m->m_len;
340 m_copy_rcvif(m, n);
341
342 if ((u_int)type > ICMP_MAXTYPE)
343 panic("icmp_error");
344 ICMP_STATINC(ICMP_STAT_OUTHIST + type);
345
346 if ((m->m_flags & M_EXT) == 0)
347 MH_ALIGN(m, m->m_len);
348
349 /*
350 * Get pointers on the IP header and the ICMP header.
351 */
352 nip = mtod(m, struct ip *);
353 icp = (struct icmp *)(nip + 1);
354
355 /*
356 * Fill in the fields of the ICMP header: icmp_type, icmp_code
357 * and icmp_ip. icmp_cksum gets filled later.
358 */
359 icp->icmp_type = type;
360 if (type == ICMP_REDIRECT) {
361 icp->icmp_gwaddr.s_addr = dest;
362 } else {
363 icp->icmp_void = 0;
364 /*
365 * The following assignments assume an overlay with the
366 * zeroed icmp_void field.
367 */
368 if (type == ICMP_PARAMPROB) {
369 icp->icmp_pptr = code;
370 code = 0;
371 } else if (type == ICMP_UNREACH &&
372 code == ICMP_UNREACH_NEEDFRAG && destmtu)
373 icp->icmp_nextmtu = htons(destmtu);
374 }
375 icp->icmp_code = code;
376 m_copydata(n, 0, datalen, (void *)&icp->icmp_ip);
377
378 /*
379 * Now, copy the old IP header (without options) in front of the
380 * ICMP message. The src/dst fields will be swapped in icmp_reflect.
381 */
382 /* ip_v set in ip_output */
383 nip->ip_hl = sizeof(struct ip) >> 2;
384 nip->ip_tos = 0;
385 nip->ip_len = htons(m->m_len);
386 /* ip_id set in ip_output */
387 nip->ip_off = htons(0);
388 /* ip_ttl set in icmp_reflect */
389 nip->ip_p = IPPROTO_ICMP;
390 nip->ip_src = oip->ip_src;
391 nip->ip_dst = oip->ip_dst;
392 /* move PF m_tag to new packet, if it exists */
393 mtag = m_tag_find(n, PACKET_TAG_PF, NULL);
394 if (mtag != NULL) {
395 m_tag_unlink(n, mtag);
396 m_tag_prepend(m, mtag);
397 }
398
399 icmp_reflect(m);
400
401 freeit:
402 m_freem(n);
403 }
404
405 struct sockaddr_in icmpsrc = {
406 .sin_len = sizeof(struct sockaddr_in),
407 .sin_family = AF_INET,
408 };
409
410 /*
411 * Process a received ICMP message.
412 */
413 static void
414 _icmp_input(struct mbuf *m, int hlen, int proto)
415 {
416 struct icmp *icp;
417 struct ip *ip = mtod(m, struct ip *);
418 int icmplen;
419 int i;
420 struct in_ifaddr *ia;
421 void *(*ctlfunc)(int, const struct sockaddr *, void *);
422 int code;
423 struct rtentry *rt;
424 struct sockaddr_in icmpdst = {
425 .sin_len = sizeof(struct sockaddr_in),
426 .sin_family = AF_INET,
427 };
428 struct sockaddr_in icmpgw = {
429 .sin_len = sizeof(struct sockaddr_in),
430 .sin_family = AF_INET,
431 };
432
433 /*
434 * Locate icmp structure in mbuf, and check
435 * that not corrupted and of at least minimum length.
436 */
437 icmplen = ntohs(ip->ip_len) - hlen;
438 #ifdef ICMPPRINTFS
439 if (icmpprintfs) {
440 char sbuf[INET_ADDRSTRLEN], dbuf[INET_ADDRSTRLEN];
441 printf("icmp_input from `%s' to `%s', len %d\n",
442 IN_PRINT(sbuf, &ip->ip_src), IN_PRINT(dbuf, &ip->ip_dst),
443 icmplen);
444 }
445 #endif
446 if (icmplen < ICMP_MINLEN) {
447 ICMP_STATINC(ICMP_STAT_TOOSHORT);
448 goto freeit;
449 }
450 i = hlen + min(icmplen, ICMP_ADVLENMIN);
451 if ((m->m_len < i || M_READONLY(m)) && (m = m_pullup(m, i)) == NULL) {
452 ICMP_STATINC(ICMP_STAT_TOOSHORT);
453 return;
454 }
455 ip = mtod(m, struct ip *);
456 m->m_len -= hlen;
457 m->m_data += hlen;
458 icp = mtod(m, struct icmp *);
459 /* Don't need to assert alignment, here. */
460 if (in_cksum(m, icmplen)) {
461 ICMP_STATINC(ICMP_STAT_CHECKSUM);
462 goto freeit;
463 }
464 m->m_len += hlen;
465 m->m_data -= hlen;
466
467 #ifdef ICMPPRINTFS
468 /*
469 * Message type specific processing.
470 */
471 if (icmpprintfs)
472 printf("icmp_input(type:%d, code:%d)\n", icp->icmp_type,
473 icp->icmp_code);
474 #endif
475 if (icp->icmp_type > ICMP_MAXTYPE)
476 goto raw;
477 ICMP_STATINC(ICMP_STAT_INHIST + icp->icmp_type);
478 code = icp->icmp_code;
479
480 switch (icp->icmp_type) {
481 case ICMP_UNREACH:
482 switch (code) {
483 case ICMP_UNREACH_PROTOCOL:
484 code = PRC_UNREACH_PROTOCOL;
485 break;
486
487 case ICMP_UNREACH_PORT:
488 code = PRC_UNREACH_PORT;
489 break;
490
491 case ICMP_UNREACH_SRCFAIL:
492 code = PRC_UNREACH_SRCFAIL;
493 break;
494
495 case ICMP_UNREACH_NEEDFRAG:
496 code = PRC_MSGSIZE;
497 break;
498
499 case ICMP_UNREACH_NET:
500 case ICMP_UNREACH_NET_UNKNOWN:
501 case ICMP_UNREACH_NET_PROHIB:
502 case ICMP_UNREACH_TOSNET:
503 code = PRC_UNREACH_NET;
504 break;
505
506 case ICMP_UNREACH_HOST:
507 case ICMP_UNREACH_HOST_UNKNOWN:
508 case ICMP_UNREACH_ISOLATED:
509 case ICMP_UNREACH_HOST_PROHIB:
510 case ICMP_UNREACH_TOSHOST:
511 case ICMP_UNREACH_ADMIN_PROHIBIT:
512 case ICMP_UNREACH_HOST_PREC:
513 case ICMP_UNREACH_PREC_CUTOFF:
514 code = PRC_UNREACH_HOST;
515 break;
516
517 default:
518 goto badcode;
519 }
520 goto deliver;
521
522 case ICMP_TIMXCEED:
523 if (code > 1)
524 goto badcode;
525 code += PRC_TIMXCEED_INTRANS;
526 goto deliver;
527
528 case ICMP_PARAMPROB:
529 if (code > 1)
530 goto badcode;
531 code = PRC_PARAMPROB;
532 goto deliver;
533
534 case ICMP_SOURCEQUENCH:
535 if (code)
536 goto badcode;
537 code = PRC_QUENCH;
538 goto deliver;
539
540 deliver:
541 /*
542 * Problem with datagram; advise higher level routines.
543 */
544 if (icmplen < ICMP_ADVLENMIN || icmplen < ICMP_ADVLEN(icp) ||
545 icp->icmp_ip.ip_hl < (sizeof(struct ip) >> 2)) {
546 ICMP_STATINC(ICMP_STAT_BADLEN);
547 goto freeit;
548 }
549 if (IN_MULTICAST(icp->icmp_ip.ip_dst.s_addr))
550 goto badcode;
551 #ifdef ICMPPRINTFS
552 if (icmpprintfs)
553 printf("deliver to protocol %d\n", icp->icmp_ip.ip_p);
554 #endif
555 icmpsrc.sin_addr = icp->icmp_ip.ip_dst;
556 ctlfunc = inetsw[ip_protox[icp->icmp_ip.ip_p]].pr_ctlinput;
557 if (ctlfunc)
558 (void) (*ctlfunc)(code, sintosa(&icmpsrc),
559 &icp->icmp_ip);
560 break;
561
562 badcode:
563 ICMP_STATINC(ICMP_STAT_BADCODE);
564 break;
565
566 case ICMP_ECHO:
567 if (!icmpbmcastecho &&
568 (m->m_flags & (M_MCAST | M_BCAST)) != 0) {
569 ICMP_STATINC(ICMP_STAT_BMCASTECHO);
570 break;
571 }
572 icp->icmp_type = ICMP_ECHOREPLY;
573 goto reflect;
574
575 case ICMP_TSTAMP:
576 if (icmplen < ICMP_TSLEN) {
577 ICMP_STATINC(ICMP_STAT_BADLEN);
578 break;
579 }
580 if (!icmpbmcastecho &&
581 (m->m_flags & (M_MCAST | M_BCAST)) != 0) {
582 ICMP_STATINC(ICMP_STAT_BMCASTTSTAMP);
583 break;
584 }
585 icp->icmp_type = ICMP_TSTAMPREPLY;
586 icp->icmp_rtime = iptime();
587 icp->icmp_ttime = icp->icmp_rtime; /* bogus, do later! */
588 goto reflect;
589
590 case ICMP_MASKREQ: {
591 struct ifnet *rcvif;
592 int s, ss;
593 struct ifaddr *ifa = NULL;
594
595 if (icmpmaskrepl == 0)
596 break;
597 /*
598 * We are not able to respond with all ones broadcast
599 * unless we receive it over a point-to-point interface.
600 */
601 if (icmplen < ICMP_MASKLEN) {
602 ICMP_STATINC(ICMP_STAT_BADLEN);
603 break;
604 }
605 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
606 in_nullhost(ip->ip_dst))
607 icmpdst.sin_addr = ip->ip_src;
608 else
609 icmpdst.sin_addr = ip->ip_dst;
610 ss = pserialize_read_enter();
611 rcvif = m_get_rcvif(m, &s);
612 if (__predict_true(rcvif != NULL))
613 ifa = ifaof_ifpforaddr(sintosa(&icmpdst), rcvif);
614 m_put_rcvif(rcvif, &s);
615 if (ifa == NULL) {
616 pserialize_read_exit(ss);
617 break;
618 }
619 ia = ifatoia(ifa);
620 icp->icmp_type = ICMP_MASKREPLY;
621 icp->icmp_mask = ia->ia_sockmask.sin_addr.s_addr;
622 if (in_nullhost(ip->ip_src)) {
623 if (ia->ia_ifp->if_flags & IFF_BROADCAST)
624 ip->ip_src = ia->ia_broadaddr.sin_addr;
625 else if (ia->ia_ifp->if_flags & IFF_POINTOPOINT)
626 ip->ip_src = ia->ia_dstaddr.sin_addr;
627 }
628 pserialize_read_exit(ss);
629 reflect:
630 {
631 uint64_t *icps = percpu_getref(icmpstat_percpu);
632 icps[ICMP_STAT_REFLECT]++;
633 icps[ICMP_STAT_OUTHIST + icp->icmp_type]++;
634 percpu_putref(icmpstat_percpu);
635 }
636 icmp_reflect(m);
637 return;
638 }
639
640 case ICMP_REDIRECT:
641 if (code > 3)
642 goto badcode;
643 if (icmp_rediraccept == 0)
644 goto freeit;
645 if (icmplen < ICMP_ADVLENMIN || icmplen < ICMP_ADVLEN(icp) ||
646 icp->icmp_ip.ip_hl < (sizeof(struct ip) >> 2)) {
647 ICMP_STATINC(ICMP_STAT_BADLEN);
648 break;
649 }
650 /*
651 * Short circuit routing redirects to force
652 * immediate change in the kernel's routing
653 * tables. The message is also handed to anyone
654 * listening on a raw socket (e.g. the routing
655 * daemon for use in updating its tables).
656 */
657 icmpgw.sin_addr = ip->ip_src;
658 icmpdst.sin_addr = icp->icmp_gwaddr;
659 #ifdef ICMPPRINTFS
660 if (icmpprintfs) {
661 char gbuf[INET_ADDRSTRLEN], dbuf[INET_ADDRSTRLEN];
662 printf("redirect dst `%s' to `%s'\n",
663 IN_PRINT(dbuf, &icp->icmp_ip.ip_dst),
664 IN_PRINT(gbuf, &icp->icmp_gwaddr));
665 }
666 #endif
667 icmpsrc.sin_addr = icp->icmp_ip.ip_dst;
668 rt = NULL;
669 rtredirect(sintosa(&icmpsrc), sintosa(&icmpdst),
670 NULL, RTF_GATEWAY | RTF_HOST, sintosa(&icmpgw), &rt);
671 mutex_enter(&icmp_mtx);
672 if (rt != NULL && icmp_redirtimeout != 0) {
673 i = rt_timer_add(rt, icmp_redirect_timeout,
674 icmp_redirect_timeout_q);
675 if (i) {
676 char buf[INET_ADDRSTRLEN];
677 log(LOG_ERR, "ICMP: redirect failed to "
678 "register timeout for route to %s, "
679 "code %d\n",
680 IN_PRINT(buf, &icp->icmp_ip.ip_dst), i);
681 }
682 }
683 mutex_exit(&icmp_mtx);
684 if (rt != NULL)
685 rt_unref(rt);
686
687 pfctlinput(PRC_REDIRECT_HOST, sintosa(&icmpsrc));
688 #if defined(IPSEC)
689 if (ipsec_used)
690 key_sa_routechange((struct sockaddr *)&icmpsrc);
691 #endif
692 break;
693
694 /*
695 * No kernel processing for the following;
696 * just fall through to send to raw listener.
697 */
698 case ICMP_ECHOREPLY:
699 case ICMP_ROUTERADVERT:
700 case ICMP_ROUTERSOLICIT:
701 case ICMP_TSTAMPREPLY:
702 case ICMP_IREQREPLY:
703 case ICMP_MASKREPLY:
704 default:
705 break;
706 }
707
708 raw:
709 rip_input(m, hlen, proto);
710 return;
711
712 freeit:
713 m_freem(m);
714 return;
715 }
716
717 void
718 icmp_input(struct mbuf *m, ...)
719 {
720 int hlen, proto;
721 va_list ap;
722
723 va_start(ap, m);
724 hlen = va_arg(ap, int);
725 proto = va_arg(ap, int);
726 va_end(ap);
727
728 wqinput_input(icmp_wqinput, m, hlen, proto);
729 }
730
731 /*
732 * Reflect the ip packet back to the source
733 */
734 void
735 icmp_reflect(struct mbuf *m)
736 {
737 struct ip *ip = mtod(m, struct ip *);
738 struct in_ifaddr *ia;
739 struct ifaddr *ifa;
740 struct sockaddr_in *sin;
741 struct in_addr t;
742 struct mbuf *opts = NULL;
743 int optlen = (ip->ip_hl << 2) - sizeof(struct ip);
744 struct ifnet *rcvif;
745 struct psref psref, psref_ia;
746 int s;
747 int bound;
748
749 bound = curlwp_bind();
750
751 if (!in_canforward(ip->ip_src) &&
752 ((ip->ip_src.s_addr & IN_CLASSA_NET) !=
753 htonl(IN_LOOPBACKNET << IN_CLASSA_NSHIFT))) {
754 m_freem(m); /* Bad return address */
755 goto done; /* ip_output() will check for broadcast */
756 }
757 t = ip->ip_dst;
758 ip->ip_dst = ip->ip_src;
759
760 /*
761 * If the incoming packet was addressed directly to us, use
762 * dst as the src for the reply. Otherwise (broadcast or
763 * anonymous), use an address which corresponds to the
764 * incoming interface, with a preference for the address which
765 * corresponds to the route to the destination of the ICMP.
766 */
767
768 /* Look for packet addressed to us */
769 ia = in_get_ia_psref(t, &psref_ia);
770 if (ia && (ia->ia4_flags & IN_IFF_NOTREADY)) {
771 ia4_release(ia, &psref_ia);
772 ia = NULL;
773 }
774
775 rcvif = m_get_rcvif_psref(m, &psref);
776
777 /* look for packet sent to broadcast address */
778 if (ia == NULL && rcvif &&
779 (rcvif->if_flags & IFF_BROADCAST)) {
780 s = pserialize_read_enter();
781 IFADDR_READER_FOREACH(ifa, rcvif) {
782 if (ifa->ifa_addr->sa_family != AF_INET)
783 continue;
784 if (in_hosteq(t,ifatoia(ifa)->ia_broadaddr.sin_addr)) {
785 ia = ifatoia(ifa);
786 if ((ia->ia4_flags & IN_IFF_NOTREADY) == 0)
787 break;
788 ia = NULL;
789 }
790 }
791 if (ia != NULL)
792 ia4_acquire(ia, &psref_ia);
793 pserialize_read_exit(s);
794 }
795
796 sin = ia ? &ia->ia_addr : NULL;
797
798 /*
799 * if the packet is addressed somewhere else, compute the
800 * source address for packets routed back to the source, and
801 * use that, if it's an address on the interface which
802 * received the packet
803 */
804 if (sin == NULL && rcvif) {
805 struct sockaddr_in sin_dst;
806 struct route icmproute;
807 int errornum;
808
809 sockaddr_in_init(&sin_dst, &ip->ip_dst, 0);
810 memset(&icmproute, 0, sizeof(icmproute));
811 errornum = 0;
812 ia = in_selectsrc(&sin_dst, &icmproute, 0, NULL, &errornum,
813 &psref_ia);
814 /* errornum is never used */
815 rtcache_free(&icmproute);
816 /* check to make sure sin is a source address on rcvif */
817 if (ia != NULL) {
818 sin = &ia->ia_addr;
819 t = sin->sin_addr;
820 sin = NULL;
821 ia4_release(ia, &psref_ia);
822 ia = in_get_ia_on_iface_psref(t, rcvif, &psref_ia);
823 if (ia != NULL)
824 sin = &ia->ia_addr;
825 }
826 }
827
828 /*
829 * if it was not addressed to us, but the route doesn't go out
830 * the source interface, pick an address on the source
831 * interface. This can happen when routing is asymmetric, or
832 * when the incoming packet was encapsulated
833 */
834 if (sin == NULL && rcvif) {
835 KASSERT(ia == NULL);
836 s = pserialize_read_enter();
837 IFADDR_READER_FOREACH(ifa, rcvif) {
838 if (ifa->ifa_addr->sa_family != AF_INET)
839 continue;
840 sin = &(ifatoia(ifa)->ia_addr);
841 ia = ifatoia(ifa);
842 ia4_acquire(ia, &psref_ia);
843 break;
844 }
845 pserialize_read_exit(s);
846 }
847
848 m_put_rcvif_psref(rcvif, &psref);
849
850 /*
851 * The following happens if the packet was not addressed to us,
852 * and was received on an interface with no IP address:
853 * We find the first AF_INET address on the first non-loopback
854 * interface.
855 */
856 if (sin == NULL) {
857 KASSERT(ia == NULL);
858 s = pserialize_read_enter();
859 IN_ADDRLIST_READER_FOREACH(ia) {
860 if (ia->ia_ifp->if_flags & IFF_LOOPBACK)
861 continue;
862 sin = &ia->ia_addr;
863 ia4_acquire(ia, &psref_ia);
864 break;
865 }
866 pserialize_read_exit(s);
867 }
868
869 /*
870 * If we still didn't find an address, punt. We could have an
871 * interface up (and receiving packets) with no address.
872 */
873 if (sin == NULL) {
874 KASSERT(ia == NULL);
875 m_freem(m);
876 goto done;
877 }
878
879 ip->ip_src = sin->sin_addr;
880 ip->ip_ttl = MAXTTL;
881
882 if (ia != NULL)
883 ia4_release(ia, &psref_ia);
884
885 if (optlen > 0) {
886 u_char *cp;
887 int opt, cnt;
888 u_int len;
889
890 /*
891 * Retrieve any source routing from the incoming packet;
892 * add on any record-route or timestamp options.
893 */
894 cp = (u_char *)(ip + 1);
895 if ((opts = ip_srcroute(m)) == NULL &&
896 (opts = m_gethdr(M_DONTWAIT, MT_HEADER))) {
897 MCLAIM(opts, m->m_owner);
898 opts->m_len = sizeof(struct in_addr);
899 *mtod(opts, struct in_addr *) = zeroin_addr;
900 }
901
902 if (opts) {
903 #ifdef ICMPPRINTFS
904 if (icmpprintfs)
905 printf("icmp_reflect optlen %d rt %d => ",
906 optlen, opts->m_len);
907 #endif
908 for (cnt = optlen; cnt > 0; cnt -= len, cp += len) {
909 opt = cp[IPOPT_OPTVAL];
910 if (opt == IPOPT_EOL)
911 break;
912 if (opt == IPOPT_NOP)
913 len = 1;
914 else {
915 if (cnt < IPOPT_OLEN + sizeof(*cp))
916 break;
917 len = cp[IPOPT_OLEN];
918 if (len < IPOPT_OLEN + sizeof(*cp) ||
919 len > cnt)
920 break;
921 }
922
923 /* Overflows can't happen */
924 KASSERT(opts->m_len + len <= MHLEN);
925
926 if (opt == IPOPT_RR || opt == IPOPT_TS ||
927 opt == IPOPT_SECURITY) {
928 memmove(mtod(opts, char *) +
929 opts->m_len, cp, len);
930 opts->m_len += len;
931 }
932 }
933
934 /* Terminate & pad, if necessary */
935 if ((cnt = opts->m_len % 4) != 0) {
936 for (; cnt < 4; cnt++) {
937 *(mtod(opts, char *) + opts->m_len) =
938 IPOPT_EOL;
939 opts->m_len++;
940 }
941 }
942 #ifdef ICMPPRINTFS
943 if (icmpprintfs)
944 printf("%d\n", opts->m_len);
945 #endif
946 }
947
948 /*
949 * Now strip out original options by copying rest of first
950 * mbuf's data back, and adjust the IP length.
951 */
952 ip->ip_len = htons(ntohs(ip->ip_len) - optlen);
953 ip->ip_hl = sizeof(struct ip) >> 2;
954 m->m_len -= optlen;
955 if (m->m_flags & M_PKTHDR)
956 m->m_pkthdr.len -= optlen;
957 optlen += sizeof(struct ip);
958 memmove(ip + 1, (char *)ip + optlen,
959 (unsigned)(m->m_len - sizeof(struct ip)));
960 }
961 m_tag_delete_nonpersistent(m);
962 m->m_flags &= ~(M_BCAST|M_MCAST);
963
964 /*
965 * Clear any in-bound checksum flags for this packet.
966 */
967 if (m->m_flags & M_PKTHDR)
968 m->m_pkthdr.csum_flags = 0;
969
970 icmp_send(m, opts);
971 done:
972 curlwp_bindx(bound);
973 if (opts)
974 (void)m_free(opts);
975 }
976
977 /*
978 * Send an icmp packet back to the ip level,
979 * after supplying a checksum.
980 */
981 static void
982 icmp_send(struct mbuf *m, struct mbuf *opts)
983 {
984 struct ip *ip = mtod(m, struct ip *);
985 int hlen;
986 struct icmp *icp;
987
988 hlen = ip->ip_hl << 2;
989 m->m_data += hlen;
990 m->m_len -= hlen;
991 icp = mtod(m, struct icmp *);
992 icp->icmp_cksum = 0;
993 icp->icmp_cksum = in_cksum(m, ntohs(ip->ip_len) - hlen);
994 m->m_data -= hlen;
995 m->m_len += hlen;
996 #ifdef ICMPPRINTFS
997 if (icmpprintfs) {
998 char sbuf[INET_ADDRSTRLEN], dbuf[INET_ADDRSTRLEN];
999 printf("icmp_send to destination `%s' from `%s'\n",
1000 IN_PRINT(dbuf, &ip->ip_dst), IN_PRINT(sbuf, &ip->ip_src));
1001 }
1002 #endif
1003 (void)ip_output(m, opts, NULL, 0, NULL, NULL);
1004 }
1005
1006 n_time
1007 iptime(void)
1008 {
1009 struct timeval atv;
1010 u_long t;
1011
1012 microtime(&atv);
1013 t = (atv.tv_sec % (24*60*60)) * 1000 + atv.tv_usec / 1000;
1014 return (htonl(t));
1015 }
1016
1017 /*
1018 * sysctl helper routine for net.inet.icmp.returndatabytes. ensures
1019 * that the new value is in the correct range.
1020 */
1021 static int
1022 sysctl_net_inet_icmp_returndatabytes(SYSCTLFN_ARGS)
1023 {
1024 int error, t;
1025 struct sysctlnode node;
1026
1027 node = *rnode;
1028 node.sysctl_data = &t;
1029 t = icmpreturndatabytes;
1030 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1031 if (error || newp == NULL)
1032 return error;
1033
1034 if (t < 8 || t > 512)
1035 return EINVAL;
1036 icmpreturndatabytes = t;
1037
1038 return 0;
1039 }
1040
1041 /*
1042 * sysctl helper routine for net.inet.icmp.redirtimeout. ensures that
1043 * the given value is not less than zero and then resets the timeout
1044 * queue.
1045 */
1046 static int
1047 sysctl_net_inet_icmp_redirtimeout(SYSCTLFN_ARGS)
1048 {
1049 int error, tmp;
1050 struct sysctlnode node;
1051
1052 mutex_enter(&icmp_mtx);
1053
1054 node = *rnode;
1055 node.sysctl_data = &tmp;
1056 tmp = icmp_redirtimeout;
1057 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1058 if (error || newp == NULL)
1059 goto out;
1060 if (tmp < 0) {
1061 error = EINVAL;
1062 goto out;
1063 }
1064 icmp_redirtimeout = tmp;
1065
1066 /*
1067 * was it a *defined* side-effect that anyone even *reading*
1068 * this value causes these things to happen?
1069 */
1070 if (icmp_redirect_timeout_q != NULL) {
1071 if (icmp_redirtimeout == 0) {
1072 rt_timer_queue_destroy(icmp_redirect_timeout_q);
1073 icmp_redirect_timeout_q = NULL;
1074 } else {
1075 rt_timer_queue_change(icmp_redirect_timeout_q,
1076 icmp_redirtimeout);
1077 }
1078 } else if (icmp_redirtimeout > 0) {
1079 icmp_redirect_timeout_q =
1080 rt_timer_queue_create(icmp_redirtimeout);
1081 }
1082 error = 0;
1083 out:
1084 mutex_exit(&icmp_mtx);
1085 return error;
1086 }
1087
1088 static int
1089 sysctl_net_inet_icmp_stats(SYSCTLFN_ARGS)
1090 {
1091
1092 return (NETSTAT_SYSCTL(icmpstat_percpu, ICMP_NSTATS));
1093 }
1094
1095 static void
1096 sysctl_netinet_icmp_setup(struct sysctllog **clog)
1097 {
1098
1099 sysctl_createv(clog, 0, NULL, NULL,
1100 CTLFLAG_PERMANENT,
1101 CTLTYPE_NODE, "inet", NULL,
1102 NULL, 0, NULL, 0,
1103 CTL_NET, PF_INET, CTL_EOL);
1104 sysctl_createv(clog, 0, NULL, NULL,
1105 CTLFLAG_PERMANENT,
1106 CTLTYPE_NODE, "icmp",
1107 SYSCTL_DESCR("ICMPv4 related settings"),
1108 NULL, 0, NULL, 0,
1109 CTL_NET, PF_INET, IPPROTO_ICMP, CTL_EOL);
1110
1111 sysctl_createv(clog, 0, NULL, NULL,
1112 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1113 CTLTYPE_INT, "maskrepl",
1114 SYSCTL_DESCR("Respond to ICMP_MASKREQ messages"),
1115 NULL, 0, &icmpmaskrepl, 0,
1116 CTL_NET, PF_INET, IPPROTO_ICMP,
1117 ICMPCTL_MASKREPL, CTL_EOL);
1118 sysctl_createv(clog, 0, NULL, NULL,
1119 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1120 CTLTYPE_INT, "returndatabytes",
1121 SYSCTL_DESCR("Number of bytes to return in an ICMP "
1122 "error message"),
1123 sysctl_net_inet_icmp_returndatabytes, 0,
1124 &icmpreturndatabytes, 0,
1125 CTL_NET, PF_INET, IPPROTO_ICMP,
1126 ICMPCTL_RETURNDATABYTES, CTL_EOL);
1127 sysctl_createv(clog, 0, NULL, NULL,
1128 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1129 CTLTYPE_INT, "errppslimit",
1130 SYSCTL_DESCR("Maximum number of outgoing ICMP error "
1131 "messages per second"),
1132 NULL, 0, &icmperrppslim, 0,
1133 CTL_NET, PF_INET, IPPROTO_ICMP,
1134 ICMPCTL_ERRPPSLIMIT, CTL_EOL);
1135 sysctl_createv(clog, 0, NULL, NULL,
1136 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1137 CTLTYPE_INT, "rediraccept",
1138 SYSCTL_DESCR("Accept ICMP_REDIRECT messages"),
1139 NULL, 0, &icmp_rediraccept, 0,
1140 CTL_NET, PF_INET, IPPROTO_ICMP,
1141 ICMPCTL_REDIRACCEPT, CTL_EOL);
1142 sysctl_createv(clog, 0, NULL, NULL,
1143 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1144 CTLTYPE_INT, "redirtimeout",
1145 SYSCTL_DESCR("Lifetime of ICMP_REDIRECT generated "
1146 "routes"),
1147 sysctl_net_inet_icmp_redirtimeout, 0,
1148 &icmp_redirtimeout, 0,
1149 CTL_NET, PF_INET, IPPROTO_ICMP,
1150 ICMPCTL_REDIRTIMEOUT, CTL_EOL);
1151 sysctl_createv(clog, 0, NULL, NULL,
1152 CTLFLAG_PERMANENT,
1153 CTLTYPE_STRUCT, "stats",
1154 SYSCTL_DESCR("ICMP statistics"),
1155 sysctl_net_inet_icmp_stats, 0, NULL, 0,
1156 CTL_NET, PF_INET, IPPROTO_ICMP, ICMPCTL_STATS,
1157 CTL_EOL);
1158 sysctl_createv(clog, 0, NULL, NULL,
1159 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1160 CTLTYPE_INT, "bmcastecho",
1161 SYSCTL_DESCR("Respond to ICMP_ECHO or ICMP_TIMESTAMP "
1162 "message to the broadcast or multicast"),
1163 NULL, 0, &icmpbmcastecho, 0,
1164 CTL_NET, PF_INET, IPPROTO_ICMP, ICMPCTL_BMCASTECHO,
1165 CTL_EOL);
1166 }
1167
1168 void
1169 icmp_statinc(u_int stat)
1170 {
1171
1172 KASSERT(stat < ICMP_NSTATS);
1173 ICMP_STATINC(stat);
1174 }
1175
1176 /* Table of common MTUs */
1177 static const u_int mtu_table[] = {
1178 65535, 65280, 32000, 17914, 9180, 8166,
1179 4352, 2002, 1492, 1006, 508, 296, 68, 0
1180 };
1181
1182 void
1183 icmp_mtudisc(struct icmp *icp, struct in_addr faddr)
1184 {
1185 struct icmp_mtudisc_callback *mc;
1186 struct sockaddr *dst = sintosa(&icmpsrc);
1187 struct rtentry *rt;
1188 u_long mtu = ntohs(icp->icmp_nextmtu); /* Why a long? IPv6 */
1189 int error;
1190
1191 rt = rtalloc1(dst, 1);
1192 if (rt == NULL)
1193 return;
1194
1195 /* If we didn't get a host route, allocate one */
1196 if ((rt->rt_flags & RTF_HOST) == 0) {
1197 struct rtentry *nrt;
1198
1199 error = rtrequest(RTM_ADD, dst, rt->rt_gateway, NULL,
1200 RTF_GATEWAY | RTF_HOST | RTF_DYNAMIC, &nrt);
1201 if (error) {
1202 rt_unref(rt);
1203 return;
1204 }
1205 nrt->rt_rmx = rt->rt_rmx;
1206 rt_unref(rt);
1207 rt = nrt;
1208 }
1209
1210 mutex_enter(&icmp_mtx);
1211 error = rt_timer_add(rt, icmp_mtudisc_timeout, ip_mtudisc_timeout_q);
1212 mutex_exit(&icmp_mtx);
1213 if (error) {
1214 rt_unref(rt);
1215 return;
1216 }
1217
1218 if (mtu == 0) {
1219 int i = 0;
1220
1221 mtu = ntohs(icp->icmp_ip.ip_len);
1222 /* Some 4.2BSD-based routers incorrectly adjust the ip_len */
1223 if (mtu > rt->rt_rmx.rmx_mtu && rt->rt_rmx.rmx_mtu != 0)
1224 mtu -= (icp->icmp_ip.ip_hl << 2);
1225
1226 /* If we still can't guess a value, try the route */
1227 if (mtu == 0) {
1228 mtu = rt->rt_rmx.rmx_mtu;
1229
1230 /* If no route mtu, default to the interface mtu */
1231 if (mtu == 0)
1232 mtu = rt->rt_ifp->if_mtu;
1233 }
1234
1235 for (i = 0; i < sizeof(mtu_table) / sizeof(mtu_table[0]); i++) {
1236 if (mtu > mtu_table[i]) {
1237 mtu = mtu_table[i];
1238 break;
1239 }
1240 }
1241 }
1242
1243 /*
1244 * XXX: RTV_MTU is overloaded, since the admin can set it
1245 * to turn off PMTU for a route, and the kernel can
1246 * set it to indicate a serious problem with PMTU
1247 * on a route. We should be using a separate flag
1248 * for the kernel to indicate this.
1249 */
1250
1251 if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0) {
1252 if (mtu < 296 || mtu > rt->rt_ifp->if_mtu)
1253 rt->rt_rmx.rmx_locks |= RTV_MTU;
1254 else if (rt->rt_rmx.rmx_mtu > mtu ||
1255 rt->rt_rmx.rmx_mtu == 0) {
1256 ICMP_STATINC(ICMP_STAT_PMTUCHG);
1257 rt->rt_rmx.rmx_mtu = mtu;
1258 }
1259 }
1260
1261 if (rt != NULL)
1262 rt_unref(rt);
1263
1264 /*
1265 * Notify protocols that the MTU for this destination
1266 * has changed.
1267 */
1268 mutex_enter(&icmp_mtx);
1269 for (mc = LIST_FIRST(&icmp_mtudisc_callbacks); mc != NULL;
1270 mc = LIST_NEXT(mc, mc_list))
1271 (*mc->mc_func)(faddr);
1272 mutex_exit(&icmp_mtx);
1273 }
1274
1275 /*
1276 * Return the next larger or smaller MTU plateau (table from RFC 1191)
1277 * given current value MTU. If DIR is less than zero, a larger plateau
1278 * is returned; otherwise, a smaller value is returned.
1279 */
1280 u_int
1281 ip_next_mtu(u_int mtu, int dir) /* XXX unused */
1282 {
1283 int i;
1284
1285 for (i = 0; i < (sizeof mtu_table) / (sizeof mtu_table[0]); i++) {
1286 if (mtu >= mtu_table[i])
1287 break;
1288 }
1289
1290 if (dir < 0) {
1291 if (i == 0) {
1292 return 0;
1293 } else {
1294 return mtu_table[i - 1];
1295 }
1296 } else {
1297 if (mtu_table[i] == 0) {
1298 return 0;
1299 } else if (mtu > mtu_table[i]) {
1300 return mtu_table[i];
1301 } else {
1302 return mtu_table[i + 1];
1303 }
1304 }
1305 }
1306
1307 static void
1308 icmp_mtudisc_timeout(struct rtentry *rt, struct rttimer *r)
1309 {
1310
1311 KASSERT(rt != NULL);
1312 rt_assert_referenced(rt);
1313
1314 if ((rt->rt_flags & (RTF_DYNAMIC | RTF_HOST)) ==
1315 (RTF_DYNAMIC | RTF_HOST)) {
1316 rtrequest(RTM_DELETE, rt_getkey(rt),
1317 rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL);
1318 } else {
1319 if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0) {
1320 rt->rt_rmx.rmx_mtu = 0;
1321 }
1322 }
1323 }
1324
1325 static void
1326 icmp_redirect_timeout(struct rtentry *rt, struct rttimer *r)
1327 {
1328
1329 KASSERT(rt != NULL);
1330 rt_assert_referenced(rt);
1331
1332 if ((rt->rt_flags & (RTF_DYNAMIC | RTF_HOST)) ==
1333 (RTF_DYNAMIC | RTF_HOST)) {
1334 rtrequest(RTM_DELETE, rt_getkey(rt),
1335 rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL);
1336 }
1337 }
1338
1339 /*
1340 * Perform rate limit check.
1341 * Returns 0 if it is okay to send the icmp packet.
1342 * Returns 1 if the router SHOULD NOT send this icmp packet due to rate
1343 * limitation.
1344 *
1345 * XXX per-destination/type check necessary?
1346 */
1347 int
1348 icmp_ratelimit(const struct in_addr *dst, const int type,
1349 const int code)
1350 {
1351
1352 /* PPS limit */
1353 if (!ppsratecheck(&icmperrppslim_last, &icmperrpps_count,
1354 icmperrppslim)) {
1355 /* The packet is subject to rate limit */
1356 return 1;
1357 }
1358
1359 /* okay to send */
1360 return 0;
1361 }
1362