ip_input.c revision 1.3.4.2 1 1.1 cgd /*
2 1.1 cgd * Copyright (c) 1982, 1986, 1988 Regents of the University of California.
3 1.1 cgd * All rights reserved.
4 1.1 cgd *
5 1.1 cgd * Redistribution and use in source and binary forms, with or without
6 1.1 cgd * modification, are permitted provided that the following conditions
7 1.1 cgd * are met:
8 1.1 cgd * 1. Redistributions of source code must retain the above copyright
9 1.1 cgd * notice, this list of conditions and the following disclaimer.
10 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer in the
12 1.1 cgd * documentation and/or other materials provided with the distribution.
13 1.1 cgd * 3. All advertising materials mentioning features or use of this software
14 1.1 cgd * must display the following acknowledgement:
15 1.1 cgd * This product includes software developed by the University of
16 1.1 cgd * California, Berkeley and its contributors.
17 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
18 1.1 cgd * may be used to endorse or promote products derived from this software
19 1.1 cgd * without specific prior written permission.
20 1.1 cgd *
21 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 1.1 cgd * SUCH DAMAGE.
32 1.1 cgd *
33 1.3 cgd * from: @(#)ip_input.c 7.19 (Berkeley) 5/25/91
34 1.3.4.2 mycroft * $Id: ip_input.c,v 1.3.4.2 1993/11/14 17:54:46 mycroft Exp $
35 1.1 cgd */
36 1.1 cgd
37 1.1 cgd #include "param.h"
38 1.1 cgd #include "systm.h"
39 1.1 cgd #include "malloc.h"
40 1.1 cgd #include "mbuf.h"
41 1.1 cgd #include "domain.h"
42 1.1 cgd #include "protosw.h"
43 1.1 cgd #include "socket.h"
44 1.1 cgd #include "errno.h"
45 1.1 cgd #include "time.h"
46 1.1 cgd #include "kernel.h"
47 1.3.4.1 mycroft
48 1.3.4.1 mycroft #include "machine/cpu.h"
49 1.1 cgd
50 1.1 cgd #include "../net/if.h"
51 1.1 cgd #include "../net/route.h"
52 1.1 cgd
53 1.1 cgd #include "in.h"
54 1.1 cgd #include "in_systm.h"
55 1.1 cgd #include "ip.h"
56 1.1 cgd #include "in_pcb.h"
57 1.1 cgd #include "in_var.h"
58 1.1 cgd #include "ip_var.h"
59 1.1 cgd #include "ip_icmp.h"
60 1.1 cgd
61 1.1 cgd #ifndef IPFORWARDING
62 1.1 cgd #ifdef GATEWAY
63 1.1 cgd #define IPFORWARDING 1 /* forward IP packets not for us */
64 1.1 cgd #else /* GATEWAY */
65 1.1 cgd #define IPFORWARDING 0 /* don't forward IP packets not for us */
66 1.1 cgd #endif /* GATEWAY */
67 1.1 cgd #endif /* IPFORWARDING */
68 1.1 cgd #ifndef IPSENDREDIRECTS
69 1.1 cgd #define IPSENDREDIRECTS 1
70 1.1 cgd #endif
71 1.1 cgd int ipforwarding = IPFORWARDING;
72 1.1 cgd int ipsendredirects = IPSENDREDIRECTS;
73 1.1 cgd #ifdef DIAGNOSTIC
74 1.1 cgd int ipprintfs = 0;
75 1.1 cgd #endif
76 1.1 cgd
77 1.1 cgd extern struct domain inetdomain;
78 1.1 cgd extern struct protosw inetsw[];
79 1.1 cgd u_char ip_protox[IPPROTO_MAX];
80 1.1 cgd int ipqmaxlen = IFQ_MAXLEN;
81 1.1 cgd struct in_ifaddr *in_ifaddr; /* first inet address */
82 1.1 cgd
83 1.1 cgd /*
84 1.1 cgd * We need to save the IP options in case a protocol wants to respond
85 1.1 cgd * to an incoming packet over the same route if the packet got here
86 1.1 cgd * using IP source routing. This allows connection establishment and
87 1.1 cgd * maintenance when the remote end is on a network that is not known
88 1.1 cgd * to us.
89 1.1 cgd */
90 1.1 cgd int ip_nhops = 0;
91 1.1 cgd static struct ip_srcrt {
92 1.1 cgd struct in_addr dst; /* final destination */
93 1.1 cgd char nop; /* one NOP to align */
94 1.1 cgd char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
95 1.1 cgd struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
96 1.1 cgd } ip_srcrt;
97 1.1 cgd
98 1.1 cgd #ifdef GATEWAY
99 1.1 cgd extern int if_index;
100 1.1 cgd u_long *ip_ifmatrix;
101 1.1 cgd #endif
102 1.1 cgd
103 1.1 cgd /*
104 1.1 cgd * IP initialization: fill in IP protocol switch table.
105 1.1 cgd * All protocols not implemented in kernel go to raw IP protocol handler.
106 1.1 cgd */
107 1.1 cgd ip_init()
108 1.1 cgd {
109 1.1 cgd register struct protosw *pr;
110 1.1 cgd register int i;
111 1.1 cgd
112 1.1 cgd pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
113 1.1 cgd if (pr == 0)
114 1.1 cgd panic("ip_init");
115 1.1 cgd for (i = 0; i < IPPROTO_MAX; i++)
116 1.1 cgd ip_protox[i] = pr - inetsw;
117 1.1 cgd for (pr = inetdomain.dom_protosw;
118 1.1 cgd pr < inetdomain.dom_protoswNPROTOSW; pr++)
119 1.1 cgd if (pr->pr_domain->dom_family == PF_INET &&
120 1.1 cgd pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
121 1.1 cgd ip_protox[pr->pr_protocol] = pr - inetsw;
122 1.1 cgd ipq.next = ipq.prev = &ipq;
123 1.1 cgd ip_id = time.tv_sec & 0xffff;
124 1.1 cgd ipintrq.ifq_maxlen = ipqmaxlen;
125 1.1 cgd #ifdef GATEWAY
126 1.1 cgd i = (if_index + 1) * (if_index + 1) * sizeof (u_long);
127 1.1 cgd if ((ip_ifmatrix = (u_long *) malloc(i, M_RTABLE, M_WAITOK)) == 0)
128 1.1 cgd panic("no memory for ip_ifmatrix");
129 1.1 cgd #endif
130 1.1 cgd }
131 1.1 cgd
132 1.1 cgd struct ip *ip_reass();
133 1.1 cgd struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
134 1.1 cgd struct route ipforward_rt;
135 1.1 cgd
136 1.1 cgd /*
137 1.1 cgd * Ip input routine. Checksum and byte swap header. If fragmented
138 1.1 cgd * try to reassemble. Process options. Pass to next level.
139 1.1 cgd */
140 1.1 cgd ipintr()
141 1.1 cgd {
142 1.1 cgd register struct ip *ip;
143 1.1 cgd register struct mbuf *m;
144 1.1 cgd register struct ipq *fp;
145 1.1 cgd register struct in_ifaddr *ia;
146 1.1 cgd int hlen, s;
147 1.3.4.2 mycroft #ifdef DIAGNOSTIC
148 1.2 cgd static int busy = 0;
149 1.1 cgd
150 1.2 cgd if (busy)
151 1.2 cgd panic("ipintr: called recursively\n");
152 1.2 cgd ++busy;
153 1.2 cgd #endif
154 1.1 cgd next:
155 1.1 cgd /*
156 1.1 cgd * Get next datagram off input queue and get IP header
157 1.1 cgd * in first mbuf.
158 1.1 cgd */
159 1.1 cgd s = splimp();
160 1.1 cgd IF_DEQUEUE(&ipintrq, m);
161 1.1 cgd splx(s);
162 1.2 cgd if (m == 0) {
163 1.3.4.2 mycroft #ifdef DIAGNOSTIC
164 1.2 cgd --busy;
165 1.2 cgd #endif
166 1.1 cgd return;
167 1.2 cgd }
168 1.1 cgd #ifdef DIAGNOSTIC
169 1.1 cgd if ((m->m_flags & M_PKTHDR) == 0)
170 1.1 cgd panic("ipintr no HDR");
171 1.1 cgd #endif
172 1.1 cgd /*
173 1.1 cgd * If no IP addresses have been set yet but the interfaces
174 1.1 cgd * are receiving, can't do anything with incoming packets yet.
175 1.1 cgd */
176 1.1 cgd if (in_ifaddr == NULL)
177 1.1 cgd goto bad;
178 1.1 cgd ipstat.ips_total++;
179 1.1 cgd if (m->m_len < sizeof (struct ip) &&
180 1.1 cgd (m = m_pullup(m, sizeof (struct ip))) == 0) {
181 1.1 cgd ipstat.ips_toosmall++;
182 1.1 cgd goto next;
183 1.1 cgd }
184 1.1 cgd ip = mtod(m, struct ip *);
185 1.1 cgd hlen = ip->ip_hl << 2;
186 1.1 cgd if (hlen < sizeof(struct ip)) { /* minimum header length */
187 1.1 cgd ipstat.ips_badhlen++;
188 1.1 cgd goto bad;
189 1.1 cgd }
190 1.1 cgd if (hlen > m->m_len) {
191 1.1 cgd if ((m = m_pullup(m, hlen)) == 0) {
192 1.1 cgd ipstat.ips_badhlen++;
193 1.1 cgd goto next;
194 1.1 cgd }
195 1.1 cgd ip = mtod(m, struct ip *);
196 1.1 cgd }
197 1.1 cgd if (ip->ip_sum = in_cksum(m, hlen)) {
198 1.1 cgd ipstat.ips_badsum++;
199 1.1 cgd goto bad;
200 1.1 cgd }
201 1.1 cgd
202 1.1 cgd /*
203 1.1 cgd * Convert fields to host representation.
204 1.1 cgd */
205 1.1 cgd NTOHS(ip->ip_len);
206 1.1 cgd if (ip->ip_len < hlen) {
207 1.1 cgd ipstat.ips_badlen++;
208 1.1 cgd goto bad;
209 1.1 cgd }
210 1.1 cgd NTOHS(ip->ip_id);
211 1.1 cgd NTOHS(ip->ip_off);
212 1.1 cgd
213 1.1 cgd /*
214 1.1 cgd * Check that the amount of data in the buffers
215 1.1 cgd * is as at least much as the IP header would have us expect.
216 1.1 cgd * Trim mbufs if longer than we expect.
217 1.1 cgd * Drop packet if shorter than we expect.
218 1.1 cgd */
219 1.1 cgd if (m->m_pkthdr.len < ip->ip_len) {
220 1.1 cgd ipstat.ips_tooshort++;
221 1.1 cgd goto bad;
222 1.1 cgd }
223 1.1 cgd if (m->m_pkthdr.len > ip->ip_len) {
224 1.1 cgd if (m->m_len == m->m_pkthdr.len) {
225 1.1 cgd m->m_len = ip->ip_len;
226 1.1 cgd m->m_pkthdr.len = ip->ip_len;
227 1.1 cgd } else
228 1.1 cgd m_adj(m, ip->ip_len - m->m_pkthdr.len);
229 1.1 cgd }
230 1.1 cgd
231 1.1 cgd /*
232 1.1 cgd * Process options and, if not destined for us,
233 1.1 cgd * ship it on. ip_dooptions returns 1 when an
234 1.1 cgd * error was detected (causing an icmp message
235 1.1 cgd * to be sent and the original packet to be freed).
236 1.1 cgd */
237 1.1 cgd ip_nhops = 0; /* for source routed packets */
238 1.1 cgd if (hlen > sizeof (struct ip) && ip_dooptions(m))
239 1.1 cgd goto next;
240 1.1 cgd
241 1.1 cgd /*
242 1.1 cgd * Check our list of addresses, to see if the packet is for us.
243 1.1 cgd */
244 1.1 cgd for (ia = in_ifaddr; ia; ia = ia->ia_next) {
245 1.1 cgd #define satosin(sa) ((struct sockaddr_in *)(sa))
246 1.1 cgd
247 1.1 cgd if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
248 1.1 cgd goto ours;
249 1.1 cgd if (
250 1.1 cgd #ifdef DIRECTED_BROADCAST
251 1.1 cgd ia->ia_ifp == m->m_pkthdr.rcvif &&
252 1.1 cgd #endif
253 1.1 cgd (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
254 1.1 cgd u_long t;
255 1.1 cgd
256 1.1 cgd if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
257 1.1 cgd ip->ip_dst.s_addr)
258 1.1 cgd goto ours;
259 1.1 cgd if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
260 1.1 cgd goto ours;
261 1.1 cgd /*
262 1.1 cgd * Look for all-0's host part (old broadcast addr),
263 1.1 cgd * either for subnet or net.
264 1.1 cgd */
265 1.1 cgd t = ntohl(ip->ip_dst.s_addr);
266 1.1 cgd if (t == ia->ia_subnet)
267 1.1 cgd goto ours;
268 1.1 cgd if (t == ia->ia_net)
269 1.1 cgd goto ours;
270 1.1 cgd }
271 1.1 cgd }
272 1.1 cgd if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
273 1.1 cgd goto ours;
274 1.1 cgd if (ip->ip_dst.s_addr == INADDR_ANY)
275 1.1 cgd goto ours;
276 1.1 cgd
277 1.1 cgd /*
278 1.1 cgd * Not for us; forward if possible and desirable.
279 1.1 cgd */
280 1.1 cgd if (ipforwarding == 0) {
281 1.1 cgd ipstat.ips_cantforward++;
282 1.1 cgd m_freem(m);
283 1.1 cgd } else
284 1.1 cgd ip_forward(m, 0);
285 1.1 cgd goto next;
286 1.1 cgd
287 1.1 cgd ours:
288 1.1 cgd /*
289 1.1 cgd * If offset or IP_MF are set, must reassemble.
290 1.1 cgd * Otherwise, nothing need be done.
291 1.1 cgd * (We could look in the reassembly queue to see
292 1.1 cgd * if the packet was previously fragmented,
293 1.1 cgd * but it's not worth the time; just let them time out.)
294 1.1 cgd */
295 1.1 cgd if (ip->ip_off &~ IP_DF) {
296 1.1 cgd if (m->m_flags & M_EXT) { /* XXX */
297 1.1 cgd if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
298 1.1 cgd ipstat.ips_toosmall++;
299 1.1 cgd goto next;
300 1.1 cgd }
301 1.1 cgd ip = mtod(m, struct ip *);
302 1.1 cgd }
303 1.1 cgd /*
304 1.1 cgd * Look for queue of fragments
305 1.1 cgd * of this datagram.
306 1.1 cgd */
307 1.1 cgd for (fp = ipq.next; fp != &ipq; fp = fp->next)
308 1.1 cgd if (ip->ip_id == fp->ipq_id &&
309 1.1 cgd ip->ip_src.s_addr == fp->ipq_src.s_addr &&
310 1.1 cgd ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
311 1.1 cgd ip->ip_p == fp->ipq_p)
312 1.1 cgd goto found;
313 1.1 cgd fp = 0;
314 1.1 cgd found:
315 1.1 cgd
316 1.1 cgd /*
317 1.1 cgd * Adjust ip_len to not reflect header,
318 1.1 cgd * set ip_mff if more fragments are expected,
319 1.1 cgd * convert offset of this to bytes.
320 1.1 cgd */
321 1.1 cgd ip->ip_len -= hlen;
322 1.1 cgd ((struct ipasfrag *)ip)->ipf_mff = 0;
323 1.1 cgd if (ip->ip_off & IP_MF)
324 1.1 cgd ((struct ipasfrag *)ip)->ipf_mff = 1;
325 1.1 cgd ip->ip_off <<= 3;
326 1.1 cgd
327 1.1 cgd /*
328 1.1 cgd * If datagram marked as having more fragments
329 1.1 cgd * or if this is not the first fragment,
330 1.1 cgd * attempt reassembly; if it succeeds, proceed.
331 1.1 cgd */
332 1.1 cgd if (((struct ipasfrag *)ip)->ipf_mff || ip->ip_off) {
333 1.1 cgd ipstat.ips_fragments++;
334 1.1 cgd ip = ip_reass((struct ipasfrag *)ip, fp);
335 1.1 cgd if (ip == 0)
336 1.1 cgd goto next;
337 1.1 cgd else
338 1.1 cgd ipstat.ips_reassembled++;
339 1.1 cgd m = dtom(ip);
340 1.1 cgd } else
341 1.1 cgd if (fp)
342 1.1 cgd ip_freef(fp);
343 1.1 cgd } else
344 1.1 cgd ip->ip_len -= hlen;
345 1.1 cgd
346 1.1 cgd /*
347 1.1 cgd * Switch out to protocol's input routine.
348 1.1 cgd */
349 1.1 cgd ipstat.ips_delivered++;
350 1.1 cgd (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
351 1.1 cgd goto next;
352 1.1 cgd bad:
353 1.1 cgd m_freem(m);
354 1.1 cgd goto next;
355 1.1 cgd }
356 1.1 cgd
357 1.1 cgd /*
358 1.1 cgd * Take incoming datagram fragment and try to
359 1.1 cgd * reassemble it into whole datagram. If a chain for
360 1.1 cgd * reassembly of this datagram already exists, then it
361 1.1 cgd * is given as fp; otherwise have to make a chain.
362 1.1 cgd */
363 1.1 cgd struct ip *
364 1.1 cgd ip_reass(ip, fp)
365 1.1 cgd register struct ipasfrag *ip;
366 1.1 cgd register struct ipq *fp;
367 1.1 cgd {
368 1.1 cgd register struct mbuf *m = dtom(ip);
369 1.1 cgd register struct ipasfrag *q;
370 1.1 cgd struct mbuf *t;
371 1.1 cgd int hlen = ip->ip_hl << 2;
372 1.1 cgd int i, next;
373 1.1 cgd
374 1.1 cgd /*
375 1.1 cgd * Presence of header sizes in mbufs
376 1.1 cgd * would confuse code below.
377 1.1 cgd */
378 1.1 cgd m->m_data += hlen;
379 1.1 cgd m->m_len -= hlen;
380 1.1 cgd
381 1.1 cgd /*
382 1.1 cgd * If first fragment to arrive, create a reassembly queue.
383 1.1 cgd */
384 1.1 cgd if (fp == 0) {
385 1.1 cgd if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
386 1.1 cgd goto dropfrag;
387 1.1 cgd fp = mtod(t, struct ipq *);
388 1.1 cgd insque(fp, &ipq);
389 1.1 cgd fp->ipq_ttl = IPFRAGTTL;
390 1.1 cgd fp->ipq_p = ip->ip_p;
391 1.1 cgd fp->ipq_id = ip->ip_id;
392 1.1 cgd fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
393 1.1 cgd fp->ipq_src = ((struct ip *)ip)->ip_src;
394 1.1 cgd fp->ipq_dst = ((struct ip *)ip)->ip_dst;
395 1.1 cgd q = (struct ipasfrag *)fp;
396 1.1 cgd goto insert;
397 1.1 cgd }
398 1.1 cgd
399 1.1 cgd /*
400 1.1 cgd * Find a segment which begins after this one does.
401 1.1 cgd */
402 1.1 cgd for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
403 1.1 cgd if (q->ip_off > ip->ip_off)
404 1.1 cgd break;
405 1.1 cgd
406 1.1 cgd /*
407 1.1 cgd * If there is a preceding segment, it may provide some of
408 1.1 cgd * our data already. If so, drop the data from the incoming
409 1.1 cgd * segment. If it provides all of our data, drop us.
410 1.1 cgd */
411 1.1 cgd if (q->ipf_prev != (struct ipasfrag *)fp) {
412 1.1 cgd i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
413 1.1 cgd if (i > 0) {
414 1.1 cgd if (i >= ip->ip_len)
415 1.1 cgd goto dropfrag;
416 1.1 cgd m_adj(dtom(ip), i);
417 1.1 cgd ip->ip_off += i;
418 1.1 cgd ip->ip_len -= i;
419 1.1 cgd }
420 1.1 cgd }
421 1.1 cgd
422 1.1 cgd /*
423 1.1 cgd * While we overlap succeeding segments trim them or,
424 1.1 cgd * if they are completely covered, dequeue them.
425 1.1 cgd */
426 1.1 cgd while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
427 1.1 cgd i = (ip->ip_off + ip->ip_len) - q->ip_off;
428 1.1 cgd if (i < q->ip_len) {
429 1.1 cgd q->ip_len -= i;
430 1.1 cgd q->ip_off += i;
431 1.1 cgd m_adj(dtom(q), i);
432 1.1 cgd break;
433 1.1 cgd }
434 1.1 cgd q = q->ipf_next;
435 1.1 cgd m_freem(dtom(q->ipf_prev));
436 1.1 cgd ip_deq(q->ipf_prev);
437 1.1 cgd }
438 1.1 cgd
439 1.1 cgd insert:
440 1.1 cgd /*
441 1.1 cgd * Stick new segment in its place;
442 1.1 cgd * check for complete reassembly.
443 1.1 cgd */
444 1.1 cgd ip_enq(ip, q->ipf_prev);
445 1.1 cgd next = 0;
446 1.1 cgd for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
447 1.1 cgd if (q->ip_off != next)
448 1.1 cgd return (0);
449 1.1 cgd next += q->ip_len;
450 1.1 cgd }
451 1.1 cgd if (q->ipf_prev->ipf_mff)
452 1.1 cgd return (0);
453 1.1 cgd
454 1.1 cgd /*
455 1.1 cgd * Reassembly is complete; concatenate fragments.
456 1.1 cgd */
457 1.1 cgd q = fp->ipq_next;
458 1.1 cgd m = dtom(q);
459 1.1 cgd t = m->m_next;
460 1.1 cgd m->m_next = 0;
461 1.1 cgd m_cat(m, t);
462 1.1 cgd q = q->ipf_next;
463 1.1 cgd while (q != (struct ipasfrag *)fp) {
464 1.1 cgd t = dtom(q);
465 1.1 cgd q = q->ipf_next;
466 1.1 cgd m_cat(m, t);
467 1.1 cgd }
468 1.1 cgd
469 1.1 cgd /*
470 1.1 cgd * Create header for new ip packet by
471 1.1 cgd * modifying header of first packet;
472 1.1 cgd * dequeue and discard fragment reassembly header.
473 1.1 cgd * Make header visible.
474 1.1 cgd */
475 1.1 cgd ip = fp->ipq_next;
476 1.1 cgd ip->ip_len = next;
477 1.1 cgd ((struct ip *)ip)->ip_src = fp->ipq_src;
478 1.1 cgd ((struct ip *)ip)->ip_dst = fp->ipq_dst;
479 1.1 cgd remque(fp);
480 1.1 cgd (void) m_free(dtom(fp));
481 1.1 cgd m = dtom(ip);
482 1.1 cgd m->m_len += (ip->ip_hl << 2);
483 1.1 cgd m->m_data -= (ip->ip_hl << 2);
484 1.1 cgd /* some debugging cruft by sklower, below, will go away soon */
485 1.1 cgd if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
486 1.1 cgd register int plen = 0;
487 1.1 cgd for (t = m; m; m = m->m_next)
488 1.1 cgd plen += m->m_len;
489 1.1 cgd t->m_pkthdr.len = plen;
490 1.1 cgd }
491 1.1 cgd return ((struct ip *)ip);
492 1.1 cgd
493 1.1 cgd dropfrag:
494 1.1 cgd ipstat.ips_fragdropped++;
495 1.1 cgd m_freem(m);
496 1.1 cgd return (0);
497 1.1 cgd }
498 1.1 cgd
499 1.1 cgd /*
500 1.1 cgd * Free a fragment reassembly header and all
501 1.1 cgd * associated datagrams.
502 1.1 cgd */
503 1.1 cgd ip_freef(fp)
504 1.1 cgd struct ipq *fp;
505 1.1 cgd {
506 1.1 cgd register struct ipasfrag *q, *p;
507 1.1 cgd
508 1.1 cgd for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
509 1.1 cgd p = q->ipf_next;
510 1.1 cgd ip_deq(q);
511 1.1 cgd m_freem(dtom(q));
512 1.1 cgd }
513 1.1 cgd remque(fp);
514 1.1 cgd (void) m_free(dtom(fp));
515 1.1 cgd }
516 1.1 cgd
517 1.1 cgd /*
518 1.1 cgd * Put an ip fragment on a reassembly chain.
519 1.1 cgd * Like insque, but pointers in middle of structure.
520 1.1 cgd */
521 1.1 cgd ip_enq(p, prev)
522 1.1 cgd register struct ipasfrag *p, *prev;
523 1.1 cgd {
524 1.1 cgd
525 1.1 cgd p->ipf_prev = prev;
526 1.1 cgd p->ipf_next = prev->ipf_next;
527 1.1 cgd prev->ipf_next->ipf_prev = p;
528 1.1 cgd prev->ipf_next = p;
529 1.1 cgd }
530 1.1 cgd
531 1.1 cgd /*
532 1.1 cgd * To ip_enq as remque is to insque.
533 1.1 cgd */
534 1.1 cgd ip_deq(p)
535 1.1 cgd register struct ipasfrag *p;
536 1.1 cgd {
537 1.1 cgd
538 1.1 cgd p->ipf_prev->ipf_next = p->ipf_next;
539 1.1 cgd p->ipf_next->ipf_prev = p->ipf_prev;
540 1.1 cgd }
541 1.1 cgd
542 1.1 cgd /*
543 1.1 cgd * IP timer processing;
544 1.1 cgd * if a timer expires on a reassembly
545 1.1 cgd * queue, discard it.
546 1.1 cgd */
547 1.1 cgd ip_slowtimo()
548 1.1 cgd {
549 1.1 cgd register struct ipq *fp;
550 1.1 cgd int s = splnet();
551 1.1 cgd
552 1.1 cgd fp = ipq.next;
553 1.1 cgd if (fp == 0) {
554 1.1 cgd splx(s);
555 1.1 cgd return;
556 1.1 cgd }
557 1.1 cgd while (fp != &ipq) {
558 1.1 cgd --fp->ipq_ttl;
559 1.1 cgd fp = fp->next;
560 1.1 cgd if (fp->prev->ipq_ttl == 0) {
561 1.1 cgd ipstat.ips_fragtimeout++;
562 1.1 cgd ip_freef(fp->prev);
563 1.1 cgd }
564 1.1 cgd }
565 1.1 cgd splx(s);
566 1.1 cgd }
567 1.1 cgd
568 1.1 cgd /*
569 1.1 cgd * Drain off all datagram fragments.
570 1.1 cgd */
571 1.1 cgd ip_drain()
572 1.1 cgd {
573 1.1 cgd
574 1.1 cgd while (ipq.next != &ipq) {
575 1.1 cgd ipstat.ips_fragdropped++;
576 1.1 cgd ip_freef(ipq.next);
577 1.1 cgd }
578 1.1 cgd }
579 1.1 cgd
580 1.1 cgd extern struct in_ifaddr *ifptoia();
581 1.1 cgd struct in_ifaddr *ip_rtaddr();
582 1.1 cgd
583 1.1 cgd /*
584 1.1 cgd * Do option processing on a datagram,
585 1.1 cgd * possibly discarding it if bad options are encountered,
586 1.1 cgd * or forwarding it if source-routed.
587 1.1 cgd * Returns 1 if packet has been forwarded/freed,
588 1.1 cgd * 0 if the packet should be processed further.
589 1.1 cgd */
590 1.1 cgd ip_dooptions(m)
591 1.1 cgd struct mbuf *m;
592 1.1 cgd {
593 1.1 cgd register struct ip *ip = mtod(m, struct ip *);
594 1.1 cgd register u_char *cp;
595 1.1 cgd register struct ip_timestamp *ipt;
596 1.1 cgd register struct in_ifaddr *ia;
597 1.1 cgd int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
598 1.1 cgd struct in_addr *sin;
599 1.1 cgd n_time ntime;
600 1.1 cgd
601 1.1 cgd cp = (u_char *)(ip + 1);
602 1.1 cgd cnt = (ip->ip_hl << 2) - sizeof (struct ip);
603 1.1 cgd for (; cnt > 0; cnt -= optlen, cp += optlen) {
604 1.1 cgd opt = cp[IPOPT_OPTVAL];
605 1.1 cgd if (opt == IPOPT_EOL)
606 1.1 cgd break;
607 1.1 cgd if (opt == IPOPT_NOP)
608 1.1 cgd optlen = 1;
609 1.1 cgd else {
610 1.1 cgd optlen = cp[IPOPT_OLEN];
611 1.1 cgd if (optlen <= 0 || optlen > cnt) {
612 1.1 cgd code = &cp[IPOPT_OLEN] - (u_char *)ip;
613 1.1 cgd goto bad;
614 1.1 cgd }
615 1.1 cgd }
616 1.1 cgd switch (opt) {
617 1.1 cgd
618 1.1 cgd default:
619 1.1 cgd break;
620 1.1 cgd
621 1.1 cgd /*
622 1.1 cgd * Source routing with record.
623 1.1 cgd * Find interface with current destination address.
624 1.1 cgd * If none on this machine then drop if strictly routed,
625 1.1 cgd * or do nothing if loosely routed.
626 1.1 cgd * Record interface address and bring up next address
627 1.1 cgd * component. If strictly routed make sure next
628 1.1 cgd * address is on directly accessible net.
629 1.1 cgd */
630 1.1 cgd case IPOPT_LSRR:
631 1.1 cgd case IPOPT_SSRR:
632 1.1 cgd if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
633 1.1 cgd code = &cp[IPOPT_OFFSET] - (u_char *)ip;
634 1.1 cgd goto bad;
635 1.1 cgd }
636 1.1 cgd ipaddr.sin_addr = ip->ip_dst;
637 1.1 cgd ia = (struct in_ifaddr *)
638 1.1 cgd ifa_ifwithaddr((struct sockaddr *)&ipaddr);
639 1.1 cgd if (ia == 0) {
640 1.1 cgd if (opt == IPOPT_SSRR) {
641 1.1 cgd type = ICMP_UNREACH;
642 1.1 cgd code = ICMP_UNREACH_SRCFAIL;
643 1.1 cgd goto bad;
644 1.1 cgd }
645 1.1 cgd /*
646 1.1 cgd * Loose routing, and not at next destination
647 1.1 cgd * yet; nothing to do except forward.
648 1.1 cgd */
649 1.1 cgd break;
650 1.1 cgd }
651 1.1 cgd off--; /* 0 origin */
652 1.1 cgd if (off > optlen - sizeof(struct in_addr)) {
653 1.1 cgd /*
654 1.1 cgd * End of source route. Should be for us.
655 1.1 cgd */
656 1.1 cgd save_rte(cp, ip->ip_src);
657 1.1 cgd break;
658 1.1 cgd }
659 1.1 cgd /*
660 1.1 cgd * locate outgoing interface
661 1.1 cgd */
662 1.1 cgd bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
663 1.1 cgd sizeof(ipaddr.sin_addr));
664 1.1 cgd if (opt == IPOPT_SSRR) {
665 1.1 cgd #define INA struct in_ifaddr *
666 1.1 cgd #define SA struct sockaddr *
667 1.1 cgd if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
668 1.1 cgd ia = in_iaonnetof(in_netof(ipaddr.sin_addr));
669 1.1 cgd } else
670 1.1 cgd ia = ip_rtaddr(ipaddr.sin_addr);
671 1.1 cgd if (ia == 0) {
672 1.1 cgd type = ICMP_UNREACH;
673 1.1 cgd code = ICMP_UNREACH_SRCFAIL;
674 1.1 cgd goto bad;
675 1.1 cgd }
676 1.1 cgd ip->ip_dst = ipaddr.sin_addr;
677 1.1 cgd bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
678 1.1 cgd (caddr_t)(cp + off), sizeof(struct in_addr));
679 1.1 cgd cp[IPOPT_OFFSET] += sizeof(struct in_addr);
680 1.1 cgd forward = 1;
681 1.1 cgd break;
682 1.1 cgd
683 1.1 cgd case IPOPT_RR:
684 1.1 cgd if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
685 1.1 cgd code = &cp[IPOPT_OFFSET] - (u_char *)ip;
686 1.1 cgd goto bad;
687 1.1 cgd }
688 1.1 cgd /*
689 1.1 cgd * If no space remains, ignore.
690 1.1 cgd */
691 1.1 cgd off--; /* 0 origin */
692 1.1 cgd if (off > optlen - sizeof(struct in_addr))
693 1.1 cgd break;
694 1.1 cgd bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
695 1.1 cgd sizeof(ipaddr.sin_addr));
696 1.1 cgd /*
697 1.1 cgd * locate outgoing interface; if we're the destination,
698 1.1 cgd * use the incoming interface (should be same).
699 1.1 cgd */
700 1.1 cgd if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
701 1.1 cgd (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
702 1.1 cgd type = ICMP_UNREACH;
703 1.1 cgd code = ICMP_UNREACH_HOST;
704 1.1 cgd goto bad;
705 1.1 cgd }
706 1.1 cgd bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
707 1.1 cgd (caddr_t)(cp + off), sizeof(struct in_addr));
708 1.1 cgd cp[IPOPT_OFFSET] += sizeof(struct in_addr);
709 1.1 cgd break;
710 1.1 cgd
711 1.1 cgd case IPOPT_TS:
712 1.1 cgd code = cp - (u_char *)ip;
713 1.1 cgd ipt = (struct ip_timestamp *)cp;
714 1.1 cgd if (ipt->ipt_len < 5)
715 1.1 cgd goto bad;
716 1.1 cgd if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) {
717 1.1 cgd if (++ipt->ipt_oflw == 0)
718 1.1 cgd goto bad;
719 1.1 cgd break;
720 1.1 cgd }
721 1.1 cgd sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
722 1.1 cgd switch (ipt->ipt_flg) {
723 1.1 cgd
724 1.1 cgd case IPOPT_TS_TSONLY:
725 1.1 cgd break;
726 1.1 cgd
727 1.1 cgd case IPOPT_TS_TSANDADDR:
728 1.1 cgd if (ipt->ipt_ptr + sizeof(n_time) +
729 1.1 cgd sizeof(struct in_addr) > ipt->ipt_len)
730 1.1 cgd goto bad;
731 1.1 cgd ia = ifptoia(m->m_pkthdr.rcvif);
732 1.1 cgd bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
733 1.1 cgd (caddr_t)sin, sizeof(struct in_addr));
734 1.1 cgd ipt->ipt_ptr += sizeof(struct in_addr);
735 1.1 cgd break;
736 1.1 cgd
737 1.1 cgd case IPOPT_TS_PRESPEC:
738 1.1 cgd if (ipt->ipt_ptr + sizeof(n_time) +
739 1.1 cgd sizeof(struct in_addr) > ipt->ipt_len)
740 1.1 cgd goto bad;
741 1.1 cgd bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
742 1.1 cgd sizeof(struct in_addr));
743 1.1 cgd if (ifa_ifwithaddr((SA)&ipaddr) == 0)
744 1.1 cgd continue;
745 1.1 cgd ipt->ipt_ptr += sizeof(struct in_addr);
746 1.1 cgd break;
747 1.1 cgd
748 1.1 cgd default:
749 1.1 cgd goto bad;
750 1.1 cgd }
751 1.1 cgd ntime = iptime();
752 1.1 cgd bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
753 1.1 cgd sizeof(n_time));
754 1.1 cgd ipt->ipt_ptr += sizeof(n_time);
755 1.1 cgd }
756 1.1 cgd }
757 1.1 cgd if (forward) {
758 1.1 cgd ip_forward(m, 1);
759 1.1 cgd return (1);
760 1.1 cgd } else
761 1.1 cgd return (0);
762 1.1 cgd bad:
763 1.1 cgd icmp_error(m, type, code);
764 1.1 cgd return (1);
765 1.1 cgd }
766 1.1 cgd
767 1.1 cgd /*
768 1.1 cgd * Given address of next destination (final or next hop),
769 1.1 cgd * return internet address info of interface to be used to get there.
770 1.1 cgd */
771 1.1 cgd struct in_ifaddr *
772 1.1 cgd ip_rtaddr(dst)
773 1.1 cgd struct in_addr dst;
774 1.1 cgd {
775 1.1 cgd register struct sockaddr_in *sin;
776 1.1 cgd
777 1.1 cgd sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
778 1.1 cgd
779 1.1 cgd if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
780 1.1 cgd if (ipforward_rt.ro_rt) {
781 1.1 cgd RTFREE(ipforward_rt.ro_rt);
782 1.1 cgd ipforward_rt.ro_rt = 0;
783 1.1 cgd }
784 1.1 cgd sin->sin_family = AF_INET;
785 1.1 cgd sin->sin_len = sizeof(*sin);
786 1.1 cgd sin->sin_addr = dst;
787 1.1 cgd
788 1.1 cgd rtalloc(&ipforward_rt);
789 1.1 cgd }
790 1.1 cgd if (ipforward_rt.ro_rt == 0)
791 1.1 cgd return ((struct in_ifaddr *)0);
792 1.1 cgd return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
793 1.1 cgd }
794 1.1 cgd
795 1.1 cgd /*
796 1.1 cgd * Save incoming source route for use in replies,
797 1.1 cgd * to be picked up later by ip_srcroute if the receiver is interested.
798 1.1 cgd */
799 1.1 cgd save_rte(option, dst)
800 1.1 cgd u_char *option;
801 1.1 cgd struct in_addr dst;
802 1.1 cgd {
803 1.1 cgd unsigned olen;
804 1.1 cgd
805 1.1 cgd olen = option[IPOPT_OLEN];
806 1.1 cgd #ifdef DIAGNOSTIC
807 1.1 cgd if (ipprintfs)
808 1.1 cgd printf("save_rte: olen %d\n", olen);
809 1.1 cgd #endif
810 1.1 cgd if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
811 1.1 cgd return;
812 1.1 cgd bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
813 1.1 cgd ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
814 1.1 cgd ip_srcrt.dst = dst;
815 1.1 cgd }
816 1.1 cgd
817 1.1 cgd /*
818 1.1 cgd * Retrieve incoming source route for use in replies,
819 1.1 cgd * in the same form used by setsockopt.
820 1.1 cgd * The first hop is placed before the options, will be removed later.
821 1.1 cgd */
822 1.1 cgd struct mbuf *
823 1.1 cgd ip_srcroute()
824 1.1 cgd {
825 1.1 cgd register struct in_addr *p, *q;
826 1.1 cgd register struct mbuf *m;
827 1.1 cgd
828 1.1 cgd if (ip_nhops == 0)
829 1.1 cgd return ((struct mbuf *)0);
830 1.1 cgd m = m_get(M_DONTWAIT, MT_SOOPTS);
831 1.1 cgd if (m == 0)
832 1.1 cgd return ((struct mbuf *)0);
833 1.1 cgd
834 1.1 cgd #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
835 1.1 cgd
836 1.1 cgd /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
837 1.1 cgd m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
838 1.1 cgd OPTSIZ;
839 1.1 cgd #ifdef DIAGNOSTIC
840 1.1 cgd if (ipprintfs)
841 1.1 cgd printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
842 1.1 cgd #endif
843 1.1 cgd
844 1.1 cgd /*
845 1.1 cgd * First save first hop for return route
846 1.1 cgd */
847 1.1 cgd p = &ip_srcrt.route[ip_nhops - 1];
848 1.1 cgd *(mtod(m, struct in_addr *)) = *p--;
849 1.1 cgd #ifdef DIAGNOSTIC
850 1.1 cgd if (ipprintfs)
851 1.1 cgd printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
852 1.1 cgd #endif
853 1.1 cgd
854 1.1 cgd /*
855 1.1 cgd * Copy option fields and padding (nop) to mbuf.
856 1.1 cgd */
857 1.1 cgd ip_srcrt.nop = IPOPT_NOP;
858 1.1 cgd ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
859 1.1 cgd bcopy((caddr_t)&ip_srcrt.nop,
860 1.1 cgd mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
861 1.1 cgd q = (struct in_addr *)(mtod(m, caddr_t) +
862 1.1 cgd sizeof(struct in_addr) + OPTSIZ);
863 1.1 cgd #undef OPTSIZ
864 1.1 cgd /*
865 1.1 cgd * Record return path as an IP source route,
866 1.1 cgd * reversing the path (pointers are now aligned).
867 1.1 cgd */
868 1.1 cgd while (p >= ip_srcrt.route) {
869 1.1 cgd #ifdef DIAGNOSTIC
870 1.1 cgd if (ipprintfs)
871 1.1 cgd printf(" %lx", ntohl(q->s_addr));
872 1.1 cgd #endif
873 1.1 cgd *q++ = *p--;
874 1.1 cgd }
875 1.1 cgd /*
876 1.1 cgd * Last hop goes to final destination.
877 1.1 cgd */
878 1.1 cgd *q = ip_srcrt.dst;
879 1.1 cgd #ifdef DIAGNOSTIC
880 1.1 cgd if (ipprintfs)
881 1.1 cgd printf(" %lx\n", ntohl(q->s_addr));
882 1.1 cgd #endif
883 1.1 cgd return (m);
884 1.1 cgd }
885 1.1 cgd
886 1.1 cgd /*
887 1.1 cgd * Strip out IP options, at higher
888 1.1 cgd * level protocol in the kernel.
889 1.1 cgd * Second argument is buffer to which options
890 1.1 cgd * will be moved, and return value is their length.
891 1.1 cgd * XXX should be deleted; last arg currently ignored.
892 1.1 cgd */
893 1.1 cgd ip_stripoptions(m, mopt)
894 1.1 cgd register struct mbuf *m;
895 1.1 cgd struct mbuf *mopt;
896 1.1 cgd {
897 1.1 cgd register int i;
898 1.1 cgd struct ip *ip = mtod(m, struct ip *);
899 1.1 cgd register caddr_t opts;
900 1.1 cgd int olen;
901 1.1 cgd
902 1.1 cgd olen = (ip->ip_hl<<2) - sizeof (struct ip);
903 1.1 cgd opts = (caddr_t)(ip + 1);
904 1.1 cgd i = m->m_len - (sizeof (struct ip) + olen);
905 1.1 cgd bcopy(opts + olen, opts, (unsigned)i);
906 1.1 cgd m->m_len -= olen;
907 1.1 cgd if (m->m_flags & M_PKTHDR)
908 1.1 cgd m->m_pkthdr.len -= olen;
909 1.1 cgd ip->ip_hl = sizeof(struct ip) >> 2;
910 1.1 cgd }
911 1.1 cgd
912 1.1 cgd u_char inetctlerrmap[PRC_NCMDS] = {
913 1.1 cgd 0, 0, 0, 0,
914 1.1 cgd 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
915 1.1 cgd EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
916 1.1 cgd EMSGSIZE, EHOSTUNREACH, 0, 0,
917 1.1 cgd 0, 0, 0, 0,
918 1.1 cgd ENOPROTOOPT
919 1.1 cgd };
920 1.1 cgd
921 1.1 cgd /*
922 1.1 cgd * Forward a packet. If some error occurs return the sender
923 1.1 cgd * an icmp packet. Note we can't always generate a meaningful
924 1.1 cgd * icmp message because icmp doesn't have a large enough repertoire
925 1.1 cgd * of codes and types.
926 1.1 cgd *
927 1.1 cgd * If not forwarding, just drop the packet. This could be confusing
928 1.1 cgd * if ipforwarding was zero but some routing protocol was advancing
929 1.1 cgd * us as a gateway to somewhere. However, we must let the routing
930 1.1 cgd * protocol deal with that.
931 1.1 cgd *
932 1.1 cgd * The srcrt parameter indicates whether the packet is being forwarded
933 1.1 cgd * via a source route.
934 1.1 cgd */
935 1.1 cgd ip_forward(m, srcrt)
936 1.1 cgd struct mbuf *m;
937 1.1 cgd int srcrt;
938 1.1 cgd {
939 1.1 cgd register struct ip *ip = mtod(m, struct ip *);
940 1.1 cgd register struct sockaddr_in *sin;
941 1.1 cgd register struct rtentry *rt;
942 1.1 cgd int error, type = 0, code;
943 1.1 cgd struct mbuf *mcopy;
944 1.1 cgd struct in_addr dest;
945 1.1 cgd
946 1.1 cgd dest.s_addr = 0;
947 1.1 cgd #ifdef DIAGNOSTIC
948 1.1 cgd if (ipprintfs)
949 1.1 cgd printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
950 1.1 cgd ip->ip_dst, ip->ip_ttl);
951 1.1 cgd #endif
952 1.1 cgd if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
953 1.1 cgd ipstat.ips_cantforward++;
954 1.1 cgd m_freem(m);
955 1.1 cgd return;
956 1.1 cgd }
957 1.1 cgd HTONS(ip->ip_id);
958 1.1 cgd if (ip->ip_ttl <= IPTTLDEC) {
959 1.1 cgd icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest);
960 1.1 cgd return;
961 1.1 cgd }
962 1.1 cgd ip->ip_ttl -= IPTTLDEC;
963 1.1 cgd
964 1.1 cgd sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
965 1.1 cgd if ((rt = ipforward_rt.ro_rt) == 0 ||
966 1.1 cgd ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
967 1.1 cgd if (ipforward_rt.ro_rt) {
968 1.1 cgd RTFREE(ipforward_rt.ro_rt);
969 1.1 cgd ipforward_rt.ro_rt = 0;
970 1.1 cgd }
971 1.1 cgd sin->sin_family = AF_INET;
972 1.1 cgd sin->sin_len = sizeof(*sin);
973 1.1 cgd sin->sin_addr = ip->ip_dst;
974 1.1 cgd
975 1.1 cgd rtalloc(&ipforward_rt);
976 1.1 cgd if (ipforward_rt.ro_rt == 0) {
977 1.1 cgd icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest);
978 1.1 cgd return;
979 1.1 cgd }
980 1.1 cgd rt = ipforward_rt.ro_rt;
981 1.1 cgd }
982 1.1 cgd
983 1.1 cgd /*
984 1.1 cgd * Save at most 64 bytes of the packet in case
985 1.1 cgd * we need to generate an ICMP message to the src.
986 1.1 cgd */
987 1.1 cgd mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
988 1.1 cgd
989 1.1 cgd #ifdef GATEWAY
990 1.1 cgd ip_ifmatrix[rt->rt_ifp->if_index +
991 1.1 cgd if_index * m->m_pkthdr.rcvif->if_index]++;
992 1.1 cgd #endif
993 1.1 cgd /*
994 1.1 cgd * If forwarding packet using same interface that it came in on,
995 1.1 cgd * perhaps should send a redirect to sender to shortcut a hop.
996 1.1 cgd * Only send redirect if source is sending directly to us,
997 1.1 cgd * and if packet was not source routed (or has any options).
998 1.1 cgd * Also, don't send redirect if forwarding using a default route
999 1.1 cgd * or a route modified by a redirect.
1000 1.1 cgd */
1001 1.1 cgd #define satosin(sa) ((struct sockaddr_in *)(sa))
1002 1.1 cgd if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1003 1.1 cgd (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1004 1.1 cgd satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1005 1.1 cgd ipsendredirects && !srcrt) {
1006 1.1 cgd struct in_ifaddr *ia;
1007 1.1 cgd u_long src = ntohl(ip->ip_src.s_addr);
1008 1.1 cgd u_long dst = ntohl(ip->ip_dst.s_addr);
1009 1.1 cgd
1010 1.1 cgd if ((ia = ifptoia(m->m_pkthdr.rcvif)) &&
1011 1.1 cgd (src & ia->ia_subnetmask) == ia->ia_subnet) {
1012 1.1 cgd if (rt->rt_flags & RTF_GATEWAY)
1013 1.1 cgd dest = satosin(rt->rt_gateway)->sin_addr;
1014 1.1 cgd else
1015 1.1 cgd dest = ip->ip_dst;
1016 1.1 cgd /*
1017 1.1 cgd * If the destination is reached by a route to host,
1018 1.1 cgd * is on a subnet of a local net, or is directly
1019 1.1 cgd * on the attached net (!), use host redirect.
1020 1.1 cgd * (We may be the correct first hop for other subnets.)
1021 1.1 cgd */
1022 1.1 cgd #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
1023 1.1 cgd type = ICMP_REDIRECT;
1024 1.1 cgd if ((rt->rt_flags & RTF_HOST) ||
1025 1.1 cgd (rt->rt_flags & RTF_GATEWAY) == 0)
1026 1.1 cgd code = ICMP_REDIRECT_HOST;
1027 1.1 cgd else if (RTA(rt)->ia_subnetmask != RTA(rt)->ia_netmask &&
1028 1.1 cgd (dst & RTA(rt)->ia_netmask) == RTA(rt)->ia_net)
1029 1.1 cgd code = ICMP_REDIRECT_HOST;
1030 1.1 cgd else
1031 1.1 cgd code = ICMP_REDIRECT_NET;
1032 1.1 cgd #ifdef DIAGNOSTIC
1033 1.1 cgd if (ipprintfs)
1034 1.1 cgd printf("redirect (%d) to %x\n", code, dest.s_addr);
1035 1.1 cgd #endif
1036 1.1 cgd }
1037 1.1 cgd }
1038 1.1 cgd
1039 1.1 cgd error = ip_output(m, (struct mbuf *)0, &ipforward_rt, IP_FORWARDING);
1040 1.1 cgd if (error)
1041 1.1 cgd ipstat.ips_cantforward++;
1042 1.1 cgd else {
1043 1.1 cgd ipstat.ips_forward++;
1044 1.1 cgd if (type)
1045 1.1 cgd ipstat.ips_redirectsent++;
1046 1.1 cgd else {
1047 1.1 cgd if (mcopy)
1048 1.1 cgd m_freem(mcopy);
1049 1.1 cgd return;
1050 1.1 cgd }
1051 1.1 cgd }
1052 1.1 cgd if (mcopy == NULL)
1053 1.1 cgd return;
1054 1.1 cgd switch (error) {
1055 1.1 cgd
1056 1.1 cgd case 0: /* forwarded, but need redirect */
1057 1.1 cgd /* type, code set above */
1058 1.1 cgd break;
1059 1.1 cgd
1060 1.1 cgd case ENETUNREACH: /* shouldn't happen, checked above */
1061 1.1 cgd case EHOSTUNREACH:
1062 1.1 cgd case ENETDOWN:
1063 1.1 cgd case EHOSTDOWN:
1064 1.1 cgd default:
1065 1.1 cgd type = ICMP_UNREACH;
1066 1.1 cgd code = ICMP_UNREACH_HOST;
1067 1.1 cgd break;
1068 1.1 cgd
1069 1.1 cgd case EMSGSIZE:
1070 1.1 cgd type = ICMP_UNREACH;
1071 1.1 cgd code = ICMP_UNREACH_NEEDFRAG;
1072 1.1 cgd ipstat.ips_cantfrag++;
1073 1.1 cgd break;
1074 1.1 cgd
1075 1.1 cgd case ENOBUFS:
1076 1.1 cgd type = ICMP_SOURCEQUENCH;
1077 1.1 cgd code = 0;
1078 1.1 cgd break;
1079 1.1 cgd }
1080 1.1 cgd icmp_error(mcopy, type, code, dest);
1081 1.1 cgd }
1082