ip_input.c revision 1.10 1 /*
2 * Copyright (c) 1982, 1986, 1988 Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * from: @(#)ip_input.c 7.19 (Berkeley) 5/25/91
34 * $Id: ip_input.c,v 1.10 1994/01/29 11:58:01 brezak Exp $
35 */
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/domain.h>
42 #include <sys/protosw.h>
43 #include <sys/socket.h>
44 #include <sys/errno.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47
48 #include <net/if.h>
49 #include <net/route.h>
50
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/ip.h>
54 #include <netinet/in_pcb.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip_var.h>
57 #include <netinet/ip_icmp.h>
58 #include <netinet/ip_mroute.h>
59
60 #ifndef IPFORWARDING
61 #ifdef GATEWAY
62 #define IPFORWARDING 1 /* forward IP packets not for us */
63 #else /* GATEWAY */
64 #define IPFORWARDING 0 /* don't forward IP packets not for us */
65 #endif /* GATEWAY */
66 #endif /* IPFORWARDING */
67 #ifndef IPSENDREDIRECTS
68 #define IPSENDREDIRECTS 1
69 #endif
70 int ipforwarding = IPFORWARDING;
71 int ipsendredirects = IPSENDREDIRECTS;
72 #ifdef DIAGNOSTIC
73 int ipprintfs = 0;
74 #endif
75
76 extern struct domain inetdomain;
77 extern struct protosw inetsw[];
78 u_char ip_protox[IPPROTO_MAX];
79 int ipqmaxlen = IFQ_MAXLEN;
80 struct in_ifaddr *in_ifaddr; /* first inet address */
81
82 /*
83 * We need to save the IP options in case a protocol wants to respond
84 * to an incoming packet over the same route if the packet got here
85 * using IP source routing. This allows connection establishment and
86 * maintenance when the remote end is on a network that is not known
87 * to us.
88 */
89 int ip_nhops = 0;
90 static struct ip_srcrt {
91 struct in_addr dst; /* final destination */
92 char nop; /* one NOP to align */
93 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
94 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
95 } ip_srcrt;
96
97 #ifdef GATEWAY
98 extern int if_index;
99 u_long *ip_ifmatrix;
100 #endif
101
102 static void ip_forward __P((struct mbuf *, int));
103 static void save_rte __P((u_char *, struct in_addr));
104
105 /*
106 * IP initialization: fill in IP protocol switch table.
107 * All protocols not implemented in kernel go to raw IP protocol handler.
108 */
109 void
110 ip_init()
111 {
112 register struct protosw *pr;
113 register int i;
114
115 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
116 if (pr == 0)
117 panic("ip_init");
118 for (i = 0; i < IPPROTO_MAX; i++)
119 ip_protox[i] = pr - inetsw;
120 for (pr = inetdomain.dom_protosw;
121 pr < inetdomain.dom_protoswNPROTOSW; pr++)
122 if (pr->pr_domain->dom_family == PF_INET &&
123 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
124 ip_protox[pr->pr_protocol] = pr - inetsw;
125 ipq.next = ipq.prev = &ipq;
126 ip_id = time.tv_sec & 0xffff;
127 ipintrq.ifq_maxlen = ipqmaxlen;
128 #ifdef GATEWAY
129 i = (if_index + 1) * (if_index + 1) * sizeof (u_long);
130 if ((ip_ifmatrix = (u_long *) malloc(i, M_RTABLE, M_WAITOK)) == 0)
131 panic("no memory for ip_ifmatrix");
132 #endif
133 }
134
135 struct ip *ip_reass();
136 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
137 struct route ipforward_rt;
138
139 /*
140 * Ip input routine. Checksum and byte swap header. If fragmented
141 * try to reassemble. Process options. Pass to next level.
142 */
143 void
144 ipintr()
145 {
146 register struct ip *ip;
147 register struct mbuf *m;
148 register struct ipq *fp;
149 register struct in_ifaddr *ia;
150 int hlen, s;
151 #ifdef PARANOID
152 static int busy = 0;
153
154 if (busy)
155 panic("ipintr: called recursively\n");
156 ++busy;
157 #endif
158 next:
159 /*
160 * Get next datagram off input queue and get IP header
161 * in first mbuf.
162 */
163 s = splimp();
164 IF_DEQUEUE(&ipintrq, m);
165 splx(s);
166 if (m == 0) {
167 #ifdef PARANOID
168 --busy;
169 #endif
170 return;
171 }
172 #ifdef DIAGNOSTIC
173 if ((m->m_flags & M_PKTHDR) == 0)
174 panic("ipintr no HDR");
175 #endif
176 /*
177 * If no IP addresses have been set yet but the interfaces
178 * are receiving, can't do anything with incoming packets yet.
179 */
180 if (in_ifaddr == NULL)
181 goto bad;
182 ipstat.ips_total++;
183 if (m->m_len < sizeof (struct ip) &&
184 (m = m_pullup(m, sizeof (struct ip))) == 0) {
185 ipstat.ips_toosmall++;
186 goto next;
187 }
188 ip = mtod(m, struct ip *);
189 hlen = ip->ip_hl << 2;
190 if (hlen < sizeof(struct ip)) { /* minimum header length */
191 ipstat.ips_badhlen++;
192 goto bad;
193 }
194 if (hlen > m->m_len) {
195 if ((m = m_pullup(m, hlen)) == 0) {
196 ipstat.ips_badhlen++;
197 goto next;
198 }
199 ip = mtod(m, struct ip *);
200 }
201 if (ip->ip_sum = in_cksum(m, hlen)) {
202 ipstat.ips_badsum++;
203 goto bad;
204 }
205
206 /*
207 * Convert fields to host representation.
208 */
209 NTOHS(ip->ip_len);
210 if (ip->ip_len < hlen) {
211 ipstat.ips_badlen++;
212 goto bad;
213 }
214 NTOHS(ip->ip_id);
215 NTOHS(ip->ip_off);
216
217 /*
218 * Check that the amount of data in the buffers
219 * is as at least much as the IP header would have us expect.
220 * Trim mbufs if longer than we expect.
221 * Drop packet if shorter than we expect.
222 */
223 if (m->m_pkthdr.len < ip->ip_len) {
224 ipstat.ips_tooshort++;
225 goto bad;
226 }
227 if (m->m_pkthdr.len > ip->ip_len) {
228 if (m->m_len == m->m_pkthdr.len) {
229 m->m_len = ip->ip_len;
230 m->m_pkthdr.len = ip->ip_len;
231 } else
232 m_adj(m, ip->ip_len - m->m_pkthdr.len);
233 }
234
235 /*
236 * Process options and, if not destined for us,
237 * ship it on. ip_dooptions returns 1 when an
238 * error was detected (causing an icmp message
239 * to be sent and the original packet to be freed).
240 */
241 ip_nhops = 0; /* for source routed packets */
242 if (hlen > sizeof (struct ip) && ip_dooptions(m))
243 goto next;
244
245 /*
246 * Check our list of addresses, to see if the packet is for us.
247 */
248 for (ia = in_ifaddr; ia; ia = ia->ia_next) {
249 #define satosin(sa) ((struct sockaddr_in *)(sa))
250
251 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
252 goto ours;
253 if (
254 #ifdef DIRECTED_BROADCAST
255 ia->ia_ifp == m->m_pkthdr.rcvif &&
256 #endif
257 (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
258 u_long t;
259
260 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
261 ip->ip_dst.s_addr)
262 goto ours;
263 if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
264 goto ours;
265 /*
266 * Look for all-0's host part (old broadcast addr),
267 * either for subnet or net.
268 */
269 t = ntohl(ip->ip_dst.s_addr);
270 if (t == ia->ia_subnet)
271 goto ours;
272 if (t == ia->ia_net)
273 goto ours;
274 }
275 }
276 #ifdef MULTICAST
277 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
278 struct in_multi *inm;
279 #ifdef MROUTING
280 extern struct socket *ip_mrouter;
281
282 if (m->m_flags & M_EXT) {
283 if ((m = m_pullup(m, hlen)) == 0) {
284 ipstat.ips_toosmall++;
285 goto next;
286 }
287 ip = mtod(m, struct ip *);
288 }
289
290 if (ip_mrouter) {
291 /*
292 * If we are acting as a multicast router, all
293 * incoming multicast packets are passed to the
294 * kernel-level multicast forwarding function.
295 * The packet is returned (relatively) intact; if
296 * ip_mforward() returns a non-zero value, the packet
297 * must be discarded, else it may be accepted below.
298 *
299 * (The IP ident field is put in the same byte order
300 * as expected when ip_mforward() is called from
301 * ip_output().)
302 */
303 ip->ip_id = htons(ip->ip_id);
304 if (ip_mforward(ip, m->m_pkthdr.rcvif, m) != 0) {
305 m_freem(m);
306 goto next;
307 }
308 ip->ip_id = ntohs(ip->ip_id);
309
310 /*
311 * The process-level routing demon needs to receive
312 * all multicast IGMP packets, whether or not this
313 * host belongs to their destination groups.
314 */
315 if (ip->ip_p == IPPROTO_IGMP)
316 goto ours;
317 }
318 #endif
319 /*
320 * See if we belong to the destination multicast group on the
321 * arrival interface.
322 */
323 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
324 if (inm == NULL) {
325 m_freem(m);
326 goto next;
327 }
328 goto ours;
329 }
330 #endif
331 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
332 goto ours;
333 if (ip->ip_dst.s_addr == INADDR_ANY)
334 goto ours;
335
336 /*
337 * Not for us; forward if possible and desirable.
338 */
339 if (ipforwarding == 0) {
340 ipstat.ips_cantforward++;
341 m_freem(m);
342 } else
343 ip_forward(m, 0);
344 goto next;
345
346 ours:
347 /*
348 * If offset or IP_MF are set, must reassemble.
349 * Otherwise, nothing need be done.
350 * (We could look in the reassembly queue to see
351 * if the packet was previously fragmented,
352 * but it's not worth the time; just let them time out.)
353 */
354 if (ip->ip_off &~ IP_DF) {
355 if (m->m_flags & M_EXT) { /* XXX */
356 if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
357 ipstat.ips_toosmall++;
358 goto next;
359 }
360 ip = mtod(m, struct ip *);
361 }
362 /*
363 * Look for queue of fragments
364 * of this datagram.
365 */
366 for (fp = ipq.next; fp != &ipq; fp = fp->next)
367 if (ip->ip_id == fp->ipq_id &&
368 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
369 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
370 ip->ip_p == fp->ipq_p)
371 goto found;
372 fp = 0;
373 found:
374
375 /*
376 * Adjust ip_len to not reflect header,
377 * set ip_mff if more fragments are expected,
378 * convert offset of this to bytes.
379 */
380 ip->ip_len -= hlen;
381 ((struct ipasfrag *)ip)->ipf_mff = 0;
382 if (ip->ip_off & IP_MF)
383 ((struct ipasfrag *)ip)->ipf_mff = 1;
384 ip->ip_off <<= 3;
385
386 /*
387 * If datagram marked as having more fragments
388 * or if this is not the first fragment,
389 * attempt reassembly; if it succeeds, proceed.
390 */
391 if (((struct ipasfrag *)ip)->ipf_mff || ip->ip_off) {
392 ipstat.ips_fragments++;
393 ip = ip_reass((struct ipasfrag *)ip, fp);
394 if (ip == 0)
395 goto next;
396 else
397 ipstat.ips_reassembled++;
398 m = dtom(ip);
399 } else
400 if (fp)
401 ip_freef(fp);
402 } else
403 ip->ip_len -= hlen;
404
405 /*
406 * Switch out to protocol's input routine.
407 */
408 ipstat.ips_delivered++;
409 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
410 goto next;
411 bad:
412 m_freem(m);
413 goto next;
414 }
415
416 /*
417 * Take incoming datagram fragment and try to
418 * reassemble it into whole datagram. If a chain for
419 * reassembly of this datagram already exists, then it
420 * is given as fp; otherwise have to make a chain.
421 */
422 struct ip *
423 ip_reass(ip, fp)
424 register struct ipasfrag *ip;
425 register struct ipq *fp;
426 {
427 register struct mbuf *m = dtom(ip);
428 register struct ipasfrag *q;
429 struct mbuf *t;
430 int hlen = ip->ip_hl << 2;
431 int i, next;
432
433 /*
434 * Presence of header sizes in mbufs
435 * would confuse code below.
436 */
437 m->m_data += hlen;
438 m->m_len -= hlen;
439
440 /*
441 * If first fragment to arrive, create a reassembly queue.
442 */
443 if (fp == 0) {
444 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
445 goto dropfrag;
446 fp = mtod(t, struct ipq *);
447 insque(fp, &ipq);
448 fp->ipq_ttl = IPFRAGTTL;
449 fp->ipq_p = ip->ip_p;
450 fp->ipq_id = ip->ip_id;
451 fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
452 fp->ipq_src = ((struct ip *)ip)->ip_src;
453 fp->ipq_dst = ((struct ip *)ip)->ip_dst;
454 q = (struct ipasfrag *)fp;
455 goto insert;
456 }
457
458 /*
459 * Find a segment which begins after this one does.
460 */
461 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
462 if (q->ip_off > ip->ip_off)
463 break;
464
465 /*
466 * If there is a preceding segment, it may provide some of
467 * our data already. If so, drop the data from the incoming
468 * segment. If it provides all of our data, drop us.
469 */
470 if (q->ipf_prev != (struct ipasfrag *)fp) {
471 i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
472 if (i > 0) {
473 if (i >= ip->ip_len)
474 goto dropfrag;
475 m_adj(dtom(ip), i);
476 ip->ip_off += i;
477 ip->ip_len -= i;
478 }
479 }
480
481 /*
482 * While we overlap succeeding segments trim them or,
483 * if they are completely covered, dequeue them.
484 */
485 while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
486 i = (ip->ip_off + ip->ip_len) - q->ip_off;
487 if (i < q->ip_len) {
488 q->ip_len -= i;
489 q->ip_off += i;
490 m_adj(dtom(q), i);
491 break;
492 }
493 q = q->ipf_next;
494 m_freem(dtom(q->ipf_prev));
495 ip_deq(q->ipf_prev);
496 }
497
498 insert:
499 /*
500 * Stick new segment in its place;
501 * check for complete reassembly.
502 */
503 ip_enq(ip, q->ipf_prev);
504 next = 0;
505 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
506 if (q->ip_off != next)
507 return (0);
508 next += q->ip_len;
509 }
510 if (q->ipf_prev->ipf_mff)
511 return (0);
512
513 /*
514 * Reassembly is complete; concatenate fragments.
515 */
516 q = fp->ipq_next;
517 m = dtom(q);
518 t = m->m_next;
519 m->m_next = 0;
520 m_cat(m, t);
521 q = q->ipf_next;
522 while (q != (struct ipasfrag *)fp) {
523 t = dtom(q);
524 q = q->ipf_next;
525 m_cat(m, t);
526 }
527
528 /*
529 * Create header for new ip packet by
530 * modifying header of first packet;
531 * dequeue and discard fragment reassembly header.
532 * Make header visible.
533 */
534 ip = fp->ipq_next;
535 ip->ip_len = next;
536 ((struct ip *)ip)->ip_src = fp->ipq_src;
537 ((struct ip *)ip)->ip_dst = fp->ipq_dst;
538 remque(fp);
539 (void) m_free(dtom(fp));
540 m = dtom(ip);
541 m->m_len += (ip->ip_hl << 2);
542 m->m_data -= (ip->ip_hl << 2);
543 /* some debugging cruft by sklower, below, will go away soon */
544 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
545 register int plen = 0;
546 for (t = m; m; m = m->m_next)
547 plen += m->m_len;
548 t->m_pkthdr.len = plen;
549 }
550 return ((struct ip *)ip);
551
552 dropfrag:
553 ipstat.ips_fragdropped++;
554 m_freem(m);
555 return (0);
556 }
557
558 /*
559 * Free a fragment reassembly header and all
560 * associated datagrams.
561 */
562 void
563 ip_freef(fp)
564 struct ipq *fp;
565 {
566 register struct ipasfrag *q, *p;
567
568 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
569 p = q->ipf_next;
570 ip_deq(q);
571 m_freem(dtom(q));
572 }
573 remque(fp);
574 (void) m_free(dtom(fp));
575 }
576
577 /*
578 * Put an ip fragment on a reassembly chain.
579 * Like insque, but pointers in middle of structure.
580 */
581 void
582 ip_enq(p, prev)
583 register struct ipasfrag *p, *prev;
584 {
585
586 p->ipf_prev = prev;
587 p->ipf_next = prev->ipf_next;
588 prev->ipf_next->ipf_prev = p;
589 prev->ipf_next = p;
590 }
591
592 /*
593 * To ip_enq as remque is to insque.
594 */
595 void
596 ip_deq(p)
597 register struct ipasfrag *p;
598 {
599
600 p->ipf_prev->ipf_next = p->ipf_next;
601 p->ipf_next->ipf_prev = p->ipf_prev;
602 }
603
604 /*
605 * IP timer processing;
606 * if a timer expires on a reassembly
607 * queue, discard it.
608 */
609 void
610 ip_slowtimo()
611 {
612 register struct ipq *fp;
613 int s = splnet();
614
615 fp = ipq.next;
616 if (fp == 0) {
617 splx(s);
618 return;
619 }
620 while (fp != &ipq) {
621 --fp->ipq_ttl;
622 fp = fp->next;
623 if (fp->prev->ipq_ttl == 0) {
624 ipstat.ips_fragtimeout++;
625 ip_freef(fp->prev);
626 }
627 }
628 splx(s);
629 }
630
631 /*
632 * Drain off all datagram fragments.
633 */
634 void
635 ip_drain()
636 {
637
638 while (ipq.next != &ipq) {
639 ipstat.ips_fragdropped++;
640 ip_freef(ipq.next);
641 }
642 }
643
644 extern struct in_ifaddr *ifptoia();
645 struct in_ifaddr *ip_rtaddr();
646
647 /*
648 * Do option processing on a datagram,
649 * possibly discarding it if bad options are encountered,
650 * or forwarding it if source-routed.
651 * Returns 1 if packet has been forwarded/freed,
652 * 0 if the packet should be processed further.
653 */
654 int
655 ip_dooptions(m)
656 struct mbuf *m;
657 {
658 register struct ip *ip = mtod(m, struct ip *);
659 register u_char *cp;
660 register struct ip_timestamp *ipt;
661 register struct in_ifaddr *ia;
662 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
663 struct in_addr *sin;
664 n_time ntime;
665
666 cp = (u_char *)(ip + 1);
667 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
668 for (; cnt > 0; cnt -= optlen, cp += optlen) {
669 opt = cp[IPOPT_OPTVAL];
670 if (opt == IPOPT_EOL)
671 break;
672 if (opt == IPOPT_NOP)
673 optlen = 1;
674 else {
675 optlen = cp[IPOPT_OLEN];
676 if (optlen <= 0 || optlen > cnt) {
677 code = &cp[IPOPT_OLEN] - (u_char *)ip;
678 goto bad;
679 }
680 }
681 switch (opt) {
682
683 default:
684 break;
685
686 /*
687 * Source routing with record.
688 * Find interface with current destination address.
689 * If none on this machine then drop if strictly routed,
690 * or do nothing if loosely routed.
691 * Record interface address and bring up next address
692 * component. If strictly routed make sure next
693 * address is on directly accessible net.
694 */
695 case IPOPT_LSRR:
696 case IPOPT_SSRR:
697 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
698 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
699 goto bad;
700 }
701 ipaddr.sin_addr = ip->ip_dst;
702 ia = (struct in_ifaddr *)
703 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
704 if (ia == 0) {
705 if (opt == IPOPT_SSRR) {
706 type = ICMP_UNREACH;
707 code = ICMP_UNREACH_SRCFAIL;
708 goto bad;
709 }
710 /*
711 * Loose routing, and not at next destination
712 * yet; nothing to do except forward.
713 */
714 break;
715 }
716 off--; /* 0 origin */
717 if (off > optlen - sizeof(struct in_addr)) {
718 /*
719 * End of source route. Should be for us.
720 */
721 save_rte(cp, ip->ip_src);
722 break;
723 }
724 /*
725 * locate outgoing interface
726 */
727 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
728 sizeof(ipaddr.sin_addr));
729 if (opt == IPOPT_SSRR) {
730 #define INA struct in_ifaddr *
731 #define SA struct sockaddr *
732 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
733 ia = in_iaonnetof(in_netof(ipaddr.sin_addr));
734 } else
735 ia = ip_rtaddr(ipaddr.sin_addr);
736 if (ia == 0) {
737 type = ICMP_UNREACH;
738 code = ICMP_UNREACH_SRCFAIL;
739 goto bad;
740 }
741 ip->ip_dst = ipaddr.sin_addr;
742 bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
743 (caddr_t)(cp + off), sizeof(struct in_addr));
744 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
745 forward = 1;
746 break;
747
748 case IPOPT_RR:
749 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
750 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
751 goto bad;
752 }
753 /*
754 * If no space remains, ignore.
755 */
756 off--; /* 0 origin */
757 if (off > optlen - sizeof(struct in_addr))
758 break;
759 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
760 sizeof(ipaddr.sin_addr));
761 /*
762 * locate outgoing interface; if we're the destination,
763 * use the incoming interface (should be same).
764 */
765 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
766 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
767 type = ICMP_UNREACH;
768 code = ICMP_UNREACH_HOST;
769 goto bad;
770 }
771 bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
772 (caddr_t)(cp + off), sizeof(struct in_addr));
773 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
774 break;
775
776 case IPOPT_TS:
777 code = cp - (u_char *)ip;
778 ipt = (struct ip_timestamp *)cp;
779 if (ipt->ipt_len < 5)
780 goto bad;
781 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) {
782 if (++ipt->ipt_oflw == 0)
783 goto bad;
784 break;
785 }
786 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
787 switch (ipt->ipt_flg) {
788
789 case IPOPT_TS_TSONLY:
790 break;
791
792 case IPOPT_TS_TSANDADDR:
793 if (ipt->ipt_ptr + sizeof(n_time) +
794 sizeof(struct in_addr) > ipt->ipt_len)
795 goto bad;
796 ia = ifptoia(m->m_pkthdr.rcvif);
797 bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
798 (caddr_t)sin, sizeof(struct in_addr));
799 ipt->ipt_ptr += sizeof(struct in_addr);
800 break;
801
802 case IPOPT_TS_PRESPEC:
803 if (ipt->ipt_ptr + sizeof(n_time) +
804 sizeof(struct in_addr) > ipt->ipt_len)
805 goto bad;
806 bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
807 sizeof(struct in_addr));
808 if (ifa_ifwithaddr((SA)&ipaddr) == 0)
809 continue;
810 ipt->ipt_ptr += sizeof(struct in_addr);
811 break;
812
813 default:
814 goto bad;
815 }
816 ntime = iptime();
817 bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
818 sizeof(n_time));
819 ipt->ipt_ptr += sizeof(n_time);
820 }
821 }
822 if (forward) {
823 ip_forward(m, 1);
824 return (1);
825 } else
826 return (0);
827 bad:
828 {
829 register struct in_addr foo = {};
830 icmp_error(m, type, code, foo);
831 }
832 return (1);
833 }
834
835 /*
836 * Given address of next destination (final or next hop),
837 * return internet address info of interface to be used to get there.
838 */
839 struct in_ifaddr *
840 ip_rtaddr(dst)
841 struct in_addr dst;
842 {
843 register struct sockaddr_in *sin;
844
845 sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
846
847 if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
848 if (ipforward_rt.ro_rt) {
849 RTFREE(ipforward_rt.ro_rt);
850 ipforward_rt.ro_rt = 0;
851 }
852 sin->sin_family = AF_INET;
853 sin->sin_len = sizeof(*sin);
854 sin->sin_addr = dst;
855
856 rtalloc(&ipforward_rt);
857 }
858 if (ipforward_rt.ro_rt == 0)
859 return ((struct in_ifaddr *)0);
860 return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
861 }
862
863 /*
864 * Save incoming source route for use in replies,
865 * to be picked up later by ip_srcroute if the receiver is interested.
866 */
867 static void
868 save_rte(option, dst)
869 u_char *option;
870 struct in_addr dst;
871 {
872 unsigned olen;
873
874 olen = option[IPOPT_OLEN];
875 #ifdef DIAGNOSTIC
876 if (ipprintfs)
877 printf("save_rte: olen %d\n", olen);
878 #endif
879 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
880 return;
881 bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
882 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
883 ip_srcrt.dst = dst;
884 }
885
886 /*
887 * Retrieve incoming source route for use in replies,
888 * in the same form used by setsockopt.
889 * The first hop is placed before the options, will be removed later.
890 */
891 struct mbuf *
892 ip_srcroute()
893 {
894 register struct in_addr *p, *q;
895 register struct mbuf *m;
896
897 if (ip_nhops == 0)
898 return ((struct mbuf *)0);
899 m = m_get(M_DONTWAIT, MT_SOOPTS);
900 if (m == 0)
901 return ((struct mbuf *)0);
902
903 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
904
905 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
906 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
907 OPTSIZ;
908 #ifdef DIAGNOSTIC
909 if (ipprintfs)
910 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
911 #endif
912
913 /*
914 * First save first hop for return route
915 */
916 p = &ip_srcrt.route[ip_nhops - 1];
917 *(mtod(m, struct in_addr *)) = *p--;
918 #ifdef DIAGNOSTIC
919 if (ipprintfs)
920 printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
921 #endif
922
923 /*
924 * Copy option fields and padding (nop) to mbuf.
925 */
926 ip_srcrt.nop = IPOPT_NOP;
927 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
928 bcopy((caddr_t)&ip_srcrt.nop,
929 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
930 q = (struct in_addr *)(mtod(m, caddr_t) +
931 sizeof(struct in_addr) + OPTSIZ);
932 #undef OPTSIZ
933 /*
934 * Record return path as an IP source route,
935 * reversing the path (pointers are now aligned).
936 */
937 while (p >= ip_srcrt.route) {
938 #ifdef DIAGNOSTIC
939 if (ipprintfs)
940 printf(" %lx", ntohl(q->s_addr));
941 #endif
942 *q++ = *p--;
943 }
944 /*
945 * Last hop goes to final destination.
946 */
947 *q = ip_srcrt.dst;
948 #ifdef DIAGNOSTIC
949 if (ipprintfs)
950 printf(" %lx\n", ntohl(q->s_addr));
951 #endif
952 return (m);
953 }
954
955 /*
956 * Strip out IP options, at higher
957 * level protocol in the kernel.
958 * Second argument is buffer to which options
959 * will be moved, and return value is their length.
960 * XXX should be deleted; last arg currently ignored.
961 */
962 void
963 ip_stripoptions(m, mopt)
964 register struct mbuf *m;
965 struct mbuf *mopt;
966 {
967 register int i;
968 struct ip *ip = mtod(m, struct ip *);
969 register caddr_t opts;
970 int olen;
971
972 olen = (ip->ip_hl<<2) - sizeof (struct ip);
973 opts = (caddr_t)(ip + 1);
974 i = m->m_len - (sizeof (struct ip) + olen);
975 bcopy(opts + olen, opts, (unsigned)i);
976 m->m_len -= olen;
977 if (m->m_flags & M_PKTHDR)
978 m->m_pkthdr.len -= olen;
979 ip->ip_hl = sizeof(struct ip) >> 2;
980 }
981
982 u_char inetctlerrmap[PRC_NCMDS] = {
983 0, 0, 0, 0,
984 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
985 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
986 EMSGSIZE, EHOSTUNREACH, 0, 0,
987 0, 0, 0, 0,
988 ENOPROTOOPT
989 };
990
991 /*
992 * Forward a packet. If some error occurs return the sender
993 * an icmp packet. Note we can't always generate a meaningful
994 * icmp message because icmp doesn't have a large enough repertoire
995 * of codes and types.
996 *
997 * If not forwarding, just drop the packet. This could be confusing
998 * if ipforwarding was zero but some routing protocol was advancing
999 * us as a gateway to somewhere. However, we must let the routing
1000 * protocol deal with that.
1001 *
1002 * The srcrt parameter indicates whether the packet is being forwarded
1003 * via a source route.
1004 */
1005 static void
1006 ip_forward(m, srcrt)
1007 struct mbuf *m;
1008 int srcrt;
1009 {
1010 register struct ip *ip = mtod(m, struct ip *);
1011 register struct sockaddr_in *sin;
1012 register struct rtentry *rt;
1013 int error, type = 0, code;
1014 struct mbuf *mcopy;
1015 struct in_addr dest;
1016
1017 dest.s_addr = 0;
1018 #ifdef DIAGNOSTIC
1019 if (ipprintfs)
1020 printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
1021 ip->ip_dst, ip->ip_ttl);
1022 #endif
1023 if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1024 ipstat.ips_cantforward++;
1025 m_freem(m);
1026 return;
1027 }
1028 HTONS(ip->ip_id);
1029 if (ip->ip_ttl <= IPTTLDEC) {
1030 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest);
1031 return;
1032 }
1033 ip->ip_ttl -= IPTTLDEC;
1034
1035 sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1036 if ((rt = ipforward_rt.ro_rt) == 0 ||
1037 ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1038 if (ipforward_rt.ro_rt) {
1039 RTFREE(ipforward_rt.ro_rt);
1040 ipforward_rt.ro_rt = 0;
1041 }
1042 sin->sin_family = AF_INET;
1043 sin->sin_len = sizeof(*sin);
1044 sin->sin_addr = ip->ip_dst;
1045
1046 rtalloc(&ipforward_rt);
1047 if (ipforward_rt.ro_rt == 0) {
1048 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest);
1049 return;
1050 }
1051 rt = ipforward_rt.ro_rt;
1052 }
1053
1054 /*
1055 * Save at most 64 bytes of the packet in case
1056 * we need to generate an ICMP message to the src.
1057 */
1058 mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1059
1060 #ifdef GATEWAY
1061 ip_ifmatrix[rt->rt_ifp->if_index +
1062 if_index * m->m_pkthdr.rcvif->if_index]++;
1063 #endif
1064 /*
1065 * If forwarding packet using same interface that it came in on,
1066 * perhaps should send a redirect to sender to shortcut a hop.
1067 * Only send redirect if source is sending directly to us,
1068 * and if packet was not source routed (or has any options).
1069 * Also, don't send redirect if forwarding using a default route
1070 * or a route modified by a redirect.
1071 */
1072 #define satosin(sa) ((struct sockaddr_in *)(sa))
1073 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1074 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1075 satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1076 ipsendredirects && !srcrt) {
1077 struct in_ifaddr *ia;
1078 u_long src = ntohl(ip->ip_src.s_addr);
1079 u_long dst = ntohl(ip->ip_dst.s_addr);
1080
1081 if ((ia = ifptoia(m->m_pkthdr.rcvif)) &&
1082 (src & ia->ia_subnetmask) == ia->ia_subnet) {
1083 if (rt->rt_flags & RTF_GATEWAY)
1084 dest = satosin(rt->rt_gateway)->sin_addr;
1085 else
1086 dest = ip->ip_dst;
1087 /*
1088 * If the destination is reached by a route to host,
1089 * is on a subnet of a local net, or is directly
1090 * on the attached net (!), use host redirect.
1091 * (We may be the correct first hop for other subnets.)
1092 */
1093 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
1094 type = ICMP_REDIRECT;
1095 if ((rt->rt_flags & RTF_HOST) ||
1096 (rt->rt_flags & RTF_GATEWAY) == 0)
1097 code = ICMP_REDIRECT_HOST;
1098 else if (RTA(rt)->ia_subnetmask != RTA(rt)->ia_netmask &&
1099 (dst & RTA(rt)->ia_netmask) == RTA(rt)->ia_net)
1100 code = ICMP_REDIRECT_HOST;
1101 else
1102 code = ICMP_REDIRECT_NET;
1103 #ifdef DIAGNOSTIC
1104 if (ipprintfs)
1105 printf("redirect (%d) to %x\n", code, dest.s_addr);
1106 #endif
1107 }
1108 }
1109
1110 error = ip_output(m, NULL, &ipforward_rt, IP_FORWARDING
1111 #ifdef DIRECTED_BROADCAST
1112 | IP_ALLOWBROADCAST
1113 #endif
1114 , NULL);
1115 if (error)
1116 ipstat.ips_cantforward++;
1117 else {
1118 ipstat.ips_forward++;
1119 if (type)
1120 ipstat.ips_redirectsent++;
1121 else {
1122 if (mcopy)
1123 m_freem(mcopy);
1124 return;
1125 }
1126 }
1127 if (mcopy == NULL)
1128 return;
1129 switch (error) {
1130
1131 case 0: /* forwarded, but need redirect */
1132 /* type, code set above */
1133 break;
1134
1135 case ENETUNREACH: /* shouldn't happen, checked above */
1136 case EHOSTUNREACH:
1137 case ENETDOWN:
1138 case EHOSTDOWN:
1139 default:
1140 type = ICMP_UNREACH;
1141 code = ICMP_UNREACH_HOST;
1142 break;
1143
1144 case EMSGSIZE:
1145 type = ICMP_UNREACH;
1146 code = ICMP_UNREACH_NEEDFRAG;
1147 ipstat.ips_cantfrag++;
1148 break;
1149
1150 case ENOBUFS:
1151 type = ICMP_SOURCEQUENCH;
1152 code = 0;
1153 break;
1154 }
1155 icmp_error(mcopy, type, code, dest);
1156 }
1157