ip_input.c revision 1.12 1 /*
2 * Copyright (c) 1982, 1986, 1988 Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * from: @(#)ip_input.c 7.19 (Berkeley) 5/25/91
34 * $Id: ip_input.c,v 1.12 1994/02/14 21:45:53 mycroft Exp $
35 */
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/domain.h>
42 #include <sys/protosw.h>
43 #include <sys/socket.h>
44 #include <sys/errno.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47
48 #include <net/if.h>
49 #include <net/route.h>
50
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/ip.h>
54 #include <netinet/in_pcb.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip_var.h>
57 #include <netinet/ip_icmp.h>
58 #include <netinet/ip_mroute.h>
59
60 #ifndef IPFORWARDING
61 #ifdef GATEWAY
62 #define IPFORWARDING 1 /* forward IP packets not for us */
63 #else /* GATEWAY */
64 #define IPFORWARDING 0 /* don't forward IP packets not for us */
65 #endif /* GATEWAY */
66 #endif /* IPFORWARDING */
67 #ifndef IPSENDREDIRECTS
68 #define IPSENDREDIRECTS 1
69 #endif
70 int ipforwarding = IPFORWARDING;
71 int ipsendredirects = IPSENDREDIRECTS;
72 #ifdef DIAGNOSTIC
73 int ipprintfs = 0;
74 #endif
75
76 extern struct domain inetdomain;
77 extern struct protosw inetsw[];
78 u_char ip_protox[IPPROTO_MAX];
79 int ipqmaxlen = IFQ_MAXLEN;
80 struct in_ifaddr *in_ifaddr; /* first inet address */
81
82 /*
83 * We need to save the IP options in case a protocol wants to respond
84 * to an incoming packet over the same route if the packet got here
85 * using IP source routing. This allows connection establishment and
86 * maintenance when the remote end is on a network that is not known
87 * to us.
88 */
89 int ip_nhops = 0;
90 static struct ip_srcrt {
91 struct in_addr dst; /* final destination */
92 char nop; /* one NOP to align */
93 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
94 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
95 } ip_srcrt;
96
97 #ifdef GATEWAY
98 extern int if_index;
99 u_long *ip_ifmatrix;
100 #endif
101
102 static void ip_forward __P((struct mbuf *, int));
103 static void save_rte __P((u_char *, struct in_addr));
104
105 /*
106 * IP initialization: fill in IP protocol switch table.
107 * All protocols not implemented in kernel go to raw IP protocol handler.
108 */
109 void
110 ip_init()
111 {
112 register struct protosw *pr;
113 register int i;
114
115 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
116 if (pr == 0)
117 panic("ip_init");
118 for (i = 0; i < IPPROTO_MAX; i++)
119 ip_protox[i] = pr - inetsw;
120 for (pr = inetdomain.dom_protosw;
121 pr < inetdomain.dom_protoswNPROTOSW; pr++)
122 if (pr->pr_domain->dom_family == PF_INET &&
123 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
124 ip_protox[pr->pr_protocol] = pr - inetsw;
125 ipq.next = ipq.prev = &ipq;
126 ip_id = time.tv_sec & 0xffff;
127 ipintrq.ifq_maxlen = ipqmaxlen;
128 #ifdef GATEWAY
129 i = (if_index + 1) * (if_index + 1) * sizeof (u_long);
130 if ((ip_ifmatrix = (u_long *) malloc(i, M_RTABLE, M_WAITOK)) == 0)
131 panic("no memory for ip_ifmatrix");
132 #endif
133 }
134
135 struct ip *ip_reass();
136 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
137 struct route ipforward_rt;
138
139 /*
140 * Ip input routine. Checksum and byte swap header. If fragmented
141 * try to reassemble. Process options. Pass to next level.
142 */
143 void
144 ipintr()
145 {
146 register struct ip *ip;
147 register struct mbuf *m;
148 register struct ipq *fp;
149 register struct in_ifaddr *ia;
150 int hlen, s;
151 #ifdef DIAGNOSTIC
152 static int busy = 0;
153
154 if (busy)
155 panic("ipintr: called recursively\n");
156 ++busy;
157 #endif
158 next:
159 /*
160 * Get next datagram off input queue and get IP header
161 * in first mbuf.
162 */
163 s = splimp();
164 IF_DEQUEUE(&ipintrq, m);
165 splx(s);
166 if (m == 0) {
167 #ifdef DIAGNOSTIC
168 --busy;
169 #endif
170 return;
171 }
172 #ifdef DIAGNOSTIC
173 if ((m->m_flags & M_PKTHDR) == 0)
174 panic("ipintr no HDR");
175 #endif
176 /*
177 * If no IP addresses have been set yet but the interfaces
178 * are receiving, can't do anything with incoming packets yet.
179 */
180 if (in_ifaddr == NULL)
181 goto bad;
182 ipstat.ips_total++;
183 if (m->m_len < sizeof (struct ip) &&
184 (m = m_pullup(m, sizeof (struct ip))) == 0) {
185 ipstat.ips_toosmall++;
186 goto next;
187 }
188 ip = mtod(m, struct ip *);
189 hlen = ip->ip_hl << 2;
190 if (hlen < sizeof(struct ip)) { /* minimum header length */
191 ipstat.ips_badhlen++;
192 goto bad;
193 }
194 if (hlen > m->m_len) {
195 if ((m = m_pullup(m, hlen)) == 0) {
196 ipstat.ips_badhlen++;
197 goto next;
198 }
199 ip = mtod(m, struct ip *);
200 }
201 if (ip->ip_sum = in_cksum(m, hlen)) {
202 ipstat.ips_badsum++;
203 goto bad;
204 }
205
206 /*
207 * Convert fields to host representation.
208 */
209 NTOHS(ip->ip_len);
210 if (ip->ip_len < hlen) {
211 ipstat.ips_badlen++;
212 goto bad;
213 }
214 NTOHS(ip->ip_id);
215 NTOHS(ip->ip_off);
216
217 /*
218 * Check that the amount of data in the buffers
219 * is as at least much as the IP header would have us expect.
220 * Trim mbufs if longer than we expect.
221 * Drop packet if shorter than we expect.
222 */
223 if (m->m_pkthdr.len < ip->ip_len) {
224 ipstat.ips_tooshort++;
225 goto bad;
226 }
227 if (m->m_pkthdr.len > ip->ip_len) {
228 if (m->m_len == m->m_pkthdr.len) {
229 m->m_len = ip->ip_len;
230 m->m_pkthdr.len = ip->ip_len;
231 } else
232 m_adj(m, ip->ip_len - m->m_pkthdr.len);
233 }
234
235 /*
236 * Process options and, if not destined for us,
237 * ship it on. ip_dooptions returns 1 when an
238 * error was detected (causing an icmp message
239 * to be sent and the original packet to be freed).
240 */
241 ip_nhops = 0; /* for source routed packets */
242 if (hlen > sizeof (struct ip) && ip_dooptions(m))
243 goto next;
244
245 /*
246 * Check our list of addresses, to see if the packet is for us.
247 */
248 for (ia = in_ifaddr; ia; ia = ia->ia_next) {
249 #define satosin(sa) ((struct sockaddr_in *)(sa))
250
251 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
252 goto ours;
253 if (
254 #ifdef DIRECTED_BROADCAST
255 ia->ia_ifp == m->m_pkthdr.rcvif &&
256 #endif
257 (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
258 u_long t;
259
260 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
261 ip->ip_dst.s_addr)
262 goto ours;
263 if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
264 goto ours;
265 /*
266 * Look for all-0's host part (old broadcast addr),
267 * either for subnet or net.
268 */
269 t = ntohl(ip->ip_dst.s_addr);
270 if (t == ia->ia_subnet)
271 goto ours;
272 if (t == ia->ia_net)
273 goto ours;
274 }
275 }
276 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
277 struct in_multi *inm;
278 #ifdef MROUTING
279 extern struct socket *ip_mrouter;
280
281 if (m->m_flags & M_EXT) {
282 if ((m = m_pullup(m, hlen)) == 0) {
283 ipstat.ips_toosmall++;
284 goto next;
285 }
286 ip = mtod(m, struct ip *);
287 }
288
289 if (ip_mrouter) {
290 /*
291 * If we are acting as a multicast router, all
292 * incoming multicast packets are passed to the
293 * kernel-level multicast forwarding function.
294 * The packet is returned (relatively) intact; if
295 * ip_mforward() returns a non-zero value, the packet
296 * must be discarded, else it may be accepted below.
297 *
298 * (The IP ident field is put in the same byte order
299 * as expected when ip_mforward() is called from
300 * ip_output().)
301 */
302 ip->ip_id = htons(ip->ip_id);
303 if (ip_mforward(ip, m->m_pkthdr.rcvif, m) != 0) {
304 m_freem(m);
305 goto next;
306 }
307 ip->ip_id = ntohs(ip->ip_id);
308
309 /*
310 * The process-level routing demon needs to receive
311 * all multicast IGMP packets, whether or not this
312 * host belongs to their destination groups.
313 */
314 if (ip->ip_p == IPPROTO_IGMP)
315 goto ours;
316 }
317 #endif
318 /*
319 * See if we belong to the destination multicast group on the
320 * arrival interface.
321 */
322 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
323 if (inm == NULL) {
324 m_freem(m);
325 goto next;
326 }
327 goto ours;
328 }
329 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
330 goto ours;
331 if (ip->ip_dst.s_addr == INADDR_ANY)
332 goto ours;
333
334 /*
335 * Not for us; forward if possible and desirable.
336 */
337 if (ipforwarding == 0) {
338 ipstat.ips_cantforward++;
339 m_freem(m);
340 } else
341 ip_forward(m, 0);
342 goto next;
343
344 ours:
345 /*
346 * If offset or IP_MF are set, must reassemble.
347 * Otherwise, nothing need be done.
348 * (We could look in the reassembly queue to see
349 * if the packet was previously fragmented,
350 * but it's not worth the time; just let them time out.)
351 */
352 if (ip->ip_off &~ IP_DF) {
353 if (m->m_flags & M_EXT) { /* XXX */
354 if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
355 ipstat.ips_toosmall++;
356 goto next;
357 }
358 ip = mtod(m, struct ip *);
359 }
360 /*
361 * Look for queue of fragments
362 * of this datagram.
363 */
364 for (fp = ipq.next; fp != &ipq; fp = fp->next)
365 if (ip->ip_id == fp->ipq_id &&
366 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
367 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
368 ip->ip_p == fp->ipq_p)
369 goto found;
370 fp = 0;
371 found:
372
373 /*
374 * Adjust ip_len to not reflect header,
375 * set ip_mff if more fragments are expected,
376 * convert offset of this to bytes.
377 */
378 ip->ip_len -= hlen;
379 ((struct ipasfrag *)ip)->ipf_mff = 0;
380 if (ip->ip_off & IP_MF)
381 ((struct ipasfrag *)ip)->ipf_mff = 1;
382 ip->ip_off <<= 3;
383
384 /*
385 * If datagram marked as having more fragments
386 * or if this is not the first fragment,
387 * attempt reassembly; if it succeeds, proceed.
388 */
389 if (((struct ipasfrag *)ip)->ipf_mff || ip->ip_off) {
390 ipstat.ips_fragments++;
391 ip = ip_reass((struct ipasfrag *)ip, fp);
392 if (ip == 0)
393 goto next;
394 else
395 ipstat.ips_reassembled++;
396 m = dtom(ip);
397 } else
398 if (fp)
399 ip_freef(fp);
400 } else
401 ip->ip_len -= hlen;
402
403 /*
404 * Switch out to protocol's input routine.
405 */
406 ipstat.ips_delivered++;
407 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
408 goto next;
409 bad:
410 m_freem(m);
411 goto next;
412 }
413
414 /*
415 * Take incoming datagram fragment and try to
416 * reassemble it into whole datagram. If a chain for
417 * reassembly of this datagram already exists, then it
418 * is given as fp; otherwise have to make a chain.
419 */
420 struct ip *
421 ip_reass(ip, fp)
422 register struct ipasfrag *ip;
423 register struct ipq *fp;
424 {
425 register struct mbuf *m = dtom(ip);
426 register struct ipasfrag *q;
427 struct mbuf *t;
428 int hlen = ip->ip_hl << 2;
429 int i, next;
430
431 /*
432 * Presence of header sizes in mbufs
433 * would confuse code below.
434 */
435 m->m_data += hlen;
436 m->m_len -= hlen;
437
438 /*
439 * If first fragment to arrive, create a reassembly queue.
440 */
441 if (fp == 0) {
442 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
443 goto dropfrag;
444 fp = mtod(t, struct ipq *);
445 insque(fp, &ipq);
446 fp->ipq_ttl = IPFRAGTTL;
447 fp->ipq_p = ip->ip_p;
448 fp->ipq_id = ip->ip_id;
449 fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
450 fp->ipq_src = ((struct ip *)ip)->ip_src;
451 fp->ipq_dst = ((struct ip *)ip)->ip_dst;
452 q = (struct ipasfrag *)fp;
453 goto insert;
454 }
455
456 /*
457 * Find a segment which begins after this one does.
458 */
459 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
460 if (q->ip_off > ip->ip_off)
461 break;
462
463 /*
464 * If there is a preceding segment, it may provide some of
465 * our data already. If so, drop the data from the incoming
466 * segment. If it provides all of our data, drop us.
467 */
468 if (q->ipf_prev != (struct ipasfrag *)fp) {
469 i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
470 if (i > 0) {
471 if (i >= ip->ip_len)
472 goto dropfrag;
473 m_adj(dtom(ip), i);
474 ip->ip_off += i;
475 ip->ip_len -= i;
476 }
477 }
478
479 /*
480 * While we overlap succeeding segments trim them or,
481 * if they are completely covered, dequeue them.
482 */
483 while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
484 i = (ip->ip_off + ip->ip_len) - q->ip_off;
485 if (i < q->ip_len) {
486 q->ip_len -= i;
487 q->ip_off += i;
488 m_adj(dtom(q), i);
489 break;
490 }
491 q = q->ipf_next;
492 m_freem(dtom(q->ipf_prev));
493 ip_deq(q->ipf_prev);
494 }
495
496 insert:
497 /*
498 * Stick new segment in its place;
499 * check for complete reassembly.
500 */
501 ip_enq(ip, q->ipf_prev);
502 next = 0;
503 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
504 if (q->ip_off != next)
505 return (0);
506 next += q->ip_len;
507 }
508 if (q->ipf_prev->ipf_mff)
509 return (0);
510
511 /*
512 * Reassembly is complete; concatenate fragments.
513 */
514 q = fp->ipq_next;
515 m = dtom(q);
516 t = m->m_next;
517 m->m_next = 0;
518 m_cat(m, t);
519 q = q->ipf_next;
520 while (q != (struct ipasfrag *)fp) {
521 t = dtom(q);
522 q = q->ipf_next;
523 m_cat(m, t);
524 }
525
526 /*
527 * Create header for new ip packet by
528 * modifying header of first packet;
529 * dequeue and discard fragment reassembly header.
530 * Make header visible.
531 */
532 ip = fp->ipq_next;
533 ip->ip_len = next;
534 ((struct ip *)ip)->ip_src = fp->ipq_src;
535 ((struct ip *)ip)->ip_dst = fp->ipq_dst;
536 remque(fp);
537 (void) m_free(dtom(fp));
538 m = dtom(ip);
539 m->m_len += (ip->ip_hl << 2);
540 m->m_data -= (ip->ip_hl << 2);
541 /* some debugging cruft by sklower, below, will go away soon */
542 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
543 register int plen = 0;
544 for (t = m; m; m = m->m_next)
545 plen += m->m_len;
546 t->m_pkthdr.len = plen;
547 }
548 return ((struct ip *)ip);
549
550 dropfrag:
551 ipstat.ips_fragdropped++;
552 m_freem(m);
553 return (0);
554 }
555
556 /*
557 * Free a fragment reassembly header and all
558 * associated datagrams.
559 */
560 void
561 ip_freef(fp)
562 struct ipq *fp;
563 {
564 register struct ipasfrag *q, *p;
565
566 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
567 p = q->ipf_next;
568 ip_deq(q);
569 m_freem(dtom(q));
570 }
571 remque(fp);
572 (void) m_free(dtom(fp));
573 }
574
575 /*
576 * Put an ip fragment on a reassembly chain.
577 * Like insque, but pointers in middle of structure.
578 */
579 void
580 ip_enq(p, prev)
581 register struct ipasfrag *p, *prev;
582 {
583
584 p->ipf_prev = prev;
585 p->ipf_next = prev->ipf_next;
586 prev->ipf_next->ipf_prev = p;
587 prev->ipf_next = p;
588 }
589
590 /*
591 * To ip_enq as remque is to insque.
592 */
593 void
594 ip_deq(p)
595 register struct ipasfrag *p;
596 {
597
598 p->ipf_prev->ipf_next = p->ipf_next;
599 p->ipf_next->ipf_prev = p->ipf_prev;
600 }
601
602 /*
603 * IP timer processing;
604 * if a timer expires on a reassembly
605 * queue, discard it.
606 */
607 void
608 ip_slowtimo()
609 {
610 register struct ipq *fp;
611 int s = splnet();
612
613 fp = ipq.next;
614 if (fp == 0) {
615 splx(s);
616 return;
617 }
618 while (fp != &ipq) {
619 --fp->ipq_ttl;
620 fp = fp->next;
621 if (fp->prev->ipq_ttl == 0) {
622 ipstat.ips_fragtimeout++;
623 ip_freef(fp->prev);
624 }
625 }
626 splx(s);
627 }
628
629 /*
630 * Drain off all datagram fragments.
631 */
632 void
633 ip_drain()
634 {
635
636 while (ipq.next != &ipq) {
637 ipstat.ips_fragdropped++;
638 ip_freef(ipq.next);
639 }
640 }
641
642 extern struct in_ifaddr *ifptoia();
643 struct in_ifaddr *ip_rtaddr();
644
645 /*
646 * Do option processing on a datagram,
647 * possibly discarding it if bad options are encountered,
648 * or forwarding it if source-routed.
649 * Returns 1 if packet has been forwarded/freed,
650 * 0 if the packet should be processed further.
651 */
652 int
653 ip_dooptions(m)
654 struct mbuf *m;
655 {
656 register struct ip *ip = mtod(m, struct ip *);
657 register u_char *cp;
658 register struct ip_timestamp *ipt;
659 register struct in_ifaddr *ia;
660 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
661 struct in_addr *sin;
662 n_time ntime;
663
664 cp = (u_char *)(ip + 1);
665 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
666 for (; cnt > 0; cnt -= optlen, cp += optlen) {
667 opt = cp[IPOPT_OPTVAL];
668 if (opt == IPOPT_EOL)
669 break;
670 if (opt == IPOPT_NOP)
671 optlen = 1;
672 else {
673 optlen = cp[IPOPT_OLEN];
674 if (optlen <= 0 || optlen > cnt) {
675 code = &cp[IPOPT_OLEN] - (u_char *)ip;
676 goto bad;
677 }
678 }
679 switch (opt) {
680
681 default:
682 break;
683
684 /*
685 * Source routing with record.
686 * Find interface with current destination address.
687 * If none on this machine then drop if strictly routed,
688 * or do nothing if loosely routed.
689 * Record interface address and bring up next address
690 * component. If strictly routed make sure next
691 * address is on directly accessible net.
692 */
693 case IPOPT_LSRR:
694 case IPOPT_SSRR:
695 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
696 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
697 goto bad;
698 }
699 ipaddr.sin_addr = ip->ip_dst;
700 ia = (struct in_ifaddr *)
701 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
702 if (ia == 0) {
703 if (opt == IPOPT_SSRR) {
704 type = ICMP_UNREACH;
705 code = ICMP_UNREACH_SRCFAIL;
706 goto bad;
707 }
708 /*
709 * Loose routing, and not at next destination
710 * yet; nothing to do except forward.
711 */
712 break;
713 }
714 off--; /* 0 origin */
715 if (off > optlen - sizeof(struct in_addr)) {
716 /*
717 * End of source route. Should be for us.
718 */
719 save_rte(cp, ip->ip_src);
720 break;
721 }
722 /*
723 * locate outgoing interface
724 */
725 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
726 sizeof(ipaddr.sin_addr));
727 if (opt == IPOPT_SSRR) {
728 #define INA struct in_ifaddr *
729 #define SA struct sockaddr *
730 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
731 ia = in_iaonnetof(in_netof(ipaddr.sin_addr));
732 } else
733 ia = ip_rtaddr(ipaddr.sin_addr);
734 if (ia == 0) {
735 type = ICMP_UNREACH;
736 code = ICMP_UNREACH_SRCFAIL;
737 goto bad;
738 }
739 ip->ip_dst = ipaddr.sin_addr;
740 bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
741 (caddr_t)(cp + off), sizeof(struct in_addr));
742 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
743 forward = 1;
744 break;
745
746 case IPOPT_RR:
747 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
748 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
749 goto bad;
750 }
751 /*
752 * If no space remains, ignore.
753 */
754 off--; /* 0 origin */
755 if (off > optlen - sizeof(struct in_addr))
756 break;
757 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
758 sizeof(ipaddr.sin_addr));
759 /*
760 * locate outgoing interface; if we're the destination,
761 * use the incoming interface (should be same).
762 */
763 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
764 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
765 type = ICMP_UNREACH;
766 code = ICMP_UNREACH_HOST;
767 goto bad;
768 }
769 bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
770 (caddr_t)(cp + off), sizeof(struct in_addr));
771 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
772 break;
773
774 case IPOPT_TS:
775 code = cp - (u_char *)ip;
776 ipt = (struct ip_timestamp *)cp;
777 if (ipt->ipt_len < 5)
778 goto bad;
779 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) {
780 if (++ipt->ipt_oflw == 0)
781 goto bad;
782 break;
783 }
784 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
785 switch (ipt->ipt_flg) {
786
787 case IPOPT_TS_TSONLY:
788 break;
789
790 case IPOPT_TS_TSANDADDR:
791 if (ipt->ipt_ptr + sizeof(n_time) +
792 sizeof(struct in_addr) > ipt->ipt_len)
793 goto bad;
794 ia = ifptoia(m->m_pkthdr.rcvif);
795 bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
796 (caddr_t)sin, sizeof(struct in_addr));
797 ipt->ipt_ptr += sizeof(struct in_addr);
798 break;
799
800 case IPOPT_TS_PRESPEC:
801 if (ipt->ipt_ptr + sizeof(n_time) +
802 sizeof(struct in_addr) > ipt->ipt_len)
803 goto bad;
804 bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
805 sizeof(struct in_addr));
806 if (ifa_ifwithaddr((SA)&ipaddr) == 0)
807 continue;
808 ipt->ipt_ptr += sizeof(struct in_addr);
809 break;
810
811 default:
812 goto bad;
813 }
814 ntime = iptime();
815 bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
816 sizeof(n_time));
817 ipt->ipt_ptr += sizeof(n_time);
818 }
819 }
820 if (forward) {
821 ip_forward(m, 1);
822 return (1);
823 } else
824 return (0);
825 bad:
826 {
827 register struct in_addr foo = {};
828 icmp_error(m, type, code, foo);
829 }
830 return (1);
831 }
832
833 /*
834 * Given address of next destination (final or next hop),
835 * return internet address info of interface to be used to get there.
836 */
837 struct in_ifaddr *
838 ip_rtaddr(dst)
839 struct in_addr dst;
840 {
841 register struct sockaddr_in *sin;
842
843 sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
844
845 if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
846 if (ipforward_rt.ro_rt) {
847 RTFREE(ipforward_rt.ro_rt);
848 ipforward_rt.ro_rt = 0;
849 }
850 sin->sin_family = AF_INET;
851 sin->sin_len = sizeof(*sin);
852 sin->sin_addr = dst;
853
854 rtalloc(&ipforward_rt);
855 }
856 if (ipforward_rt.ro_rt == 0)
857 return ((struct in_ifaddr *)0);
858 return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
859 }
860
861 /*
862 * Save incoming source route for use in replies,
863 * to be picked up later by ip_srcroute if the receiver is interested.
864 */
865 static void
866 save_rte(option, dst)
867 u_char *option;
868 struct in_addr dst;
869 {
870 unsigned olen;
871
872 olen = option[IPOPT_OLEN];
873 #ifdef DIAGNOSTIC
874 if (ipprintfs)
875 printf("save_rte: olen %d\n", olen);
876 #endif
877 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
878 return;
879 bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
880 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
881 ip_srcrt.dst = dst;
882 }
883
884 /*
885 * Retrieve incoming source route for use in replies,
886 * in the same form used by setsockopt.
887 * The first hop is placed before the options, will be removed later.
888 */
889 struct mbuf *
890 ip_srcroute()
891 {
892 register struct in_addr *p, *q;
893 register struct mbuf *m;
894
895 if (ip_nhops == 0)
896 return ((struct mbuf *)0);
897 m = m_get(M_DONTWAIT, MT_SOOPTS);
898 if (m == 0)
899 return ((struct mbuf *)0);
900
901 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
902
903 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
904 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
905 OPTSIZ;
906 #ifdef DIAGNOSTIC
907 if (ipprintfs)
908 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
909 #endif
910
911 /*
912 * First save first hop for return route
913 */
914 p = &ip_srcrt.route[ip_nhops - 1];
915 *(mtod(m, struct in_addr *)) = *p--;
916 #ifdef DIAGNOSTIC
917 if (ipprintfs)
918 printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
919 #endif
920
921 /*
922 * Copy option fields and padding (nop) to mbuf.
923 */
924 ip_srcrt.nop = IPOPT_NOP;
925 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
926 bcopy((caddr_t)&ip_srcrt.nop,
927 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
928 q = (struct in_addr *)(mtod(m, caddr_t) +
929 sizeof(struct in_addr) + OPTSIZ);
930 #undef OPTSIZ
931 /*
932 * Record return path as an IP source route,
933 * reversing the path (pointers are now aligned).
934 */
935 while (p >= ip_srcrt.route) {
936 #ifdef DIAGNOSTIC
937 if (ipprintfs)
938 printf(" %lx", ntohl(q->s_addr));
939 #endif
940 *q++ = *p--;
941 }
942 /*
943 * Last hop goes to final destination.
944 */
945 *q = ip_srcrt.dst;
946 #ifdef DIAGNOSTIC
947 if (ipprintfs)
948 printf(" %lx\n", ntohl(q->s_addr));
949 #endif
950 return (m);
951 }
952
953 /*
954 * Strip out IP options, at higher
955 * level protocol in the kernel.
956 * Second argument is buffer to which options
957 * will be moved, and return value is their length.
958 * XXX should be deleted; last arg currently ignored.
959 */
960 void
961 ip_stripoptions(m, mopt)
962 register struct mbuf *m;
963 struct mbuf *mopt;
964 {
965 register int i;
966 struct ip *ip = mtod(m, struct ip *);
967 register caddr_t opts;
968 int olen;
969
970 olen = (ip->ip_hl<<2) - sizeof (struct ip);
971 opts = (caddr_t)(ip + 1);
972 i = m->m_len - (sizeof (struct ip) + olen);
973 bcopy(opts + olen, opts, (unsigned)i);
974 m->m_len -= olen;
975 if (m->m_flags & M_PKTHDR)
976 m->m_pkthdr.len -= olen;
977 ip->ip_hl = sizeof(struct ip) >> 2;
978 }
979
980 u_char inetctlerrmap[PRC_NCMDS] = {
981 0, 0, 0, 0,
982 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
983 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
984 EMSGSIZE, EHOSTUNREACH, 0, 0,
985 0, 0, 0, 0,
986 ENOPROTOOPT
987 };
988
989 /*
990 * Forward a packet. If some error occurs return the sender
991 * an icmp packet. Note we can't always generate a meaningful
992 * icmp message because icmp doesn't have a large enough repertoire
993 * of codes and types.
994 *
995 * If not forwarding, just drop the packet. This could be confusing
996 * if ipforwarding was zero but some routing protocol was advancing
997 * us as a gateway to somewhere. However, we must let the routing
998 * protocol deal with that.
999 *
1000 * The srcrt parameter indicates whether the packet is being forwarded
1001 * via a source route.
1002 */
1003 static void
1004 ip_forward(m, srcrt)
1005 struct mbuf *m;
1006 int srcrt;
1007 {
1008 register struct ip *ip = mtod(m, struct ip *);
1009 register struct sockaddr_in *sin;
1010 register struct rtentry *rt;
1011 int error, type = 0, code;
1012 struct mbuf *mcopy;
1013 struct in_addr dest;
1014
1015 dest.s_addr = 0;
1016 #ifdef DIAGNOSTIC
1017 if (ipprintfs)
1018 printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
1019 ip->ip_dst, ip->ip_ttl);
1020 #endif
1021 if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1022 ipstat.ips_cantforward++;
1023 m_freem(m);
1024 return;
1025 }
1026 HTONS(ip->ip_id);
1027 if (ip->ip_ttl <= IPTTLDEC) {
1028 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest);
1029 return;
1030 }
1031 ip->ip_ttl -= IPTTLDEC;
1032
1033 sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1034 if ((rt = ipforward_rt.ro_rt) == 0 ||
1035 ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1036 if (ipforward_rt.ro_rt) {
1037 RTFREE(ipforward_rt.ro_rt);
1038 ipforward_rt.ro_rt = 0;
1039 }
1040 sin->sin_family = AF_INET;
1041 sin->sin_len = sizeof(*sin);
1042 sin->sin_addr = ip->ip_dst;
1043
1044 rtalloc(&ipforward_rt);
1045 if (ipforward_rt.ro_rt == 0) {
1046 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest);
1047 return;
1048 }
1049 rt = ipforward_rt.ro_rt;
1050 }
1051
1052 /*
1053 * Save at most 64 bytes of the packet in case
1054 * we need to generate an ICMP message to the src.
1055 */
1056 mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1057
1058 #ifdef GATEWAY
1059 ip_ifmatrix[rt->rt_ifp->if_index +
1060 if_index * m->m_pkthdr.rcvif->if_index]++;
1061 #endif
1062 /*
1063 * If forwarding packet using same interface that it came in on,
1064 * perhaps should send a redirect to sender to shortcut a hop.
1065 * Only send redirect if source is sending directly to us,
1066 * and if packet was not source routed (or has any options).
1067 * Also, don't send redirect if forwarding using a default route
1068 * or a route modified by a redirect.
1069 */
1070 #define satosin(sa) ((struct sockaddr_in *)(sa))
1071 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1072 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1073 satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1074 ipsendredirects && !srcrt) {
1075 struct in_ifaddr *ia;
1076 u_long src = ntohl(ip->ip_src.s_addr);
1077 u_long dst = ntohl(ip->ip_dst.s_addr);
1078
1079 if ((ia = ifptoia(m->m_pkthdr.rcvif)) &&
1080 (src & ia->ia_subnetmask) == ia->ia_subnet) {
1081 if (rt->rt_flags & RTF_GATEWAY)
1082 dest = satosin(rt->rt_gateway)->sin_addr;
1083 else
1084 dest = ip->ip_dst;
1085 /*
1086 * If the destination is reached by a route to host,
1087 * is on a subnet of a local net, or is directly
1088 * on the attached net (!), use host redirect.
1089 * (We may be the correct first hop for other subnets.)
1090 */
1091 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
1092 type = ICMP_REDIRECT;
1093 if ((rt->rt_flags & RTF_HOST) ||
1094 (rt->rt_flags & RTF_GATEWAY) == 0)
1095 code = ICMP_REDIRECT_HOST;
1096 else if (RTA(rt)->ia_subnetmask != RTA(rt)->ia_netmask &&
1097 (dst & RTA(rt)->ia_netmask) == RTA(rt)->ia_net)
1098 code = ICMP_REDIRECT_HOST;
1099 else
1100 code = ICMP_REDIRECT_NET;
1101 #ifdef DIAGNOSTIC
1102 if (ipprintfs)
1103 printf("redirect (%d) to %x\n", code, dest.s_addr);
1104 #endif
1105 }
1106 }
1107
1108 error = ip_output(m, NULL, &ipforward_rt, IP_FORWARDING
1109 #ifdef DIRECTED_BROADCAST
1110 | IP_ALLOWBROADCAST
1111 #endif
1112 , NULL);
1113 if (error)
1114 ipstat.ips_cantforward++;
1115 else {
1116 ipstat.ips_forward++;
1117 if (type)
1118 ipstat.ips_redirectsent++;
1119 else {
1120 if (mcopy)
1121 m_freem(mcopy);
1122 return;
1123 }
1124 }
1125 if (mcopy == NULL)
1126 return;
1127 switch (error) {
1128
1129 case 0: /* forwarded, but need redirect */
1130 /* type, code set above */
1131 break;
1132
1133 case ENETUNREACH: /* shouldn't happen, checked above */
1134 case EHOSTUNREACH:
1135 case ENETDOWN:
1136 case EHOSTDOWN:
1137 default:
1138 type = ICMP_UNREACH;
1139 code = ICMP_UNREACH_HOST;
1140 break;
1141
1142 case EMSGSIZE:
1143 type = ICMP_UNREACH;
1144 code = ICMP_UNREACH_NEEDFRAG;
1145 ipstat.ips_cantfrag++;
1146 break;
1147
1148 case ENOBUFS:
1149 type = ICMP_SOURCEQUENCH;
1150 code = 0;
1151 break;
1152 }
1153 icmp_error(mcopy, type, code, dest);
1154 }
1155