ip_input.c revision 1.15 1 /* $NetBSD: ip_input.c,v 1.15 1995/04/13 06:33:21 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/errno.h>
46 #include <sys/time.h>
47 #include <sys/kernel.h>
48
49 #include <net/if.h>
50 #include <net/route.h>
51
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/ip.h>
55 #include <netinet/in_pcb.h>
56 #include <netinet/in_var.h>
57 #include <netinet/ip_var.h>
58 #include <netinet/ip_icmp.h>
59
60 #ifndef IPFORWARDING
61 #ifdef GATEWAY
62 #define IPFORWARDING 1 /* forward IP packets not for us */
63 #else /* GATEWAY */
64 #define IPFORWARDING 0 /* don't forward IP packets not for us */
65 #endif /* GATEWAY */
66 #endif /* IPFORWARDING */
67 #ifndef IPSENDREDIRECTS
68 #define IPSENDREDIRECTS 1
69 #endif
70 int ipforwarding = IPFORWARDING;
71 int ipsendredirects = IPSENDREDIRECTS;
72 int ip_defttl = IPDEFTTL;
73 #ifdef DIAGNOSTIC
74 int ipprintfs = 0;
75 #endif
76
77 extern struct domain inetdomain;
78 extern struct protosw inetsw[];
79 u_char ip_protox[IPPROTO_MAX];
80 int ipqmaxlen = IFQ_MAXLEN;
81 struct in_ifaddr *in_ifaddr; /* first inet address */
82 struct ifqueue ipintrq;
83
84 /*
85 * We need to save the IP options in case a protocol wants to respond
86 * to an incoming packet over the same route if the packet got here
87 * using IP source routing. This allows connection establishment and
88 * maintenance when the remote end is on a network that is not known
89 * to us.
90 */
91 int ip_nhops = 0;
92 static struct ip_srcrt {
93 struct in_addr dst; /* final destination */
94 char nop; /* one NOP to align */
95 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
96 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
97 } ip_srcrt;
98
99 #ifdef GATEWAY
100 extern int if_index;
101 u_int32_t *ip_ifmatrix;
102 #endif
103
104 static void save_rte __P((u_char *, struct in_addr));
105 /*
106 * IP initialization: fill in IP protocol switch table.
107 * All protocols not implemented in kernel go to raw IP protocol handler.
108 */
109 void
110 ip_init()
111 {
112 register struct protosw *pr;
113 register int i;
114
115 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
116 if (pr == 0)
117 panic("ip_init");
118 for (i = 0; i < IPPROTO_MAX; i++)
119 ip_protox[i] = pr - inetsw;
120 for (pr = inetdomain.dom_protosw;
121 pr < inetdomain.dom_protoswNPROTOSW; pr++)
122 if (pr->pr_domain->dom_family == PF_INET &&
123 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
124 ip_protox[pr->pr_protocol] = pr - inetsw;
125 ipq.next = ipq.prev = &ipq;
126 ip_id = time.tv_sec & 0xffff;
127 ipintrq.ifq_maxlen = ipqmaxlen;
128 #ifdef GATEWAY
129 i = (if_index + 1) * (if_index + 1) * sizeof (u_int32_t);
130 ip_ifmatrix = (u_int32_t *) malloc(i, M_RTABLE, M_WAITOK);
131 bzero((char *)ip_ifmatrix, i);
132 #endif
133 }
134
135 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
136 struct route ipforward_rt;
137
138 /*
139 * Ip input routine. Checksum and byte swap header. If fragmented
140 * try to reassemble. Process options. Pass to next level.
141 */
142 void
143 ipintr()
144 {
145 register struct ip *ip;
146 register struct mbuf *m;
147 register struct ipq *fp;
148 register struct in_ifaddr *ia;
149 int hlen, s;
150
151 next:
152 /*
153 * Get next datagram off input queue and get IP header
154 * in first mbuf.
155 */
156 s = splimp();
157 IF_DEQUEUE(&ipintrq, m);
158 splx(s);
159 if (m == 0)
160 return;
161 #ifdef DIAGNOSTIC
162 if ((m->m_flags & M_PKTHDR) == 0)
163 panic("ipintr no HDR");
164 #endif
165 /*
166 * If no IP addresses have been set yet but the interfaces
167 * are receiving, can't do anything with incoming packets yet.
168 */
169 if (in_ifaddr == NULL)
170 goto bad;
171 ipstat.ips_total++;
172 if (m->m_len < sizeof (struct ip) &&
173 (m = m_pullup(m, sizeof (struct ip))) == 0) {
174 ipstat.ips_toosmall++;
175 goto next;
176 }
177 ip = mtod(m, struct ip *);
178 if (ip->ip_v != IPVERSION) {
179 ipstat.ips_badvers++;
180 goto bad;
181 }
182 hlen = ip->ip_hl << 2;
183 if (hlen < sizeof(struct ip)) { /* minimum header length */
184 ipstat.ips_badhlen++;
185 goto bad;
186 }
187 if (hlen > m->m_len) {
188 if ((m = m_pullup(m, hlen)) == 0) {
189 ipstat.ips_badhlen++;
190 goto next;
191 }
192 ip = mtod(m, struct ip *);
193 }
194 if (ip->ip_sum = in_cksum(m, hlen)) {
195 ipstat.ips_badsum++;
196 goto bad;
197 }
198
199 /*
200 * Convert fields to host representation.
201 */
202 NTOHS(ip->ip_len);
203 if (ip->ip_len < hlen) {
204 ipstat.ips_badlen++;
205 goto bad;
206 }
207 NTOHS(ip->ip_id);
208 NTOHS(ip->ip_off);
209
210 /*
211 * Check that the amount of data in the buffers
212 * is as at least much as the IP header would have us expect.
213 * Trim mbufs if longer than we expect.
214 * Drop packet if shorter than we expect.
215 */
216 if (m->m_pkthdr.len < ip->ip_len) {
217 ipstat.ips_tooshort++;
218 goto bad;
219 }
220 if (m->m_pkthdr.len > ip->ip_len) {
221 if (m->m_len == m->m_pkthdr.len) {
222 m->m_len = ip->ip_len;
223 m->m_pkthdr.len = ip->ip_len;
224 } else
225 m_adj(m, ip->ip_len - m->m_pkthdr.len);
226 }
227
228 /*
229 * Process options and, if not destined for us,
230 * ship it on. ip_dooptions returns 1 when an
231 * error was detected (causing an icmp message
232 * to be sent and the original packet to be freed).
233 */
234 ip_nhops = 0; /* for source routed packets */
235 if (hlen > sizeof (struct ip) && ip_dooptions(m))
236 goto next;
237
238 /*
239 * Check our list of addresses, to see if the packet is for us.
240 */
241 for (ia = in_ifaddr; ia; ia = ia->ia_next) {
242 #define satosin(sa) ((struct sockaddr_in *)(sa))
243
244 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
245 goto ours;
246 if (
247 #ifdef DIRECTED_BROADCAST
248 ia->ia_ifp == m->m_pkthdr.rcvif &&
249 #endif
250 (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
251 u_int32_t t;
252
253 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
254 ip->ip_dst.s_addr)
255 goto ours;
256 if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
257 goto ours;
258 /*
259 * Look for all-0's host part (old broadcast addr),
260 * either for subnet or net.
261 */
262 t = ntohl(ip->ip_dst.s_addr);
263 if (t == ia->ia_subnet)
264 goto ours;
265 if (t == ia->ia_net)
266 goto ours;
267 }
268 }
269 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
270 struct in_multi *inm;
271 #ifdef MROUTING
272 extern struct socket *ip_mrouter;
273
274 if (m->m_flags & M_EXT) {
275 if ((m = m_pullup(m, hlen)) == 0) {
276 ipstat.ips_toosmall++;
277 goto next;
278 }
279 ip = mtod(m, struct ip *);
280 }
281
282 if (ip_mrouter) {
283 /*
284 * If we are acting as a multicast router, all
285 * incoming multicast packets are passed to the
286 * kernel-level multicast forwarding function.
287 * The packet is returned (relatively) intact; if
288 * ip_mforward() returns a non-zero value, the packet
289 * must be discarded, else it may be accepted below.
290 *
291 * (The IP ident field is put in the same byte order
292 * as expected when ip_mforward() is called from
293 * ip_output().)
294 */
295 ip->ip_id = htons(ip->ip_id);
296 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
297 ipstat.ips_cantforward++;
298 m_freem(m);
299 goto next;
300 }
301 ip->ip_id = ntohs(ip->ip_id);
302
303 /*
304 * The process-level routing demon needs to receive
305 * all multicast IGMP packets, whether or not this
306 * host belongs to their destination groups.
307 */
308 if (ip->ip_p == IPPROTO_IGMP)
309 goto ours;
310 ipstat.ips_forward++;
311 }
312 #endif
313 /*
314 * See if we belong to the destination multicast group on the
315 * arrival interface.
316 */
317 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
318 if (inm == NULL) {
319 ipstat.ips_cantforward++;
320 m_freem(m);
321 goto next;
322 }
323 goto ours;
324 }
325 if (ip->ip_dst.s_addr == (u_int32_t)INADDR_BROADCAST)
326 goto ours;
327 if (ip->ip_dst.s_addr == INADDR_ANY)
328 goto ours;
329
330 /*
331 * Not for us; forward if possible and desirable.
332 */
333 if (ipforwarding == 0) {
334 ipstat.ips_cantforward++;
335 m_freem(m);
336 } else
337 ip_forward(m, 0);
338 goto next;
339
340 ours:
341 /*
342 * If offset or IP_MF are set, must reassemble.
343 * Otherwise, nothing need be done.
344 * (We could look in the reassembly queue to see
345 * if the packet was previously fragmented,
346 * but it's not worth the time; just let them time out.)
347 */
348 if (ip->ip_off &~ IP_DF) {
349 if (m->m_flags & M_EXT) { /* XXX */
350 if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
351 ipstat.ips_toosmall++;
352 goto next;
353 }
354 ip = mtod(m, struct ip *);
355 }
356 /*
357 * Look for queue of fragments
358 * of this datagram.
359 */
360 for (fp = ipq.next; fp != &ipq; fp = fp->next)
361 if (ip->ip_id == fp->ipq_id &&
362 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
363 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
364 ip->ip_p == fp->ipq_p)
365 goto found;
366 fp = 0;
367 found:
368
369 /*
370 * Adjust ip_len to not reflect header,
371 * set ip_mff if more fragments are expected,
372 * convert offset of this to bytes.
373 */
374 ip->ip_len -= hlen;
375 ((struct ipasfrag *)ip)->ipf_mff &= ~1;
376 if (ip->ip_off & IP_MF)
377 ((struct ipasfrag *)ip)->ipf_mff |= 1;
378 ip->ip_off <<= 3;
379
380 /*
381 * If datagram marked as having more fragments
382 * or if this is not the first fragment,
383 * attempt reassembly; if it succeeds, proceed.
384 */
385 if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) {
386 ipstat.ips_fragments++;
387 ip = ip_reass((struct ipasfrag *)ip, fp);
388 if (ip == 0)
389 goto next;
390 ipstat.ips_reassembled++;
391 m = dtom(ip);
392 } else
393 if (fp)
394 ip_freef(fp);
395 } else
396 ip->ip_len -= hlen;
397
398 /*
399 * Switch out to protocol's input routine.
400 */
401 ipstat.ips_delivered++;
402 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
403 goto next;
404 bad:
405 m_freem(m);
406 goto next;
407 }
408
409 /*
410 * Take incoming datagram fragment and try to
411 * reassemble it into whole datagram. If a chain for
412 * reassembly of this datagram already exists, then it
413 * is given as fp; otherwise have to make a chain.
414 */
415 struct ip *
416 ip_reass(ip, fp)
417 register struct ipasfrag *ip;
418 register struct ipq *fp;
419 {
420 register struct mbuf *m = dtom(ip);
421 register struct ipasfrag *q;
422 struct mbuf *t;
423 int hlen = ip->ip_hl << 2;
424 int i, next;
425
426 /*
427 * Presence of header sizes in mbufs
428 * would confuse code below.
429 */
430 m->m_data += hlen;
431 m->m_len -= hlen;
432
433 /*
434 * If first fragment to arrive, create a reassembly queue.
435 */
436 if (fp == 0) {
437 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
438 goto dropfrag;
439 fp = mtod(t, struct ipq *);
440 insque(fp, &ipq);
441 fp->ipq_ttl = IPFRAGTTL;
442 fp->ipq_p = ip->ip_p;
443 fp->ipq_id = ip->ip_id;
444 fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
445 fp->ipq_src = ((struct ip *)ip)->ip_src;
446 fp->ipq_dst = ((struct ip *)ip)->ip_dst;
447 q = (struct ipasfrag *)fp;
448 goto insert;
449 }
450
451 /*
452 * Find a segment which begins after this one does.
453 */
454 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
455 if (q->ip_off > ip->ip_off)
456 break;
457
458 /*
459 * If there is a preceding segment, it may provide some of
460 * our data already. If so, drop the data from the incoming
461 * segment. If it provides all of our data, drop us.
462 */
463 if (q->ipf_prev != (struct ipasfrag *)fp) {
464 i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
465 if (i > 0) {
466 if (i >= ip->ip_len)
467 goto dropfrag;
468 m_adj(dtom(ip), i);
469 ip->ip_off += i;
470 ip->ip_len -= i;
471 }
472 }
473
474 /*
475 * While we overlap succeeding segments trim them or,
476 * if they are completely covered, dequeue them.
477 */
478 while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
479 i = (ip->ip_off + ip->ip_len) - q->ip_off;
480 if (i < q->ip_len) {
481 q->ip_len -= i;
482 q->ip_off += i;
483 m_adj(dtom(q), i);
484 break;
485 }
486 q = q->ipf_next;
487 m_freem(dtom(q->ipf_prev));
488 ip_deq(q->ipf_prev);
489 }
490
491 insert:
492 /*
493 * Stick new segment in its place;
494 * check for complete reassembly.
495 */
496 ip_enq(ip, q->ipf_prev);
497 next = 0;
498 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
499 if (q->ip_off != next)
500 return (0);
501 next += q->ip_len;
502 }
503 if (q->ipf_prev->ipf_mff & 1)
504 return (0);
505
506 /*
507 * Reassembly is complete; concatenate fragments.
508 */
509 q = fp->ipq_next;
510 m = dtom(q);
511 t = m->m_next;
512 m->m_next = 0;
513 m_cat(m, t);
514 q = q->ipf_next;
515 while (q != (struct ipasfrag *)fp) {
516 t = dtom(q);
517 q = q->ipf_next;
518 m_cat(m, t);
519 }
520
521 /*
522 * Create header for new ip packet by
523 * modifying header of first packet;
524 * dequeue and discard fragment reassembly header.
525 * Make header visible.
526 */
527 ip = fp->ipq_next;
528 ip->ip_len = next;
529 ip->ipf_mff &= ~1;
530 ((struct ip *)ip)->ip_src = fp->ipq_src;
531 ((struct ip *)ip)->ip_dst = fp->ipq_dst;
532 remque(fp);
533 (void) m_free(dtom(fp));
534 m = dtom(ip);
535 m->m_len += (ip->ip_hl << 2);
536 m->m_data -= (ip->ip_hl << 2);
537 /* some debugging cruft by sklower, below, will go away soon */
538 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
539 register int plen = 0;
540 for (t = m; m; m = m->m_next)
541 plen += m->m_len;
542 t->m_pkthdr.len = plen;
543 }
544 return ((struct ip *)ip);
545
546 dropfrag:
547 ipstat.ips_fragdropped++;
548 m_freem(m);
549 return (0);
550 }
551
552 /*
553 * Free a fragment reassembly header and all
554 * associated datagrams.
555 */
556 void
557 ip_freef(fp)
558 struct ipq *fp;
559 {
560 register struct ipasfrag *q, *p;
561
562 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
563 p = q->ipf_next;
564 ip_deq(q);
565 m_freem(dtom(q));
566 }
567 remque(fp);
568 (void) m_free(dtom(fp));
569 }
570
571 /*
572 * Put an ip fragment on a reassembly chain.
573 * Like insque, but pointers in middle of structure.
574 */
575 void
576 ip_enq(p, prev)
577 register struct ipasfrag *p, *prev;
578 {
579
580 p->ipf_prev = prev;
581 p->ipf_next = prev->ipf_next;
582 prev->ipf_next->ipf_prev = p;
583 prev->ipf_next = p;
584 }
585
586 /*
587 * To ip_enq as remque is to insque.
588 */
589 void
590 ip_deq(p)
591 register struct ipasfrag *p;
592 {
593
594 p->ipf_prev->ipf_next = p->ipf_next;
595 p->ipf_next->ipf_prev = p->ipf_prev;
596 }
597
598 /*
599 * IP timer processing;
600 * if a timer expires on a reassembly
601 * queue, discard it.
602 */
603 void
604 ip_slowtimo()
605 {
606 register struct ipq *fp;
607 int s = splnet();
608
609 fp = ipq.next;
610 if (fp == 0) {
611 splx(s);
612 return;
613 }
614 while (fp != &ipq) {
615 --fp->ipq_ttl;
616 fp = fp->next;
617 if (fp->prev->ipq_ttl == 0) {
618 ipstat.ips_fragtimeout++;
619 ip_freef(fp->prev);
620 }
621 }
622 splx(s);
623 }
624
625 /*
626 * Drain off all datagram fragments.
627 */
628 void
629 ip_drain()
630 {
631
632 while (ipq.next != &ipq) {
633 ipstat.ips_fragdropped++;
634 ip_freef(ipq.next);
635 }
636 }
637
638 /*
639 * Do option processing on a datagram,
640 * possibly discarding it if bad options are encountered,
641 * or forwarding it if source-routed.
642 * Returns 1 if packet has been forwarded/freed,
643 * 0 if the packet should be processed further.
644 */
645 int
646 ip_dooptions(m)
647 struct mbuf *m;
648 {
649 register struct ip *ip = mtod(m, struct ip *);
650 register u_char *cp;
651 register struct ip_timestamp *ipt;
652 register struct in_ifaddr *ia;
653 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
654 struct in_addr *sin, dst;
655 n_time ntime;
656
657 dst = ip->ip_dst;
658 cp = (u_char *)(ip + 1);
659 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
660 for (; cnt > 0; cnt -= optlen, cp += optlen) {
661 opt = cp[IPOPT_OPTVAL];
662 if (opt == IPOPT_EOL)
663 break;
664 if (opt == IPOPT_NOP)
665 optlen = 1;
666 else {
667 optlen = cp[IPOPT_OLEN];
668 if (optlen <= 0 || optlen > cnt) {
669 code = &cp[IPOPT_OLEN] - (u_char *)ip;
670 goto bad;
671 }
672 }
673 switch (opt) {
674
675 default:
676 break;
677
678 /*
679 * Source routing with record.
680 * Find interface with current destination address.
681 * If none on this machine then drop if strictly routed,
682 * or do nothing if loosely routed.
683 * Record interface address and bring up next address
684 * component. If strictly routed make sure next
685 * address is on directly accessible net.
686 */
687 case IPOPT_LSRR:
688 case IPOPT_SSRR:
689 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
690 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
691 goto bad;
692 }
693 ipaddr.sin_addr = ip->ip_dst;
694 ia = (struct in_ifaddr *)
695 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
696 if (ia == 0) {
697 if (opt == IPOPT_SSRR) {
698 type = ICMP_UNREACH;
699 code = ICMP_UNREACH_SRCFAIL;
700 goto bad;
701 }
702 /*
703 * Loose routing, and not at next destination
704 * yet; nothing to do except forward.
705 */
706 break;
707 }
708 off--; /* 0 origin */
709 if (off > optlen - sizeof(struct in_addr)) {
710 /*
711 * End of source route. Should be for us.
712 */
713 save_rte(cp, ip->ip_src);
714 break;
715 }
716 /*
717 * locate outgoing interface
718 */
719 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
720 sizeof(ipaddr.sin_addr));
721 if (opt == IPOPT_SSRR) {
722 #define INA struct in_ifaddr *
723 #define SA struct sockaddr *
724 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
725 ia = (INA)ifa_ifwithnet((SA)&ipaddr);
726 } else
727 ia = ip_rtaddr(ipaddr.sin_addr);
728 if (ia == 0) {
729 type = ICMP_UNREACH;
730 code = ICMP_UNREACH_SRCFAIL;
731 goto bad;
732 }
733 ip->ip_dst = ipaddr.sin_addr;
734 bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
735 (caddr_t)(cp + off), sizeof(struct in_addr));
736 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
737 /*
738 * Let ip_intr's mcast routing check handle mcast pkts
739 */
740 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
741 break;
742
743 case IPOPT_RR:
744 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
745 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
746 goto bad;
747 }
748 /*
749 * If no space remains, ignore.
750 */
751 off--; /* 0 origin */
752 if (off > optlen - sizeof(struct in_addr))
753 break;
754 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
755 sizeof(ipaddr.sin_addr));
756 /*
757 * locate outgoing interface; if we're the destination,
758 * use the incoming interface (should be same).
759 */
760 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
761 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
762 type = ICMP_UNREACH;
763 code = ICMP_UNREACH_HOST;
764 goto bad;
765 }
766 bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
767 (caddr_t)(cp + off), sizeof(struct in_addr));
768 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
769 break;
770
771 case IPOPT_TS:
772 code = cp - (u_char *)ip;
773 ipt = (struct ip_timestamp *)cp;
774 if (ipt->ipt_len < 5)
775 goto bad;
776 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
777 if (++ipt->ipt_oflw == 0)
778 goto bad;
779 break;
780 }
781 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
782 switch (ipt->ipt_flg) {
783
784 case IPOPT_TS_TSONLY:
785 break;
786
787 case IPOPT_TS_TSANDADDR:
788 if (ipt->ipt_ptr + sizeof(n_time) +
789 sizeof(struct in_addr) > ipt->ipt_len)
790 goto bad;
791 ipaddr.sin_addr = dst;
792 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
793 m->m_pkthdr.rcvif);
794 if (ia == 0)
795 continue;
796 bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
797 (caddr_t)sin, sizeof(struct in_addr));
798 ipt->ipt_ptr += sizeof(struct in_addr);
799 break;
800
801 case IPOPT_TS_PRESPEC:
802 if (ipt->ipt_ptr + sizeof(n_time) +
803 sizeof(struct in_addr) > ipt->ipt_len)
804 goto bad;
805 bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
806 sizeof(struct in_addr));
807 if (ifa_ifwithaddr((SA)&ipaddr) == 0)
808 continue;
809 ipt->ipt_ptr += sizeof(struct in_addr);
810 break;
811
812 default:
813 goto bad;
814 }
815 ntime = iptime();
816 bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
817 sizeof(n_time));
818 ipt->ipt_ptr += sizeof(n_time);
819 }
820 }
821 if (forward) {
822 ip_forward(m, 1);
823 return (1);
824 }
825 return (0);
826 bad:
827 ip->ip_len -= ip->ip_hl << 2; /* XXX icmp_error adds in hdr length */
828 icmp_error(m, type, code, 0, 0);
829 ipstat.ips_badoptions++;
830 return (1);
831 }
832
833 /*
834 * Given address of next destination (final or next hop),
835 * return internet address info of interface to be used to get there.
836 */
837 struct in_ifaddr *
838 ip_rtaddr(dst)
839 struct in_addr dst;
840 {
841 register struct sockaddr_in *sin;
842
843 sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
844
845 if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
846 if (ipforward_rt.ro_rt) {
847 RTFREE(ipforward_rt.ro_rt);
848 ipforward_rt.ro_rt = 0;
849 }
850 sin->sin_family = AF_INET;
851 sin->sin_len = sizeof(*sin);
852 sin->sin_addr = dst;
853
854 rtalloc(&ipforward_rt);
855 }
856 if (ipforward_rt.ro_rt == 0)
857 return ((struct in_ifaddr *)0);
858 return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
859 }
860
861 /*
862 * Save incoming source route for use in replies,
863 * to be picked up later by ip_srcroute if the receiver is interested.
864 */
865 void
866 save_rte(option, dst)
867 u_char *option;
868 struct in_addr dst;
869 {
870 unsigned olen;
871
872 olen = option[IPOPT_OLEN];
873 #ifdef DIAGNOSTIC
874 if (ipprintfs)
875 printf("save_rte: olen %d\n", olen);
876 #endif
877 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
878 return;
879 bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
880 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
881 ip_srcrt.dst = dst;
882 }
883
884 /*
885 * Retrieve incoming source route for use in replies,
886 * in the same form used by setsockopt.
887 * The first hop is placed before the options, will be removed later.
888 */
889 struct mbuf *
890 ip_srcroute()
891 {
892 register struct in_addr *p, *q;
893 register struct mbuf *m;
894
895 if (ip_nhops == 0)
896 return ((struct mbuf *)0);
897 m = m_get(M_DONTWAIT, MT_SOOPTS);
898 if (m == 0)
899 return ((struct mbuf *)0);
900
901 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
902
903 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
904 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
905 OPTSIZ;
906 #ifdef DIAGNOSTIC
907 if (ipprintfs)
908 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
909 #endif
910
911 /*
912 * First save first hop for return route
913 */
914 p = &ip_srcrt.route[ip_nhops - 1];
915 *(mtod(m, struct in_addr *)) = *p--;
916 #ifdef DIAGNOSTIC
917 if (ipprintfs)
918 printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
919 #endif
920
921 /*
922 * Copy option fields and padding (nop) to mbuf.
923 */
924 ip_srcrt.nop = IPOPT_NOP;
925 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
926 bcopy((caddr_t)&ip_srcrt.nop,
927 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
928 q = (struct in_addr *)(mtod(m, caddr_t) +
929 sizeof(struct in_addr) + OPTSIZ);
930 #undef OPTSIZ
931 /*
932 * Record return path as an IP source route,
933 * reversing the path (pointers are now aligned).
934 */
935 while (p >= ip_srcrt.route) {
936 #ifdef DIAGNOSTIC
937 if (ipprintfs)
938 printf(" %lx", ntohl(q->s_addr));
939 #endif
940 *q++ = *p--;
941 }
942 /*
943 * Last hop goes to final destination.
944 */
945 *q = ip_srcrt.dst;
946 #ifdef DIAGNOSTIC
947 if (ipprintfs)
948 printf(" %lx\n", ntohl(q->s_addr));
949 #endif
950 return (m);
951 }
952
953 /*
954 * Strip out IP options, at higher
955 * level protocol in the kernel.
956 * Second argument is buffer to which options
957 * will be moved, and return value is their length.
958 * XXX should be deleted; last arg currently ignored.
959 */
960 void
961 ip_stripoptions(m, mopt)
962 register struct mbuf *m;
963 struct mbuf *mopt;
964 {
965 register int i;
966 struct ip *ip = mtod(m, struct ip *);
967 register caddr_t opts;
968 int olen;
969
970 olen = (ip->ip_hl<<2) - sizeof (struct ip);
971 opts = (caddr_t)(ip + 1);
972 i = m->m_len - (sizeof (struct ip) + olen);
973 bcopy(opts + olen, opts, (unsigned)i);
974 m->m_len -= olen;
975 if (m->m_flags & M_PKTHDR)
976 m->m_pkthdr.len -= olen;
977 ip->ip_hl = sizeof(struct ip) >> 2;
978 }
979
980 u_char inetctlerrmap[PRC_NCMDS] = {
981 0, 0, 0, 0,
982 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
983 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
984 EMSGSIZE, EHOSTUNREACH, 0, 0,
985 0, 0, 0, 0,
986 ENOPROTOOPT
987 };
988
989 /*
990 * Forward a packet. If some error occurs return the sender
991 * an icmp packet. Note we can't always generate a meaningful
992 * icmp message because icmp doesn't have a large enough repertoire
993 * of codes and types.
994 *
995 * If not forwarding, just drop the packet. This could be confusing
996 * if ipforwarding was zero but some routing protocol was advancing
997 * us as a gateway to somewhere. However, we must let the routing
998 * protocol deal with that.
999 *
1000 * The srcrt parameter indicates whether the packet is being forwarded
1001 * via a source route.
1002 */
1003 void
1004 ip_forward(m, srcrt)
1005 struct mbuf *m;
1006 int srcrt;
1007 {
1008 register struct ip *ip = mtod(m, struct ip *);
1009 register struct sockaddr_in *sin;
1010 register struct rtentry *rt;
1011 int error, type = 0, code;
1012 struct mbuf *mcopy;
1013 n_long dest;
1014 struct ifnet *destifp;
1015
1016 dest = 0;
1017 #ifdef DIAGNOSTIC
1018 if (ipprintfs)
1019 printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
1020 ip->ip_dst, ip->ip_ttl);
1021 #endif
1022 if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1023 ipstat.ips_cantforward++;
1024 m_freem(m);
1025 return;
1026 }
1027 HTONS(ip->ip_id);
1028 if (ip->ip_ttl <= IPTTLDEC) {
1029 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1030 return;
1031 }
1032 ip->ip_ttl -= IPTTLDEC;
1033
1034 sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1035 if ((rt = ipforward_rt.ro_rt) == 0 ||
1036 ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1037 if (ipforward_rt.ro_rt) {
1038 RTFREE(ipforward_rt.ro_rt);
1039 ipforward_rt.ro_rt = 0;
1040 }
1041 sin->sin_family = AF_INET;
1042 sin->sin_len = sizeof(*sin);
1043 sin->sin_addr = ip->ip_dst;
1044
1045 rtalloc(&ipforward_rt);
1046 if (ipforward_rt.ro_rt == 0) {
1047 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1048 return;
1049 }
1050 rt = ipforward_rt.ro_rt;
1051 }
1052
1053 /*
1054 * Save at most 64 bytes of the packet in case
1055 * we need to generate an ICMP message to the src.
1056 */
1057 mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1058
1059 #ifdef GATEWAY
1060 ip_ifmatrix[rt->rt_ifp->if_index +
1061 if_index * m->m_pkthdr.rcvif->if_index]++;
1062 #endif
1063 /*
1064 * If forwarding packet using same interface that it came in on,
1065 * perhaps should send a redirect to sender to shortcut a hop.
1066 * Only send redirect if source is sending directly to us,
1067 * and if packet was not source routed (or has any options).
1068 * Also, don't send redirect if forwarding using a default route
1069 * or a route modified by a redirect.
1070 */
1071 #define satosin(sa) ((struct sockaddr_in *)(sa))
1072 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1073 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1074 satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1075 ipsendredirects && !srcrt) {
1076 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
1077 u_int32_t src = ntohl(ip->ip_src.s_addr);
1078
1079 if (RTA(rt) &&
1080 (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1081 if (rt->rt_flags & RTF_GATEWAY)
1082 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1083 else
1084 dest = ip->ip_dst.s_addr;
1085 /* Router requirements says to only send host redirects */
1086 type = ICMP_REDIRECT;
1087 code = ICMP_REDIRECT_HOST;
1088 #ifdef DIAGNOSTIC
1089 if (ipprintfs)
1090 printf("redirect (%d) to %lx\n", code, (u_int32_t)dest);
1091 #endif
1092 }
1093 }
1094
1095 error = ip_output(m, (struct mbuf *)0, &ipforward_rt, IP_FORWARDING
1096 #ifdef DIRECTED_BROADCAST
1097 | IP_ALLOWBROADCAST
1098 #endif
1099 , 0);
1100 if (error)
1101 ipstat.ips_cantforward++;
1102 else {
1103 ipstat.ips_forward++;
1104 if (type)
1105 ipstat.ips_redirectsent++;
1106 else {
1107 if (mcopy)
1108 m_freem(mcopy);
1109 return;
1110 }
1111 }
1112 if (mcopy == NULL)
1113 return;
1114 destifp = NULL;
1115
1116 switch (error) {
1117
1118 case 0: /* forwarded, but need redirect */
1119 /* type, code set above */
1120 break;
1121
1122 case ENETUNREACH: /* shouldn't happen, checked above */
1123 case EHOSTUNREACH:
1124 case ENETDOWN:
1125 case EHOSTDOWN:
1126 default:
1127 type = ICMP_UNREACH;
1128 code = ICMP_UNREACH_HOST;
1129 break;
1130
1131 case EMSGSIZE:
1132 type = ICMP_UNREACH;
1133 code = ICMP_UNREACH_NEEDFRAG;
1134 if (ipforward_rt.ro_rt)
1135 destifp = ipforward_rt.ro_rt->rt_ifp;
1136 ipstat.ips_cantfrag++;
1137 break;
1138
1139 case ENOBUFS:
1140 type = ICMP_SOURCEQUENCH;
1141 code = 0;
1142 break;
1143 }
1144 icmp_error(mcopy, type, code, dest, destifp);
1145 }
1146
1147 int
1148 ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
1149 int *name;
1150 u_int namelen;
1151 void *oldp;
1152 size_t *oldlenp;
1153 void *newp;
1154 size_t newlen;
1155 {
1156 /* All sysctl names at this level are terminal. */
1157 if (namelen != 1)
1158 return (ENOTDIR);
1159
1160 switch (name[0]) {
1161 case IPCTL_FORWARDING:
1162 return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
1163 case IPCTL_SENDREDIRECTS:
1164 return (sysctl_int(oldp, oldlenp, newp, newlen,
1165 &ipsendredirects));
1166 case IPCTL_DEFTTL:
1167 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
1168 #ifdef notyet
1169 case IPCTL_DEFMTU:
1170 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
1171 #endif
1172 default:
1173 return (EOPNOTSUPP);
1174 }
1175 /* NOTREACHED */
1176 }
1177