ip_input.c revision 1.16 1 /* $NetBSD: ip_input.c,v 1.16 1995/05/14 08:23:00 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/errno.h>
46 #include <sys/time.h>
47 #include <sys/kernel.h>
48
49 #include <net/if.h>
50 #include <net/route.h>
51
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/ip.h>
55 #include <netinet/in_pcb.h>
56 #include <netinet/in_var.h>
57 #include <netinet/ip_var.h>
58 #include <netinet/ip_icmp.h>
59
60 #ifndef IPFORWARDING
61 #ifdef GATEWAY
62 #define IPFORWARDING 1 /* forward IP packets not for us */
63 #else /* GATEWAY */
64 #define IPFORWARDING 0 /* don't forward IP packets not for us */
65 #endif /* GATEWAY */
66 #endif /* IPFORWARDING */
67 #ifndef IPSENDREDIRECTS
68 #define IPSENDREDIRECTS 1
69 #endif
70 int ipforwarding = IPFORWARDING;
71 int ipsendredirects = IPSENDREDIRECTS;
72 int ip_defttl = IPDEFTTL;
73 #ifdef DIAGNOSTIC
74 int ipprintfs = 0;
75 #endif
76
77 extern struct domain inetdomain;
78 extern struct protosw inetsw[];
79 u_char ip_protox[IPPROTO_MAX];
80 int ipqmaxlen = IFQ_MAXLEN;
81 struct in_ifaddr *in_ifaddr; /* first inet address */
82 struct ifqueue ipintrq;
83
84 /*
85 * We need to save the IP options in case a protocol wants to respond
86 * to an incoming packet over the same route if the packet got here
87 * using IP source routing. This allows connection establishment and
88 * maintenance when the remote end is on a network that is not known
89 * to us.
90 */
91 int ip_nhops = 0;
92 static struct ip_srcrt {
93 struct in_addr dst; /* final destination */
94 char nop; /* one NOP to align */
95 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
96 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
97 } ip_srcrt;
98
99 #ifdef GATEWAY
100 extern int if_index;
101 u_int32_t *ip_ifmatrix;
102 #endif
103
104 static void save_rte __P((u_char *, struct in_addr));
105 /*
106 * IP initialization: fill in IP protocol switch table.
107 * All protocols not implemented in kernel go to raw IP protocol handler.
108 */
109 void
110 ip_init()
111 {
112 register struct protosw *pr;
113 register int i;
114
115 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
116 if (pr == 0)
117 panic("ip_init");
118 for (i = 0; i < IPPROTO_MAX; i++)
119 ip_protox[i] = pr - inetsw;
120 for (pr = inetdomain.dom_protosw;
121 pr < inetdomain.dom_protoswNPROTOSW; pr++)
122 if (pr->pr_domain->dom_family == PF_INET &&
123 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
124 ip_protox[pr->pr_protocol] = pr - inetsw;
125 ipq.next = ipq.prev = &ipq;
126 ip_id = time.tv_sec & 0xffff;
127 ipintrq.ifq_maxlen = ipqmaxlen;
128 #ifdef GATEWAY
129 i = (if_index + 1) * (if_index + 1) * sizeof (u_int32_t);
130 ip_ifmatrix = (u_int32_t *) malloc(i, M_RTABLE, M_WAITOK);
131 bzero((char *)ip_ifmatrix, i);
132 #endif
133 }
134
135 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
136 struct route ipforward_rt;
137
138 /*
139 * Ip input routine. Checksum and byte swap header. If fragmented
140 * try to reassemble. Process options. Pass to next level.
141 */
142 void
143 ipintr()
144 {
145 register struct ip *ip;
146 register struct mbuf *m;
147 register struct ipq *fp;
148 register struct in_ifaddr *ia;
149 int hlen, s;
150
151 next:
152 /*
153 * Get next datagram off input queue and get IP header
154 * in first mbuf.
155 */
156 s = splimp();
157 IF_DEQUEUE(&ipintrq, m);
158 splx(s);
159 if (m == 0)
160 return;
161 #ifdef DIAGNOSTIC
162 if ((m->m_flags & M_PKTHDR) == 0)
163 panic("ipintr no HDR");
164 #endif
165 /*
166 * If no IP addresses have been set yet but the interfaces
167 * are receiving, can't do anything with incoming packets yet.
168 */
169 if (in_ifaddr == NULL)
170 goto bad;
171 ipstat.ips_total++;
172 if (m->m_len < sizeof (struct ip) &&
173 (m = m_pullup(m, sizeof (struct ip))) == 0) {
174 ipstat.ips_toosmall++;
175 goto next;
176 }
177 ip = mtod(m, struct ip *);
178 if (ip->ip_v != IPVERSION) {
179 ipstat.ips_badvers++;
180 goto bad;
181 }
182 hlen = ip->ip_hl << 2;
183 if (hlen < sizeof(struct ip)) { /* minimum header length */
184 ipstat.ips_badhlen++;
185 goto bad;
186 }
187 if (hlen > m->m_len) {
188 if ((m = m_pullup(m, hlen)) == 0) {
189 ipstat.ips_badhlen++;
190 goto next;
191 }
192 ip = mtod(m, struct ip *);
193 }
194 if (ip->ip_sum = in_cksum(m, hlen)) {
195 ipstat.ips_badsum++;
196 goto bad;
197 }
198
199 /*
200 * Convert fields to host representation.
201 */
202 NTOHS(ip->ip_len);
203 if (ip->ip_len < hlen) {
204 ipstat.ips_badlen++;
205 goto bad;
206 }
207 NTOHS(ip->ip_id);
208 NTOHS(ip->ip_off);
209
210 /*
211 * Check that the amount of data in the buffers
212 * is as at least much as the IP header would have us expect.
213 * Trim mbufs if longer than we expect.
214 * Drop packet if shorter than we expect.
215 */
216 if (m->m_pkthdr.len < ip->ip_len) {
217 ipstat.ips_tooshort++;
218 goto bad;
219 }
220 if (m->m_pkthdr.len > ip->ip_len) {
221 if (m->m_len == m->m_pkthdr.len) {
222 m->m_len = ip->ip_len;
223 m->m_pkthdr.len = ip->ip_len;
224 } else
225 m_adj(m, ip->ip_len - m->m_pkthdr.len);
226 }
227
228 /*
229 * Process options and, if not destined for us,
230 * ship it on. ip_dooptions returns 1 when an
231 * error was detected (causing an icmp message
232 * to be sent and the original packet to be freed).
233 */
234 ip_nhops = 0; /* for source routed packets */
235 if (hlen > sizeof (struct ip) && ip_dooptions(m))
236 goto next;
237
238 /*
239 * Check our list of addresses, to see if the packet is for us.
240 */
241 for (ia = in_ifaddr; ia; ia = ia->ia_next) {
242 #define satosin(sa) ((struct sockaddr_in *)(sa))
243
244 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
245 goto ours;
246 if (
247 #ifdef DIRECTED_BROADCAST
248 ia->ia_ifp == m->m_pkthdr.rcvif &&
249 #endif
250 (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
251 u_int32_t t;
252
253 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
254 ip->ip_dst.s_addr)
255 goto ours;
256 if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
257 goto ours;
258 /*
259 * Look for all-0's host part (old broadcast addr),
260 * either for subnet or net.
261 */
262 t = ntohl(ip->ip_dst.s_addr);
263 if (t == ia->ia_subnet)
264 goto ours;
265 if (t == ia->ia_net)
266 goto ours;
267 }
268 }
269 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
270 struct in_multi *inm;
271 #ifdef MROUTING
272 extern struct socket *ip_mrouter;
273
274 if (m->m_flags & M_EXT) {
275 if ((m = m_pullup(m, hlen)) == 0) {
276 ipstat.ips_toosmall++;
277 goto next;
278 }
279 ip = mtod(m, struct ip *);
280 }
281
282 if (ip_mrouter) {
283 /*
284 * If we are acting as a multicast router, all
285 * incoming multicast packets are passed to the
286 * kernel-level multicast forwarding function.
287 * The packet is returned (relatively) intact; if
288 * ip_mforward() returns a non-zero value, the packet
289 * must be discarded, else it may be accepted below.
290 *
291 * (The IP ident field is put in the same byte order
292 * as expected when ip_mforward() is called from
293 * ip_output().)
294 */
295 ip->ip_id = htons(ip->ip_id);
296 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
297 ipstat.ips_cantforward++;
298 m_freem(m);
299 goto next;
300 }
301 ip->ip_id = ntohs(ip->ip_id);
302
303 /*
304 * The process-level routing demon needs to receive
305 * all multicast IGMP packets, whether or not this
306 * host belongs to their destination groups.
307 */
308 if (ip->ip_p == IPPROTO_IGMP)
309 goto ours;
310 ipstat.ips_forward++;
311 }
312 #endif
313 /*
314 * See if we belong to the destination multicast group on the
315 * arrival interface.
316 */
317 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
318 if (inm == NULL) {
319 ipstat.ips_cantforward++;
320 m_freem(m);
321 goto next;
322 }
323 goto ours;
324 }
325 if (ip->ip_dst.s_addr == (u_int32_t)INADDR_BROADCAST)
326 goto ours;
327 if (ip->ip_dst.s_addr == INADDR_ANY)
328 goto ours;
329
330 /*
331 * Not for us; forward if possible and desirable.
332 */
333 if (ipforwarding == 0) {
334 ipstat.ips_cantforward++;
335 m_freem(m);
336 } else
337 ip_forward(m, 0);
338 goto next;
339
340 ours:
341 /*
342 * If offset or IP_MF are set, must reassemble.
343 * Otherwise, nothing need be done.
344 * (We could look in the reassembly queue to see
345 * if the packet was previously fragmented,
346 * but it's not worth the time; just let them time out.)
347 */
348 if (ip->ip_off &~ IP_DF) {
349 if (m->m_flags & M_EXT) { /* XXX */
350 if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
351 ipstat.ips_toosmall++;
352 goto next;
353 }
354 ip = mtod(m, struct ip *);
355 }
356 /*
357 * Look for queue of fragments
358 * of this datagram.
359 */
360 for (fp = ipq.next; fp != &ipq; fp = fp->next)
361 if (ip->ip_id == fp->ipq_id &&
362 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
363 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
364 ip->ip_p == fp->ipq_p)
365 goto found;
366 fp = 0;
367 found:
368
369 /*
370 * Adjust ip_len to not reflect header,
371 * set ip_mff if more fragments are expected,
372 * convert offset of this to bytes.
373 */
374 ip->ip_len -= hlen;
375 ((struct ipasfrag *)ip)->ipf_mff &= ~1;
376 if (ip->ip_off & IP_MF) {
377 /*
378 * Make sure that fragments have a data length
379 * that's a non-zero multiple of 8 bytes.
380 */
381 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0)
382 ipstat.ips_badfrags++;
383 goto bad;
384 }
385 ((struct ipasfrag *)ip)->ipf_mff |= 1;
386 }
387 ip->ip_off <<= 3;
388
389 /*
390 * If datagram marked as having more fragments
391 * or if this is not the first fragment,
392 * attempt reassembly; if it succeeds, proceed.
393 */
394 if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) {
395 ipstat.ips_fragments++;
396 ip = ip_reass((struct ipasfrag *)ip, fp);
397 if (ip == 0)
398 goto next;
399 ipstat.ips_reassembled++;
400 m = dtom(ip);
401 } else
402 if (fp)
403 ip_freef(fp);
404 } else
405 ip->ip_len -= hlen;
406
407 /*
408 * Switch out to protocol's input routine.
409 */
410 ipstat.ips_delivered++;
411 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
412 goto next;
413 bad:
414 m_freem(m);
415 goto next;
416 }
417
418 /*
419 * Take incoming datagram fragment and try to
420 * reassemble it into whole datagram. If a chain for
421 * reassembly of this datagram already exists, then it
422 * is given as fp; otherwise have to make a chain.
423 */
424 struct ip *
425 ip_reass(ip, fp)
426 register struct ipasfrag *ip;
427 register struct ipq *fp;
428 {
429 register struct mbuf *m = dtom(ip);
430 register struct ipasfrag *q;
431 struct mbuf *t;
432 int hlen = ip->ip_hl << 2;
433 int i, next;
434
435 /*
436 * Presence of header sizes in mbufs
437 * would confuse code below.
438 */
439 m->m_data += hlen;
440 m->m_len -= hlen;
441
442 /*
443 * If first fragment to arrive, create a reassembly queue.
444 */
445 if (fp == 0) {
446 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
447 goto dropfrag;
448 fp = mtod(t, struct ipq *);
449 insque(fp, &ipq);
450 fp->ipq_ttl = IPFRAGTTL;
451 fp->ipq_p = ip->ip_p;
452 fp->ipq_id = ip->ip_id;
453 fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
454 fp->ipq_src = ((struct ip *)ip)->ip_src;
455 fp->ipq_dst = ((struct ip *)ip)->ip_dst;
456 q = (struct ipasfrag *)fp;
457 goto insert;
458 }
459
460 /*
461 * Find a segment which begins after this one does.
462 */
463 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
464 if (q->ip_off > ip->ip_off)
465 break;
466
467 /*
468 * If there is a preceding segment, it may provide some of
469 * our data already. If so, drop the data from the incoming
470 * segment. If it provides all of our data, drop us.
471 */
472 if (q->ipf_prev != (struct ipasfrag *)fp) {
473 i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
474 if (i > 0) {
475 if (i >= ip->ip_len)
476 goto dropfrag;
477 m_adj(dtom(ip), i);
478 ip->ip_off += i;
479 ip->ip_len -= i;
480 }
481 }
482
483 /*
484 * While we overlap succeeding segments trim them or,
485 * if they are completely covered, dequeue them.
486 */
487 while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
488 i = (ip->ip_off + ip->ip_len) - q->ip_off;
489 if (i < q->ip_len) {
490 q->ip_len -= i;
491 q->ip_off += i;
492 m_adj(dtom(q), i);
493 break;
494 }
495 q = q->ipf_next;
496 m_freem(dtom(q->ipf_prev));
497 ip_deq(q->ipf_prev);
498 }
499
500 insert:
501 /*
502 * Stick new segment in its place;
503 * check for complete reassembly.
504 */
505 ip_enq(ip, q->ipf_prev);
506 next = 0;
507 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
508 if (q->ip_off != next)
509 return (0);
510 next += q->ip_len;
511 }
512 if (q->ipf_prev->ipf_mff & 1)
513 return (0);
514
515 /*
516 * Reassembly is complete; concatenate fragments.
517 */
518 q = fp->ipq_next;
519 m = dtom(q);
520 t = m->m_next;
521 m->m_next = 0;
522 m_cat(m, t);
523 q = q->ipf_next;
524 while (q != (struct ipasfrag *)fp) {
525 t = dtom(q);
526 q = q->ipf_next;
527 m_cat(m, t);
528 }
529
530 /*
531 * Create header for new ip packet by
532 * modifying header of first packet;
533 * dequeue and discard fragment reassembly header.
534 * Make header visible.
535 */
536 ip = fp->ipq_next;
537 ip->ip_len = next;
538 ip->ipf_mff &= ~1;
539 ((struct ip *)ip)->ip_src = fp->ipq_src;
540 ((struct ip *)ip)->ip_dst = fp->ipq_dst;
541 remque(fp);
542 (void) m_free(dtom(fp));
543 m = dtom(ip);
544 m->m_len += (ip->ip_hl << 2);
545 m->m_data -= (ip->ip_hl << 2);
546 /* some debugging cruft by sklower, below, will go away soon */
547 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
548 register int plen = 0;
549 for (t = m; m; m = m->m_next)
550 plen += m->m_len;
551 t->m_pkthdr.len = plen;
552 }
553 return ((struct ip *)ip);
554
555 dropfrag:
556 ipstat.ips_fragdropped++;
557 m_freem(m);
558 return (0);
559 }
560
561 /*
562 * Free a fragment reassembly header and all
563 * associated datagrams.
564 */
565 void
566 ip_freef(fp)
567 struct ipq *fp;
568 {
569 register struct ipasfrag *q, *p;
570
571 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
572 p = q->ipf_next;
573 ip_deq(q);
574 m_freem(dtom(q));
575 }
576 remque(fp);
577 (void) m_free(dtom(fp));
578 }
579
580 /*
581 * Put an ip fragment on a reassembly chain.
582 * Like insque, but pointers in middle of structure.
583 */
584 void
585 ip_enq(p, prev)
586 register struct ipasfrag *p, *prev;
587 {
588
589 p->ipf_prev = prev;
590 p->ipf_next = prev->ipf_next;
591 prev->ipf_next->ipf_prev = p;
592 prev->ipf_next = p;
593 }
594
595 /*
596 * To ip_enq as remque is to insque.
597 */
598 void
599 ip_deq(p)
600 register struct ipasfrag *p;
601 {
602
603 p->ipf_prev->ipf_next = p->ipf_next;
604 p->ipf_next->ipf_prev = p->ipf_prev;
605 }
606
607 /*
608 * IP timer processing;
609 * if a timer expires on a reassembly
610 * queue, discard it.
611 */
612 void
613 ip_slowtimo()
614 {
615 register struct ipq *fp;
616 int s = splnet();
617
618 fp = ipq.next;
619 if (fp == 0) {
620 splx(s);
621 return;
622 }
623 while (fp != &ipq) {
624 --fp->ipq_ttl;
625 fp = fp->next;
626 if (fp->prev->ipq_ttl == 0) {
627 ipstat.ips_fragtimeout++;
628 ip_freef(fp->prev);
629 }
630 }
631 splx(s);
632 }
633
634 /*
635 * Drain off all datagram fragments.
636 */
637 void
638 ip_drain()
639 {
640
641 while (ipq.next != &ipq) {
642 ipstat.ips_fragdropped++;
643 ip_freef(ipq.next);
644 }
645 }
646
647 /*
648 * Do option processing on a datagram,
649 * possibly discarding it if bad options are encountered,
650 * or forwarding it if source-routed.
651 * Returns 1 if packet has been forwarded/freed,
652 * 0 if the packet should be processed further.
653 */
654 int
655 ip_dooptions(m)
656 struct mbuf *m;
657 {
658 register struct ip *ip = mtod(m, struct ip *);
659 register u_char *cp;
660 register struct ip_timestamp *ipt;
661 register struct in_ifaddr *ia;
662 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
663 struct in_addr *sin, dst;
664 n_time ntime;
665
666 dst = ip->ip_dst;
667 cp = (u_char *)(ip + 1);
668 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
669 for (; cnt > 0; cnt -= optlen, cp += optlen) {
670 opt = cp[IPOPT_OPTVAL];
671 if (opt == IPOPT_EOL)
672 break;
673 if (opt == IPOPT_NOP)
674 optlen = 1;
675 else {
676 optlen = cp[IPOPT_OLEN];
677 if (optlen <= 0 || optlen > cnt) {
678 code = &cp[IPOPT_OLEN] - (u_char *)ip;
679 goto bad;
680 }
681 }
682 switch (opt) {
683
684 default:
685 break;
686
687 /*
688 * Source routing with record.
689 * Find interface with current destination address.
690 * If none on this machine then drop if strictly routed,
691 * or do nothing if loosely routed.
692 * Record interface address and bring up next address
693 * component. If strictly routed make sure next
694 * address is on directly accessible net.
695 */
696 case IPOPT_LSRR:
697 case IPOPT_SSRR:
698 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
699 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
700 goto bad;
701 }
702 ipaddr.sin_addr = ip->ip_dst;
703 ia = (struct in_ifaddr *)
704 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
705 if (ia == 0) {
706 if (opt == IPOPT_SSRR) {
707 type = ICMP_UNREACH;
708 code = ICMP_UNREACH_SRCFAIL;
709 goto bad;
710 }
711 /*
712 * Loose routing, and not at next destination
713 * yet; nothing to do except forward.
714 */
715 break;
716 }
717 off--; /* 0 origin */
718 if (off > optlen - sizeof(struct in_addr)) {
719 /*
720 * End of source route. Should be for us.
721 */
722 save_rte(cp, ip->ip_src);
723 break;
724 }
725 /*
726 * locate outgoing interface
727 */
728 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
729 sizeof(ipaddr.sin_addr));
730 if (opt == IPOPT_SSRR) {
731 #define INA struct in_ifaddr *
732 #define SA struct sockaddr *
733 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
734 ia = (INA)ifa_ifwithnet((SA)&ipaddr);
735 } else
736 ia = ip_rtaddr(ipaddr.sin_addr);
737 if (ia == 0) {
738 type = ICMP_UNREACH;
739 code = ICMP_UNREACH_SRCFAIL;
740 goto bad;
741 }
742 ip->ip_dst = ipaddr.sin_addr;
743 bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
744 (caddr_t)(cp + off), sizeof(struct in_addr));
745 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
746 /*
747 * Let ip_intr's mcast routing check handle mcast pkts
748 */
749 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
750 break;
751
752 case IPOPT_RR:
753 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
754 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
755 goto bad;
756 }
757 /*
758 * If no space remains, ignore.
759 */
760 off--; /* 0 origin */
761 if (off > optlen - sizeof(struct in_addr))
762 break;
763 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
764 sizeof(ipaddr.sin_addr));
765 /*
766 * locate outgoing interface; if we're the destination,
767 * use the incoming interface (should be same).
768 */
769 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
770 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
771 type = ICMP_UNREACH;
772 code = ICMP_UNREACH_HOST;
773 goto bad;
774 }
775 bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
776 (caddr_t)(cp + off), sizeof(struct in_addr));
777 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
778 break;
779
780 case IPOPT_TS:
781 code = cp - (u_char *)ip;
782 ipt = (struct ip_timestamp *)cp;
783 if (ipt->ipt_len < 5)
784 goto bad;
785 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
786 if (++ipt->ipt_oflw == 0)
787 goto bad;
788 break;
789 }
790 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
791 switch (ipt->ipt_flg) {
792
793 case IPOPT_TS_TSONLY:
794 break;
795
796 case IPOPT_TS_TSANDADDR:
797 if (ipt->ipt_ptr + sizeof(n_time) +
798 sizeof(struct in_addr) > ipt->ipt_len)
799 goto bad;
800 ipaddr.sin_addr = dst;
801 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
802 m->m_pkthdr.rcvif);
803 if (ia == 0)
804 continue;
805 bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
806 (caddr_t)sin, sizeof(struct in_addr));
807 ipt->ipt_ptr += sizeof(struct in_addr);
808 break;
809
810 case IPOPT_TS_PRESPEC:
811 if (ipt->ipt_ptr + sizeof(n_time) +
812 sizeof(struct in_addr) > ipt->ipt_len)
813 goto bad;
814 bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
815 sizeof(struct in_addr));
816 if (ifa_ifwithaddr((SA)&ipaddr) == 0)
817 continue;
818 ipt->ipt_ptr += sizeof(struct in_addr);
819 break;
820
821 default:
822 goto bad;
823 }
824 ntime = iptime();
825 bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
826 sizeof(n_time));
827 ipt->ipt_ptr += sizeof(n_time);
828 }
829 }
830 if (forward) {
831 ip_forward(m, 1);
832 return (1);
833 }
834 return (0);
835 bad:
836 ip->ip_len -= ip->ip_hl << 2; /* XXX icmp_error adds in hdr length */
837 icmp_error(m, type, code, 0, 0);
838 ipstat.ips_badoptions++;
839 return (1);
840 }
841
842 /*
843 * Given address of next destination (final or next hop),
844 * return internet address info of interface to be used to get there.
845 */
846 struct in_ifaddr *
847 ip_rtaddr(dst)
848 struct in_addr dst;
849 {
850 register struct sockaddr_in *sin;
851
852 sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
853
854 if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
855 if (ipforward_rt.ro_rt) {
856 RTFREE(ipforward_rt.ro_rt);
857 ipforward_rt.ro_rt = 0;
858 }
859 sin->sin_family = AF_INET;
860 sin->sin_len = sizeof(*sin);
861 sin->sin_addr = dst;
862
863 rtalloc(&ipforward_rt);
864 }
865 if (ipforward_rt.ro_rt == 0)
866 return ((struct in_ifaddr *)0);
867 return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
868 }
869
870 /*
871 * Save incoming source route for use in replies,
872 * to be picked up later by ip_srcroute if the receiver is interested.
873 */
874 void
875 save_rte(option, dst)
876 u_char *option;
877 struct in_addr dst;
878 {
879 unsigned olen;
880
881 olen = option[IPOPT_OLEN];
882 #ifdef DIAGNOSTIC
883 if (ipprintfs)
884 printf("save_rte: olen %d\n", olen);
885 #endif
886 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
887 return;
888 bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
889 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
890 ip_srcrt.dst = dst;
891 }
892
893 /*
894 * Retrieve incoming source route for use in replies,
895 * in the same form used by setsockopt.
896 * The first hop is placed before the options, will be removed later.
897 */
898 struct mbuf *
899 ip_srcroute()
900 {
901 register struct in_addr *p, *q;
902 register struct mbuf *m;
903
904 if (ip_nhops == 0)
905 return ((struct mbuf *)0);
906 m = m_get(M_DONTWAIT, MT_SOOPTS);
907 if (m == 0)
908 return ((struct mbuf *)0);
909
910 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
911
912 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
913 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
914 OPTSIZ;
915 #ifdef DIAGNOSTIC
916 if (ipprintfs)
917 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
918 #endif
919
920 /*
921 * First save first hop for return route
922 */
923 p = &ip_srcrt.route[ip_nhops - 1];
924 *(mtod(m, struct in_addr *)) = *p--;
925 #ifdef DIAGNOSTIC
926 if (ipprintfs)
927 printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
928 #endif
929
930 /*
931 * Copy option fields and padding (nop) to mbuf.
932 */
933 ip_srcrt.nop = IPOPT_NOP;
934 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
935 bcopy((caddr_t)&ip_srcrt.nop,
936 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
937 q = (struct in_addr *)(mtod(m, caddr_t) +
938 sizeof(struct in_addr) + OPTSIZ);
939 #undef OPTSIZ
940 /*
941 * Record return path as an IP source route,
942 * reversing the path (pointers are now aligned).
943 */
944 while (p >= ip_srcrt.route) {
945 #ifdef DIAGNOSTIC
946 if (ipprintfs)
947 printf(" %lx", ntohl(q->s_addr));
948 #endif
949 *q++ = *p--;
950 }
951 /*
952 * Last hop goes to final destination.
953 */
954 *q = ip_srcrt.dst;
955 #ifdef DIAGNOSTIC
956 if (ipprintfs)
957 printf(" %lx\n", ntohl(q->s_addr));
958 #endif
959 return (m);
960 }
961
962 /*
963 * Strip out IP options, at higher
964 * level protocol in the kernel.
965 * Second argument is buffer to which options
966 * will be moved, and return value is their length.
967 * XXX should be deleted; last arg currently ignored.
968 */
969 void
970 ip_stripoptions(m, mopt)
971 register struct mbuf *m;
972 struct mbuf *mopt;
973 {
974 register int i;
975 struct ip *ip = mtod(m, struct ip *);
976 register caddr_t opts;
977 int olen;
978
979 olen = (ip->ip_hl<<2) - sizeof (struct ip);
980 opts = (caddr_t)(ip + 1);
981 i = m->m_len - (sizeof (struct ip) + olen);
982 bcopy(opts + olen, opts, (unsigned)i);
983 m->m_len -= olen;
984 if (m->m_flags & M_PKTHDR)
985 m->m_pkthdr.len -= olen;
986 ip->ip_hl = sizeof(struct ip) >> 2;
987 }
988
989 u_char inetctlerrmap[PRC_NCMDS] = {
990 0, 0, 0, 0,
991 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
992 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
993 EMSGSIZE, EHOSTUNREACH, 0, 0,
994 0, 0, 0, 0,
995 ENOPROTOOPT
996 };
997
998 /*
999 * Forward a packet. If some error occurs return the sender
1000 * an icmp packet. Note we can't always generate a meaningful
1001 * icmp message because icmp doesn't have a large enough repertoire
1002 * of codes and types.
1003 *
1004 * If not forwarding, just drop the packet. This could be confusing
1005 * if ipforwarding was zero but some routing protocol was advancing
1006 * us as a gateway to somewhere. However, we must let the routing
1007 * protocol deal with that.
1008 *
1009 * The srcrt parameter indicates whether the packet is being forwarded
1010 * via a source route.
1011 */
1012 void
1013 ip_forward(m, srcrt)
1014 struct mbuf *m;
1015 int srcrt;
1016 {
1017 register struct ip *ip = mtod(m, struct ip *);
1018 register struct sockaddr_in *sin;
1019 register struct rtentry *rt;
1020 int error, type = 0, code;
1021 struct mbuf *mcopy;
1022 n_long dest;
1023 struct ifnet *destifp;
1024
1025 dest = 0;
1026 #ifdef DIAGNOSTIC
1027 if (ipprintfs)
1028 printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
1029 ip->ip_dst, ip->ip_ttl);
1030 #endif
1031 if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1032 ipstat.ips_cantforward++;
1033 m_freem(m);
1034 return;
1035 }
1036 HTONS(ip->ip_id);
1037 if (ip->ip_ttl <= IPTTLDEC) {
1038 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1039 return;
1040 }
1041 ip->ip_ttl -= IPTTLDEC;
1042
1043 sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1044 if ((rt = ipforward_rt.ro_rt) == 0 ||
1045 ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1046 if (ipforward_rt.ro_rt) {
1047 RTFREE(ipforward_rt.ro_rt);
1048 ipforward_rt.ro_rt = 0;
1049 }
1050 sin->sin_family = AF_INET;
1051 sin->sin_len = sizeof(*sin);
1052 sin->sin_addr = ip->ip_dst;
1053
1054 rtalloc(&ipforward_rt);
1055 if (ipforward_rt.ro_rt == 0) {
1056 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1057 return;
1058 }
1059 rt = ipforward_rt.ro_rt;
1060 }
1061
1062 /*
1063 * Save at most 64 bytes of the packet in case
1064 * we need to generate an ICMP message to the src.
1065 */
1066 mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1067
1068 #ifdef GATEWAY
1069 ip_ifmatrix[rt->rt_ifp->if_index +
1070 if_index * m->m_pkthdr.rcvif->if_index]++;
1071 #endif
1072 /*
1073 * If forwarding packet using same interface that it came in on,
1074 * perhaps should send a redirect to sender to shortcut a hop.
1075 * Only send redirect if source is sending directly to us,
1076 * and if packet was not source routed (or has any options).
1077 * Also, don't send redirect if forwarding using a default route
1078 * or a route modified by a redirect.
1079 */
1080 #define satosin(sa) ((struct sockaddr_in *)(sa))
1081 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1082 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1083 satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1084 ipsendredirects && !srcrt) {
1085 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
1086 u_int32_t src = ntohl(ip->ip_src.s_addr);
1087
1088 if (RTA(rt) &&
1089 (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1090 if (rt->rt_flags & RTF_GATEWAY)
1091 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1092 else
1093 dest = ip->ip_dst.s_addr;
1094 /* Router requirements says to only send host redirects */
1095 type = ICMP_REDIRECT;
1096 code = ICMP_REDIRECT_HOST;
1097 #ifdef DIAGNOSTIC
1098 if (ipprintfs)
1099 printf("redirect (%d) to %lx\n", code, (u_int32_t)dest);
1100 #endif
1101 }
1102 }
1103
1104 error = ip_output(m, (struct mbuf *)0, &ipforward_rt, IP_FORWARDING
1105 #ifdef DIRECTED_BROADCAST
1106 | IP_ALLOWBROADCAST
1107 #endif
1108 , 0);
1109 if (error)
1110 ipstat.ips_cantforward++;
1111 else {
1112 ipstat.ips_forward++;
1113 if (type)
1114 ipstat.ips_redirectsent++;
1115 else {
1116 if (mcopy)
1117 m_freem(mcopy);
1118 return;
1119 }
1120 }
1121 if (mcopy == NULL)
1122 return;
1123 destifp = NULL;
1124
1125 switch (error) {
1126
1127 case 0: /* forwarded, but need redirect */
1128 /* type, code set above */
1129 break;
1130
1131 case ENETUNREACH: /* shouldn't happen, checked above */
1132 case EHOSTUNREACH:
1133 case ENETDOWN:
1134 case EHOSTDOWN:
1135 default:
1136 type = ICMP_UNREACH;
1137 code = ICMP_UNREACH_HOST;
1138 break;
1139
1140 case EMSGSIZE:
1141 type = ICMP_UNREACH;
1142 code = ICMP_UNREACH_NEEDFRAG;
1143 if (ipforward_rt.ro_rt)
1144 destifp = ipforward_rt.ro_rt->rt_ifp;
1145 ipstat.ips_cantfrag++;
1146 break;
1147
1148 case ENOBUFS:
1149 type = ICMP_SOURCEQUENCH;
1150 code = 0;
1151 break;
1152 }
1153 icmp_error(mcopy, type, code, dest, destifp);
1154 }
1155
1156 int
1157 ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
1158 int *name;
1159 u_int namelen;
1160 void *oldp;
1161 size_t *oldlenp;
1162 void *newp;
1163 size_t newlen;
1164 {
1165 /* All sysctl names at this level are terminal. */
1166 if (namelen != 1)
1167 return (ENOTDIR);
1168
1169 switch (name[0]) {
1170 case IPCTL_FORWARDING:
1171 return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
1172 case IPCTL_SENDREDIRECTS:
1173 return (sysctl_int(oldp, oldlenp, newp, newlen,
1174 &ipsendredirects));
1175 case IPCTL_DEFTTL:
1176 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
1177 #ifdef notyet
1178 case IPCTL_DEFMTU:
1179 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
1180 #endif
1181 default:
1182 return (EOPNOTSUPP);
1183 }
1184 /* NOTREACHED */
1185 }
1186