ip_input.c revision 1.18 1 /* $NetBSD: ip_input.c,v 1.18 1995/06/01 21:36:27 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/errno.h>
46 #include <sys/time.h>
47 #include <sys/kernel.h>
48
49 #include <net/if.h>
50 #include <net/route.h>
51
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/ip.h>
55 #include <netinet/in_pcb.h>
56 #include <netinet/in_var.h>
57 #include <netinet/ip_var.h>
58 #include <netinet/ip_icmp.h>
59
60 #ifndef IPFORWARDING
61 #ifdef GATEWAY
62 #define IPFORWARDING 1 /* forward IP packets not for us */
63 #else /* GATEWAY */
64 #define IPFORWARDING 0 /* don't forward IP packets not for us */
65 #endif /* GATEWAY */
66 #endif /* IPFORWARDING */
67 #ifndef IPSENDREDIRECTS
68 #define IPSENDREDIRECTS 1
69 #endif
70 int ipforwarding = IPFORWARDING;
71 int ipsendredirects = IPSENDREDIRECTS;
72 int ip_defttl = IPDEFTTL;
73 #ifdef DIAGNOSTIC
74 int ipprintfs = 0;
75 #endif
76
77 extern struct domain inetdomain;
78 extern struct protosw inetsw[];
79 u_char ip_protox[IPPROTO_MAX];
80 int ipqmaxlen = IFQ_MAXLEN;
81 struct in_ifaddr *in_ifaddr; /* first inet address */
82 struct ifqueue ipintrq;
83
84 /*
85 * We need to save the IP options in case a protocol wants to respond
86 * to an incoming packet over the same route if the packet got here
87 * using IP source routing. This allows connection establishment and
88 * maintenance when the remote end is on a network that is not known
89 * to us.
90 */
91 int ip_nhops = 0;
92 static struct ip_srcrt {
93 struct in_addr dst; /* final destination */
94 char nop; /* one NOP to align */
95 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
96 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
97 } ip_srcrt;
98
99 #ifdef GATEWAY
100 extern int if_index;
101 u_int32_t *ip_ifmatrix;
102 #endif
103
104 static void save_rte __P((u_char *, struct in_addr));
105 /*
106 * IP initialization: fill in IP protocol switch table.
107 * All protocols not implemented in kernel go to raw IP protocol handler.
108 */
109 void
110 ip_init()
111 {
112 register struct protosw *pr;
113 register int i;
114
115 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
116 if (pr == 0)
117 panic("ip_init");
118 for (i = 0; i < IPPROTO_MAX; i++)
119 ip_protox[i] = pr - inetsw;
120 for (pr = inetdomain.dom_protosw;
121 pr < inetdomain.dom_protoswNPROTOSW; pr++)
122 if (pr->pr_domain->dom_family == PF_INET &&
123 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
124 ip_protox[pr->pr_protocol] = pr - inetsw;
125 ipq.next = ipq.prev = &ipq;
126 ip_id = time.tv_sec & 0xffff;
127 ipintrq.ifq_maxlen = ipqmaxlen;
128 #ifdef GATEWAY
129 i = (if_index + 1) * (if_index + 1) * sizeof (u_int32_t);
130 ip_ifmatrix = (u_int32_t *) malloc(i, M_RTABLE, M_WAITOK);
131 bzero((char *)ip_ifmatrix, i);
132 #endif
133 }
134
135 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
136 struct route ipforward_rt;
137
138 /*
139 * Ip input routine. Checksum and byte swap header. If fragmented
140 * try to reassemble. Process options. Pass to next level.
141 */
142 void
143 ipintr()
144 {
145 register struct ip *ip;
146 register struct mbuf *m;
147 register struct ipq *fp;
148 register struct in_ifaddr *ia;
149 int hlen, s;
150
151 next:
152 /*
153 * Get next datagram off input queue and get IP header
154 * in first mbuf.
155 */
156 s = splimp();
157 IF_DEQUEUE(&ipintrq, m);
158 splx(s);
159 if (m == 0)
160 return;
161 #ifdef DIAGNOSTIC
162 if ((m->m_flags & M_PKTHDR) == 0)
163 panic("ipintr no HDR");
164 #endif
165 /*
166 * If no IP addresses have been set yet but the interfaces
167 * are receiving, can't do anything with incoming packets yet.
168 */
169 if (in_ifaddr == NULL)
170 goto bad;
171 ipstat.ips_total++;
172 if (m->m_len < sizeof (struct ip) &&
173 (m = m_pullup(m, sizeof (struct ip))) == 0) {
174 ipstat.ips_toosmall++;
175 goto next;
176 }
177 ip = mtod(m, struct ip *);
178 if (ip->ip_v != IPVERSION) {
179 ipstat.ips_badvers++;
180 goto bad;
181 }
182 hlen = ip->ip_hl << 2;
183 if (hlen < sizeof(struct ip)) { /* minimum header length */
184 ipstat.ips_badhlen++;
185 goto bad;
186 }
187 if (hlen > m->m_len) {
188 if ((m = m_pullup(m, hlen)) == 0) {
189 ipstat.ips_badhlen++;
190 goto next;
191 }
192 ip = mtod(m, struct ip *);
193 }
194 if (ip->ip_sum = in_cksum(m, hlen)) {
195 ipstat.ips_badsum++;
196 goto bad;
197 }
198
199 /*
200 * Convert fields to host representation.
201 */
202 NTOHS(ip->ip_len);
203 if (ip->ip_len < hlen) {
204 ipstat.ips_badlen++;
205 goto bad;
206 }
207 NTOHS(ip->ip_id);
208 NTOHS(ip->ip_off);
209
210 /*
211 * Check that the amount of data in the buffers
212 * is as at least much as the IP header would have us expect.
213 * Trim mbufs if longer than we expect.
214 * Drop packet if shorter than we expect.
215 */
216 if (m->m_pkthdr.len < ip->ip_len) {
217 ipstat.ips_tooshort++;
218 goto bad;
219 }
220 if (m->m_pkthdr.len > ip->ip_len) {
221 if (m->m_len == m->m_pkthdr.len) {
222 m->m_len = ip->ip_len;
223 m->m_pkthdr.len = ip->ip_len;
224 } else
225 m_adj(m, ip->ip_len - m->m_pkthdr.len);
226 }
227
228 /*
229 * Process options and, if not destined for us,
230 * ship it on. ip_dooptions returns 1 when an
231 * error was detected (causing an icmp message
232 * to be sent and the original packet to be freed).
233 */
234 ip_nhops = 0; /* for source routed packets */
235 if (hlen > sizeof (struct ip) && ip_dooptions(m))
236 goto next;
237
238 /*
239 * Check our list of addresses, to see if the packet is for us.
240 */
241 for (ia = in_ifaddr; ia; ia = ia->ia_next) {
242 #define satosin(sa) ((struct sockaddr_in *)(sa))
243
244 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
245 goto ours;
246 if (
247 #ifdef DIRECTED_BROADCAST
248 ia->ia_ifp == m->m_pkthdr.rcvif &&
249 #endif
250 (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
251 if (ip->ip_dst.s_addr ==
252 satosin(&ia->ia_broadaddr)->sin_addr.s_addr)
253 goto ours;
254 if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
255 goto ours;
256 /*
257 * Look for all-0's host part (old broadcast addr),
258 * either for subnet or net.
259 */
260 if (ip->ip_dst.s_addr == ia->ia_subnet ||
261 ip->ip_dst.s_addr == ia->ia_net)
262 goto ours;
263 }
264 }
265 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
266 struct in_multi *inm;
267 #ifdef MROUTING
268 extern struct socket *ip_mrouter;
269
270 if (m->m_flags & M_EXT) {
271 if ((m = m_pullup(m, hlen)) == 0) {
272 ipstat.ips_toosmall++;
273 goto next;
274 }
275 ip = mtod(m, struct ip *);
276 }
277
278 if (ip_mrouter) {
279 /*
280 * If we are acting as a multicast router, all
281 * incoming multicast packets are passed to the
282 * kernel-level multicast forwarding function.
283 * The packet is returned (relatively) intact; if
284 * ip_mforward() returns a non-zero value, the packet
285 * must be discarded, else it may be accepted below.
286 *
287 * (The IP ident field is put in the same byte order
288 * as expected when ip_mforward() is called from
289 * ip_output().)
290 */
291 ip->ip_id = htons(ip->ip_id);
292 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
293 ipstat.ips_cantforward++;
294 m_freem(m);
295 goto next;
296 }
297 ip->ip_id = ntohs(ip->ip_id);
298
299 /*
300 * The process-level routing demon needs to receive
301 * all multicast IGMP packets, whether or not this
302 * host belongs to their destination groups.
303 */
304 if (ip->ip_p == IPPROTO_IGMP)
305 goto ours;
306 ipstat.ips_forward++;
307 }
308 #endif
309 /*
310 * See if we belong to the destination multicast group on the
311 * arrival interface.
312 */
313 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
314 if (inm == NULL) {
315 ipstat.ips_cantforward++;
316 m_freem(m);
317 goto next;
318 }
319 goto ours;
320 }
321 if (ip->ip_dst.s_addr == INADDR_BROADCAST)
322 goto ours;
323 if (ip->ip_dst.s_addr == INADDR_ANY)
324 goto ours;
325
326 /*
327 * Not for us; forward if possible and desirable.
328 */
329 if (ipforwarding == 0) {
330 ipstat.ips_cantforward++;
331 m_freem(m);
332 } else
333 ip_forward(m, 0);
334 goto next;
335
336 ours:
337 /*
338 * If offset or IP_MF are set, must reassemble.
339 * Otherwise, nothing need be done.
340 * (We could look in the reassembly queue to see
341 * if the packet was previously fragmented,
342 * but it's not worth the time; just let them time out.)
343 */
344 if (ip->ip_off &~ IP_DF) {
345 if (m->m_flags & M_EXT) { /* XXX */
346 if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
347 ipstat.ips_toosmall++;
348 goto next;
349 }
350 ip = mtod(m, struct ip *);
351 }
352 /*
353 * Look for queue of fragments
354 * of this datagram.
355 */
356 for (fp = ipq.next; fp != &ipq; fp = fp->next)
357 if (ip->ip_id == fp->ipq_id &&
358 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
359 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
360 ip->ip_p == fp->ipq_p)
361 goto found;
362 fp = 0;
363 found:
364
365 /*
366 * Adjust ip_len to not reflect header,
367 * set ip_mff if more fragments are expected,
368 * convert offset of this to bytes.
369 */
370 ip->ip_len -= hlen;
371 ((struct ipasfrag *)ip)->ipf_mff &= ~1;
372 if (ip->ip_off & IP_MF) {
373 /*
374 * Make sure that fragments have a data length
375 * that's a non-zero multiple of 8 bytes.
376 */
377 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
378 ipstat.ips_badfrags++;
379 goto bad;
380 }
381 ((struct ipasfrag *)ip)->ipf_mff |= 1;
382 }
383 ip->ip_off <<= 3;
384
385 /*
386 * If datagram marked as having more fragments
387 * or if this is not the first fragment,
388 * attempt reassembly; if it succeeds, proceed.
389 */
390 if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) {
391 ipstat.ips_fragments++;
392 ip = ip_reass((struct ipasfrag *)ip, fp);
393 if (ip == 0)
394 goto next;
395 ipstat.ips_reassembled++;
396 m = dtom(ip);
397 } else
398 if (fp)
399 ip_freef(fp);
400 } else
401 ip->ip_len -= hlen;
402
403 /*
404 * Switch out to protocol's input routine.
405 */
406 ipstat.ips_delivered++;
407 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
408 goto next;
409 bad:
410 m_freem(m);
411 goto next;
412 }
413
414 /*
415 * Take incoming datagram fragment and try to
416 * reassemble it into whole datagram. If a chain for
417 * reassembly of this datagram already exists, then it
418 * is given as fp; otherwise have to make a chain.
419 */
420 struct ip *
421 ip_reass(ip, fp)
422 register struct ipasfrag *ip;
423 register struct ipq *fp;
424 {
425 register struct mbuf *m = dtom(ip);
426 register struct ipasfrag *q;
427 struct mbuf *t;
428 int hlen = ip->ip_hl << 2;
429 int i, next;
430
431 /*
432 * Presence of header sizes in mbufs
433 * would confuse code below.
434 */
435 m->m_data += hlen;
436 m->m_len -= hlen;
437
438 /*
439 * If first fragment to arrive, create a reassembly queue.
440 */
441 if (fp == 0) {
442 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
443 goto dropfrag;
444 fp = mtod(t, struct ipq *);
445 insque(fp, &ipq);
446 fp->ipq_ttl = IPFRAGTTL;
447 fp->ipq_p = ip->ip_p;
448 fp->ipq_id = ip->ip_id;
449 fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
450 fp->ipq_src = ((struct ip *)ip)->ip_src;
451 fp->ipq_dst = ((struct ip *)ip)->ip_dst;
452 q = (struct ipasfrag *)fp;
453 goto insert;
454 }
455
456 /*
457 * Find a segment which begins after this one does.
458 */
459 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
460 if (q->ip_off > ip->ip_off)
461 break;
462
463 /*
464 * If there is a preceding segment, it may provide some of
465 * our data already. If so, drop the data from the incoming
466 * segment. If it provides all of our data, drop us.
467 */
468 if (q->ipf_prev != (struct ipasfrag *)fp) {
469 i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
470 if (i > 0) {
471 if (i >= ip->ip_len)
472 goto dropfrag;
473 m_adj(dtom(ip), i);
474 ip->ip_off += i;
475 ip->ip_len -= i;
476 }
477 }
478
479 /*
480 * While we overlap succeeding segments trim them or,
481 * if they are completely covered, dequeue them.
482 */
483 while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
484 i = (ip->ip_off + ip->ip_len) - q->ip_off;
485 if (i < q->ip_len) {
486 q->ip_len -= i;
487 q->ip_off += i;
488 m_adj(dtom(q), i);
489 break;
490 }
491 q = q->ipf_next;
492 m_freem(dtom(q->ipf_prev));
493 ip_deq(q->ipf_prev);
494 }
495
496 insert:
497 /*
498 * Stick new segment in its place;
499 * check for complete reassembly.
500 */
501 ip_enq(ip, q->ipf_prev);
502 next = 0;
503 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
504 if (q->ip_off != next)
505 return (0);
506 next += q->ip_len;
507 }
508 if (q->ipf_prev->ipf_mff & 1)
509 return (0);
510
511 /*
512 * Reassembly is complete; concatenate fragments.
513 */
514 q = fp->ipq_next;
515 m = dtom(q);
516 t = m->m_next;
517 m->m_next = 0;
518 m_cat(m, t);
519 q = q->ipf_next;
520 while (q != (struct ipasfrag *)fp) {
521 t = dtom(q);
522 q = q->ipf_next;
523 m_cat(m, t);
524 }
525
526 /*
527 * Create header for new ip packet by
528 * modifying header of first packet;
529 * dequeue and discard fragment reassembly header.
530 * Make header visible.
531 */
532 ip = fp->ipq_next;
533 ip->ip_len = next;
534 ip->ipf_mff &= ~1;
535 ((struct ip *)ip)->ip_src = fp->ipq_src;
536 ((struct ip *)ip)->ip_dst = fp->ipq_dst;
537 remque(fp);
538 (void) m_free(dtom(fp));
539 m = dtom(ip);
540 m->m_len += (ip->ip_hl << 2);
541 m->m_data -= (ip->ip_hl << 2);
542 /* some debugging cruft by sklower, below, will go away soon */
543 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
544 register int plen = 0;
545 for (t = m; m; m = m->m_next)
546 plen += m->m_len;
547 t->m_pkthdr.len = plen;
548 }
549 return ((struct ip *)ip);
550
551 dropfrag:
552 ipstat.ips_fragdropped++;
553 m_freem(m);
554 return (0);
555 }
556
557 /*
558 * Free a fragment reassembly header and all
559 * associated datagrams.
560 */
561 void
562 ip_freef(fp)
563 struct ipq *fp;
564 {
565 register struct ipasfrag *q, *p;
566
567 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
568 p = q->ipf_next;
569 ip_deq(q);
570 m_freem(dtom(q));
571 }
572 remque(fp);
573 (void) m_free(dtom(fp));
574 }
575
576 /*
577 * Put an ip fragment on a reassembly chain.
578 * Like insque, but pointers in middle of structure.
579 */
580 void
581 ip_enq(p, prev)
582 register struct ipasfrag *p, *prev;
583 {
584
585 p->ipf_prev = prev;
586 p->ipf_next = prev->ipf_next;
587 prev->ipf_next->ipf_prev = p;
588 prev->ipf_next = p;
589 }
590
591 /*
592 * To ip_enq as remque is to insque.
593 */
594 void
595 ip_deq(p)
596 register struct ipasfrag *p;
597 {
598
599 p->ipf_prev->ipf_next = p->ipf_next;
600 p->ipf_next->ipf_prev = p->ipf_prev;
601 }
602
603 /*
604 * IP timer processing;
605 * if a timer expires on a reassembly
606 * queue, discard it.
607 */
608 void
609 ip_slowtimo()
610 {
611 register struct ipq *fp;
612 int s = splnet();
613
614 fp = ipq.next;
615 if (fp == 0) {
616 splx(s);
617 return;
618 }
619 while (fp != &ipq) {
620 --fp->ipq_ttl;
621 fp = fp->next;
622 if (fp->prev->ipq_ttl == 0) {
623 ipstat.ips_fragtimeout++;
624 ip_freef(fp->prev);
625 }
626 }
627 splx(s);
628 }
629
630 /*
631 * Drain off all datagram fragments.
632 */
633 void
634 ip_drain()
635 {
636
637 while (ipq.next != &ipq) {
638 ipstat.ips_fragdropped++;
639 ip_freef(ipq.next);
640 }
641 }
642
643 /*
644 * Do option processing on a datagram,
645 * possibly discarding it if bad options are encountered,
646 * or forwarding it if source-routed.
647 * Returns 1 if packet has been forwarded/freed,
648 * 0 if the packet should be processed further.
649 */
650 int
651 ip_dooptions(m)
652 struct mbuf *m;
653 {
654 register struct ip *ip = mtod(m, struct ip *);
655 register u_char *cp;
656 register struct ip_timestamp *ipt;
657 register struct in_ifaddr *ia;
658 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
659 struct in_addr *sin, dst;
660 n_time ntime;
661
662 dst = ip->ip_dst;
663 cp = (u_char *)(ip + 1);
664 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
665 for (; cnt > 0; cnt -= optlen, cp += optlen) {
666 opt = cp[IPOPT_OPTVAL];
667 if (opt == IPOPT_EOL)
668 break;
669 if (opt == IPOPT_NOP)
670 optlen = 1;
671 else {
672 optlen = cp[IPOPT_OLEN];
673 if (optlen <= 0 || optlen > cnt) {
674 code = &cp[IPOPT_OLEN] - (u_char *)ip;
675 goto bad;
676 }
677 }
678 switch (opt) {
679
680 default:
681 break;
682
683 /*
684 * Source routing with record.
685 * Find interface with current destination address.
686 * If none on this machine then drop if strictly routed,
687 * or do nothing if loosely routed.
688 * Record interface address and bring up next address
689 * component. If strictly routed make sure next
690 * address is on directly accessible net.
691 */
692 case IPOPT_LSRR:
693 case IPOPT_SSRR:
694 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
695 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
696 goto bad;
697 }
698 ipaddr.sin_addr = ip->ip_dst;
699 ia = (struct in_ifaddr *)
700 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
701 if (ia == 0) {
702 if (opt == IPOPT_SSRR) {
703 type = ICMP_UNREACH;
704 code = ICMP_UNREACH_SRCFAIL;
705 goto bad;
706 }
707 /*
708 * Loose routing, and not at next destination
709 * yet; nothing to do except forward.
710 */
711 break;
712 }
713 off--; /* 0 origin */
714 if (off > optlen - sizeof(struct in_addr)) {
715 /*
716 * End of source route. Should be for us.
717 */
718 save_rte(cp, ip->ip_src);
719 break;
720 }
721 /*
722 * locate outgoing interface
723 */
724 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
725 sizeof(ipaddr.sin_addr));
726 if (opt == IPOPT_SSRR) {
727 #define INA struct in_ifaddr *
728 #define SA struct sockaddr *
729 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
730 ia = (INA)ifa_ifwithnet((SA)&ipaddr);
731 } else
732 ia = ip_rtaddr(ipaddr.sin_addr);
733 if (ia == 0) {
734 type = ICMP_UNREACH;
735 code = ICMP_UNREACH_SRCFAIL;
736 goto bad;
737 }
738 ip->ip_dst = ipaddr.sin_addr;
739 bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
740 (caddr_t)(cp + off), sizeof(struct in_addr));
741 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
742 /*
743 * Let ip_intr's mcast routing check handle mcast pkts
744 */
745 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
746 break;
747
748 case IPOPT_RR:
749 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
750 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
751 goto bad;
752 }
753 /*
754 * If no space remains, ignore.
755 */
756 off--; /* 0 origin */
757 if (off > optlen - sizeof(struct in_addr))
758 break;
759 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
760 sizeof(ipaddr.sin_addr));
761 /*
762 * locate outgoing interface; if we're the destination,
763 * use the incoming interface (should be same).
764 */
765 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
766 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
767 type = ICMP_UNREACH;
768 code = ICMP_UNREACH_HOST;
769 goto bad;
770 }
771 bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
772 (caddr_t)(cp + off), sizeof(struct in_addr));
773 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
774 break;
775
776 case IPOPT_TS:
777 code = cp - (u_char *)ip;
778 ipt = (struct ip_timestamp *)cp;
779 if (ipt->ipt_len < 5)
780 goto bad;
781 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
782 if (++ipt->ipt_oflw == 0)
783 goto bad;
784 break;
785 }
786 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
787 switch (ipt->ipt_flg) {
788
789 case IPOPT_TS_TSONLY:
790 break;
791
792 case IPOPT_TS_TSANDADDR:
793 if (ipt->ipt_ptr + sizeof(n_time) +
794 sizeof(struct in_addr) > ipt->ipt_len)
795 goto bad;
796 ipaddr.sin_addr = dst;
797 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
798 m->m_pkthdr.rcvif);
799 if (ia == 0)
800 continue;
801 bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
802 (caddr_t)sin, sizeof(struct in_addr));
803 ipt->ipt_ptr += sizeof(struct in_addr);
804 break;
805
806 case IPOPT_TS_PRESPEC:
807 if (ipt->ipt_ptr + sizeof(n_time) +
808 sizeof(struct in_addr) > ipt->ipt_len)
809 goto bad;
810 bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
811 sizeof(struct in_addr));
812 if (ifa_ifwithaddr((SA)&ipaddr) == 0)
813 continue;
814 ipt->ipt_ptr += sizeof(struct in_addr);
815 break;
816
817 default:
818 goto bad;
819 }
820 ntime = iptime();
821 bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
822 sizeof(n_time));
823 ipt->ipt_ptr += sizeof(n_time);
824 }
825 }
826 if (forward) {
827 ip_forward(m, 1);
828 return (1);
829 }
830 return (0);
831 bad:
832 ip->ip_len -= ip->ip_hl << 2; /* XXX icmp_error adds in hdr length */
833 icmp_error(m, type, code, 0, 0);
834 ipstat.ips_badoptions++;
835 return (1);
836 }
837
838 /*
839 * Given address of next destination (final or next hop),
840 * return internet address info of interface to be used to get there.
841 */
842 struct in_ifaddr *
843 ip_rtaddr(dst)
844 struct in_addr dst;
845 {
846 register struct sockaddr_in *sin;
847
848 sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
849
850 if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
851 if (ipforward_rt.ro_rt) {
852 RTFREE(ipforward_rt.ro_rt);
853 ipforward_rt.ro_rt = 0;
854 }
855 sin->sin_family = AF_INET;
856 sin->sin_len = sizeof(*sin);
857 sin->sin_addr = dst;
858
859 rtalloc(&ipforward_rt);
860 }
861 if (ipforward_rt.ro_rt == 0)
862 return ((struct in_ifaddr *)0);
863 return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
864 }
865
866 /*
867 * Save incoming source route for use in replies,
868 * to be picked up later by ip_srcroute if the receiver is interested.
869 */
870 void
871 save_rte(option, dst)
872 u_char *option;
873 struct in_addr dst;
874 {
875 unsigned olen;
876
877 olen = option[IPOPT_OLEN];
878 #ifdef DIAGNOSTIC
879 if (ipprintfs)
880 printf("save_rte: olen %d\n", olen);
881 #endif
882 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
883 return;
884 bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
885 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
886 ip_srcrt.dst = dst;
887 }
888
889 /*
890 * Retrieve incoming source route for use in replies,
891 * in the same form used by setsockopt.
892 * The first hop is placed before the options, will be removed later.
893 */
894 struct mbuf *
895 ip_srcroute()
896 {
897 register struct in_addr *p, *q;
898 register struct mbuf *m;
899
900 if (ip_nhops == 0)
901 return ((struct mbuf *)0);
902 m = m_get(M_DONTWAIT, MT_SOOPTS);
903 if (m == 0)
904 return ((struct mbuf *)0);
905
906 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
907
908 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
909 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
910 OPTSIZ;
911 #ifdef DIAGNOSTIC
912 if (ipprintfs)
913 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
914 #endif
915
916 /*
917 * First save first hop for return route
918 */
919 p = &ip_srcrt.route[ip_nhops - 1];
920 *(mtod(m, struct in_addr *)) = *p--;
921 #ifdef DIAGNOSTIC
922 if (ipprintfs)
923 printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
924 #endif
925
926 /*
927 * Copy option fields and padding (nop) to mbuf.
928 */
929 ip_srcrt.nop = IPOPT_NOP;
930 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
931 bcopy((caddr_t)&ip_srcrt.nop,
932 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
933 q = (struct in_addr *)(mtod(m, caddr_t) +
934 sizeof(struct in_addr) + OPTSIZ);
935 #undef OPTSIZ
936 /*
937 * Record return path as an IP source route,
938 * reversing the path (pointers are now aligned).
939 */
940 while (p >= ip_srcrt.route) {
941 #ifdef DIAGNOSTIC
942 if (ipprintfs)
943 printf(" %lx", ntohl(q->s_addr));
944 #endif
945 *q++ = *p--;
946 }
947 /*
948 * Last hop goes to final destination.
949 */
950 *q = ip_srcrt.dst;
951 #ifdef DIAGNOSTIC
952 if (ipprintfs)
953 printf(" %lx\n", ntohl(q->s_addr));
954 #endif
955 return (m);
956 }
957
958 /*
959 * Strip out IP options, at higher
960 * level protocol in the kernel.
961 * Second argument is buffer to which options
962 * will be moved, and return value is their length.
963 * XXX should be deleted; last arg currently ignored.
964 */
965 void
966 ip_stripoptions(m, mopt)
967 register struct mbuf *m;
968 struct mbuf *mopt;
969 {
970 register int i;
971 struct ip *ip = mtod(m, struct ip *);
972 register caddr_t opts;
973 int olen;
974
975 olen = (ip->ip_hl<<2) - sizeof (struct ip);
976 opts = (caddr_t)(ip + 1);
977 i = m->m_len - (sizeof (struct ip) + olen);
978 bcopy(opts + olen, opts, (unsigned)i);
979 m->m_len -= olen;
980 if (m->m_flags & M_PKTHDR)
981 m->m_pkthdr.len -= olen;
982 ip->ip_hl = sizeof(struct ip) >> 2;
983 }
984
985 u_char inetctlerrmap[PRC_NCMDS] = {
986 0, 0, 0, 0,
987 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
988 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
989 EMSGSIZE, EHOSTUNREACH, 0, 0,
990 0, 0, 0, 0,
991 ENOPROTOOPT
992 };
993
994 /*
995 * Forward a packet. If some error occurs return the sender
996 * an icmp packet. Note we can't always generate a meaningful
997 * icmp message because icmp doesn't have a large enough repertoire
998 * of codes and types.
999 *
1000 * If not forwarding, just drop the packet. This could be confusing
1001 * if ipforwarding was zero but some routing protocol was advancing
1002 * us as a gateway to somewhere. However, we must let the routing
1003 * protocol deal with that.
1004 *
1005 * The srcrt parameter indicates whether the packet is being forwarded
1006 * via a source route.
1007 */
1008 void
1009 ip_forward(m, srcrt)
1010 struct mbuf *m;
1011 int srcrt;
1012 {
1013 register struct ip *ip = mtod(m, struct ip *);
1014 register struct sockaddr_in *sin;
1015 register struct rtentry *rt;
1016 int error, type = 0, code;
1017 struct mbuf *mcopy;
1018 n_long dest;
1019 struct ifnet *destifp;
1020
1021 dest = 0;
1022 #ifdef DIAGNOSTIC
1023 if (ipprintfs)
1024 printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
1025 ip->ip_dst, ip->ip_ttl);
1026 #endif
1027 if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1028 ipstat.ips_cantforward++;
1029 m_freem(m);
1030 return;
1031 }
1032 HTONS(ip->ip_id);
1033 if (ip->ip_ttl <= IPTTLDEC) {
1034 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1035 return;
1036 }
1037 ip->ip_ttl -= IPTTLDEC;
1038
1039 sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1040 if ((rt = ipforward_rt.ro_rt) == 0 ||
1041 ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1042 if (ipforward_rt.ro_rt) {
1043 RTFREE(ipforward_rt.ro_rt);
1044 ipforward_rt.ro_rt = 0;
1045 }
1046 sin->sin_family = AF_INET;
1047 sin->sin_len = sizeof(*sin);
1048 sin->sin_addr = ip->ip_dst;
1049
1050 rtalloc(&ipforward_rt);
1051 if (ipforward_rt.ro_rt == 0) {
1052 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1053 return;
1054 }
1055 rt = ipforward_rt.ro_rt;
1056 }
1057
1058 /*
1059 * Save at most 64 bytes of the packet in case
1060 * we need to generate an ICMP message to the src.
1061 */
1062 mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1063
1064 #ifdef GATEWAY
1065 ip_ifmatrix[rt->rt_ifp->if_index +
1066 if_index * m->m_pkthdr.rcvif->if_index]++;
1067 #endif
1068 /*
1069 * If forwarding packet using same interface that it came in on,
1070 * perhaps should send a redirect to sender to shortcut a hop.
1071 * Only send redirect if source is sending directly to us,
1072 * and if packet was not source routed (or has any options).
1073 * Also, don't send redirect if forwarding using a default route
1074 * or a route modified by a redirect.
1075 */
1076 #define satosin(sa) ((struct sockaddr_in *)(sa))
1077 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1078 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1079 satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1080 ipsendredirects && !srcrt) {
1081 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
1082 if (RTA(rt) &&
1083 (ip->ip_src.s_addr & RTA(rt)->ia_subnetmask) ==
1084 RTA(rt)->ia_subnet) {
1085 if (rt->rt_flags & RTF_GATEWAY)
1086 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1087 else
1088 dest = ip->ip_dst.s_addr;
1089 /* Router requirements says to only send host redirects */
1090 type = ICMP_REDIRECT;
1091 code = ICMP_REDIRECT_HOST;
1092 #ifdef DIAGNOSTIC
1093 if (ipprintfs)
1094 printf("redirect (%d) to %lx\n", code, (u_int32_t)dest);
1095 #endif
1096 }
1097 }
1098
1099 error = ip_output(m, (struct mbuf *)0, &ipforward_rt, IP_FORWARDING
1100 #ifdef DIRECTED_BROADCAST
1101 | IP_ALLOWBROADCAST
1102 #endif
1103 , 0);
1104 if (error)
1105 ipstat.ips_cantforward++;
1106 else {
1107 ipstat.ips_forward++;
1108 if (type)
1109 ipstat.ips_redirectsent++;
1110 else {
1111 if (mcopy)
1112 m_freem(mcopy);
1113 return;
1114 }
1115 }
1116 if (mcopy == NULL)
1117 return;
1118 destifp = NULL;
1119
1120 switch (error) {
1121
1122 case 0: /* forwarded, but need redirect */
1123 /* type, code set above */
1124 break;
1125
1126 case ENETUNREACH: /* shouldn't happen, checked above */
1127 case EHOSTUNREACH:
1128 case ENETDOWN:
1129 case EHOSTDOWN:
1130 default:
1131 type = ICMP_UNREACH;
1132 code = ICMP_UNREACH_HOST;
1133 break;
1134
1135 case EMSGSIZE:
1136 type = ICMP_UNREACH;
1137 code = ICMP_UNREACH_NEEDFRAG;
1138 if (ipforward_rt.ro_rt)
1139 destifp = ipforward_rt.ro_rt->rt_ifp;
1140 ipstat.ips_cantfrag++;
1141 break;
1142
1143 case ENOBUFS:
1144 type = ICMP_SOURCEQUENCH;
1145 code = 0;
1146 break;
1147 }
1148 icmp_error(mcopy, type, code, dest, destifp);
1149 }
1150
1151 int
1152 ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
1153 int *name;
1154 u_int namelen;
1155 void *oldp;
1156 size_t *oldlenp;
1157 void *newp;
1158 size_t newlen;
1159 {
1160 /* All sysctl names at this level are terminal. */
1161 if (namelen != 1)
1162 return (ENOTDIR);
1163
1164 switch (name[0]) {
1165 case IPCTL_FORWARDING:
1166 return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
1167 case IPCTL_SENDREDIRECTS:
1168 return (sysctl_int(oldp, oldlenp, newp, newlen,
1169 &ipsendredirects));
1170 case IPCTL_DEFTTL:
1171 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
1172 #ifdef notyet
1173 case IPCTL_DEFMTU:
1174 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
1175 #endif
1176 default:
1177 return (EOPNOTSUPP);
1178 }
1179 /* NOTREACHED */
1180 }
1181