ip_input.c revision 1.19 1 /* $NetBSD: ip_input.c,v 1.19 1995/06/04 05:07:03 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/errno.h>
46 #include <sys/time.h>
47 #include <sys/kernel.h>
48
49 #include <net/if.h>
50 #include <net/route.h>
51
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/ip.h>
55 #include <netinet/in_pcb.h>
56 #include <netinet/in_var.h>
57 #include <netinet/ip_var.h>
58 #include <netinet/ip_icmp.h>
59
60 #ifndef IPFORWARDING
61 #ifdef GATEWAY
62 #define IPFORWARDING 1 /* forward IP packets not for us */
63 #else /* GATEWAY */
64 #define IPFORWARDING 0 /* don't forward IP packets not for us */
65 #endif /* GATEWAY */
66 #endif /* IPFORWARDING */
67 #ifndef IPSENDREDIRECTS
68 #define IPSENDREDIRECTS 1
69 #endif
70 int ipforwarding = IPFORWARDING;
71 int ipsendredirects = IPSENDREDIRECTS;
72 int ip_defttl = IPDEFTTL;
73 #ifdef DIAGNOSTIC
74 int ipprintfs = 0;
75 #endif
76
77 extern struct domain inetdomain;
78 extern struct protosw inetsw[];
79 u_char ip_protox[IPPROTO_MAX];
80 int ipqmaxlen = IFQ_MAXLEN;
81 struct in_ifaddr *in_ifaddr; /* first inet address */
82 struct ifqueue ipintrq;
83
84 /*
85 * We need to save the IP options in case a protocol wants to respond
86 * to an incoming packet over the same route if the packet got here
87 * using IP source routing. This allows connection establishment and
88 * maintenance when the remote end is on a network that is not known
89 * to us.
90 */
91 int ip_nhops = 0;
92 static struct ip_srcrt {
93 struct in_addr dst; /* final destination */
94 char nop; /* one NOP to align */
95 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
96 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
97 } ip_srcrt;
98
99 #ifdef GATEWAY
100 extern int if_index;
101 u_int32_t *ip_ifmatrix;
102 #endif
103
104 static void save_rte __P((u_char *, struct in_addr));
105 /*
106 * IP initialization: fill in IP protocol switch table.
107 * All protocols not implemented in kernel go to raw IP protocol handler.
108 */
109 void
110 ip_init()
111 {
112 register struct protosw *pr;
113 register int i;
114
115 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
116 if (pr == 0)
117 panic("ip_init");
118 for (i = 0; i < IPPROTO_MAX; i++)
119 ip_protox[i] = pr - inetsw;
120 for (pr = inetdomain.dom_protosw;
121 pr < inetdomain.dom_protoswNPROTOSW; pr++)
122 if (pr->pr_domain->dom_family == PF_INET &&
123 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
124 ip_protox[pr->pr_protocol] = pr - inetsw;
125 ipq.next = ipq.prev = &ipq;
126 ip_id = time.tv_sec & 0xffff;
127 ipintrq.ifq_maxlen = ipqmaxlen;
128 #ifdef GATEWAY
129 i = (if_index + 1) * (if_index + 1) * sizeof (u_int32_t);
130 ip_ifmatrix = (u_int32_t *) malloc(i, M_RTABLE, M_WAITOK);
131 bzero((char *)ip_ifmatrix, i);
132 #endif
133 }
134
135 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
136 struct route ipforward_rt;
137
138 /*
139 * Ip input routine. Checksum and byte swap header. If fragmented
140 * try to reassemble. Process options. Pass to next level.
141 */
142 void
143 ipintr()
144 {
145 register struct ip *ip;
146 register struct mbuf *m;
147 register struct ipq *fp;
148 register struct in_ifaddr *ia;
149 int hlen, s;
150
151 next:
152 /*
153 * Get next datagram off input queue and get IP header
154 * in first mbuf.
155 */
156 s = splimp();
157 IF_DEQUEUE(&ipintrq, m);
158 splx(s);
159 if (m == 0)
160 return;
161 #ifdef DIAGNOSTIC
162 if ((m->m_flags & M_PKTHDR) == 0)
163 panic("ipintr no HDR");
164 #endif
165 /*
166 * If no IP addresses have been set yet but the interfaces
167 * are receiving, can't do anything with incoming packets yet.
168 */
169 if (in_ifaddr == NULL)
170 goto bad;
171 ipstat.ips_total++;
172 if (m->m_len < sizeof (struct ip) &&
173 (m = m_pullup(m, sizeof (struct ip))) == 0) {
174 ipstat.ips_toosmall++;
175 goto next;
176 }
177 ip = mtod(m, struct ip *);
178 if (ip->ip_v != IPVERSION) {
179 ipstat.ips_badvers++;
180 goto bad;
181 }
182 hlen = ip->ip_hl << 2;
183 if (hlen < sizeof(struct ip)) { /* minimum header length */
184 ipstat.ips_badhlen++;
185 goto bad;
186 }
187 if (hlen > m->m_len) {
188 if ((m = m_pullup(m, hlen)) == 0) {
189 ipstat.ips_badhlen++;
190 goto next;
191 }
192 ip = mtod(m, struct ip *);
193 }
194 if (ip->ip_sum = in_cksum(m, hlen)) {
195 ipstat.ips_badsum++;
196 goto bad;
197 }
198
199 /*
200 * Convert fields to host representation.
201 */
202 NTOHS(ip->ip_len);
203 if (ip->ip_len < hlen) {
204 ipstat.ips_badlen++;
205 goto bad;
206 }
207 NTOHS(ip->ip_id);
208 NTOHS(ip->ip_off);
209
210 /*
211 * Check that the amount of data in the buffers
212 * is as at least much as the IP header would have us expect.
213 * Trim mbufs if longer than we expect.
214 * Drop packet if shorter than we expect.
215 */
216 if (m->m_pkthdr.len < ip->ip_len) {
217 ipstat.ips_tooshort++;
218 goto bad;
219 }
220 if (m->m_pkthdr.len > ip->ip_len) {
221 if (m->m_len == m->m_pkthdr.len) {
222 m->m_len = ip->ip_len;
223 m->m_pkthdr.len = ip->ip_len;
224 } else
225 m_adj(m, ip->ip_len - m->m_pkthdr.len);
226 }
227
228 /*
229 * Process options and, if not destined for us,
230 * ship it on. ip_dooptions returns 1 when an
231 * error was detected (causing an icmp message
232 * to be sent and the original packet to be freed).
233 */
234 ip_nhops = 0; /* for source routed packets */
235 if (hlen > sizeof (struct ip) && ip_dooptions(m))
236 goto next;
237
238 /*
239 * Check our list of addresses, to see if the packet is for us.
240 */
241 for (ia = in_ifaddr; ia; ia = ia->ia_next) {
242 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
243 goto ours;
244 if (
245 #ifdef DIRECTED_BROADCAST
246 ia->ia_ifp == m->m_pkthdr.rcvif &&
247 #endif
248 (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
249 if (ip->ip_dst.s_addr ==
250 satosin(&ia->ia_broadaddr)->sin_addr.s_addr)
251 goto ours;
252 if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
253 goto ours;
254 /*
255 * Look for all-0's host part (old broadcast addr),
256 * either for subnet or net.
257 */
258 if (ip->ip_dst.s_addr == ia->ia_subnet ||
259 ip->ip_dst.s_addr == ia->ia_net)
260 goto ours;
261 }
262 }
263 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
264 struct in_multi *inm;
265 #ifdef MROUTING
266 extern struct socket *ip_mrouter;
267
268 if (m->m_flags & M_EXT) {
269 if ((m = m_pullup(m, hlen)) == 0) {
270 ipstat.ips_toosmall++;
271 goto next;
272 }
273 ip = mtod(m, struct ip *);
274 }
275
276 if (ip_mrouter) {
277 /*
278 * If we are acting as a multicast router, all
279 * incoming multicast packets are passed to the
280 * kernel-level multicast forwarding function.
281 * The packet is returned (relatively) intact; if
282 * ip_mforward() returns a non-zero value, the packet
283 * must be discarded, else it may be accepted below.
284 *
285 * (The IP ident field is put in the same byte order
286 * as expected when ip_mforward() is called from
287 * ip_output().)
288 */
289 ip->ip_id = htons(ip->ip_id);
290 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
291 ipstat.ips_cantforward++;
292 m_freem(m);
293 goto next;
294 }
295 ip->ip_id = ntohs(ip->ip_id);
296
297 /*
298 * The process-level routing demon needs to receive
299 * all multicast IGMP packets, whether or not this
300 * host belongs to their destination groups.
301 */
302 if (ip->ip_p == IPPROTO_IGMP)
303 goto ours;
304 ipstat.ips_forward++;
305 }
306 #endif
307 /*
308 * See if we belong to the destination multicast group on the
309 * arrival interface.
310 */
311 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
312 if (inm == NULL) {
313 ipstat.ips_cantforward++;
314 m_freem(m);
315 goto next;
316 }
317 goto ours;
318 }
319 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
320 ip->ip_dst.s_addr == INADDR_ANY)
321 goto ours;
322
323 /*
324 * Not for us; forward if possible and desirable.
325 */
326 if (ipforwarding == 0) {
327 ipstat.ips_cantforward++;
328 m_freem(m);
329 } else
330 ip_forward(m, 0);
331 goto next;
332
333 ours:
334 /*
335 * If offset or IP_MF are set, must reassemble.
336 * Otherwise, nothing need be done.
337 * (We could look in the reassembly queue to see
338 * if the packet was previously fragmented,
339 * but it's not worth the time; just let them time out.)
340 */
341 if (ip->ip_off &~ IP_DF) {
342 if (m->m_flags & M_EXT) { /* XXX */
343 if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
344 ipstat.ips_toosmall++;
345 goto next;
346 }
347 ip = mtod(m, struct ip *);
348 }
349 /*
350 * Look for queue of fragments
351 * of this datagram.
352 */
353 for (fp = ipq.next; fp != &ipq; fp = fp->next)
354 if (ip->ip_id == fp->ipq_id &&
355 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
356 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
357 ip->ip_p == fp->ipq_p)
358 goto found;
359 fp = 0;
360 found:
361
362 /*
363 * Adjust ip_len to not reflect header,
364 * set ip_mff if more fragments are expected,
365 * convert offset of this to bytes.
366 */
367 ip->ip_len -= hlen;
368 ((struct ipasfrag *)ip)->ipf_mff &= ~1;
369 if (ip->ip_off & IP_MF) {
370 /*
371 * Make sure that fragments have a data length
372 * that's a non-zero multiple of 8 bytes.
373 */
374 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
375 ipstat.ips_badfrags++;
376 goto bad;
377 }
378 ((struct ipasfrag *)ip)->ipf_mff |= 1;
379 }
380 ip->ip_off <<= 3;
381
382 /*
383 * If datagram marked as having more fragments
384 * or if this is not the first fragment,
385 * attempt reassembly; if it succeeds, proceed.
386 */
387 if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) {
388 ipstat.ips_fragments++;
389 ip = ip_reass((struct ipasfrag *)ip, fp);
390 if (ip == 0)
391 goto next;
392 ipstat.ips_reassembled++;
393 m = dtom(ip);
394 } else
395 if (fp)
396 ip_freef(fp);
397 } else
398 ip->ip_len -= hlen;
399
400 /*
401 * Switch out to protocol's input routine.
402 */
403 ipstat.ips_delivered++;
404 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
405 goto next;
406 bad:
407 m_freem(m);
408 goto next;
409 }
410
411 /*
412 * Take incoming datagram fragment and try to
413 * reassemble it into whole datagram. If a chain for
414 * reassembly of this datagram already exists, then it
415 * is given as fp; otherwise have to make a chain.
416 */
417 struct ip *
418 ip_reass(ip, fp)
419 register struct ipasfrag *ip;
420 register struct ipq *fp;
421 {
422 register struct mbuf *m = dtom(ip);
423 register struct ipasfrag *q;
424 struct mbuf *t;
425 int hlen = ip->ip_hl << 2;
426 int i, next;
427
428 /*
429 * Presence of header sizes in mbufs
430 * would confuse code below.
431 */
432 m->m_data += hlen;
433 m->m_len -= hlen;
434
435 /*
436 * If first fragment to arrive, create a reassembly queue.
437 */
438 if (fp == 0) {
439 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
440 goto dropfrag;
441 fp = mtod(t, struct ipq *);
442 insque(fp, &ipq);
443 fp->ipq_ttl = IPFRAGTTL;
444 fp->ipq_p = ip->ip_p;
445 fp->ipq_id = ip->ip_id;
446 fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
447 fp->ipq_src = ((struct ip *)ip)->ip_src;
448 fp->ipq_dst = ((struct ip *)ip)->ip_dst;
449 q = (struct ipasfrag *)fp;
450 goto insert;
451 }
452
453 /*
454 * Find a segment which begins after this one does.
455 */
456 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
457 if (q->ip_off > ip->ip_off)
458 break;
459
460 /*
461 * If there is a preceding segment, it may provide some of
462 * our data already. If so, drop the data from the incoming
463 * segment. If it provides all of our data, drop us.
464 */
465 if (q->ipf_prev != (struct ipasfrag *)fp) {
466 i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
467 if (i > 0) {
468 if (i >= ip->ip_len)
469 goto dropfrag;
470 m_adj(dtom(ip), i);
471 ip->ip_off += i;
472 ip->ip_len -= i;
473 }
474 }
475
476 /*
477 * While we overlap succeeding segments trim them or,
478 * if they are completely covered, dequeue them.
479 */
480 while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
481 i = (ip->ip_off + ip->ip_len) - q->ip_off;
482 if (i < q->ip_len) {
483 q->ip_len -= i;
484 q->ip_off += i;
485 m_adj(dtom(q), i);
486 break;
487 }
488 q = q->ipf_next;
489 m_freem(dtom(q->ipf_prev));
490 ip_deq(q->ipf_prev);
491 }
492
493 insert:
494 /*
495 * Stick new segment in its place;
496 * check for complete reassembly.
497 */
498 ip_enq(ip, q->ipf_prev);
499 next = 0;
500 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
501 if (q->ip_off != next)
502 return (0);
503 next += q->ip_len;
504 }
505 if (q->ipf_prev->ipf_mff & 1)
506 return (0);
507
508 /*
509 * Reassembly is complete; concatenate fragments.
510 */
511 q = fp->ipq_next;
512 m = dtom(q);
513 t = m->m_next;
514 m->m_next = 0;
515 m_cat(m, t);
516 q = q->ipf_next;
517 while (q != (struct ipasfrag *)fp) {
518 t = dtom(q);
519 q = q->ipf_next;
520 m_cat(m, t);
521 }
522
523 /*
524 * Create header for new ip packet by
525 * modifying header of first packet;
526 * dequeue and discard fragment reassembly header.
527 * Make header visible.
528 */
529 ip = fp->ipq_next;
530 ip->ip_len = next;
531 ip->ipf_mff &= ~1;
532 ((struct ip *)ip)->ip_src = fp->ipq_src;
533 ((struct ip *)ip)->ip_dst = fp->ipq_dst;
534 remque(fp);
535 (void) m_free(dtom(fp));
536 m = dtom(ip);
537 m->m_len += (ip->ip_hl << 2);
538 m->m_data -= (ip->ip_hl << 2);
539 /* some debugging cruft by sklower, below, will go away soon */
540 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
541 register int plen = 0;
542 for (t = m; m; m = m->m_next)
543 plen += m->m_len;
544 t->m_pkthdr.len = plen;
545 }
546 return ((struct ip *)ip);
547
548 dropfrag:
549 ipstat.ips_fragdropped++;
550 m_freem(m);
551 return (0);
552 }
553
554 /*
555 * Free a fragment reassembly header and all
556 * associated datagrams.
557 */
558 void
559 ip_freef(fp)
560 struct ipq *fp;
561 {
562 register struct ipasfrag *q, *p;
563
564 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
565 p = q->ipf_next;
566 ip_deq(q);
567 m_freem(dtom(q));
568 }
569 remque(fp);
570 (void) m_free(dtom(fp));
571 }
572
573 /*
574 * Put an ip fragment on a reassembly chain.
575 * Like insque, but pointers in middle of structure.
576 */
577 void
578 ip_enq(p, prev)
579 register struct ipasfrag *p, *prev;
580 {
581
582 p->ipf_prev = prev;
583 p->ipf_next = prev->ipf_next;
584 prev->ipf_next->ipf_prev = p;
585 prev->ipf_next = p;
586 }
587
588 /*
589 * To ip_enq as remque is to insque.
590 */
591 void
592 ip_deq(p)
593 register struct ipasfrag *p;
594 {
595
596 p->ipf_prev->ipf_next = p->ipf_next;
597 p->ipf_next->ipf_prev = p->ipf_prev;
598 }
599
600 /*
601 * IP timer processing;
602 * if a timer expires on a reassembly
603 * queue, discard it.
604 */
605 void
606 ip_slowtimo()
607 {
608 register struct ipq *fp;
609 int s = splnet();
610
611 fp = ipq.next;
612 if (fp == 0) {
613 splx(s);
614 return;
615 }
616 while (fp != &ipq) {
617 --fp->ipq_ttl;
618 fp = fp->next;
619 if (fp->prev->ipq_ttl == 0) {
620 ipstat.ips_fragtimeout++;
621 ip_freef(fp->prev);
622 }
623 }
624 splx(s);
625 }
626
627 /*
628 * Drain off all datagram fragments.
629 */
630 void
631 ip_drain()
632 {
633
634 while (ipq.next != &ipq) {
635 ipstat.ips_fragdropped++;
636 ip_freef(ipq.next);
637 }
638 }
639
640 /*
641 * Do option processing on a datagram,
642 * possibly discarding it if bad options are encountered,
643 * or forwarding it if source-routed.
644 * Returns 1 if packet has been forwarded/freed,
645 * 0 if the packet should be processed further.
646 */
647 int
648 ip_dooptions(m)
649 struct mbuf *m;
650 {
651 register struct ip *ip = mtod(m, struct ip *);
652 register u_char *cp;
653 register struct ip_timestamp *ipt;
654 register struct in_ifaddr *ia;
655 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
656 struct in_addr *sin, dst;
657 n_time ntime;
658
659 dst = ip->ip_dst;
660 cp = (u_char *)(ip + 1);
661 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
662 for (; cnt > 0; cnt -= optlen, cp += optlen) {
663 opt = cp[IPOPT_OPTVAL];
664 if (opt == IPOPT_EOL)
665 break;
666 if (opt == IPOPT_NOP)
667 optlen = 1;
668 else {
669 optlen = cp[IPOPT_OLEN];
670 if (optlen <= 0 || optlen > cnt) {
671 code = &cp[IPOPT_OLEN] - (u_char *)ip;
672 goto bad;
673 }
674 }
675 switch (opt) {
676
677 default:
678 break;
679
680 /*
681 * Source routing with record.
682 * Find interface with current destination address.
683 * If none on this machine then drop if strictly routed,
684 * or do nothing if loosely routed.
685 * Record interface address and bring up next address
686 * component. If strictly routed make sure next
687 * address is on directly accessible net.
688 */
689 case IPOPT_LSRR:
690 case IPOPT_SSRR:
691 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
692 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
693 goto bad;
694 }
695 ipaddr.sin_addr = ip->ip_dst;
696 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
697 if (ia == 0) {
698 if (opt == IPOPT_SSRR) {
699 type = ICMP_UNREACH;
700 code = ICMP_UNREACH_SRCFAIL;
701 goto bad;
702 }
703 /*
704 * Loose routing, and not at next destination
705 * yet; nothing to do except forward.
706 */
707 break;
708 }
709 off--; /* 0 origin */
710 if (off > optlen - sizeof(struct in_addr)) {
711 /*
712 * End of source route. Should be for us.
713 */
714 save_rte(cp, ip->ip_src);
715 break;
716 }
717 /*
718 * locate outgoing interface
719 */
720 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
721 sizeof(ipaddr.sin_addr));
722 if (opt == IPOPT_SSRR) {
723 #define INA struct in_ifaddr *
724 #define SA struct sockaddr *
725 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
726 ia = (INA)ifa_ifwithnet((SA)&ipaddr);
727 } else
728 ia = ip_rtaddr(ipaddr.sin_addr);
729 if (ia == 0) {
730 type = ICMP_UNREACH;
731 code = ICMP_UNREACH_SRCFAIL;
732 goto bad;
733 }
734 ip->ip_dst = ipaddr.sin_addr;
735 bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
736 (caddr_t)(cp + off), sizeof(struct in_addr));
737 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
738 /*
739 * Let ip_intr's mcast routing check handle mcast pkts
740 */
741 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
742 break;
743
744 case IPOPT_RR:
745 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
746 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
747 goto bad;
748 }
749 /*
750 * If no space remains, ignore.
751 */
752 off--; /* 0 origin */
753 if (off > optlen - sizeof(struct in_addr))
754 break;
755 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
756 sizeof(ipaddr.sin_addr));
757 /*
758 * locate outgoing interface; if we're the destination,
759 * use the incoming interface (should be same).
760 */
761 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
762 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
763 type = ICMP_UNREACH;
764 code = ICMP_UNREACH_HOST;
765 goto bad;
766 }
767 bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
768 (caddr_t)(cp + off), sizeof(struct in_addr));
769 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
770 break;
771
772 case IPOPT_TS:
773 code = cp - (u_char *)ip;
774 ipt = (struct ip_timestamp *)cp;
775 if (ipt->ipt_len < 5)
776 goto bad;
777 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
778 if (++ipt->ipt_oflw == 0)
779 goto bad;
780 break;
781 }
782 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
783 switch (ipt->ipt_flg) {
784
785 case IPOPT_TS_TSONLY:
786 break;
787
788 case IPOPT_TS_TSANDADDR:
789 if (ipt->ipt_ptr + sizeof(n_time) +
790 sizeof(struct in_addr) > ipt->ipt_len)
791 goto bad;
792 ipaddr.sin_addr = dst;
793 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
794 m->m_pkthdr.rcvif);
795 if (ia == 0)
796 continue;
797 bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
798 (caddr_t)sin, sizeof(struct in_addr));
799 ipt->ipt_ptr += sizeof(struct in_addr);
800 break;
801
802 case IPOPT_TS_PRESPEC:
803 if (ipt->ipt_ptr + sizeof(n_time) +
804 sizeof(struct in_addr) > ipt->ipt_len)
805 goto bad;
806 bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
807 sizeof(struct in_addr));
808 if (ifa_ifwithaddr((SA)&ipaddr) == 0)
809 continue;
810 ipt->ipt_ptr += sizeof(struct in_addr);
811 break;
812
813 default:
814 goto bad;
815 }
816 ntime = iptime();
817 bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
818 sizeof(n_time));
819 ipt->ipt_ptr += sizeof(n_time);
820 }
821 }
822 if (forward) {
823 ip_forward(m, 1);
824 return (1);
825 }
826 return (0);
827 bad:
828 ip->ip_len -= ip->ip_hl << 2; /* XXX icmp_error adds in hdr length */
829 icmp_error(m, type, code, 0, 0);
830 ipstat.ips_badoptions++;
831 return (1);
832 }
833
834 /*
835 * Given address of next destination (final or next hop),
836 * return internet address info of interface to be used to get there.
837 */
838 struct in_ifaddr *
839 ip_rtaddr(dst)
840 struct in_addr dst;
841 {
842 register struct sockaddr_in *sin;
843
844 sin = satosin(&ipforward_rt.ro_dst);
845
846 if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
847 if (ipforward_rt.ro_rt) {
848 RTFREE(ipforward_rt.ro_rt);
849 ipforward_rt.ro_rt = 0;
850 }
851 sin->sin_family = AF_INET;
852 sin->sin_len = sizeof(*sin);
853 sin->sin_addr = dst;
854
855 rtalloc(&ipforward_rt);
856 }
857 if (ipforward_rt.ro_rt == 0)
858 return ((struct in_ifaddr *)0);
859 return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
860 }
861
862 /*
863 * Save incoming source route for use in replies,
864 * to be picked up later by ip_srcroute if the receiver is interested.
865 */
866 void
867 save_rte(option, dst)
868 u_char *option;
869 struct in_addr dst;
870 {
871 unsigned olen;
872
873 olen = option[IPOPT_OLEN];
874 #ifdef DIAGNOSTIC
875 if (ipprintfs)
876 printf("save_rte: olen %d\n", olen);
877 #endif
878 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
879 return;
880 bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
881 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
882 ip_srcrt.dst = dst;
883 }
884
885 /*
886 * Retrieve incoming source route for use in replies,
887 * in the same form used by setsockopt.
888 * The first hop is placed before the options, will be removed later.
889 */
890 struct mbuf *
891 ip_srcroute()
892 {
893 register struct in_addr *p, *q;
894 register struct mbuf *m;
895
896 if (ip_nhops == 0)
897 return ((struct mbuf *)0);
898 m = m_get(M_DONTWAIT, MT_SOOPTS);
899 if (m == 0)
900 return ((struct mbuf *)0);
901
902 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
903
904 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
905 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
906 OPTSIZ;
907 #ifdef DIAGNOSTIC
908 if (ipprintfs)
909 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
910 #endif
911
912 /*
913 * First save first hop for return route
914 */
915 p = &ip_srcrt.route[ip_nhops - 1];
916 *(mtod(m, struct in_addr *)) = *p--;
917 #ifdef DIAGNOSTIC
918 if (ipprintfs)
919 printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
920 #endif
921
922 /*
923 * Copy option fields and padding (nop) to mbuf.
924 */
925 ip_srcrt.nop = IPOPT_NOP;
926 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
927 bcopy((caddr_t)&ip_srcrt.nop,
928 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
929 q = (struct in_addr *)(mtod(m, caddr_t) +
930 sizeof(struct in_addr) + OPTSIZ);
931 #undef OPTSIZ
932 /*
933 * Record return path as an IP source route,
934 * reversing the path (pointers are now aligned).
935 */
936 while (p >= ip_srcrt.route) {
937 #ifdef DIAGNOSTIC
938 if (ipprintfs)
939 printf(" %lx", ntohl(q->s_addr));
940 #endif
941 *q++ = *p--;
942 }
943 /*
944 * Last hop goes to final destination.
945 */
946 *q = ip_srcrt.dst;
947 #ifdef DIAGNOSTIC
948 if (ipprintfs)
949 printf(" %lx\n", ntohl(q->s_addr));
950 #endif
951 return (m);
952 }
953
954 /*
955 * Strip out IP options, at higher
956 * level protocol in the kernel.
957 * Second argument is buffer to which options
958 * will be moved, and return value is their length.
959 * XXX should be deleted; last arg currently ignored.
960 */
961 void
962 ip_stripoptions(m, mopt)
963 register struct mbuf *m;
964 struct mbuf *mopt;
965 {
966 register int i;
967 struct ip *ip = mtod(m, struct ip *);
968 register caddr_t opts;
969 int olen;
970
971 olen = (ip->ip_hl<<2) - sizeof (struct ip);
972 opts = (caddr_t)(ip + 1);
973 i = m->m_len - (sizeof (struct ip) + olen);
974 bcopy(opts + olen, opts, (unsigned)i);
975 m->m_len -= olen;
976 if (m->m_flags & M_PKTHDR)
977 m->m_pkthdr.len -= olen;
978 ip->ip_hl = sizeof(struct ip) >> 2;
979 }
980
981 u_char inetctlerrmap[PRC_NCMDS] = {
982 0, 0, 0, 0,
983 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
984 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
985 EMSGSIZE, EHOSTUNREACH, 0, 0,
986 0, 0, 0, 0,
987 ENOPROTOOPT
988 };
989
990 /*
991 * Forward a packet. If some error occurs return the sender
992 * an icmp packet. Note we can't always generate a meaningful
993 * icmp message because icmp doesn't have a large enough repertoire
994 * of codes and types.
995 *
996 * If not forwarding, just drop the packet. This could be confusing
997 * if ipforwarding was zero but some routing protocol was advancing
998 * us as a gateway to somewhere. However, we must let the routing
999 * protocol deal with that.
1000 *
1001 * The srcrt parameter indicates whether the packet is being forwarded
1002 * via a source route.
1003 */
1004 void
1005 ip_forward(m, srcrt)
1006 struct mbuf *m;
1007 int srcrt;
1008 {
1009 register struct ip *ip = mtod(m, struct ip *);
1010 register struct sockaddr_in *sin;
1011 register struct rtentry *rt;
1012 int error, type = 0, code;
1013 struct mbuf *mcopy;
1014 n_long dest;
1015 struct ifnet *destifp;
1016
1017 dest = 0;
1018 #ifdef DIAGNOSTIC
1019 if (ipprintfs)
1020 printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
1021 ip->ip_dst, ip->ip_ttl);
1022 #endif
1023 if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1024 ipstat.ips_cantforward++;
1025 m_freem(m);
1026 return;
1027 }
1028 HTONS(ip->ip_id);
1029 if (ip->ip_ttl <= IPTTLDEC) {
1030 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1031 return;
1032 }
1033 ip->ip_ttl -= IPTTLDEC;
1034
1035 sin = satosin(&ipforward_rt.ro_dst);
1036 if ((rt = ipforward_rt.ro_rt) == 0 ||
1037 ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1038 if (ipforward_rt.ro_rt) {
1039 RTFREE(ipforward_rt.ro_rt);
1040 ipforward_rt.ro_rt = 0;
1041 }
1042 sin->sin_family = AF_INET;
1043 sin->sin_len = sizeof(*sin);
1044 sin->sin_addr = ip->ip_dst;
1045
1046 rtalloc(&ipforward_rt);
1047 if (ipforward_rt.ro_rt == 0) {
1048 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1049 return;
1050 }
1051 rt = ipforward_rt.ro_rt;
1052 }
1053
1054 /*
1055 * Save at most 64 bytes of the packet in case
1056 * we need to generate an ICMP message to the src.
1057 */
1058 mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1059
1060 #ifdef GATEWAY
1061 ip_ifmatrix[rt->rt_ifp->if_index +
1062 if_index * m->m_pkthdr.rcvif->if_index]++;
1063 #endif
1064 /*
1065 * If forwarding packet using same interface that it came in on,
1066 * perhaps should send a redirect to sender to shortcut a hop.
1067 * Only send redirect if source is sending directly to us,
1068 * and if packet was not source routed (or has any options).
1069 * Also, don't send redirect if forwarding using a default route
1070 * or a route modified by a redirect.
1071 */
1072 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1073 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1074 satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1075 ipsendredirects && !srcrt) {
1076 if (rt->rt_ifa &&
1077 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1078 ifatoia(rt->rt_ifa)->ia_subnet) {
1079 if (rt->rt_flags & RTF_GATEWAY)
1080 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1081 else
1082 dest = ip->ip_dst.s_addr;
1083 /* Router requirements says to only send host redirects */
1084 type = ICMP_REDIRECT;
1085 code = ICMP_REDIRECT_HOST;
1086 #ifdef DIAGNOSTIC
1087 if (ipprintfs)
1088 printf("redirect (%d) to %lx\n", code, (u_int32_t)dest);
1089 #endif
1090 }
1091 }
1092
1093 error = ip_output(m, (struct mbuf *)0, &ipforward_rt, IP_FORWARDING
1094 #ifdef DIRECTED_BROADCAST
1095 | IP_ALLOWBROADCAST
1096 #endif
1097 , 0);
1098 if (error)
1099 ipstat.ips_cantforward++;
1100 else {
1101 ipstat.ips_forward++;
1102 if (type)
1103 ipstat.ips_redirectsent++;
1104 else {
1105 if (mcopy)
1106 m_freem(mcopy);
1107 return;
1108 }
1109 }
1110 if (mcopy == NULL)
1111 return;
1112 destifp = NULL;
1113
1114 switch (error) {
1115
1116 case 0: /* forwarded, but need redirect */
1117 /* type, code set above */
1118 break;
1119
1120 case ENETUNREACH: /* shouldn't happen, checked above */
1121 case EHOSTUNREACH:
1122 case ENETDOWN:
1123 case EHOSTDOWN:
1124 default:
1125 type = ICMP_UNREACH;
1126 code = ICMP_UNREACH_HOST;
1127 break;
1128
1129 case EMSGSIZE:
1130 type = ICMP_UNREACH;
1131 code = ICMP_UNREACH_NEEDFRAG;
1132 if (ipforward_rt.ro_rt)
1133 destifp = ipforward_rt.ro_rt->rt_ifp;
1134 ipstat.ips_cantfrag++;
1135 break;
1136
1137 case ENOBUFS:
1138 type = ICMP_SOURCEQUENCH;
1139 code = 0;
1140 break;
1141 }
1142 icmp_error(mcopy, type, code, dest, destifp);
1143 }
1144
1145 int
1146 ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
1147 int *name;
1148 u_int namelen;
1149 void *oldp;
1150 size_t *oldlenp;
1151 void *newp;
1152 size_t newlen;
1153 {
1154 /* All sysctl names at this level are terminal. */
1155 if (namelen != 1)
1156 return (ENOTDIR);
1157
1158 switch (name[0]) {
1159 case IPCTL_FORWARDING:
1160 return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
1161 case IPCTL_SENDREDIRECTS:
1162 return (sysctl_int(oldp, oldlenp, newp, newlen,
1163 &ipsendredirects));
1164 case IPCTL_DEFTTL:
1165 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
1166 #ifdef notyet
1167 case IPCTL_DEFMTU:
1168 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
1169 #endif
1170 default:
1171 return (EOPNOTSUPP);
1172 }
1173 /* NOTREACHED */
1174 }
1175