ip_input.c revision 1.20 1 /* $NetBSD: ip_input.c,v 1.20 1995/06/04 05:58:26 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/errno.h>
46 #include <sys/time.h>
47 #include <sys/kernel.h>
48
49 #include <net/if.h>
50 #include <net/route.h>
51
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/ip.h>
55 #include <netinet/in_pcb.h>
56 #include <netinet/in_var.h>
57 #include <netinet/ip_var.h>
58 #include <netinet/ip_icmp.h>
59
60 #ifndef IPFORWARDING
61 #ifdef GATEWAY
62 #define IPFORWARDING 1 /* forward IP packets not for us */
63 #else /* GATEWAY */
64 #define IPFORWARDING 0 /* don't forward IP packets not for us */
65 #endif /* GATEWAY */
66 #endif /* IPFORWARDING */
67 #ifndef IPSENDREDIRECTS
68 #define IPSENDREDIRECTS 1
69 #endif
70 int ipforwarding = IPFORWARDING;
71 int ipsendredirects = IPSENDREDIRECTS;
72 int ip_defttl = IPDEFTTL;
73 #ifdef DIAGNOSTIC
74 int ipprintfs = 0;
75 #endif
76
77 extern struct domain inetdomain;
78 extern struct protosw inetsw[];
79 u_char ip_protox[IPPROTO_MAX];
80 int ipqmaxlen = IFQ_MAXLEN;
81 struct in_ifaddr *in_ifaddr; /* first inet address */
82 struct ifqueue ipintrq;
83
84 /*
85 * We need to save the IP options in case a protocol wants to respond
86 * to an incoming packet over the same route if the packet got here
87 * using IP source routing. This allows connection establishment and
88 * maintenance when the remote end is on a network that is not known
89 * to us.
90 */
91 int ip_nhops = 0;
92 static struct ip_srcrt {
93 struct in_addr dst; /* final destination */
94 char nop; /* one NOP to align */
95 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
96 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
97 } ip_srcrt;
98
99 #ifdef GATEWAY
100 extern int if_index;
101 u_int32_t *ip_ifmatrix;
102 #endif
103
104 static void save_rte __P((u_char *, struct in_addr));
105 /*
106 * IP initialization: fill in IP protocol switch table.
107 * All protocols not implemented in kernel go to raw IP protocol handler.
108 */
109 void
110 ip_init()
111 {
112 register struct protosw *pr;
113 register int i;
114
115 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
116 if (pr == 0)
117 panic("ip_init");
118 for (i = 0; i < IPPROTO_MAX; i++)
119 ip_protox[i] = pr - inetsw;
120 for (pr = inetdomain.dom_protosw;
121 pr < inetdomain.dom_protoswNPROTOSW; pr++)
122 if (pr->pr_domain->dom_family == PF_INET &&
123 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
124 ip_protox[pr->pr_protocol] = pr - inetsw;
125 ipq.next = ipq.prev = &ipq;
126 ip_id = time.tv_sec & 0xffff;
127 ipintrq.ifq_maxlen = ipqmaxlen;
128 #ifdef GATEWAY
129 i = (if_index + 1) * (if_index + 1) * sizeof (u_int32_t);
130 ip_ifmatrix = (u_int32_t *) malloc(i, M_RTABLE, M_WAITOK);
131 bzero((char *)ip_ifmatrix, i);
132 #endif
133 }
134
135 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
136 struct route ipforward_rt;
137
138 /*
139 * Ip input routine. Checksum and byte swap header. If fragmented
140 * try to reassemble. Process options. Pass to next level.
141 */
142 void
143 ipintr()
144 {
145 register struct ip *ip;
146 register struct mbuf *m;
147 register struct ipq *fp;
148 register struct in_ifaddr *ia;
149 int hlen, s;
150
151 next:
152 /*
153 * Get next datagram off input queue and get IP header
154 * in first mbuf.
155 */
156 s = splimp();
157 IF_DEQUEUE(&ipintrq, m);
158 splx(s);
159 if (m == 0)
160 return;
161 #ifdef DIAGNOSTIC
162 if ((m->m_flags & M_PKTHDR) == 0)
163 panic("ipintr no HDR");
164 #endif
165 /*
166 * If no IP addresses have been set yet but the interfaces
167 * are receiving, can't do anything with incoming packets yet.
168 */
169 if (in_ifaddr == NULL)
170 goto bad;
171 ipstat.ips_total++;
172 if (m->m_len < sizeof (struct ip) &&
173 (m = m_pullup(m, sizeof (struct ip))) == 0) {
174 ipstat.ips_toosmall++;
175 goto next;
176 }
177 ip = mtod(m, struct ip *);
178 if (ip->ip_v != IPVERSION) {
179 ipstat.ips_badvers++;
180 goto bad;
181 }
182 hlen = ip->ip_hl << 2;
183 if (hlen < sizeof(struct ip)) { /* minimum header length */
184 ipstat.ips_badhlen++;
185 goto bad;
186 }
187 if (hlen > m->m_len) {
188 if ((m = m_pullup(m, hlen)) == 0) {
189 ipstat.ips_badhlen++;
190 goto next;
191 }
192 ip = mtod(m, struct ip *);
193 }
194 if (ip->ip_sum = in_cksum(m, hlen)) {
195 ipstat.ips_badsum++;
196 goto bad;
197 }
198
199 /*
200 * Convert fields to host representation.
201 */
202 NTOHS(ip->ip_len);
203 if (ip->ip_len < hlen) {
204 ipstat.ips_badlen++;
205 goto bad;
206 }
207 NTOHS(ip->ip_id);
208 NTOHS(ip->ip_off);
209
210 /*
211 * Check that the amount of data in the buffers
212 * is as at least much as the IP header would have us expect.
213 * Trim mbufs if longer than we expect.
214 * Drop packet if shorter than we expect.
215 */
216 if (m->m_pkthdr.len < ip->ip_len) {
217 ipstat.ips_tooshort++;
218 goto bad;
219 }
220 if (m->m_pkthdr.len > ip->ip_len) {
221 if (m->m_len == m->m_pkthdr.len) {
222 m->m_len = ip->ip_len;
223 m->m_pkthdr.len = ip->ip_len;
224 } else
225 m_adj(m, ip->ip_len - m->m_pkthdr.len);
226 }
227
228 /*
229 * Process options and, if not destined for us,
230 * ship it on. ip_dooptions returns 1 when an
231 * error was detected (causing an icmp message
232 * to be sent and the original packet to be freed).
233 */
234 ip_nhops = 0; /* for source routed packets */
235 if (hlen > sizeof (struct ip) && ip_dooptions(m))
236 goto next;
237
238 /*
239 * Check our list of addresses, to see if the packet is for us.
240 */
241 for (ia = in_ifaddr; ia; ia = ia->ia_next) {
242 if (ip->ip_dst.s_addr == ia->ia_addr.sin_addr.s_addr)
243 goto ours;
244 if (
245 #ifdef DIRECTED_BROADCAST
246 ia->ia_ifp == m->m_pkthdr.rcvif &&
247 #endif
248 (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
249 if (ip->ip_dst.s_addr == ia->ia_broadaddr.sin_addr.s_addr ||
250 ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr ||
251 /*
252 * Look for all-0's host part (old broadcast addr),
253 * either for subnet or net.
254 */
255 ip->ip_dst.s_addr == ia->ia_subnet ||
256 ip->ip_dst.s_addr == ia->ia_net)
257 goto ours;
258 }
259 }
260 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
261 struct in_multi *inm;
262 #ifdef MROUTING
263 extern struct socket *ip_mrouter;
264
265 if (m->m_flags & M_EXT) {
266 if ((m = m_pullup(m, hlen)) == 0) {
267 ipstat.ips_toosmall++;
268 goto next;
269 }
270 ip = mtod(m, struct ip *);
271 }
272
273 if (ip_mrouter) {
274 /*
275 * If we are acting as a multicast router, all
276 * incoming multicast packets are passed to the
277 * kernel-level multicast forwarding function.
278 * The packet is returned (relatively) intact; if
279 * ip_mforward() returns a non-zero value, the packet
280 * must be discarded, else it may be accepted below.
281 *
282 * (The IP ident field is put in the same byte order
283 * as expected when ip_mforward() is called from
284 * ip_output().)
285 */
286 ip->ip_id = htons(ip->ip_id);
287 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
288 ipstat.ips_cantforward++;
289 m_freem(m);
290 goto next;
291 }
292 ip->ip_id = ntohs(ip->ip_id);
293
294 /*
295 * The process-level routing demon needs to receive
296 * all multicast IGMP packets, whether or not this
297 * host belongs to their destination groups.
298 */
299 if (ip->ip_p == IPPROTO_IGMP)
300 goto ours;
301 ipstat.ips_forward++;
302 }
303 #endif
304 /*
305 * See if we belong to the destination multicast group on the
306 * arrival interface.
307 */
308 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
309 if (inm == NULL) {
310 ipstat.ips_cantforward++;
311 m_freem(m);
312 goto next;
313 }
314 goto ours;
315 }
316 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
317 ip->ip_dst.s_addr == INADDR_ANY)
318 goto ours;
319
320 /*
321 * Not for us; forward if possible and desirable.
322 */
323 if (ipforwarding == 0) {
324 ipstat.ips_cantforward++;
325 m_freem(m);
326 } else
327 ip_forward(m, 0);
328 goto next;
329
330 ours:
331 /*
332 * If offset or IP_MF are set, must reassemble.
333 * Otherwise, nothing need be done.
334 * (We could look in the reassembly queue to see
335 * if the packet was previously fragmented,
336 * but it's not worth the time; just let them time out.)
337 */
338 if (ip->ip_off &~ IP_DF) {
339 if (m->m_flags & M_EXT) { /* XXX */
340 if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
341 ipstat.ips_toosmall++;
342 goto next;
343 }
344 ip = mtod(m, struct ip *);
345 }
346 /*
347 * Look for queue of fragments
348 * of this datagram.
349 */
350 for (fp = ipq.next; fp != &ipq; fp = fp->next)
351 if (ip->ip_id == fp->ipq_id &&
352 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
353 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
354 ip->ip_p == fp->ipq_p)
355 goto found;
356 fp = 0;
357 found:
358
359 /*
360 * Adjust ip_len to not reflect header,
361 * set ip_mff if more fragments are expected,
362 * convert offset of this to bytes.
363 */
364 ip->ip_len -= hlen;
365 ((struct ipasfrag *)ip)->ipf_mff &= ~1;
366 if (ip->ip_off & IP_MF) {
367 /*
368 * Make sure that fragments have a data length
369 * that's a non-zero multiple of 8 bytes.
370 */
371 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
372 ipstat.ips_badfrags++;
373 goto bad;
374 }
375 ((struct ipasfrag *)ip)->ipf_mff |= 1;
376 }
377 ip->ip_off <<= 3;
378
379 /*
380 * If datagram marked as having more fragments
381 * or if this is not the first fragment,
382 * attempt reassembly; if it succeeds, proceed.
383 */
384 if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) {
385 ipstat.ips_fragments++;
386 ip = ip_reass((struct ipasfrag *)ip, fp);
387 if (ip == 0)
388 goto next;
389 ipstat.ips_reassembled++;
390 m = dtom(ip);
391 } else
392 if (fp)
393 ip_freef(fp);
394 } else
395 ip->ip_len -= hlen;
396
397 /*
398 * Switch out to protocol's input routine.
399 */
400 ipstat.ips_delivered++;
401 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
402 goto next;
403 bad:
404 m_freem(m);
405 goto next;
406 }
407
408 /*
409 * Take incoming datagram fragment and try to
410 * reassemble it into whole datagram. If a chain for
411 * reassembly of this datagram already exists, then it
412 * is given as fp; otherwise have to make a chain.
413 */
414 struct ip *
415 ip_reass(ip, fp)
416 register struct ipasfrag *ip;
417 register struct ipq *fp;
418 {
419 register struct mbuf *m = dtom(ip);
420 register struct ipasfrag *q;
421 struct mbuf *t;
422 int hlen = ip->ip_hl << 2;
423 int i, next;
424
425 /*
426 * Presence of header sizes in mbufs
427 * would confuse code below.
428 */
429 m->m_data += hlen;
430 m->m_len -= hlen;
431
432 /*
433 * If first fragment to arrive, create a reassembly queue.
434 */
435 if (fp == 0) {
436 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
437 goto dropfrag;
438 fp = mtod(t, struct ipq *);
439 insque(fp, &ipq);
440 fp->ipq_ttl = IPFRAGTTL;
441 fp->ipq_p = ip->ip_p;
442 fp->ipq_id = ip->ip_id;
443 fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
444 fp->ipq_src = ((struct ip *)ip)->ip_src;
445 fp->ipq_dst = ((struct ip *)ip)->ip_dst;
446 q = (struct ipasfrag *)fp;
447 goto insert;
448 }
449
450 /*
451 * Find a segment which begins after this one does.
452 */
453 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
454 if (q->ip_off > ip->ip_off)
455 break;
456
457 /*
458 * If there is a preceding segment, it may provide some of
459 * our data already. If so, drop the data from the incoming
460 * segment. If it provides all of our data, drop us.
461 */
462 if (q->ipf_prev != (struct ipasfrag *)fp) {
463 i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
464 if (i > 0) {
465 if (i >= ip->ip_len)
466 goto dropfrag;
467 m_adj(dtom(ip), i);
468 ip->ip_off += i;
469 ip->ip_len -= i;
470 }
471 }
472
473 /*
474 * While we overlap succeeding segments trim them or,
475 * if they are completely covered, dequeue them.
476 */
477 while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
478 i = (ip->ip_off + ip->ip_len) - q->ip_off;
479 if (i < q->ip_len) {
480 q->ip_len -= i;
481 q->ip_off += i;
482 m_adj(dtom(q), i);
483 break;
484 }
485 q = q->ipf_next;
486 m_freem(dtom(q->ipf_prev));
487 ip_deq(q->ipf_prev);
488 }
489
490 insert:
491 /*
492 * Stick new segment in its place;
493 * check for complete reassembly.
494 */
495 ip_enq(ip, q->ipf_prev);
496 next = 0;
497 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
498 if (q->ip_off != next)
499 return (0);
500 next += q->ip_len;
501 }
502 if (q->ipf_prev->ipf_mff & 1)
503 return (0);
504
505 /*
506 * Reassembly is complete; concatenate fragments.
507 */
508 q = fp->ipq_next;
509 m = dtom(q);
510 t = m->m_next;
511 m->m_next = 0;
512 m_cat(m, t);
513 q = q->ipf_next;
514 while (q != (struct ipasfrag *)fp) {
515 t = dtom(q);
516 q = q->ipf_next;
517 m_cat(m, t);
518 }
519
520 /*
521 * Create header for new ip packet by
522 * modifying header of first packet;
523 * dequeue and discard fragment reassembly header.
524 * Make header visible.
525 */
526 ip = fp->ipq_next;
527 ip->ip_len = next;
528 ip->ipf_mff &= ~1;
529 ((struct ip *)ip)->ip_src = fp->ipq_src;
530 ((struct ip *)ip)->ip_dst = fp->ipq_dst;
531 remque(fp);
532 (void) m_free(dtom(fp));
533 m = dtom(ip);
534 m->m_len += (ip->ip_hl << 2);
535 m->m_data -= (ip->ip_hl << 2);
536 /* some debugging cruft by sklower, below, will go away soon */
537 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
538 register int plen = 0;
539 for (t = m; m; m = m->m_next)
540 plen += m->m_len;
541 t->m_pkthdr.len = plen;
542 }
543 return ((struct ip *)ip);
544
545 dropfrag:
546 ipstat.ips_fragdropped++;
547 m_freem(m);
548 return (0);
549 }
550
551 /*
552 * Free a fragment reassembly header and all
553 * associated datagrams.
554 */
555 void
556 ip_freef(fp)
557 struct ipq *fp;
558 {
559 register struct ipasfrag *q, *p;
560
561 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
562 p = q->ipf_next;
563 ip_deq(q);
564 m_freem(dtom(q));
565 }
566 remque(fp);
567 (void) m_free(dtom(fp));
568 }
569
570 /*
571 * Put an ip fragment on a reassembly chain.
572 * Like insque, but pointers in middle of structure.
573 */
574 void
575 ip_enq(p, prev)
576 register struct ipasfrag *p, *prev;
577 {
578
579 p->ipf_prev = prev;
580 p->ipf_next = prev->ipf_next;
581 prev->ipf_next->ipf_prev = p;
582 prev->ipf_next = p;
583 }
584
585 /*
586 * To ip_enq as remque is to insque.
587 */
588 void
589 ip_deq(p)
590 register struct ipasfrag *p;
591 {
592
593 p->ipf_prev->ipf_next = p->ipf_next;
594 p->ipf_next->ipf_prev = p->ipf_prev;
595 }
596
597 /*
598 * IP timer processing;
599 * if a timer expires on a reassembly
600 * queue, discard it.
601 */
602 void
603 ip_slowtimo()
604 {
605 register struct ipq *fp;
606 int s = splnet();
607
608 fp = ipq.next;
609 if (fp == 0) {
610 splx(s);
611 return;
612 }
613 while (fp != &ipq) {
614 --fp->ipq_ttl;
615 fp = fp->next;
616 if (fp->prev->ipq_ttl == 0) {
617 ipstat.ips_fragtimeout++;
618 ip_freef(fp->prev);
619 }
620 }
621 splx(s);
622 }
623
624 /*
625 * Drain off all datagram fragments.
626 */
627 void
628 ip_drain()
629 {
630
631 while (ipq.next != &ipq) {
632 ipstat.ips_fragdropped++;
633 ip_freef(ipq.next);
634 }
635 }
636
637 /*
638 * Do option processing on a datagram,
639 * possibly discarding it if bad options are encountered,
640 * or forwarding it if source-routed.
641 * Returns 1 if packet has been forwarded/freed,
642 * 0 if the packet should be processed further.
643 */
644 int
645 ip_dooptions(m)
646 struct mbuf *m;
647 {
648 register struct ip *ip = mtod(m, struct ip *);
649 register u_char *cp;
650 register struct ip_timestamp *ipt;
651 register struct in_ifaddr *ia;
652 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
653 struct in_addr *sin, dst;
654 n_time ntime;
655
656 dst = ip->ip_dst;
657 cp = (u_char *)(ip + 1);
658 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
659 for (; cnt > 0; cnt -= optlen, cp += optlen) {
660 opt = cp[IPOPT_OPTVAL];
661 if (opt == IPOPT_EOL)
662 break;
663 if (opt == IPOPT_NOP)
664 optlen = 1;
665 else {
666 optlen = cp[IPOPT_OLEN];
667 if (optlen <= 0 || optlen > cnt) {
668 code = &cp[IPOPT_OLEN] - (u_char *)ip;
669 goto bad;
670 }
671 }
672 switch (opt) {
673
674 default:
675 break;
676
677 /*
678 * Source routing with record.
679 * Find interface with current destination address.
680 * If none on this machine then drop if strictly routed,
681 * or do nothing if loosely routed.
682 * Record interface address and bring up next address
683 * component. If strictly routed make sure next
684 * address is on directly accessible net.
685 */
686 case IPOPT_LSRR:
687 case IPOPT_SSRR:
688 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
689 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
690 goto bad;
691 }
692 ipaddr.sin_addr = ip->ip_dst;
693 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
694 if (ia == 0) {
695 if (opt == IPOPT_SSRR) {
696 type = ICMP_UNREACH;
697 code = ICMP_UNREACH_SRCFAIL;
698 goto bad;
699 }
700 /*
701 * Loose routing, and not at next destination
702 * yet; nothing to do except forward.
703 */
704 break;
705 }
706 off--; /* 0 origin */
707 if (off > optlen - sizeof(struct in_addr)) {
708 /*
709 * End of source route. Should be for us.
710 */
711 save_rte(cp, ip->ip_src);
712 break;
713 }
714 /*
715 * locate outgoing interface
716 */
717 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
718 sizeof(ipaddr.sin_addr));
719 if (opt == IPOPT_SSRR) {
720 #define INA struct in_ifaddr *
721 #define SA struct sockaddr *
722 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
723 ia = (INA)ifa_ifwithnet((SA)&ipaddr);
724 } else
725 ia = ip_rtaddr(ipaddr.sin_addr);
726 if (ia == 0) {
727 type = ICMP_UNREACH;
728 code = ICMP_UNREACH_SRCFAIL;
729 goto bad;
730 }
731 ip->ip_dst = ipaddr.sin_addr;
732 bcopy((caddr_t)&ia->ia_addr.sin_addr,
733 (caddr_t)(cp + off), sizeof(struct in_addr));
734 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
735 /*
736 * Let ip_intr's mcast routing check handle mcast pkts
737 */
738 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
739 break;
740
741 case IPOPT_RR:
742 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
743 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
744 goto bad;
745 }
746 /*
747 * If no space remains, ignore.
748 */
749 off--; /* 0 origin */
750 if (off > optlen - sizeof(struct in_addr))
751 break;
752 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
753 sizeof(ipaddr.sin_addr));
754 /*
755 * locate outgoing interface; if we're the destination,
756 * use the incoming interface (should be same).
757 */
758 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
759 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
760 type = ICMP_UNREACH;
761 code = ICMP_UNREACH_HOST;
762 goto bad;
763 }
764 bcopy((caddr_t)&ia->ia_addr.sin_addr,
765 (caddr_t)(cp + off), sizeof(struct in_addr));
766 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
767 break;
768
769 case IPOPT_TS:
770 code = cp - (u_char *)ip;
771 ipt = (struct ip_timestamp *)cp;
772 if (ipt->ipt_len < 5)
773 goto bad;
774 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
775 if (++ipt->ipt_oflw == 0)
776 goto bad;
777 break;
778 }
779 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
780 switch (ipt->ipt_flg) {
781
782 case IPOPT_TS_TSONLY:
783 break;
784
785 case IPOPT_TS_TSANDADDR:
786 if (ipt->ipt_ptr + sizeof(n_time) +
787 sizeof(struct in_addr) > ipt->ipt_len)
788 goto bad;
789 ipaddr.sin_addr = dst;
790 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
791 m->m_pkthdr.rcvif);
792 if (ia == 0)
793 continue;
794 bcopy((caddr_t)&ia->ia_addr.sin_addr,
795 (caddr_t)sin, sizeof(struct in_addr));
796 ipt->ipt_ptr += sizeof(struct in_addr);
797 break;
798
799 case IPOPT_TS_PRESPEC:
800 if (ipt->ipt_ptr + sizeof(n_time) +
801 sizeof(struct in_addr) > ipt->ipt_len)
802 goto bad;
803 bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
804 sizeof(struct in_addr));
805 if (ifa_ifwithaddr((SA)&ipaddr) == 0)
806 continue;
807 ipt->ipt_ptr += sizeof(struct in_addr);
808 break;
809
810 default:
811 goto bad;
812 }
813 ntime = iptime();
814 bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
815 sizeof(n_time));
816 ipt->ipt_ptr += sizeof(n_time);
817 }
818 }
819 if (forward) {
820 ip_forward(m, 1);
821 return (1);
822 }
823 return (0);
824 bad:
825 ip->ip_len -= ip->ip_hl << 2; /* XXX icmp_error adds in hdr length */
826 icmp_error(m, type, code, 0, 0);
827 ipstat.ips_badoptions++;
828 return (1);
829 }
830
831 /*
832 * Given address of next destination (final or next hop),
833 * return internet address info of interface to be used to get there.
834 */
835 struct in_ifaddr *
836 ip_rtaddr(dst)
837 struct in_addr dst;
838 {
839 register struct sockaddr_in *sin;
840
841 sin = satosin(&ipforward_rt.ro_dst);
842
843 if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
844 if (ipforward_rt.ro_rt) {
845 RTFREE(ipforward_rt.ro_rt);
846 ipforward_rt.ro_rt = 0;
847 }
848 sin->sin_family = AF_INET;
849 sin->sin_len = sizeof(*sin);
850 sin->sin_addr = dst;
851
852 rtalloc(&ipforward_rt);
853 }
854 if (ipforward_rt.ro_rt == 0)
855 return ((struct in_ifaddr *)0);
856 return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
857 }
858
859 /*
860 * Save incoming source route for use in replies,
861 * to be picked up later by ip_srcroute if the receiver is interested.
862 */
863 void
864 save_rte(option, dst)
865 u_char *option;
866 struct in_addr dst;
867 {
868 unsigned olen;
869
870 olen = option[IPOPT_OLEN];
871 #ifdef DIAGNOSTIC
872 if (ipprintfs)
873 printf("save_rte: olen %d\n", olen);
874 #endif
875 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
876 return;
877 bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
878 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
879 ip_srcrt.dst = dst;
880 }
881
882 /*
883 * Retrieve incoming source route for use in replies,
884 * in the same form used by setsockopt.
885 * The first hop is placed before the options, will be removed later.
886 */
887 struct mbuf *
888 ip_srcroute()
889 {
890 register struct in_addr *p, *q;
891 register struct mbuf *m;
892
893 if (ip_nhops == 0)
894 return ((struct mbuf *)0);
895 m = m_get(M_DONTWAIT, MT_SOOPTS);
896 if (m == 0)
897 return ((struct mbuf *)0);
898
899 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
900
901 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
902 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
903 OPTSIZ;
904 #ifdef DIAGNOSTIC
905 if (ipprintfs)
906 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
907 #endif
908
909 /*
910 * First save first hop for return route
911 */
912 p = &ip_srcrt.route[ip_nhops - 1];
913 *(mtod(m, struct in_addr *)) = *p--;
914 #ifdef DIAGNOSTIC
915 if (ipprintfs)
916 printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
917 #endif
918
919 /*
920 * Copy option fields and padding (nop) to mbuf.
921 */
922 ip_srcrt.nop = IPOPT_NOP;
923 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
924 bcopy((caddr_t)&ip_srcrt.nop,
925 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
926 q = (struct in_addr *)(mtod(m, caddr_t) +
927 sizeof(struct in_addr) + OPTSIZ);
928 #undef OPTSIZ
929 /*
930 * Record return path as an IP source route,
931 * reversing the path (pointers are now aligned).
932 */
933 while (p >= ip_srcrt.route) {
934 #ifdef DIAGNOSTIC
935 if (ipprintfs)
936 printf(" %lx", ntohl(q->s_addr));
937 #endif
938 *q++ = *p--;
939 }
940 /*
941 * Last hop goes to final destination.
942 */
943 *q = ip_srcrt.dst;
944 #ifdef DIAGNOSTIC
945 if (ipprintfs)
946 printf(" %lx\n", ntohl(q->s_addr));
947 #endif
948 return (m);
949 }
950
951 /*
952 * Strip out IP options, at higher
953 * level protocol in the kernel.
954 * Second argument is buffer to which options
955 * will be moved, and return value is their length.
956 * XXX should be deleted; last arg currently ignored.
957 */
958 void
959 ip_stripoptions(m, mopt)
960 register struct mbuf *m;
961 struct mbuf *mopt;
962 {
963 register int i;
964 struct ip *ip = mtod(m, struct ip *);
965 register caddr_t opts;
966 int olen;
967
968 olen = (ip->ip_hl<<2) - sizeof (struct ip);
969 opts = (caddr_t)(ip + 1);
970 i = m->m_len - (sizeof (struct ip) + olen);
971 bcopy(opts + olen, opts, (unsigned)i);
972 m->m_len -= olen;
973 if (m->m_flags & M_PKTHDR)
974 m->m_pkthdr.len -= olen;
975 ip->ip_hl = sizeof(struct ip) >> 2;
976 }
977
978 u_char inetctlerrmap[PRC_NCMDS] = {
979 0, 0, 0, 0,
980 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
981 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
982 EMSGSIZE, EHOSTUNREACH, 0, 0,
983 0, 0, 0, 0,
984 ENOPROTOOPT
985 };
986
987 /*
988 * Forward a packet. If some error occurs return the sender
989 * an icmp packet. Note we can't always generate a meaningful
990 * icmp message because icmp doesn't have a large enough repertoire
991 * of codes and types.
992 *
993 * If not forwarding, just drop the packet. This could be confusing
994 * if ipforwarding was zero but some routing protocol was advancing
995 * us as a gateway to somewhere. However, we must let the routing
996 * protocol deal with that.
997 *
998 * The srcrt parameter indicates whether the packet is being forwarded
999 * via a source route.
1000 */
1001 void
1002 ip_forward(m, srcrt)
1003 struct mbuf *m;
1004 int srcrt;
1005 {
1006 register struct ip *ip = mtod(m, struct ip *);
1007 register struct sockaddr_in *sin;
1008 register struct rtentry *rt;
1009 int error, type = 0, code;
1010 struct mbuf *mcopy;
1011 n_long dest;
1012 struct ifnet *destifp;
1013
1014 dest = 0;
1015 #ifdef DIAGNOSTIC
1016 if (ipprintfs)
1017 printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
1018 ip->ip_dst, ip->ip_ttl);
1019 #endif
1020 if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1021 ipstat.ips_cantforward++;
1022 m_freem(m);
1023 return;
1024 }
1025 HTONS(ip->ip_id);
1026 if (ip->ip_ttl <= IPTTLDEC) {
1027 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1028 return;
1029 }
1030 ip->ip_ttl -= IPTTLDEC;
1031
1032 sin = satosin(&ipforward_rt.ro_dst);
1033 if ((rt = ipforward_rt.ro_rt) == 0 ||
1034 ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1035 if (ipforward_rt.ro_rt) {
1036 RTFREE(ipforward_rt.ro_rt);
1037 ipforward_rt.ro_rt = 0;
1038 }
1039 sin->sin_family = AF_INET;
1040 sin->sin_len = sizeof(*sin);
1041 sin->sin_addr = ip->ip_dst;
1042
1043 rtalloc(&ipforward_rt);
1044 if (ipforward_rt.ro_rt == 0) {
1045 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1046 return;
1047 }
1048 rt = ipforward_rt.ro_rt;
1049 }
1050
1051 /*
1052 * Save at most 64 bytes of the packet in case
1053 * we need to generate an ICMP message to the src.
1054 */
1055 mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1056
1057 #ifdef GATEWAY
1058 ip_ifmatrix[rt->rt_ifp->if_index +
1059 if_index * m->m_pkthdr.rcvif->if_index]++;
1060 #endif
1061 /*
1062 * If forwarding packet using same interface that it came in on,
1063 * perhaps should send a redirect to sender to shortcut a hop.
1064 * Only send redirect if source is sending directly to us,
1065 * and if packet was not source routed (or has any options).
1066 * Also, don't send redirect if forwarding using a default route
1067 * or a route modified by a redirect.
1068 */
1069 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1070 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1071 satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1072 ipsendredirects && !srcrt) {
1073 if (rt->rt_ifa &&
1074 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1075 ifatoia(rt->rt_ifa)->ia_subnet) {
1076 if (rt->rt_flags & RTF_GATEWAY)
1077 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1078 else
1079 dest = ip->ip_dst.s_addr;
1080 /* Router requirements says to only send host redirects */
1081 type = ICMP_REDIRECT;
1082 code = ICMP_REDIRECT_HOST;
1083 #ifdef DIAGNOSTIC
1084 if (ipprintfs)
1085 printf("redirect (%d) to %lx\n", code, (u_int32_t)dest);
1086 #endif
1087 }
1088 }
1089
1090 error = ip_output(m, (struct mbuf *)0, &ipforward_rt, IP_FORWARDING
1091 #ifdef DIRECTED_BROADCAST
1092 | IP_ALLOWBROADCAST
1093 #endif
1094 , 0);
1095 if (error)
1096 ipstat.ips_cantforward++;
1097 else {
1098 ipstat.ips_forward++;
1099 if (type)
1100 ipstat.ips_redirectsent++;
1101 else {
1102 if (mcopy)
1103 m_freem(mcopy);
1104 return;
1105 }
1106 }
1107 if (mcopy == NULL)
1108 return;
1109 destifp = NULL;
1110
1111 switch (error) {
1112
1113 case 0: /* forwarded, but need redirect */
1114 /* type, code set above */
1115 break;
1116
1117 case ENETUNREACH: /* shouldn't happen, checked above */
1118 case EHOSTUNREACH:
1119 case ENETDOWN:
1120 case EHOSTDOWN:
1121 default:
1122 type = ICMP_UNREACH;
1123 code = ICMP_UNREACH_HOST;
1124 break;
1125
1126 case EMSGSIZE:
1127 type = ICMP_UNREACH;
1128 code = ICMP_UNREACH_NEEDFRAG;
1129 if (ipforward_rt.ro_rt)
1130 destifp = ipforward_rt.ro_rt->rt_ifp;
1131 ipstat.ips_cantfrag++;
1132 break;
1133
1134 case ENOBUFS:
1135 type = ICMP_SOURCEQUENCH;
1136 code = 0;
1137 break;
1138 }
1139 icmp_error(mcopy, type, code, dest, destifp);
1140 }
1141
1142 int
1143 ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
1144 int *name;
1145 u_int namelen;
1146 void *oldp;
1147 size_t *oldlenp;
1148 void *newp;
1149 size_t newlen;
1150 {
1151 /* All sysctl names at this level are terminal. */
1152 if (namelen != 1)
1153 return (ENOTDIR);
1154
1155 switch (name[0]) {
1156 case IPCTL_FORWARDING:
1157 return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
1158 case IPCTL_SENDREDIRECTS:
1159 return (sysctl_int(oldp, oldlenp, newp, newlen,
1160 &ipsendredirects));
1161 case IPCTL_DEFTTL:
1162 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
1163 #ifdef notyet
1164 case IPCTL_DEFMTU:
1165 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
1166 #endif
1167 default:
1168 return (EOPNOTSUPP);
1169 }
1170 /* NOTREACHED */
1171 }
1172