ip_input.c revision 1.200 1 /* $NetBSD: ip_input.c,v 1.200 2004/04/25 16:42:42 simonb Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.200 2004/04/25 16:42:42 simonb Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_gateway.h"
105 #include "opt_pfil_hooks.h"
106 #include "opt_ipsec.h"
107 #include "opt_mrouting.h"
108 #include "opt_mbuftrace.h"
109 #include "opt_inet_csum.h"
110
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/domain.h>
116 #include <sys/protosw.h>
117 #include <sys/socket.h>
118 #include <sys/socketvar.h>
119 #include <sys/errno.h>
120 #include <sys/time.h>
121 #include <sys/kernel.h>
122 #include <sys/pool.h>
123 #include <sys/sysctl.h>
124
125 #include <net/if.h>
126 #include <net/if_dl.h>
127 #include <net/route.h>
128 #include <net/pfil.h>
129
130 #include <netinet/in.h>
131 #include <netinet/in_systm.h>
132 #include <netinet/ip.h>
133 #include <netinet/in_pcb.h>
134 #include <netinet/in_var.h>
135 #include <netinet/ip_var.h>
136 #include <netinet/ip_icmp.h>
137 /* just for gif_ttl */
138 #include <netinet/in_gif.h>
139 #include "gif.h"
140 #include <net/if_gre.h>
141 #include "gre.h"
142
143 #ifdef MROUTING
144 #include <netinet/ip_mroute.h>
145 #endif
146
147 #ifdef IPSEC
148 #include <netinet6/ipsec.h>
149 #include <netkey/key.h>
150 #endif
151 #ifdef FAST_IPSEC
152 #include <netipsec/ipsec.h>
153 #include <netipsec/key.h>
154 #endif /* FAST_IPSEC*/
155
156 #ifndef IPFORWARDING
157 #ifdef GATEWAY
158 #define IPFORWARDING 1 /* forward IP packets not for us */
159 #else /* GATEWAY */
160 #define IPFORWARDING 0 /* don't forward IP packets not for us */
161 #endif /* GATEWAY */
162 #endif /* IPFORWARDING */
163 #ifndef IPSENDREDIRECTS
164 #define IPSENDREDIRECTS 1
165 #endif
166 #ifndef IPFORWSRCRT
167 #define IPFORWSRCRT 1 /* forward source-routed packets */
168 #endif
169 #ifndef IPALLOWSRCRT
170 #define IPALLOWSRCRT 1 /* allow source-routed packets */
171 #endif
172 #ifndef IPMTUDISC
173 #define IPMTUDISC 1
174 #endif
175 #ifndef IPMTUDISCTIMEOUT
176 #define IPMTUDISCTIMEOUT (10 * 60) /* as per RFC 1191 */
177 #endif
178
179 /*
180 * Note: DIRECTED_BROADCAST is handled this way so that previous
181 * configuration using this option will Just Work.
182 */
183 #ifndef IPDIRECTEDBCAST
184 #ifdef DIRECTED_BROADCAST
185 #define IPDIRECTEDBCAST 1
186 #else
187 #define IPDIRECTEDBCAST 0
188 #endif /* DIRECTED_BROADCAST */
189 #endif /* IPDIRECTEDBCAST */
190 int ipforwarding = IPFORWARDING;
191 int ipsendredirects = IPSENDREDIRECTS;
192 int ip_defttl = IPDEFTTL;
193 int ip_forwsrcrt = IPFORWSRCRT;
194 int ip_directedbcast = IPDIRECTEDBCAST;
195 int ip_allowsrcrt = IPALLOWSRCRT;
196 int ip_mtudisc = IPMTUDISC;
197 int ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
198 #ifdef DIAGNOSTIC
199 int ipprintfs = 0;
200 #endif
201
202 int ip_do_randomid = 0;
203
204 /*
205 * XXX - Setting ip_checkinterface mostly implements the receive side of
206 * the Strong ES model described in RFC 1122, but since the routing table
207 * and transmit implementation do not implement the Strong ES model,
208 * setting this to 1 results in an odd hybrid.
209 *
210 * XXX - ip_checkinterface currently must be disabled if you use ipnat
211 * to translate the destination address to another local interface.
212 *
213 * XXX - ip_checkinterface must be disabled if you add IP aliases
214 * to the loopback interface instead of the interface where the
215 * packets for those addresses are received.
216 */
217 int ip_checkinterface = 0;
218
219
220 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
221
222 int ipqmaxlen = IFQ_MAXLEN;
223 u_long in_ifaddrhash; /* size of hash table - 1 */
224 int in_ifaddrentries; /* total number of addrs */
225 struct in_ifaddrhead in_ifaddrhead;
226 struct in_ifaddrhashhead *in_ifaddrhashtbl;
227 u_long in_multihash; /* size of hash table - 1 */
228 int in_multientries; /* total number of addrs */
229 struct in_multihashhead *in_multihashtbl;
230 struct ifqueue ipintrq;
231 struct ipstat ipstat;
232 uint16_t ip_id;
233
234 #ifdef PFIL_HOOKS
235 struct pfil_head inet_pfil_hook;
236 #endif
237
238 /*
239 * Cached copy of nmbclusters. If nbclusters is different,
240 * recalculate IP parameters derived from nmbclusters.
241 */
242 static int ip_nmbclusters; /* copy of nmbclusters */
243 static void ip_nmbclusters_changed __P((void)); /* recalc limits */
244
245 #define CHECK_NMBCLUSTER_PARAMS() \
246 do { \
247 if (__predict_false(ip_nmbclusters != nmbclusters)) \
248 ip_nmbclusters_changed(); \
249 } while (/*CONSTCOND*/0)
250
251 /* IP datagram reassembly queues (hashed) */
252 #define IPREASS_NHASH_LOG2 6
253 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
254 #define IPREASS_HMASK (IPREASS_NHASH - 1)
255 #define IPREASS_HASH(x,y) \
256 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
257 struct ipqhead ipq[IPREASS_NHASH];
258 int ipq_locked;
259 static int ip_nfragpackets; /* packets in reass queue */
260 static int ip_nfrags; /* total fragments in reass queues */
261
262 int ip_maxfragpackets = 200; /* limit on packets. XXX sysctl */
263 int ip_maxfrags; /* limit on fragments. XXX sysctl */
264
265
266 /*
267 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
268 * IP reassembly queue buffer managment.
269 *
270 * We keep a count of total IP fragments (NB: not fragmented packets!)
271 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
272 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
273 * total fragments in reassembly queues.This AIMD policy avoids
274 * repeatedly deleting single packets under heavy fragmentation load
275 * (e.g., from lossy NFS peers).
276 */
277 static u_int ip_reass_ttl_decr __P((u_int ticks));
278 static void ip_reass_drophalf __P((void));
279
280
281 static __inline int ipq_lock_try __P((void));
282 static __inline void ipq_unlock __P((void));
283
284 static __inline int
285 ipq_lock_try()
286 {
287 int s;
288
289 /*
290 * Use splvm() -- we're blocking things that would cause
291 * mbuf allocation.
292 */
293 s = splvm();
294 if (ipq_locked) {
295 splx(s);
296 return (0);
297 }
298 ipq_locked = 1;
299 splx(s);
300 return (1);
301 }
302
303 static __inline void
304 ipq_unlock()
305 {
306 int s;
307
308 s = splvm();
309 ipq_locked = 0;
310 splx(s);
311 }
312
313 #ifdef DIAGNOSTIC
314 #define IPQ_LOCK() \
315 do { \
316 if (ipq_lock_try() == 0) { \
317 printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
318 panic("ipq_lock"); \
319 } \
320 } while (/*CONSTCOND*/ 0)
321 #define IPQ_LOCK_CHECK() \
322 do { \
323 if (ipq_locked == 0) { \
324 printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
325 panic("ipq lock check"); \
326 } \
327 } while (/*CONSTCOND*/ 0)
328 #else
329 #define IPQ_LOCK() (void) ipq_lock_try()
330 #define IPQ_LOCK_CHECK() /* nothing */
331 #endif
332
333 #define IPQ_UNLOCK() ipq_unlock()
334
335 POOL_INIT(inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", NULL);
336 POOL_INIT(ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl", NULL);
337
338 #ifdef INET_CSUM_COUNTERS
339 #include <sys/device.h>
340
341 struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
342 NULL, "inet", "hwcsum bad");
343 struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
344 NULL, "inet", "hwcsum ok");
345 struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
346 NULL, "inet", "swcsum");
347
348 #define INET_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
349
350 #else
351
352 #define INET_CSUM_COUNTER_INCR(ev) /* nothing */
353
354 #endif /* INET_CSUM_COUNTERS */
355
356 /*
357 * We need to save the IP options in case a protocol wants to respond
358 * to an incoming packet over the same route if the packet got here
359 * using IP source routing. This allows connection establishment and
360 * maintenance when the remote end is on a network that is not known
361 * to us.
362 */
363 int ip_nhops = 0;
364 static struct ip_srcrt {
365 struct in_addr dst; /* final destination */
366 char nop; /* one NOP to align */
367 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
368 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
369 } ip_srcrt;
370
371 static void save_rte __P((u_char *, struct in_addr));
372
373 #ifdef MBUFTRACE
374 struct mowner ip_rx_mowner = { "internet", "rx" };
375 struct mowner ip_tx_mowner = { "internet", "tx" };
376 #endif
377
378 /*
379 * Compute IP limits derived from the value of nmbclusters.
380 */
381 static void
382 ip_nmbclusters_changed(void)
383 {
384 ip_maxfrags = nmbclusters / 4;
385 ip_nmbclusters = nmbclusters;
386 }
387
388 /*
389 * IP initialization: fill in IP protocol switch table.
390 * All protocols not implemented in kernel go to raw IP protocol handler.
391 */
392 void
393 ip_init()
394 {
395 const struct protosw *pr;
396 int i;
397
398 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
399 if (pr == 0)
400 panic("ip_init");
401 for (i = 0; i < IPPROTO_MAX; i++)
402 ip_protox[i] = pr - inetsw;
403 for (pr = inetdomain.dom_protosw;
404 pr < inetdomain.dom_protoswNPROTOSW; pr++)
405 if (pr->pr_domain->dom_family == PF_INET &&
406 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
407 ip_protox[pr->pr_protocol] = pr - inetsw;
408
409 for (i = 0; i < IPREASS_NHASH; i++)
410 LIST_INIT(&ipq[i]);
411
412 ip_id = time.tv_sec & 0xfffff;
413
414 ipintrq.ifq_maxlen = ipqmaxlen;
415 ip_nmbclusters_changed();
416
417 TAILQ_INIT(&in_ifaddrhead);
418 in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IFADDR,
419 M_WAITOK, &in_ifaddrhash);
420 in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IPMADDR,
421 M_WAITOK, &in_multihash);
422 ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
423 #ifdef GATEWAY
424 ipflow_init();
425 #endif
426
427 #ifdef PFIL_HOOKS
428 /* Register our Packet Filter hook. */
429 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
430 inet_pfil_hook.ph_af = AF_INET;
431 i = pfil_head_register(&inet_pfil_hook);
432 if (i != 0)
433 printf("ip_init: WARNING: unable to register pfil hook, "
434 "error %d\n", i);
435 #endif /* PFIL_HOOKS */
436
437 #ifdef INET_CSUM_COUNTERS
438 evcnt_attach_static(&ip_hwcsum_bad);
439 evcnt_attach_static(&ip_hwcsum_ok);
440 evcnt_attach_static(&ip_swcsum);
441 #endif /* INET_CSUM_COUNTERS */
442
443 #ifdef MBUFTRACE
444 MOWNER_ATTACH(&ip_tx_mowner);
445 MOWNER_ATTACH(&ip_rx_mowner);
446 #endif /* MBUFTRACE */
447 }
448
449 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
450 struct route ipforward_rt;
451
452 /*
453 * IP software interrupt routine
454 */
455 void
456 ipintr()
457 {
458 int s;
459 struct mbuf *m;
460
461 while (1) {
462 s = splnet();
463 IF_DEQUEUE(&ipintrq, m);
464 splx(s);
465 if (m == 0)
466 return;
467 MCLAIM(m, &ip_rx_mowner);
468 ip_input(m);
469 }
470 }
471
472 /*
473 * Ip input routine. Checksum and byte swap header. If fragmented
474 * try to reassemble. Process options. Pass to next level.
475 */
476 void
477 ip_input(struct mbuf *m)
478 {
479 struct ip *ip = NULL;
480 struct ipq *fp;
481 struct in_ifaddr *ia;
482 struct ifaddr *ifa;
483 struct ipqent *ipqe;
484 int hlen = 0, mff, len;
485 int downmatch;
486 int checkif;
487 int srcrt = 0;
488 u_int hash;
489 #ifdef FAST_IPSEC
490 struct m_tag *mtag;
491 struct tdb_ident *tdbi;
492 struct secpolicy *sp;
493 int s, error;
494 #endif /* FAST_IPSEC */
495
496 MCLAIM(m, &ip_rx_mowner);
497 #ifdef DIAGNOSTIC
498 if ((m->m_flags & M_PKTHDR) == 0)
499 panic("ipintr no HDR");
500 #endif
501
502 /*
503 * If no IP addresses have been set yet but the interfaces
504 * are receiving, can't do anything with incoming packets yet.
505 */
506 if (TAILQ_FIRST(&in_ifaddrhead) == 0)
507 goto bad;
508 ipstat.ips_total++;
509 /*
510 * If the IP header is not aligned, slurp it up into a new
511 * mbuf with space for link headers, in the event we forward
512 * it. Otherwise, if it is aligned, make sure the entire
513 * base IP header is in the first mbuf of the chain.
514 */
515 if (IP_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) {
516 if ((m = m_copyup(m, sizeof(struct ip),
517 (max_linkhdr + 3) & ~3)) == NULL) {
518 /* XXXJRT new stat, please */
519 ipstat.ips_toosmall++;
520 return;
521 }
522 } else if (__predict_false(m->m_len < sizeof (struct ip))) {
523 if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
524 ipstat.ips_toosmall++;
525 return;
526 }
527 }
528 ip = mtod(m, struct ip *);
529 if (ip->ip_v != IPVERSION) {
530 ipstat.ips_badvers++;
531 goto bad;
532 }
533 hlen = ip->ip_hl << 2;
534 if (hlen < sizeof(struct ip)) { /* minimum header length */
535 ipstat.ips_badhlen++;
536 goto bad;
537 }
538 if (hlen > m->m_len) {
539 if ((m = m_pullup(m, hlen)) == 0) {
540 ipstat.ips_badhlen++;
541 return;
542 }
543 ip = mtod(m, struct ip *);
544 }
545
546 /*
547 * RFC1122: packets with a multicast source address are
548 * not allowed.
549 */
550 if (IN_MULTICAST(ip->ip_src.s_addr)) {
551 ipstat.ips_badaddr++;
552 goto bad;
553 }
554
555 /* 127/8 must not appear on wire - RFC1122 */
556 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
557 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
558 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
559 ipstat.ips_badaddr++;
560 goto bad;
561 }
562 }
563
564 switch (m->m_pkthdr.csum_flags &
565 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
566 M_CSUM_IPv4_BAD)) {
567 case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
568 INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
569 goto badcsum;
570
571 case M_CSUM_IPv4:
572 /* Checksum was okay. */
573 INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
574 break;
575
576 default:
577 /* Must compute it ourselves. */
578 INET_CSUM_COUNTER_INCR(&ip_swcsum);
579 if (in_cksum(m, hlen) != 0)
580 goto bad;
581 break;
582 }
583
584 /* Retrieve the packet length. */
585 len = ntohs(ip->ip_len);
586
587 /*
588 * Check for additional length bogosity
589 */
590 if (len < hlen) {
591 ipstat.ips_badlen++;
592 goto bad;
593 }
594
595 /*
596 * Check that the amount of data in the buffers
597 * is as at least much as the IP header would have us expect.
598 * Trim mbufs if longer than we expect.
599 * Drop packet if shorter than we expect.
600 */
601 if (m->m_pkthdr.len < len) {
602 ipstat.ips_tooshort++;
603 goto bad;
604 }
605 if (m->m_pkthdr.len > len) {
606 if (m->m_len == m->m_pkthdr.len) {
607 m->m_len = len;
608 m->m_pkthdr.len = len;
609 } else
610 m_adj(m, len - m->m_pkthdr.len);
611 }
612
613 #if defined(IPSEC)
614 /* ipflow (IP fast forwarding) is not compatible with IPsec. */
615 m->m_flags &= ~M_CANFASTFWD;
616 #else
617 /*
618 * Assume that we can create a fast-forward IP flow entry
619 * based on this packet.
620 */
621 m->m_flags |= M_CANFASTFWD;
622 #endif
623
624 #ifdef PFIL_HOOKS
625 /*
626 * Run through list of hooks for input packets. If there are any
627 * filters which require that additional packets in the flow are
628 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
629 * Note that filters must _never_ set this flag, as another filter
630 * in the list may have previously cleared it.
631 */
632 /*
633 * let ipfilter look at packet on the wire,
634 * not the decapsulated packet.
635 */
636 #ifdef IPSEC
637 if (!ipsec_getnhist(m))
638 #elif defined(FAST_IPSEC)
639 if (!ipsec_indone(m))
640 #else
641 if (1)
642 #endif
643 {
644 struct in_addr odst;
645
646 odst = ip->ip_dst;
647 if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
648 PFIL_IN) != 0)
649 return;
650 if (m == NULL)
651 return;
652 ip = mtod(m, struct ip *);
653 hlen = ip->ip_hl << 2;
654 srcrt = (odst.s_addr != ip->ip_dst.s_addr);
655 }
656 #endif /* PFIL_HOOKS */
657
658 #ifdef ALTQ
659 /* XXX Temporary until ALTQ is changed to use a pfil hook */
660 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
661 /* packet dropped by traffic conditioner */
662 return;
663 }
664 #endif
665
666 /*
667 * Process options and, if not destined for us,
668 * ship it on. ip_dooptions returns 1 when an
669 * error was detected (causing an icmp message
670 * to be sent and the original packet to be freed).
671 */
672 ip_nhops = 0; /* for source routed packets */
673 if (hlen > sizeof (struct ip) && ip_dooptions(m))
674 return;
675
676 /*
677 * Enable a consistency check between the destination address
678 * and the arrival interface for a unicast packet (the RFC 1122
679 * strong ES model) if IP forwarding is disabled and the packet
680 * is not locally generated.
681 *
682 * XXX - Checking also should be disabled if the destination
683 * address is ipnat'ed to a different interface.
684 *
685 * XXX - Checking is incompatible with IP aliases added
686 * to the loopback interface instead of the interface where
687 * the packets are received.
688 *
689 * XXX - We need to add a per ifaddr flag for this so that
690 * we get finer grain control.
691 */
692 checkif = ip_checkinterface && (ipforwarding == 0) &&
693 (m->m_pkthdr.rcvif != NULL) &&
694 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
695
696 /*
697 * Check our list of addresses, to see if the packet is for us.
698 *
699 * Traditional 4.4BSD did not consult IFF_UP at all.
700 * The behavior here is to treat addresses on !IFF_UP interface
701 * as not mine.
702 */
703 downmatch = 0;
704 LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
705 if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
706 if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
707 continue;
708 if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
709 break;
710 else
711 downmatch++;
712 }
713 }
714 if (ia != NULL)
715 goto ours;
716 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
717 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrlist, ifa_list) {
718 if (ifa->ifa_addr->sa_family != AF_INET)
719 continue;
720 ia = ifatoia(ifa);
721 if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
722 in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
723 /*
724 * Look for all-0's host part (old broadcast addr),
725 * either for subnet or net.
726 */
727 ip->ip_dst.s_addr == ia->ia_subnet ||
728 ip->ip_dst.s_addr == ia->ia_net)
729 goto ours;
730 /*
731 * An interface with IP address zero accepts
732 * all packets that arrive on that interface.
733 */
734 if (in_nullhost(ia->ia_addr.sin_addr))
735 goto ours;
736 }
737 }
738 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
739 struct in_multi *inm;
740 #ifdef MROUTING
741 extern struct socket *ip_mrouter;
742
743 if (M_READONLY(m)) {
744 if ((m = m_pullup(m, hlen)) == 0) {
745 ipstat.ips_toosmall++;
746 return;
747 }
748 ip = mtod(m, struct ip *);
749 }
750
751 if (ip_mrouter) {
752 /*
753 * If we are acting as a multicast router, all
754 * incoming multicast packets are passed to the
755 * kernel-level multicast forwarding function.
756 * The packet is returned (relatively) intact; if
757 * ip_mforward() returns a non-zero value, the packet
758 * must be discarded, else it may be accepted below.
759 *
760 * (The IP ident field is put in the same byte order
761 * as expected when ip_mforward() is called from
762 * ip_output().)
763 */
764 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
765 ipstat.ips_cantforward++;
766 m_freem(m);
767 return;
768 }
769
770 /*
771 * The process-level routing demon needs to receive
772 * all multicast IGMP packets, whether or not this
773 * host belongs to their destination groups.
774 */
775 if (ip->ip_p == IPPROTO_IGMP)
776 goto ours;
777 ipstat.ips_forward++;
778 }
779 #endif
780 /*
781 * See if we belong to the destination multicast group on the
782 * arrival interface.
783 */
784 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
785 if (inm == NULL) {
786 ipstat.ips_cantforward++;
787 m_freem(m);
788 return;
789 }
790 goto ours;
791 }
792 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
793 in_nullhost(ip->ip_dst))
794 goto ours;
795
796 /*
797 * Not for us; forward if possible and desirable.
798 */
799 if (ipforwarding == 0) {
800 ipstat.ips_cantforward++;
801 m_freem(m);
802 } else {
803 /*
804 * If ip_dst matched any of my address on !IFF_UP interface,
805 * and there's no IFF_UP interface that matches ip_dst,
806 * send icmp unreach. Forwarding it will result in in-kernel
807 * forwarding loop till TTL goes to 0.
808 */
809 if (downmatch) {
810 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
811 ipstat.ips_cantforward++;
812 return;
813 }
814 #ifdef IPSEC
815 if (ipsec4_in_reject(m, NULL)) {
816 ipsecstat.in_polvio++;
817 goto bad;
818 }
819 #endif
820 #ifdef FAST_IPSEC
821 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
822 s = splsoftnet();
823 if (mtag != NULL) {
824 tdbi = (struct tdb_ident *)(mtag + 1);
825 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
826 } else {
827 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
828 IP_FORWARDING, &error);
829 }
830 if (sp == NULL) { /* NB: can happen if error */
831 splx(s);
832 /*XXX error stat???*/
833 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
834 goto bad;
835 }
836
837 /*
838 * Check security policy against packet attributes.
839 */
840 error = ipsec_in_reject(sp, m);
841 KEY_FREESP(&sp);
842 splx(s);
843 if (error) {
844 ipstat.ips_cantforward++;
845 goto bad;
846 }
847
848 /*
849 * Peek at the outbound SP for this packet to determine if
850 * it's a Fast Forward candidate.
851 */
852 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
853 if (mtag != NULL)
854 m->m_flags &= ~M_CANFASTFWD;
855 else {
856 s = splsoftnet();
857 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
858 (IP_FORWARDING |
859 (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
860 &error, NULL);
861 if (sp != NULL) {
862 m->m_flags &= ~M_CANFASTFWD;
863 KEY_FREESP(&sp);
864 }
865 splx(s);
866 }
867 #endif /* FAST_IPSEC */
868
869 ip_forward(m, srcrt);
870 }
871 return;
872
873 ours:
874 /*
875 * If offset or IP_MF are set, must reassemble.
876 * Otherwise, nothing need be done.
877 * (We could look in the reassembly queue to see
878 * if the packet was previously fragmented,
879 * but it's not worth the time; just let them time out.)
880 */
881 if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
882 if (M_READONLY(m)) {
883 if ((m = m_pullup(m, hlen)) == NULL) {
884 ipstat.ips_toosmall++;
885 goto bad;
886 }
887 ip = mtod(m, struct ip *);
888 }
889
890 /*
891 * Look for queue of fragments
892 * of this datagram.
893 */
894 IPQ_LOCK();
895 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
896 /* XXX LIST_FOREACH(fp, &ipq[hash], ipq_q) */
897 for (fp = LIST_FIRST(&ipq[hash]); fp != NULL;
898 fp = LIST_NEXT(fp, ipq_q)) {
899 if (ip->ip_id == fp->ipq_id &&
900 in_hosteq(ip->ip_src, fp->ipq_src) &&
901 in_hosteq(ip->ip_dst, fp->ipq_dst) &&
902 ip->ip_p == fp->ipq_p)
903 goto found;
904
905 }
906 fp = 0;
907 found:
908
909 /*
910 * Adjust ip_len to not reflect header,
911 * set ipqe_mff if more fragments are expected,
912 * convert offset of this to bytes.
913 */
914 ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
915 mff = (ip->ip_off & htons(IP_MF)) != 0;
916 if (mff) {
917 /*
918 * Make sure that fragments have a data length
919 * that's a non-zero multiple of 8 bytes.
920 */
921 if (ntohs(ip->ip_len) == 0 ||
922 (ntohs(ip->ip_len) & 0x7) != 0) {
923 ipstat.ips_badfrags++;
924 IPQ_UNLOCK();
925 goto bad;
926 }
927 }
928 ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
929
930 /*
931 * If datagram marked as having more fragments
932 * or if this is not the first fragment,
933 * attempt reassembly; if it succeeds, proceed.
934 */
935 if (mff || ip->ip_off != htons(0)) {
936 ipstat.ips_fragments++;
937 ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
938 if (ipqe == NULL) {
939 ipstat.ips_rcvmemdrop++;
940 IPQ_UNLOCK();
941 goto bad;
942 }
943 ipqe->ipqe_mff = mff;
944 ipqe->ipqe_m = m;
945 ipqe->ipqe_ip = ip;
946 m = ip_reass(ipqe, fp, &ipq[hash]);
947 if (m == 0) {
948 IPQ_UNLOCK();
949 return;
950 }
951 ipstat.ips_reassembled++;
952 ip = mtod(m, struct ip *);
953 hlen = ip->ip_hl << 2;
954 ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
955 } else
956 if (fp)
957 ip_freef(fp);
958 IPQ_UNLOCK();
959 }
960
961 #if defined(IPSEC)
962 /*
963 * enforce IPsec policy checking if we are seeing last header.
964 * note that we do not visit this with protocols with pcb layer
965 * code - like udp/tcp/raw ip.
966 */
967 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
968 ipsec4_in_reject(m, NULL)) {
969 ipsecstat.in_polvio++;
970 goto bad;
971 }
972 #endif
973 #if FAST_IPSEC
974 /*
975 * enforce IPsec policy checking if we are seeing last header.
976 * note that we do not visit this with protocols with pcb layer
977 * code - like udp/tcp/raw ip.
978 */
979 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
980 /*
981 * Check if the packet has already had IPsec processing
982 * done. If so, then just pass it along. This tag gets
983 * set during AH, ESP, etc. input handling, before the
984 * packet is returned to the ip input queue for delivery.
985 */
986 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
987 s = splsoftnet();
988 if (mtag != NULL) {
989 tdbi = (struct tdb_ident *)(mtag + 1);
990 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
991 } else {
992 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
993 IP_FORWARDING, &error);
994 }
995 if (sp != NULL) {
996 /*
997 * Check security policy against packet attributes.
998 */
999 error = ipsec_in_reject(sp, m);
1000 KEY_FREESP(&sp);
1001 } else {
1002 /* XXX error stat??? */
1003 error = EINVAL;
1004 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1005 goto bad;
1006 }
1007 splx(s);
1008 if (error)
1009 goto bad;
1010 }
1011 #endif /* FAST_IPSEC */
1012
1013 /*
1014 * Switch out to protocol's input routine.
1015 */
1016 #if IFA_STATS
1017 if (ia && ip)
1018 ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
1019 #endif
1020 ipstat.ips_delivered++;
1021 {
1022 int off = hlen, nh = ip->ip_p;
1023
1024 (*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
1025 return;
1026 }
1027 bad:
1028 m_freem(m);
1029 return;
1030
1031 badcsum:
1032 ipstat.ips_badsum++;
1033 m_freem(m);
1034 }
1035
1036 /*
1037 * Take incoming datagram fragment and try to
1038 * reassemble it into whole datagram. If a chain for
1039 * reassembly of this datagram already exists, then it
1040 * is given as fp; otherwise have to make a chain.
1041 */
1042 struct mbuf *
1043 ip_reass(ipqe, fp, ipqhead)
1044 struct ipqent *ipqe;
1045 struct ipq *fp;
1046 struct ipqhead *ipqhead;
1047 {
1048 struct mbuf *m = ipqe->ipqe_m;
1049 struct ipqent *nq, *p, *q;
1050 struct ip *ip;
1051 struct mbuf *t;
1052 int hlen = ipqe->ipqe_ip->ip_hl << 2;
1053 int i, next;
1054
1055 IPQ_LOCK_CHECK();
1056
1057 /*
1058 * Presence of header sizes in mbufs
1059 * would confuse code below.
1060 */
1061 m->m_data += hlen;
1062 m->m_len -= hlen;
1063
1064 #ifdef notyet
1065 /* make sure fragment limit is up-to-date */
1066 CHECK_NMBCLUSTER_PARAMS();
1067
1068 /* If we have too many fragments, drop the older half. */
1069 if (ip_nfrags >= ip_maxfrags)
1070 ip_reass_drophalf(void);
1071 #endif
1072
1073 /*
1074 * We are about to add a fragment; increment frag count.
1075 */
1076 ip_nfrags++;
1077
1078 /*
1079 * If first fragment to arrive, create a reassembly queue.
1080 */
1081 if (fp == 0) {
1082 /*
1083 * Enforce upper bound on number of fragmented packets
1084 * for which we attempt reassembly;
1085 * If maxfrag is 0, never accept fragments.
1086 * If maxfrag is -1, accept all fragments without limitation.
1087 */
1088 if (ip_maxfragpackets < 0)
1089 ;
1090 else if (ip_nfragpackets >= ip_maxfragpackets)
1091 goto dropfrag;
1092 ip_nfragpackets++;
1093 MALLOC(fp, struct ipq *, sizeof (struct ipq),
1094 M_FTABLE, M_NOWAIT);
1095 if (fp == NULL)
1096 goto dropfrag;
1097 LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
1098 fp->ipq_nfrags = 1;
1099 fp->ipq_ttl = IPFRAGTTL;
1100 fp->ipq_p = ipqe->ipqe_ip->ip_p;
1101 fp->ipq_id = ipqe->ipqe_ip->ip_id;
1102 TAILQ_INIT(&fp->ipq_fragq);
1103 fp->ipq_src = ipqe->ipqe_ip->ip_src;
1104 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
1105 p = NULL;
1106 goto insert;
1107 } else {
1108 fp->ipq_nfrags++;
1109 }
1110
1111 /*
1112 * Find a segment which begins after this one does.
1113 */
1114 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1115 p = q, q = TAILQ_NEXT(q, ipqe_q))
1116 if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
1117 break;
1118
1119 /*
1120 * If there is a preceding segment, it may provide some of
1121 * our data already. If so, drop the data from the incoming
1122 * segment. If it provides all of our data, drop us.
1123 */
1124 if (p != NULL) {
1125 i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
1126 ntohs(ipqe->ipqe_ip->ip_off);
1127 if (i > 0) {
1128 if (i >= ntohs(ipqe->ipqe_ip->ip_len))
1129 goto dropfrag;
1130 m_adj(ipqe->ipqe_m, i);
1131 ipqe->ipqe_ip->ip_off =
1132 htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
1133 ipqe->ipqe_ip->ip_len =
1134 htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
1135 }
1136 }
1137
1138 /*
1139 * While we overlap succeeding segments trim them or,
1140 * if they are completely covered, dequeue them.
1141 */
1142 for (; q != NULL &&
1143 ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
1144 ntohs(q->ipqe_ip->ip_off); q = nq) {
1145 i = (ntohs(ipqe->ipqe_ip->ip_off) +
1146 ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
1147 if (i < ntohs(q->ipqe_ip->ip_len)) {
1148 q->ipqe_ip->ip_len =
1149 htons(ntohs(q->ipqe_ip->ip_len) - i);
1150 q->ipqe_ip->ip_off =
1151 htons(ntohs(q->ipqe_ip->ip_off) + i);
1152 m_adj(q->ipqe_m, i);
1153 break;
1154 }
1155 nq = TAILQ_NEXT(q, ipqe_q);
1156 m_freem(q->ipqe_m);
1157 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1158 pool_put(&ipqent_pool, q);
1159 fp->ipq_nfrags--;
1160 ip_nfrags--;
1161 }
1162
1163 insert:
1164 /*
1165 * Stick new segment in its place;
1166 * check for complete reassembly.
1167 */
1168 if (p == NULL) {
1169 TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
1170 } else {
1171 TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
1172 }
1173 next = 0;
1174 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1175 p = q, q = TAILQ_NEXT(q, ipqe_q)) {
1176 if (ntohs(q->ipqe_ip->ip_off) != next)
1177 return (0);
1178 next += ntohs(q->ipqe_ip->ip_len);
1179 }
1180 if (p->ipqe_mff)
1181 return (0);
1182
1183 /*
1184 * Reassembly is complete. Check for a bogus message size and
1185 * concatenate fragments.
1186 */
1187 q = TAILQ_FIRST(&fp->ipq_fragq);
1188 ip = q->ipqe_ip;
1189 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
1190 ipstat.ips_toolong++;
1191 ip_freef(fp);
1192 return (0);
1193 }
1194 m = q->ipqe_m;
1195 t = m->m_next;
1196 m->m_next = 0;
1197 m_cat(m, t);
1198 nq = TAILQ_NEXT(q, ipqe_q);
1199 pool_put(&ipqent_pool, q);
1200 for (q = nq; q != NULL; q = nq) {
1201 t = q->ipqe_m;
1202 nq = TAILQ_NEXT(q, ipqe_q);
1203 pool_put(&ipqent_pool, q);
1204 m_cat(m, t);
1205 }
1206 ip_nfrags -= fp->ipq_nfrags;
1207
1208 /*
1209 * Create header for new ip packet by
1210 * modifying header of first packet;
1211 * dequeue and discard fragment reassembly header.
1212 * Make header visible.
1213 */
1214 ip->ip_len = htons(next);
1215 ip->ip_src = fp->ipq_src;
1216 ip->ip_dst = fp->ipq_dst;
1217 LIST_REMOVE(fp, ipq_q);
1218 FREE(fp, M_FTABLE);
1219 ip_nfragpackets--;
1220 m->m_len += (ip->ip_hl << 2);
1221 m->m_data -= (ip->ip_hl << 2);
1222 /* some debugging cruft by sklower, below, will go away soon */
1223 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1224 int plen = 0;
1225 for (t = m; t; t = t->m_next)
1226 plen += t->m_len;
1227 m->m_pkthdr.len = plen;
1228 }
1229 return (m);
1230
1231 dropfrag:
1232 if (fp != 0)
1233 fp->ipq_nfrags--;
1234 ip_nfrags--;
1235 ipstat.ips_fragdropped++;
1236 m_freem(m);
1237 pool_put(&ipqent_pool, ipqe);
1238 return (0);
1239 }
1240
1241 /*
1242 * Free a fragment reassembly header and all
1243 * associated datagrams.
1244 */
1245 void
1246 ip_freef(fp)
1247 struct ipq *fp;
1248 {
1249 struct ipqent *q, *p;
1250 u_int nfrags = 0;
1251
1252 IPQ_LOCK_CHECK();
1253
1254 for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
1255 p = TAILQ_NEXT(q, ipqe_q);
1256 m_freem(q->ipqe_m);
1257 nfrags++;
1258 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1259 pool_put(&ipqent_pool, q);
1260 }
1261
1262 if (nfrags != fp->ipq_nfrags)
1263 printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
1264 ip_nfrags -= nfrags;
1265 LIST_REMOVE(fp, ipq_q);
1266 FREE(fp, M_FTABLE);
1267 ip_nfragpackets--;
1268 }
1269
1270 /*
1271 * IP reassembly TTL machinery for multiplicative drop.
1272 */
1273 static u_int fragttl_histo[(IPFRAGTTL+1)];
1274
1275
1276 /*
1277 * Decrement TTL of all reasembly queue entries by `ticks'.
1278 * Count number of distinct fragments (as opposed to partial, fragmented
1279 * datagrams) in the reassembly queue. While we traverse the entire
1280 * reassembly queue, compute and return the median TTL over all fragments.
1281 */
1282 static u_int
1283 ip_reass_ttl_decr(u_int ticks)
1284 {
1285 u_int nfrags, median, dropfraction, keepfraction;
1286 struct ipq *fp, *nfp;
1287 int i;
1288
1289 nfrags = 0;
1290 memset(fragttl_histo, 0, sizeof fragttl_histo);
1291
1292 for (i = 0; i < IPREASS_NHASH; i++) {
1293 for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
1294 fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
1295 0 : fp->ipq_ttl - ticks);
1296 nfp = LIST_NEXT(fp, ipq_q);
1297 if (fp->ipq_ttl == 0) {
1298 ipstat.ips_fragtimeout++;
1299 ip_freef(fp);
1300 } else {
1301 nfrags += fp->ipq_nfrags;
1302 fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
1303 }
1304 }
1305 }
1306
1307 KASSERT(ip_nfrags == nfrags);
1308
1309 /* Find median (or other drop fraction) in histogram. */
1310 dropfraction = (ip_nfrags / 2);
1311 keepfraction = ip_nfrags - dropfraction;
1312 for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
1313 median += fragttl_histo[i];
1314 if (median >= keepfraction)
1315 break;
1316 }
1317
1318 /* Return TTL of median (or other fraction). */
1319 return (u_int)i;
1320 }
1321
1322 void
1323 ip_reass_drophalf(void)
1324 {
1325
1326 u_int median_ticks;
1327 /*
1328 * Compute median TTL of all fragments, and count frags
1329 * with that TTL or lower (roughly half of all fragments).
1330 */
1331 median_ticks = ip_reass_ttl_decr(0);
1332
1333 /* Drop half. */
1334 median_ticks = ip_reass_ttl_decr(median_ticks);
1335
1336 }
1337
1338 /*
1339 * IP timer processing;
1340 * if a timer expires on a reassembly
1341 * queue, discard it.
1342 */
1343 void
1344 ip_slowtimo()
1345 {
1346 static u_int dropscanidx = 0;
1347 u_int i;
1348 u_int median_ttl;
1349 int s = splsoftnet();
1350
1351 IPQ_LOCK();
1352
1353 /* Age TTL of all fragments by 1 tick .*/
1354 median_ttl = ip_reass_ttl_decr(1);
1355
1356 /* make sure fragment limit is up-to-date */
1357 CHECK_NMBCLUSTER_PARAMS();
1358
1359 /* If we have too many fragments, drop the older half. */
1360 if (ip_nfrags > ip_maxfrags)
1361 ip_reass_ttl_decr(median_ttl);
1362
1363 /*
1364 * If we are over the maximum number of fragmented packets
1365 * (due to the limit being lowered), drain off
1366 * enough to get down to the new limit. Start draining
1367 * from the reassembly hashqueue most recently drained.
1368 */
1369 if (ip_maxfragpackets < 0)
1370 ;
1371 else {
1372 int wrapped = 0;
1373
1374 i = dropscanidx;
1375 while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
1376 while (LIST_FIRST(&ipq[i]) != NULL)
1377 ip_freef(LIST_FIRST(&ipq[i]));
1378 if (++i >= IPREASS_NHASH) {
1379 i = 0;
1380 }
1381 /*
1382 * Dont scan forever even if fragment counters are
1383 * wrong: stop after scanning entire reassembly queue.
1384 */
1385 if (i == dropscanidx)
1386 wrapped = 1;
1387 }
1388 dropscanidx = i;
1389 }
1390 IPQ_UNLOCK();
1391 #ifdef GATEWAY
1392 ipflow_slowtimo();
1393 #endif
1394 splx(s);
1395 }
1396
1397 /*
1398 * Drain off all datagram fragments.
1399 */
1400 void
1401 ip_drain()
1402 {
1403
1404 /*
1405 * We may be called from a device's interrupt context. If
1406 * the ipq is already busy, just bail out now.
1407 */
1408 if (ipq_lock_try() == 0)
1409 return;
1410
1411 /*
1412 * Drop half the total fragments now. If more mbufs are needed,
1413 * we will be called again soon.
1414 */
1415 ip_reass_drophalf();
1416
1417 IPQ_UNLOCK();
1418 }
1419
1420 /*
1421 * Do option processing on a datagram,
1422 * possibly discarding it if bad options are encountered,
1423 * or forwarding it if source-routed.
1424 * Returns 1 if packet has been forwarded/freed,
1425 * 0 if the packet should be processed further.
1426 */
1427 int
1428 ip_dooptions(m)
1429 struct mbuf *m;
1430 {
1431 struct ip *ip = mtod(m, struct ip *);
1432 u_char *cp, *cp0;
1433 struct ip_timestamp *ipt;
1434 struct in_ifaddr *ia;
1435 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1436 struct in_addr dst;
1437 n_time ntime;
1438
1439 dst = ip->ip_dst;
1440 cp = (u_char *)(ip + 1);
1441 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1442 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1443 opt = cp[IPOPT_OPTVAL];
1444 if (opt == IPOPT_EOL)
1445 break;
1446 if (opt == IPOPT_NOP)
1447 optlen = 1;
1448 else {
1449 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1450 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1451 goto bad;
1452 }
1453 optlen = cp[IPOPT_OLEN];
1454 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1455 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1456 goto bad;
1457 }
1458 }
1459 switch (opt) {
1460
1461 default:
1462 break;
1463
1464 /*
1465 * Source routing with record.
1466 * Find interface with current destination address.
1467 * If none on this machine then drop if strictly routed,
1468 * or do nothing if loosely routed.
1469 * Record interface address and bring up next address
1470 * component. If strictly routed make sure next
1471 * address is on directly accessible net.
1472 */
1473 case IPOPT_LSRR:
1474 case IPOPT_SSRR:
1475 if (ip_allowsrcrt == 0) {
1476 type = ICMP_UNREACH;
1477 code = ICMP_UNREACH_NET_PROHIB;
1478 goto bad;
1479 }
1480 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1481 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1482 goto bad;
1483 }
1484 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1485 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1486 goto bad;
1487 }
1488 ipaddr.sin_addr = ip->ip_dst;
1489 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
1490 if (ia == 0) {
1491 if (opt == IPOPT_SSRR) {
1492 type = ICMP_UNREACH;
1493 code = ICMP_UNREACH_SRCFAIL;
1494 goto bad;
1495 }
1496 /*
1497 * Loose routing, and not at next destination
1498 * yet; nothing to do except forward.
1499 */
1500 break;
1501 }
1502 off--; /* 0 origin */
1503 if ((off + sizeof(struct in_addr)) > optlen) {
1504 /*
1505 * End of source route. Should be for us.
1506 */
1507 save_rte(cp, ip->ip_src);
1508 break;
1509 }
1510 /*
1511 * locate outgoing interface
1512 */
1513 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
1514 sizeof(ipaddr.sin_addr));
1515 if (opt == IPOPT_SSRR)
1516 ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
1517 else
1518 ia = ip_rtaddr(ipaddr.sin_addr);
1519 if (ia == 0) {
1520 type = ICMP_UNREACH;
1521 code = ICMP_UNREACH_SRCFAIL;
1522 goto bad;
1523 }
1524 ip->ip_dst = ipaddr.sin_addr;
1525 bcopy((caddr_t)&ia->ia_addr.sin_addr,
1526 (caddr_t)(cp + off), sizeof(struct in_addr));
1527 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1528 /*
1529 * Let ip_intr's mcast routing check handle mcast pkts
1530 */
1531 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1532 break;
1533
1534 case IPOPT_RR:
1535 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1536 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1537 goto bad;
1538 }
1539 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1540 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1541 goto bad;
1542 }
1543 /*
1544 * If no space remains, ignore.
1545 */
1546 off--; /* 0 origin */
1547 if ((off + sizeof(struct in_addr)) > optlen)
1548 break;
1549 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
1550 sizeof(ipaddr.sin_addr));
1551 /*
1552 * locate outgoing interface; if we're the destination,
1553 * use the incoming interface (should be same).
1554 */
1555 if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
1556 == NULL &&
1557 (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1558 type = ICMP_UNREACH;
1559 code = ICMP_UNREACH_HOST;
1560 goto bad;
1561 }
1562 bcopy((caddr_t)&ia->ia_addr.sin_addr,
1563 (caddr_t)(cp + off), sizeof(struct in_addr));
1564 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1565 break;
1566
1567 case IPOPT_TS:
1568 code = cp - (u_char *)ip;
1569 ipt = (struct ip_timestamp *)cp;
1570 if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1571 code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1572 goto bad;
1573 }
1574 if (ipt->ipt_ptr < 5) {
1575 code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1576 goto bad;
1577 }
1578 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
1579 if (++ipt->ipt_oflw == 0) {
1580 code = (u_char *)&ipt->ipt_ptr -
1581 (u_char *)ip;
1582 goto bad;
1583 }
1584 break;
1585 }
1586 cp0 = (cp + ipt->ipt_ptr - 1);
1587 switch (ipt->ipt_flg) {
1588
1589 case IPOPT_TS_TSONLY:
1590 break;
1591
1592 case IPOPT_TS_TSANDADDR:
1593 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1594 sizeof(struct in_addr) > ipt->ipt_len) {
1595 code = (u_char *)&ipt->ipt_ptr -
1596 (u_char *)ip;
1597 goto bad;
1598 }
1599 ipaddr.sin_addr = dst;
1600 ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1601 m->m_pkthdr.rcvif));
1602 if (ia == 0)
1603 continue;
1604 bcopy(&ia->ia_addr.sin_addr,
1605 cp0, sizeof(struct in_addr));
1606 ipt->ipt_ptr += sizeof(struct in_addr);
1607 break;
1608
1609 case IPOPT_TS_PRESPEC:
1610 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1611 sizeof(struct in_addr) > ipt->ipt_len) {
1612 code = (u_char *)&ipt->ipt_ptr -
1613 (u_char *)ip;
1614 goto bad;
1615 }
1616 bcopy(cp0, &ipaddr.sin_addr,
1617 sizeof(struct in_addr));
1618 if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
1619 == NULL)
1620 continue;
1621 ipt->ipt_ptr += sizeof(struct in_addr);
1622 break;
1623
1624 default:
1625 /* XXX can't take &ipt->ipt_flg */
1626 code = (u_char *)&ipt->ipt_ptr -
1627 (u_char *)ip + 1;
1628 goto bad;
1629 }
1630 ntime = iptime();
1631 cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
1632 bcopy(cp0, (caddr_t)cp + ipt->ipt_ptr - 1,
1633 sizeof(n_time));
1634 ipt->ipt_ptr += sizeof(n_time);
1635 }
1636 }
1637 if (forward) {
1638 if (ip_forwsrcrt == 0) {
1639 type = ICMP_UNREACH;
1640 code = ICMP_UNREACH_SRCFAIL;
1641 goto bad;
1642 }
1643 ip_forward(m, 1);
1644 return (1);
1645 }
1646 return (0);
1647 bad:
1648 icmp_error(m, type, code, 0, 0);
1649 ipstat.ips_badoptions++;
1650 return (1);
1651 }
1652
1653 /*
1654 * Given address of next destination (final or next hop),
1655 * return internet address info of interface to be used to get there.
1656 */
1657 struct in_ifaddr *
1658 ip_rtaddr(dst)
1659 struct in_addr dst;
1660 {
1661 struct sockaddr_in *sin;
1662
1663 sin = satosin(&ipforward_rt.ro_dst);
1664
1665 if (ipforward_rt.ro_rt == 0 || !in_hosteq(dst, sin->sin_addr)) {
1666 if (ipforward_rt.ro_rt) {
1667 RTFREE(ipforward_rt.ro_rt);
1668 ipforward_rt.ro_rt = 0;
1669 }
1670 sin->sin_family = AF_INET;
1671 sin->sin_len = sizeof(*sin);
1672 sin->sin_addr = dst;
1673
1674 rtalloc(&ipforward_rt);
1675 }
1676 if (ipforward_rt.ro_rt == 0)
1677 return ((struct in_ifaddr *)0);
1678 return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
1679 }
1680
1681 /*
1682 * Save incoming source route for use in replies,
1683 * to be picked up later by ip_srcroute if the receiver is interested.
1684 */
1685 void
1686 save_rte(option, dst)
1687 u_char *option;
1688 struct in_addr dst;
1689 {
1690 unsigned olen;
1691
1692 olen = option[IPOPT_OLEN];
1693 #ifdef DIAGNOSTIC
1694 if (ipprintfs)
1695 printf("save_rte: olen %d\n", olen);
1696 #endif /* 0 */
1697 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1698 return;
1699 bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
1700 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1701 ip_srcrt.dst = dst;
1702 }
1703
1704 /*
1705 * Retrieve incoming source route for use in replies,
1706 * in the same form used by setsockopt.
1707 * The first hop is placed before the options, will be removed later.
1708 */
1709 struct mbuf *
1710 ip_srcroute()
1711 {
1712 struct in_addr *p, *q;
1713 struct mbuf *m;
1714
1715 if (ip_nhops == 0)
1716 return ((struct mbuf *)0);
1717 m = m_get(M_DONTWAIT, MT_SOOPTS);
1718 if (m == 0)
1719 return ((struct mbuf *)0);
1720
1721 MCLAIM(m, &inetdomain.dom_mowner);
1722 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1723
1724 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1725 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1726 OPTSIZ;
1727 #ifdef DIAGNOSTIC
1728 if (ipprintfs)
1729 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1730 #endif
1731
1732 /*
1733 * First save first hop for return route
1734 */
1735 p = &ip_srcrt.route[ip_nhops - 1];
1736 *(mtod(m, struct in_addr *)) = *p--;
1737 #ifdef DIAGNOSTIC
1738 if (ipprintfs)
1739 printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1740 #endif
1741
1742 /*
1743 * Copy option fields and padding (nop) to mbuf.
1744 */
1745 ip_srcrt.nop = IPOPT_NOP;
1746 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1747 bcopy((caddr_t)&ip_srcrt.nop,
1748 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
1749 q = (struct in_addr *)(mtod(m, caddr_t) +
1750 sizeof(struct in_addr) + OPTSIZ);
1751 #undef OPTSIZ
1752 /*
1753 * Record return path as an IP source route,
1754 * reversing the path (pointers are now aligned).
1755 */
1756 while (p >= ip_srcrt.route) {
1757 #ifdef DIAGNOSTIC
1758 if (ipprintfs)
1759 printf(" %x", ntohl(q->s_addr));
1760 #endif
1761 *q++ = *p--;
1762 }
1763 /*
1764 * Last hop goes to final destination.
1765 */
1766 *q = ip_srcrt.dst;
1767 #ifdef DIAGNOSTIC
1768 if (ipprintfs)
1769 printf(" %x\n", ntohl(q->s_addr));
1770 #endif
1771 return (m);
1772 }
1773
1774 /*
1775 * Strip out IP options, at higher
1776 * level protocol in the kernel.
1777 * Second argument is buffer to which options
1778 * will be moved, and return value is their length.
1779 * XXX should be deleted; last arg currently ignored.
1780 */
1781 void
1782 ip_stripoptions(m, mopt)
1783 struct mbuf *m;
1784 struct mbuf *mopt;
1785 {
1786 int i;
1787 struct ip *ip = mtod(m, struct ip *);
1788 caddr_t opts;
1789 int olen;
1790
1791 olen = (ip->ip_hl << 2) - sizeof (struct ip);
1792 opts = (caddr_t)(ip + 1);
1793 i = m->m_len - (sizeof (struct ip) + olen);
1794 bcopy(opts + olen, opts, (unsigned)i);
1795 m->m_len -= olen;
1796 if (m->m_flags & M_PKTHDR)
1797 m->m_pkthdr.len -= olen;
1798 ip->ip_len = htons(ntohs(ip->ip_len) - olen);
1799 ip->ip_hl = sizeof (struct ip) >> 2;
1800 }
1801
1802 const int inetctlerrmap[PRC_NCMDS] = {
1803 0, 0, 0, 0,
1804 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1805 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1806 EMSGSIZE, EHOSTUNREACH, 0, 0,
1807 0, 0, 0, 0,
1808 ENOPROTOOPT
1809 };
1810
1811 /*
1812 * Forward a packet. If some error occurs return the sender
1813 * an icmp packet. Note we can't always generate a meaningful
1814 * icmp message because icmp doesn't have a large enough repertoire
1815 * of codes and types.
1816 *
1817 * If not forwarding, just drop the packet. This could be confusing
1818 * if ipforwarding was zero but some routing protocol was advancing
1819 * us as a gateway to somewhere. However, we must let the routing
1820 * protocol deal with that.
1821 *
1822 * The srcrt parameter indicates whether the packet is being forwarded
1823 * via a source route.
1824 */
1825 void
1826 ip_forward(m, srcrt)
1827 struct mbuf *m;
1828 int srcrt;
1829 {
1830 struct ip *ip = mtod(m, struct ip *);
1831 struct sockaddr_in *sin;
1832 struct rtentry *rt;
1833 int error, type = 0, code = 0;
1834 struct mbuf *mcopy;
1835 n_long dest;
1836 struct ifnet *destifp;
1837 #if defined(IPSEC) || defined(FAST_IPSEC)
1838 struct ifnet dummyifp;
1839 #endif
1840
1841 /*
1842 * We are now in the output path.
1843 */
1844 MCLAIM(m, &ip_tx_mowner);
1845
1846 /*
1847 * Clear any in-bound checksum flags for this packet.
1848 */
1849 m->m_pkthdr.csum_flags = 0;
1850
1851 dest = 0;
1852 #ifdef DIAGNOSTIC
1853 if (ipprintfs)
1854 printf("forward: src %2.2x dst %2.2x ttl %x\n",
1855 ntohl(ip->ip_src.s_addr),
1856 ntohl(ip->ip_dst.s_addr), ip->ip_ttl);
1857 #endif
1858 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1859 ipstat.ips_cantforward++;
1860 m_freem(m);
1861 return;
1862 }
1863 if (ip->ip_ttl <= IPTTLDEC) {
1864 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1865 return;
1866 }
1867 ip->ip_ttl -= IPTTLDEC;
1868
1869 sin = satosin(&ipforward_rt.ro_dst);
1870 if ((rt = ipforward_rt.ro_rt) == 0 ||
1871 !in_hosteq(ip->ip_dst, sin->sin_addr)) {
1872 if (ipforward_rt.ro_rt) {
1873 RTFREE(ipforward_rt.ro_rt);
1874 ipforward_rt.ro_rt = 0;
1875 }
1876 sin->sin_family = AF_INET;
1877 sin->sin_len = sizeof(struct sockaddr_in);
1878 sin->sin_addr = ip->ip_dst;
1879
1880 rtalloc(&ipforward_rt);
1881 if (ipforward_rt.ro_rt == 0) {
1882 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1883 return;
1884 }
1885 rt = ipforward_rt.ro_rt;
1886 }
1887
1888 /*
1889 * Save at most 68 bytes of the packet in case
1890 * we need to generate an ICMP message to the src.
1891 * Pullup to avoid sharing mbuf cluster between m and mcopy.
1892 */
1893 mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
1894 if (mcopy)
1895 mcopy = m_pullup(mcopy, ip->ip_hl << 2);
1896
1897 /*
1898 * If forwarding packet using same interface that it came in on,
1899 * perhaps should send a redirect to sender to shortcut a hop.
1900 * Only send redirect if source is sending directly to us,
1901 * and if packet was not source routed (or has any options).
1902 * Also, don't send redirect if forwarding using a default route
1903 * or a route modified by a redirect.
1904 */
1905 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1906 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1907 !in_nullhost(satosin(rt_key(rt))->sin_addr) &&
1908 ipsendredirects && !srcrt) {
1909 if (rt->rt_ifa &&
1910 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1911 ifatoia(rt->rt_ifa)->ia_subnet) {
1912 if (rt->rt_flags & RTF_GATEWAY)
1913 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1914 else
1915 dest = ip->ip_dst.s_addr;
1916 /*
1917 * Router requirements says to only send host
1918 * redirects.
1919 */
1920 type = ICMP_REDIRECT;
1921 code = ICMP_REDIRECT_HOST;
1922 #ifdef DIAGNOSTIC
1923 if (ipprintfs)
1924 printf("redirect (%d) to %x\n", code,
1925 (u_int32_t)dest);
1926 #endif
1927 }
1928 }
1929
1930 error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1931 (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1932 (struct ip_moptions *)NULL, (struct socket *)NULL);
1933
1934 if (error)
1935 ipstat.ips_cantforward++;
1936 else {
1937 ipstat.ips_forward++;
1938 if (type)
1939 ipstat.ips_redirectsent++;
1940 else {
1941 if (mcopy) {
1942 #ifdef GATEWAY
1943 if (mcopy->m_flags & M_CANFASTFWD)
1944 ipflow_create(&ipforward_rt, mcopy);
1945 #endif
1946 m_freem(mcopy);
1947 }
1948 return;
1949 }
1950 }
1951 if (mcopy == NULL)
1952 return;
1953 destifp = NULL;
1954
1955 switch (error) {
1956
1957 case 0: /* forwarded, but need redirect */
1958 /* type, code set above */
1959 break;
1960
1961 case ENETUNREACH: /* shouldn't happen, checked above */
1962 case EHOSTUNREACH:
1963 case ENETDOWN:
1964 case EHOSTDOWN:
1965 default:
1966 type = ICMP_UNREACH;
1967 code = ICMP_UNREACH_HOST;
1968 break;
1969
1970 case EMSGSIZE:
1971 type = ICMP_UNREACH;
1972 code = ICMP_UNREACH_NEEDFRAG;
1973 #if !defined(IPSEC) && !defined(FAST_IPSEC)
1974 if (ipforward_rt.ro_rt)
1975 destifp = ipforward_rt.ro_rt->rt_ifp;
1976 #else
1977 /*
1978 * If the packet is routed over IPsec tunnel, tell the
1979 * originator the tunnel MTU.
1980 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1981 * XXX quickhack!!!
1982 */
1983 if (ipforward_rt.ro_rt) {
1984 struct secpolicy *sp;
1985 int ipsecerror;
1986 size_t ipsechdr;
1987 struct route *ro;
1988
1989 sp = ipsec4_getpolicybyaddr(mcopy,
1990 IPSEC_DIR_OUTBOUND, IP_FORWARDING,
1991 &ipsecerror);
1992
1993 if (sp == NULL)
1994 destifp = ipforward_rt.ro_rt->rt_ifp;
1995 else {
1996 /* count IPsec header size */
1997 ipsechdr = ipsec4_hdrsiz(mcopy,
1998 IPSEC_DIR_OUTBOUND, NULL);
1999
2000 /*
2001 * find the correct route for outer IPv4
2002 * header, compute tunnel MTU.
2003 *
2004 * XXX BUG ALERT
2005 * The "dummyifp" code relies upon the fact
2006 * that icmp_error() touches only ifp->if_mtu.
2007 */
2008 /*XXX*/
2009 destifp = NULL;
2010 if (sp->req != NULL
2011 && sp->req->sav != NULL
2012 && sp->req->sav->sah != NULL) {
2013 ro = &sp->req->sav->sah->sa_route;
2014 if (ro->ro_rt && ro->ro_rt->rt_ifp) {
2015 dummyifp.if_mtu =
2016 ro->ro_rt->rt_rmx.rmx_mtu ?
2017 ro->ro_rt->rt_rmx.rmx_mtu :
2018 ro->ro_rt->rt_ifp->if_mtu;
2019 dummyifp.if_mtu -= ipsechdr;
2020 destifp = &dummyifp;
2021 }
2022 }
2023
2024 #ifdef IPSEC
2025 key_freesp(sp);
2026 #else
2027 KEY_FREESP(&sp);
2028 #endif
2029 }
2030 }
2031 #endif /*IPSEC*/
2032 ipstat.ips_cantfrag++;
2033 break;
2034
2035 case ENOBUFS:
2036 #if 1
2037 /*
2038 * a router should not generate ICMP_SOURCEQUENCH as
2039 * required in RFC1812 Requirements for IP Version 4 Routers.
2040 * source quench could be a big problem under DoS attacks,
2041 * or if the underlying interface is rate-limited.
2042 */
2043 if (mcopy)
2044 m_freem(mcopy);
2045 return;
2046 #else
2047 type = ICMP_SOURCEQUENCH;
2048 code = 0;
2049 break;
2050 #endif
2051 }
2052 icmp_error(mcopy, type, code, dest, destifp);
2053 }
2054
2055 void
2056 ip_savecontrol(inp, mp, ip, m)
2057 struct inpcb *inp;
2058 struct mbuf **mp;
2059 struct ip *ip;
2060 struct mbuf *m;
2061 {
2062
2063 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2064 struct timeval tv;
2065
2066 microtime(&tv);
2067 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2068 SCM_TIMESTAMP, SOL_SOCKET);
2069 if (*mp)
2070 mp = &(*mp)->m_next;
2071 }
2072 if (inp->inp_flags & INP_RECVDSTADDR) {
2073 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2074 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2075 if (*mp)
2076 mp = &(*mp)->m_next;
2077 }
2078 #ifdef notyet
2079 /*
2080 * XXX
2081 * Moving these out of udp_input() made them even more broken
2082 * than they already were.
2083 * - fenner (at) parc.xerox.com
2084 */
2085 /* options were tossed already */
2086 if (inp->inp_flags & INP_RECVOPTS) {
2087 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2088 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2089 if (*mp)
2090 mp = &(*mp)->m_next;
2091 }
2092 /* ip_srcroute doesn't do what we want here, need to fix */
2093 if (inp->inp_flags & INP_RECVRETOPTS) {
2094 *mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2095 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2096 if (*mp)
2097 mp = &(*mp)->m_next;
2098 }
2099 #endif
2100 if (inp->inp_flags & INP_RECVIF) {
2101 struct sockaddr_dl sdl;
2102
2103 sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]);
2104 sdl.sdl_family = AF_LINK;
2105 sdl.sdl_index = m->m_pkthdr.rcvif ?
2106 m->m_pkthdr.rcvif->if_index : 0;
2107 sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0;
2108 *mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len,
2109 IP_RECVIF, IPPROTO_IP);
2110 if (*mp)
2111 mp = &(*mp)->m_next;
2112 }
2113 }
2114
2115 /*
2116 * sysctl helper routine for net.inet.ip.mtudisctimeout. checks the
2117 * range of the new value and tweaks timers if it changes.
2118 */
2119 static int
2120 sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
2121 {
2122 int error, tmp;
2123 struct sysctlnode node;
2124
2125 node = *rnode;
2126 tmp = ip_mtudisc_timeout;
2127 node.sysctl_data = &tmp;
2128 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2129 if (error || newp == NULL)
2130 return (error);
2131 if (tmp < 0)
2132 return (EINVAL);
2133
2134 ip_mtudisc_timeout = tmp;
2135 rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
2136
2137 return (0);
2138 }
2139
2140 #ifdef GATEWAY
2141 /*
2142 * sysctl helper routine for net.inet.ip.maxflows. apparently if
2143 * maxflows is even looked up, we "reap flows".
2144 */
2145 static int
2146 sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
2147 {
2148 int s;
2149
2150 s = sysctl_lookup(SYSCTLFN_CALL(rnode));
2151 if (s)
2152 return (s);
2153
2154 s = splsoftnet();
2155 ipflow_reap(0);
2156 splx(s);
2157
2158 return (0);
2159 }
2160 #endif /* GATEWAY */
2161
2162
2163 SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
2164 {
2165 extern int subnetsarelocal, hostzeroisbroadcast;
2166
2167 sysctl_createv(clog, 0, NULL, NULL,
2168 CTLFLAG_PERMANENT,
2169 CTLTYPE_NODE, "net", NULL,
2170 NULL, 0, NULL, 0,
2171 CTL_NET, CTL_EOL);
2172 sysctl_createv(clog, 0, NULL, NULL,
2173 CTLFLAG_PERMANENT,
2174 CTLTYPE_NODE, "inet", NULL,
2175 NULL, 0, NULL, 0,
2176 CTL_NET, PF_INET, CTL_EOL);
2177 sysctl_createv(clog, 0, NULL, NULL,
2178 CTLFLAG_PERMANENT,
2179 CTLTYPE_NODE, "ip", NULL,
2180 NULL, 0, NULL, 0,
2181 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2182
2183 sysctl_createv(clog, 0, NULL, NULL,
2184 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2185 CTLTYPE_INT, "forwarding", NULL,
2186 NULL, 0, &ipforwarding, 0,
2187 CTL_NET, PF_INET, IPPROTO_IP,
2188 IPCTL_FORWARDING, CTL_EOL);
2189 sysctl_createv(clog, 0, NULL, NULL,
2190 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2191 CTLTYPE_INT, "redirect", NULL,
2192 NULL, 0, &ipsendredirects, 0,
2193 CTL_NET, PF_INET, IPPROTO_IP,
2194 IPCTL_SENDREDIRECTS, CTL_EOL);
2195 sysctl_createv(clog, 0, NULL, NULL,
2196 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2197 CTLTYPE_INT, "ttl", NULL,
2198 NULL, 0, &ip_defttl, 0,
2199 CTL_NET, PF_INET, IPPROTO_IP,
2200 IPCTL_DEFTTL, CTL_EOL);
2201 #ifdef IPCTL_DEFMTU
2202 sysctl_createv(clog, 0, NULL, NULL,
2203 CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
2204 CTLTYPE_INT, "mtu", NULL,
2205 NULL, 0, &ip_mtu, 0,
2206 CTL_NET, PF_INET, IPPROTO_IP,
2207 IPCTL_DEFMTU, CTL_EOL);
2208 #endif /* IPCTL_DEFMTU */
2209 sysctl_createv(clog, 0, NULL, NULL,
2210 CTLFLAG_PERMANENT|CTLFLAG_READONLY1,
2211 CTLTYPE_INT, "forwsrcrt", NULL,
2212 NULL, 0, &ip_forwsrcrt, 0,
2213 CTL_NET, PF_INET, IPPROTO_IP,
2214 IPCTL_FORWSRCRT, CTL_EOL);
2215 sysctl_createv(clog, 0, NULL, NULL,
2216 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2217 CTLTYPE_INT, "directed-broadcast", NULL,
2218 NULL, 0, &ip_directedbcast, 0,
2219 CTL_NET, PF_INET, IPPROTO_IP,
2220 IPCTL_DIRECTEDBCAST, CTL_EOL);
2221 sysctl_createv(clog, 0, NULL, NULL,
2222 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2223 CTLTYPE_INT, "allowsrcrt", NULL,
2224 NULL, 0, &ip_allowsrcrt, 0,
2225 CTL_NET, PF_INET, IPPROTO_IP,
2226 IPCTL_ALLOWSRCRT, CTL_EOL);
2227 sysctl_createv(clog, 0, NULL, NULL,
2228 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2229 CTLTYPE_INT, "subnetsarelocal", NULL,
2230 NULL, 0, &subnetsarelocal, 0,
2231 CTL_NET, PF_INET, IPPROTO_IP,
2232 IPCTL_SUBNETSARELOCAL, CTL_EOL);
2233 sysctl_createv(clog, 0, NULL, NULL,
2234 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2235 CTLTYPE_INT, "mtudisc", NULL,
2236 NULL, 0, &ip_mtudisc, 0,
2237 CTL_NET, PF_INET, IPPROTO_IP,
2238 IPCTL_MTUDISC, CTL_EOL);
2239 sysctl_createv(clog, 0, NULL, NULL,
2240 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2241 CTLTYPE_INT, "anonportmin", NULL,
2242 sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
2243 CTL_NET, PF_INET, IPPROTO_IP,
2244 IPCTL_ANONPORTMIN, CTL_EOL);
2245 sysctl_createv(clog, 0, NULL, NULL,
2246 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2247 CTLTYPE_INT, "anonportmax", NULL,
2248 sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
2249 CTL_NET, PF_INET, IPPROTO_IP,
2250 IPCTL_ANONPORTMAX, CTL_EOL);
2251 sysctl_createv(clog, 0, NULL, NULL,
2252 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2253 CTLTYPE_INT, "mtudisctimeout", NULL,
2254 sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
2255 CTL_NET, PF_INET, IPPROTO_IP,
2256 IPCTL_MTUDISCTIMEOUT, CTL_EOL);
2257 #ifdef GATEWAY
2258 sysctl_createv(clog, 0, NULL, NULL,
2259 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2260 CTLTYPE_INT, "maxflows", NULL,
2261 sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
2262 CTL_NET, PF_INET, IPPROTO_IP,
2263 IPCTL_MAXFLOWS, CTL_EOL);
2264 #endif /* GATEWAY */
2265 sysctl_createv(clog, 0, NULL, NULL,
2266 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2267 CTLTYPE_INT, "hostzerobroadcast", NULL,
2268 NULL, 0, &hostzeroisbroadcast, 0,
2269 CTL_NET, PF_INET, IPPROTO_IP,
2270 IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2271 #if NGIF > 0
2272 sysctl_createv(clog, 0, NULL, NULL,
2273 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2274 CTLTYPE_INT, "gifttl", NULL,
2275 NULL, 0, &ip_gif_ttl, 0,
2276 CTL_NET, PF_INET, IPPROTO_IP,
2277 IPCTL_GIF_TTL, CTL_EOL);
2278 #endif /* NGIF */
2279 #ifndef IPNOPRIVPORTS
2280 sysctl_createv(clog, 0, NULL, NULL,
2281 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2282 CTLTYPE_INT, "lowportmin", NULL,
2283 sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
2284 CTL_NET, PF_INET, IPPROTO_IP,
2285 IPCTL_LOWPORTMIN, CTL_EOL);
2286 sysctl_createv(clog, 0, NULL, NULL,
2287 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2288 CTLTYPE_INT, "lowportmax", NULL,
2289 sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
2290 CTL_NET, PF_INET, IPPROTO_IP,
2291 IPCTL_LOWPORTMAX, CTL_EOL);
2292 #endif /* IPNOPRIVPORTS */
2293 sysctl_createv(clog, 0, NULL, NULL,
2294 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2295 CTLTYPE_INT, "maxfragpackets", NULL,
2296 NULL, 0, &ip_maxfragpackets, 0,
2297 CTL_NET, PF_INET, IPPROTO_IP,
2298 IPCTL_MAXFRAGPACKETS, CTL_EOL);
2299 #if NGRE > 0
2300 sysctl_createv(clog, 0, NULL, NULL,
2301 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2302 CTLTYPE_INT, "grettl", NULL,
2303 NULL, 0, &ip_gre_ttl, 0,
2304 CTL_NET, PF_INET, IPPROTO_IP,
2305 IPCTL_GRE_TTL, CTL_EOL);
2306 #endif /* NGRE */
2307 sysctl_createv(clog, 0, NULL, NULL,
2308 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2309 CTLTYPE_INT, "checkinterface", NULL,
2310 NULL, 0, &ip_checkinterface, 0,
2311 CTL_NET, PF_INET, IPPROTO_IP,
2312 IPCTL_CHECKINTERFACE, CTL_EOL);
2313 sysctl_createv(clog, 0, NULL, NULL,
2314 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2315 CTLTYPE_INT, "random_id", NULL,
2316 NULL, 0, &ip_do_randomid, 0,
2317 CTL_NET, PF_INET, IPPROTO_IP,
2318 IPCTL_RANDOMID, CTL_EOL);
2319 }
2320