ip_input.c revision 1.201 1 /* $NetBSD: ip_input.c,v 1.201 2004/05/01 02:20:42 matt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.201 2004/05/01 02:20:42 matt Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_gateway.h"
105 #include "opt_pfil_hooks.h"
106 #include "opt_ipsec.h"
107 #include "opt_mrouting.h"
108 #include "opt_mbuftrace.h"
109 #include "opt_inet_csum.h"
110
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/domain.h>
116 #include <sys/protosw.h>
117 #include <sys/socket.h>
118 #include <sys/socketvar.h>
119 #include <sys/errno.h>
120 #include <sys/time.h>
121 #include <sys/kernel.h>
122 #include <sys/pool.h>
123 #include <sys/sysctl.h>
124
125 #include <net/if.h>
126 #include <net/if_dl.h>
127 #include <net/route.h>
128 #include <net/pfil.h>
129
130 #include <netinet/in.h>
131 #include <netinet/in_systm.h>
132 #include <netinet/ip.h>
133 #include <netinet/in_pcb.h>
134 #include <netinet/in_var.h>
135 #include <netinet/ip_var.h>
136 #include <netinet/ip_icmp.h>
137 /* just for gif_ttl */
138 #include <netinet/in_gif.h>
139 #include "gif.h"
140 #include <net/if_gre.h>
141 #include "gre.h"
142
143 #ifdef MROUTING
144 #include <netinet/ip_mroute.h>
145 #endif
146
147 #ifdef IPSEC
148 #include <netinet6/ipsec.h>
149 #include <netkey/key.h>
150 #endif
151 #ifdef FAST_IPSEC
152 #include <netipsec/ipsec.h>
153 #include <netipsec/key.h>
154 #endif /* FAST_IPSEC*/
155
156 #ifndef IPFORWARDING
157 #ifdef GATEWAY
158 #define IPFORWARDING 1 /* forward IP packets not for us */
159 #else /* GATEWAY */
160 #define IPFORWARDING 0 /* don't forward IP packets not for us */
161 #endif /* GATEWAY */
162 #endif /* IPFORWARDING */
163 #ifndef IPSENDREDIRECTS
164 #define IPSENDREDIRECTS 1
165 #endif
166 #ifndef IPFORWSRCRT
167 #define IPFORWSRCRT 1 /* forward source-routed packets */
168 #endif
169 #ifndef IPALLOWSRCRT
170 #define IPALLOWSRCRT 1 /* allow source-routed packets */
171 #endif
172 #ifndef IPMTUDISC
173 #define IPMTUDISC 1
174 #endif
175 #ifndef IPMTUDISCTIMEOUT
176 #define IPMTUDISCTIMEOUT (10 * 60) /* as per RFC 1191 */
177 #endif
178
179 /*
180 * Note: DIRECTED_BROADCAST is handled this way so that previous
181 * configuration using this option will Just Work.
182 */
183 #ifndef IPDIRECTEDBCAST
184 #ifdef DIRECTED_BROADCAST
185 #define IPDIRECTEDBCAST 1
186 #else
187 #define IPDIRECTEDBCAST 0
188 #endif /* DIRECTED_BROADCAST */
189 #endif /* IPDIRECTEDBCAST */
190 int ipforwarding = IPFORWARDING;
191 int ipsendredirects = IPSENDREDIRECTS;
192 int ip_defttl = IPDEFTTL;
193 int ip_forwsrcrt = IPFORWSRCRT;
194 int ip_directedbcast = IPDIRECTEDBCAST;
195 int ip_allowsrcrt = IPALLOWSRCRT;
196 int ip_mtudisc = IPMTUDISC;
197 int ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
198 #ifdef DIAGNOSTIC
199 int ipprintfs = 0;
200 #endif
201
202 int ip_do_randomid = 0;
203
204 /*
205 * XXX - Setting ip_checkinterface mostly implements the receive side of
206 * the Strong ES model described in RFC 1122, but since the routing table
207 * and transmit implementation do not implement the Strong ES model,
208 * setting this to 1 results in an odd hybrid.
209 *
210 * XXX - ip_checkinterface currently must be disabled if you use ipnat
211 * to translate the destination address to another local interface.
212 *
213 * XXX - ip_checkinterface must be disabled if you add IP aliases
214 * to the loopback interface instead of the interface where the
215 * packets for those addresses are received.
216 */
217 int ip_checkinterface = 0;
218
219
220 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
221
222 int ipqmaxlen = IFQ_MAXLEN;
223 u_long in_ifaddrhash; /* size of hash table - 1 */
224 int in_ifaddrentries; /* total number of addrs */
225 struct in_ifaddrhead in_ifaddrhead;
226 struct in_ifaddrhashhead *in_ifaddrhashtbl;
227 u_long in_multihash; /* size of hash table - 1 */
228 int in_multientries; /* total number of addrs */
229 struct in_multihashhead *in_multihashtbl;
230 struct ifqueue ipintrq;
231 struct ipstat ipstat;
232 uint16_t ip_id;
233
234 #ifdef PFIL_HOOKS
235 struct pfil_head inet_pfil_hook;
236 #endif
237
238 /*
239 * Cached copy of nmbclusters. If nbclusters is different,
240 * recalculate IP parameters derived from nmbclusters.
241 */
242 static int ip_nmbclusters; /* copy of nmbclusters */
243 static void ip_nmbclusters_changed __P((void)); /* recalc limits */
244
245 #define CHECK_NMBCLUSTER_PARAMS() \
246 do { \
247 if (__predict_false(ip_nmbclusters != nmbclusters)) \
248 ip_nmbclusters_changed(); \
249 } while (/*CONSTCOND*/0)
250
251 /* IP datagram reassembly queues (hashed) */
252 #define IPREASS_NHASH_LOG2 6
253 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
254 #define IPREASS_HMASK (IPREASS_NHASH - 1)
255 #define IPREASS_HASH(x,y) \
256 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
257 struct ipqhead ipq[IPREASS_NHASH];
258 int ipq_locked;
259 static int ip_nfragpackets; /* packets in reass queue */
260 static int ip_nfrags; /* total fragments in reass queues */
261
262 int ip_maxfragpackets = 200; /* limit on packets. XXX sysctl */
263 int ip_maxfrags; /* limit on fragments. XXX sysctl */
264
265
266 /*
267 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
268 * IP reassembly queue buffer managment.
269 *
270 * We keep a count of total IP fragments (NB: not fragmented packets!)
271 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
272 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
273 * total fragments in reassembly queues.This AIMD policy avoids
274 * repeatedly deleting single packets under heavy fragmentation load
275 * (e.g., from lossy NFS peers).
276 */
277 static u_int ip_reass_ttl_decr __P((u_int ticks));
278 static void ip_reass_drophalf __P((void));
279
280
281 static __inline int ipq_lock_try __P((void));
282 static __inline void ipq_unlock __P((void));
283
284 static __inline int
285 ipq_lock_try()
286 {
287 int s;
288
289 /*
290 * Use splvm() -- we're blocking things that would cause
291 * mbuf allocation.
292 */
293 s = splvm();
294 if (ipq_locked) {
295 splx(s);
296 return (0);
297 }
298 ipq_locked = 1;
299 splx(s);
300 return (1);
301 }
302
303 static __inline void
304 ipq_unlock()
305 {
306 int s;
307
308 s = splvm();
309 ipq_locked = 0;
310 splx(s);
311 }
312
313 #ifdef DIAGNOSTIC
314 #define IPQ_LOCK() \
315 do { \
316 if (ipq_lock_try() == 0) { \
317 printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
318 panic("ipq_lock"); \
319 } \
320 } while (/*CONSTCOND*/ 0)
321 #define IPQ_LOCK_CHECK() \
322 do { \
323 if (ipq_locked == 0) { \
324 printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
325 panic("ipq lock check"); \
326 } \
327 } while (/*CONSTCOND*/ 0)
328 #else
329 #define IPQ_LOCK() (void) ipq_lock_try()
330 #define IPQ_LOCK_CHECK() /* nothing */
331 #endif
332
333 #define IPQ_UNLOCK() ipq_unlock()
334
335 POOL_INIT(inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", NULL);
336 POOL_INIT(ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl", NULL);
337
338 #ifdef INET_CSUM_COUNTERS
339 #include <sys/device.h>
340
341 struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
342 NULL, "inet", "hwcsum bad");
343 struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
344 NULL, "inet", "hwcsum ok");
345 struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
346 NULL, "inet", "swcsum");
347
348 #define INET_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
349
350 EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
351 EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
352 EVCNT_ATTACH_STATIC(ip_swcsum);
353
354 #else
355
356 #define INET_CSUM_COUNTER_INCR(ev) /* nothing */
357
358 #endif /* INET_CSUM_COUNTERS */
359
360 /*
361 * We need to save the IP options in case a protocol wants to respond
362 * to an incoming packet over the same route if the packet got here
363 * using IP source routing. This allows connection establishment and
364 * maintenance when the remote end is on a network that is not known
365 * to us.
366 */
367 int ip_nhops = 0;
368 static struct ip_srcrt {
369 struct in_addr dst; /* final destination */
370 char nop; /* one NOP to align */
371 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
372 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
373 } ip_srcrt;
374
375 static void save_rte __P((u_char *, struct in_addr));
376
377 #ifdef MBUFTRACE
378 struct mowner ip_rx_mowner = { "internet", "rx" };
379 struct mowner ip_tx_mowner = { "internet", "tx" };
380 #endif
381
382 /*
383 * Compute IP limits derived from the value of nmbclusters.
384 */
385 static void
386 ip_nmbclusters_changed(void)
387 {
388 ip_maxfrags = nmbclusters / 4;
389 ip_nmbclusters = nmbclusters;
390 }
391
392 /*
393 * IP initialization: fill in IP protocol switch table.
394 * All protocols not implemented in kernel go to raw IP protocol handler.
395 */
396 void
397 ip_init()
398 {
399 const struct protosw *pr;
400 int i;
401
402 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
403 if (pr == 0)
404 panic("ip_init");
405 for (i = 0; i < IPPROTO_MAX; i++)
406 ip_protox[i] = pr - inetsw;
407 for (pr = inetdomain.dom_protosw;
408 pr < inetdomain.dom_protoswNPROTOSW; pr++)
409 if (pr->pr_domain->dom_family == PF_INET &&
410 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
411 ip_protox[pr->pr_protocol] = pr - inetsw;
412
413 for (i = 0; i < IPREASS_NHASH; i++)
414 LIST_INIT(&ipq[i]);
415
416 ip_id = time.tv_sec & 0xfffff;
417
418 ipintrq.ifq_maxlen = ipqmaxlen;
419 ip_nmbclusters_changed();
420
421 TAILQ_INIT(&in_ifaddrhead);
422 in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IFADDR,
423 M_WAITOK, &in_ifaddrhash);
424 in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IPMADDR,
425 M_WAITOK, &in_multihash);
426 ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
427 #ifdef GATEWAY
428 ipflow_init();
429 #endif
430
431 #ifdef PFIL_HOOKS
432 /* Register our Packet Filter hook. */
433 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
434 inet_pfil_hook.ph_af = AF_INET;
435 i = pfil_head_register(&inet_pfil_hook);
436 if (i != 0)
437 printf("ip_init: WARNING: unable to register pfil hook, "
438 "error %d\n", i);
439 #endif /* PFIL_HOOKS */
440
441 #ifdef MBUFTRACE
442 MOWNER_ATTACH(&ip_tx_mowner);
443 MOWNER_ATTACH(&ip_rx_mowner);
444 #endif /* MBUFTRACE */
445 }
446
447 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
448 struct route ipforward_rt;
449
450 /*
451 * IP software interrupt routine
452 */
453 void
454 ipintr()
455 {
456 int s;
457 struct mbuf *m;
458
459 while (1) {
460 s = splnet();
461 IF_DEQUEUE(&ipintrq, m);
462 splx(s);
463 if (m == 0)
464 return;
465 MCLAIM(m, &ip_rx_mowner);
466 ip_input(m);
467 }
468 }
469
470 /*
471 * Ip input routine. Checksum and byte swap header. If fragmented
472 * try to reassemble. Process options. Pass to next level.
473 */
474 void
475 ip_input(struct mbuf *m)
476 {
477 struct ip *ip = NULL;
478 struct ipq *fp;
479 struct in_ifaddr *ia;
480 struct ifaddr *ifa;
481 struct ipqent *ipqe;
482 int hlen = 0, mff, len;
483 int downmatch;
484 int checkif;
485 int srcrt = 0;
486 u_int hash;
487 #ifdef FAST_IPSEC
488 struct m_tag *mtag;
489 struct tdb_ident *tdbi;
490 struct secpolicy *sp;
491 int s, error;
492 #endif /* FAST_IPSEC */
493
494 MCLAIM(m, &ip_rx_mowner);
495 #ifdef DIAGNOSTIC
496 if ((m->m_flags & M_PKTHDR) == 0)
497 panic("ipintr no HDR");
498 #endif
499
500 /*
501 * If no IP addresses have been set yet but the interfaces
502 * are receiving, can't do anything with incoming packets yet.
503 */
504 if (TAILQ_FIRST(&in_ifaddrhead) == 0)
505 goto bad;
506 ipstat.ips_total++;
507 /*
508 * If the IP header is not aligned, slurp it up into a new
509 * mbuf with space for link headers, in the event we forward
510 * it. Otherwise, if it is aligned, make sure the entire
511 * base IP header is in the first mbuf of the chain.
512 */
513 if (IP_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) {
514 if ((m = m_copyup(m, sizeof(struct ip),
515 (max_linkhdr + 3) & ~3)) == NULL) {
516 /* XXXJRT new stat, please */
517 ipstat.ips_toosmall++;
518 return;
519 }
520 } else if (__predict_false(m->m_len < sizeof (struct ip))) {
521 if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
522 ipstat.ips_toosmall++;
523 return;
524 }
525 }
526 ip = mtod(m, struct ip *);
527 if (ip->ip_v != IPVERSION) {
528 ipstat.ips_badvers++;
529 goto bad;
530 }
531 hlen = ip->ip_hl << 2;
532 if (hlen < sizeof(struct ip)) { /* minimum header length */
533 ipstat.ips_badhlen++;
534 goto bad;
535 }
536 if (hlen > m->m_len) {
537 if ((m = m_pullup(m, hlen)) == 0) {
538 ipstat.ips_badhlen++;
539 return;
540 }
541 ip = mtod(m, struct ip *);
542 }
543
544 /*
545 * RFC1122: packets with a multicast source address are
546 * not allowed.
547 */
548 if (IN_MULTICAST(ip->ip_src.s_addr)) {
549 ipstat.ips_badaddr++;
550 goto bad;
551 }
552
553 /* 127/8 must not appear on wire - RFC1122 */
554 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
555 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
556 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
557 ipstat.ips_badaddr++;
558 goto bad;
559 }
560 }
561
562 switch (m->m_pkthdr.csum_flags &
563 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
564 M_CSUM_IPv4_BAD)) {
565 case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
566 INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
567 goto badcsum;
568
569 case M_CSUM_IPv4:
570 /* Checksum was okay. */
571 INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
572 break;
573
574 default:
575 /* Must compute it ourselves. */
576 INET_CSUM_COUNTER_INCR(&ip_swcsum);
577 if (in_cksum(m, hlen) != 0)
578 goto bad;
579 break;
580 }
581
582 /* Retrieve the packet length. */
583 len = ntohs(ip->ip_len);
584
585 /*
586 * Check for additional length bogosity
587 */
588 if (len < hlen) {
589 ipstat.ips_badlen++;
590 goto bad;
591 }
592
593 /*
594 * Check that the amount of data in the buffers
595 * is as at least much as the IP header would have us expect.
596 * Trim mbufs if longer than we expect.
597 * Drop packet if shorter than we expect.
598 */
599 if (m->m_pkthdr.len < len) {
600 ipstat.ips_tooshort++;
601 goto bad;
602 }
603 if (m->m_pkthdr.len > len) {
604 if (m->m_len == m->m_pkthdr.len) {
605 m->m_len = len;
606 m->m_pkthdr.len = len;
607 } else
608 m_adj(m, len - m->m_pkthdr.len);
609 }
610
611 #if defined(IPSEC)
612 /* ipflow (IP fast forwarding) is not compatible with IPsec. */
613 m->m_flags &= ~M_CANFASTFWD;
614 #else
615 /*
616 * Assume that we can create a fast-forward IP flow entry
617 * based on this packet.
618 */
619 m->m_flags |= M_CANFASTFWD;
620 #endif
621
622 #ifdef PFIL_HOOKS
623 /*
624 * Run through list of hooks for input packets. If there are any
625 * filters which require that additional packets in the flow are
626 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
627 * Note that filters must _never_ set this flag, as another filter
628 * in the list may have previously cleared it.
629 */
630 /*
631 * let ipfilter look at packet on the wire,
632 * not the decapsulated packet.
633 */
634 #ifdef IPSEC
635 if (!ipsec_getnhist(m))
636 #elif defined(FAST_IPSEC)
637 if (!ipsec_indone(m))
638 #else
639 if (1)
640 #endif
641 {
642 struct in_addr odst;
643
644 odst = ip->ip_dst;
645 if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
646 PFIL_IN) != 0)
647 return;
648 if (m == NULL)
649 return;
650 ip = mtod(m, struct ip *);
651 hlen = ip->ip_hl << 2;
652 srcrt = (odst.s_addr != ip->ip_dst.s_addr);
653 }
654 #endif /* PFIL_HOOKS */
655
656 #ifdef ALTQ
657 /* XXX Temporary until ALTQ is changed to use a pfil hook */
658 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
659 /* packet dropped by traffic conditioner */
660 return;
661 }
662 #endif
663
664 /*
665 * Process options and, if not destined for us,
666 * ship it on. ip_dooptions returns 1 when an
667 * error was detected (causing an icmp message
668 * to be sent and the original packet to be freed).
669 */
670 ip_nhops = 0; /* for source routed packets */
671 if (hlen > sizeof (struct ip) && ip_dooptions(m))
672 return;
673
674 /*
675 * Enable a consistency check between the destination address
676 * and the arrival interface for a unicast packet (the RFC 1122
677 * strong ES model) if IP forwarding is disabled and the packet
678 * is not locally generated.
679 *
680 * XXX - Checking also should be disabled if the destination
681 * address is ipnat'ed to a different interface.
682 *
683 * XXX - Checking is incompatible with IP aliases added
684 * to the loopback interface instead of the interface where
685 * the packets are received.
686 *
687 * XXX - We need to add a per ifaddr flag for this so that
688 * we get finer grain control.
689 */
690 checkif = ip_checkinterface && (ipforwarding == 0) &&
691 (m->m_pkthdr.rcvif != NULL) &&
692 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
693
694 /*
695 * Check our list of addresses, to see if the packet is for us.
696 *
697 * Traditional 4.4BSD did not consult IFF_UP at all.
698 * The behavior here is to treat addresses on !IFF_UP interface
699 * as not mine.
700 */
701 downmatch = 0;
702 LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
703 if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
704 if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
705 continue;
706 if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
707 break;
708 else
709 downmatch++;
710 }
711 }
712 if (ia != NULL)
713 goto ours;
714 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
715 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrlist, ifa_list) {
716 if (ifa->ifa_addr->sa_family != AF_INET)
717 continue;
718 ia = ifatoia(ifa);
719 if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
720 in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
721 /*
722 * Look for all-0's host part (old broadcast addr),
723 * either for subnet or net.
724 */
725 ip->ip_dst.s_addr == ia->ia_subnet ||
726 ip->ip_dst.s_addr == ia->ia_net)
727 goto ours;
728 /*
729 * An interface with IP address zero accepts
730 * all packets that arrive on that interface.
731 */
732 if (in_nullhost(ia->ia_addr.sin_addr))
733 goto ours;
734 }
735 }
736 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
737 struct in_multi *inm;
738 #ifdef MROUTING
739 extern struct socket *ip_mrouter;
740
741 if (M_READONLY(m)) {
742 if ((m = m_pullup(m, hlen)) == 0) {
743 ipstat.ips_toosmall++;
744 return;
745 }
746 ip = mtod(m, struct ip *);
747 }
748
749 if (ip_mrouter) {
750 /*
751 * If we are acting as a multicast router, all
752 * incoming multicast packets are passed to the
753 * kernel-level multicast forwarding function.
754 * The packet is returned (relatively) intact; if
755 * ip_mforward() returns a non-zero value, the packet
756 * must be discarded, else it may be accepted below.
757 *
758 * (The IP ident field is put in the same byte order
759 * as expected when ip_mforward() is called from
760 * ip_output().)
761 */
762 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
763 ipstat.ips_cantforward++;
764 m_freem(m);
765 return;
766 }
767
768 /*
769 * The process-level routing demon needs to receive
770 * all multicast IGMP packets, whether or not this
771 * host belongs to their destination groups.
772 */
773 if (ip->ip_p == IPPROTO_IGMP)
774 goto ours;
775 ipstat.ips_forward++;
776 }
777 #endif
778 /*
779 * See if we belong to the destination multicast group on the
780 * arrival interface.
781 */
782 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
783 if (inm == NULL) {
784 ipstat.ips_cantforward++;
785 m_freem(m);
786 return;
787 }
788 goto ours;
789 }
790 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
791 in_nullhost(ip->ip_dst))
792 goto ours;
793
794 /*
795 * Not for us; forward if possible and desirable.
796 */
797 if (ipforwarding == 0) {
798 ipstat.ips_cantforward++;
799 m_freem(m);
800 } else {
801 /*
802 * If ip_dst matched any of my address on !IFF_UP interface,
803 * and there's no IFF_UP interface that matches ip_dst,
804 * send icmp unreach. Forwarding it will result in in-kernel
805 * forwarding loop till TTL goes to 0.
806 */
807 if (downmatch) {
808 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
809 ipstat.ips_cantforward++;
810 return;
811 }
812 #ifdef IPSEC
813 if (ipsec4_in_reject(m, NULL)) {
814 ipsecstat.in_polvio++;
815 goto bad;
816 }
817 #endif
818 #ifdef FAST_IPSEC
819 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
820 s = splsoftnet();
821 if (mtag != NULL) {
822 tdbi = (struct tdb_ident *)(mtag + 1);
823 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
824 } else {
825 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
826 IP_FORWARDING, &error);
827 }
828 if (sp == NULL) { /* NB: can happen if error */
829 splx(s);
830 /*XXX error stat???*/
831 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
832 goto bad;
833 }
834
835 /*
836 * Check security policy against packet attributes.
837 */
838 error = ipsec_in_reject(sp, m);
839 KEY_FREESP(&sp);
840 splx(s);
841 if (error) {
842 ipstat.ips_cantforward++;
843 goto bad;
844 }
845
846 /*
847 * Peek at the outbound SP for this packet to determine if
848 * it's a Fast Forward candidate.
849 */
850 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
851 if (mtag != NULL)
852 m->m_flags &= ~M_CANFASTFWD;
853 else {
854 s = splsoftnet();
855 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
856 (IP_FORWARDING |
857 (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
858 &error, NULL);
859 if (sp != NULL) {
860 m->m_flags &= ~M_CANFASTFWD;
861 KEY_FREESP(&sp);
862 }
863 splx(s);
864 }
865 #endif /* FAST_IPSEC */
866
867 ip_forward(m, srcrt);
868 }
869 return;
870
871 ours:
872 /*
873 * If offset or IP_MF are set, must reassemble.
874 * Otherwise, nothing need be done.
875 * (We could look in the reassembly queue to see
876 * if the packet was previously fragmented,
877 * but it's not worth the time; just let them time out.)
878 */
879 if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
880 if (M_READONLY(m)) {
881 if ((m = m_pullup(m, hlen)) == NULL) {
882 ipstat.ips_toosmall++;
883 goto bad;
884 }
885 ip = mtod(m, struct ip *);
886 }
887
888 /*
889 * Look for queue of fragments
890 * of this datagram.
891 */
892 IPQ_LOCK();
893 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
894 /* XXX LIST_FOREACH(fp, &ipq[hash], ipq_q) */
895 for (fp = LIST_FIRST(&ipq[hash]); fp != NULL;
896 fp = LIST_NEXT(fp, ipq_q)) {
897 if (ip->ip_id == fp->ipq_id &&
898 in_hosteq(ip->ip_src, fp->ipq_src) &&
899 in_hosteq(ip->ip_dst, fp->ipq_dst) &&
900 ip->ip_p == fp->ipq_p)
901 goto found;
902
903 }
904 fp = 0;
905 found:
906
907 /*
908 * Adjust ip_len to not reflect header,
909 * set ipqe_mff if more fragments are expected,
910 * convert offset of this to bytes.
911 */
912 ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
913 mff = (ip->ip_off & htons(IP_MF)) != 0;
914 if (mff) {
915 /*
916 * Make sure that fragments have a data length
917 * that's a non-zero multiple of 8 bytes.
918 */
919 if (ntohs(ip->ip_len) == 0 ||
920 (ntohs(ip->ip_len) & 0x7) != 0) {
921 ipstat.ips_badfrags++;
922 IPQ_UNLOCK();
923 goto bad;
924 }
925 }
926 ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
927
928 /*
929 * If datagram marked as having more fragments
930 * or if this is not the first fragment,
931 * attempt reassembly; if it succeeds, proceed.
932 */
933 if (mff || ip->ip_off != htons(0)) {
934 ipstat.ips_fragments++;
935 ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
936 if (ipqe == NULL) {
937 ipstat.ips_rcvmemdrop++;
938 IPQ_UNLOCK();
939 goto bad;
940 }
941 ipqe->ipqe_mff = mff;
942 ipqe->ipqe_m = m;
943 ipqe->ipqe_ip = ip;
944 m = ip_reass(ipqe, fp, &ipq[hash]);
945 if (m == 0) {
946 IPQ_UNLOCK();
947 return;
948 }
949 ipstat.ips_reassembled++;
950 ip = mtod(m, struct ip *);
951 hlen = ip->ip_hl << 2;
952 ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
953 } else
954 if (fp)
955 ip_freef(fp);
956 IPQ_UNLOCK();
957 }
958
959 #if defined(IPSEC)
960 /*
961 * enforce IPsec policy checking if we are seeing last header.
962 * note that we do not visit this with protocols with pcb layer
963 * code - like udp/tcp/raw ip.
964 */
965 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
966 ipsec4_in_reject(m, NULL)) {
967 ipsecstat.in_polvio++;
968 goto bad;
969 }
970 #endif
971 #if FAST_IPSEC
972 /*
973 * enforce IPsec policy checking if we are seeing last header.
974 * note that we do not visit this with protocols with pcb layer
975 * code - like udp/tcp/raw ip.
976 */
977 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
978 /*
979 * Check if the packet has already had IPsec processing
980 * done. If so, then just pass it along. This tag gets
981 * set during AH, ESP, etc. input handling, before the
982 * packet is returned to the ip input queue for delivery.
983 */
984 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
985 s = splsoftnet();
986 if (mtag != NULL) {
987 tdbi = (struct tdb_ident *)(mtag + 1);
988 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
989 } else {
990 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
991 IP_FORWARDING, &error);
992 }
993 if (sp != NULL) {
994 /*
995 * Check security policy against packet attributes.
996 */
997 error = ipsec_in_reject(sp, m);
998 KEY_FREESP(&sp);
999 } else {
1000 /* XXX error stat??? */
1001 error = EINVAL;
1002 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1003 goto bad;
1004 }
1005 splx(s);
1006 if (error)
1007 goto bad;
1008 }
1009 #endif /* FAST_IPSEC */
1010
1011 /*
1012 * Switch out to protocol's input routine.
1013 */
1014 #if IFA_STATS
1015 if (ia && ip)
1016 ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
1017 #endif
1018 ipstat.ips_delivered++;
1019 {
1020 int off = hlen, nh = ip->ip_p;
1021
1022 (*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
1023 return;
1024 }
1025 bad:
1026 m_freem(m);
1027 return;
1028
1029 badcsum:
1030 ipstat.ips_badsum++;
1031 m_freem(m);
1032 }
1033
1034 /*
1035 * Take incoming datagram fragment and try to
1036 * reassemble it into whole datagram. If a chain for
1037 * reassembly of this datagram already exists, then it
1038 * is given as fp; otherwise have to make a chain.
1039 */
1040 struct mbuf *
1041 ip_reass(ipqe, fp, ipqhead)
1042 struct ipqent *ipqe;
1043 struct ipq *fp;
1044 struct ipqhead *ipqhead;
1045 {
1046 struct mbuf *m = ipqe->ipqe_m;
1047 struct ipqent *nq, *p, *q;
1048 struct ip *ip;
1049 struct mbuf *t;
1050 int hlen = ipqe->ipqe_ip->ip_hl << 2;
1051 int i, next;
1052
1053 IPQ_LOCK_CHECK();
1054
1055 /*
1056 * Presence of header sizes in mbufs
1057 * would confuse code below.
1058 */
1059 m->m_data += hlen;
1060 m->m_len -= hlen;
1061
1062 #ifdef notyet
1063 /* make sure fragment limit is up-to-date */
1064 CHECK_NMBCLUSTER_PARAMS();
1065
1066 /* If we have too many fragments, drop the older half. */
1067 if (ip_nfrags >= ip_maxfrags)
1068 ip_reass_drophalf(void);
1069 #endif
1070
1071 /*
1072 * We are about to add a fragment; increment frag count.
1073 */
1074 ip_nfrags++;
1075
1076 /*
1077 * If first fragment to arrive, create a reassembly queue.
1078 */
1079 if (fp == 0) {
1080 /*
1081 * Enforce upper bound on number of fragmented packets
1082 * for which we attempt reassembly;
1083 * If maxfrag is 0, never accept fragments.
1084 * If maxfrag is -1, accept all fragments without limitation.
1085 */
1086 if (ip_maxfragpackets < 0)
1087 ;
1088 else if (ip_nfragpackets >= ip_maxfragpackets)
1089 goto dropfrag;
1090 ip_nfragpackets++;
1091 MALLOC(fp, struct ipq *, sizeof (struct ipq),
1092 M_FTABLE, M_NOWAIT);
1093 if (fp == NULL)
1094 goto dropfrag;
1095 LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
1096 fp->ipq_nfrags = 1;
1097 fp->ipq_ttl = IPFRAGTTL;
1098 fp->ipq_p = ipqe->ipqe_ip->ip_p;
1099 fp->ipq_id = ipqe->ipqe_ip->ip_id;
1100 TAILQ_INIT(&fp->ipq_fragq);
1101 fp->ipq_src = ipqe->ipqe_ip->ip_src;
1102 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
1103 p = NULL;
1104 goto insert;
1105 } else {
1106 fp->ipq_nfrags++;
1107 }
1108
1109 /*
1110 * Find a segment which begins after this one does.
1111 */
1112 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1113 p = q, q = TAILQ_NEXT(q, ipqe_q))
1114 if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
1115 break;
1116
1117 /*
1118 * If there is a preceding segment, it may provide some of
1119 * our data already. If so, drop the data from the incoming
1120 * segment. If it provides all of our data, drop us.
1121 */
1122 if (p != NULL) {
1123 i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
1124 ntohs(ipqe->ipqe_ip->ip_off);
1125 if (i > 0) {
1126 if (i >= ntohs(ipqe->ipqe_ip->ip_len))
1127 goto dropfrag;
1128 m_adj(ipqe->ipqe_m, i);
1129 ipqe->ipqe_ip->ip_off =
1130 htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
1131 ipqe->ipqe_ip->ip_len =
1132 htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
1133 }
1134 }
1135
1136 /*
1137 * While we overlap succeeding segments trim them or,
1138 * if they are completely covered, dequeue them.
1139 */
1140 for (; q != NULL &&
1141 ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
1142 ntohs(q->ipqe_ip->ip_off); q = nq) {
1143 i = (ntohs(ipqe->ipqe_ip->ip_off) +
1144 ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
1145 if (i < ntohs(q->ipqe_ip->ip_len)) {
1146 q->ipqe_ip->ip_len =
1147 htons(ntohs(q->ipqe_ip->ip_len) - i);
1148 q->ipqe_ip->ip_off =
1149 htons(ntohs(q->ipqe_ip->ip_off) + i);
1150 m_adj(q->ipqe_m, i);
1151 break;
1152 }
1153 nq = TAILQ_NEXT(q, ipqe_q);
1154 m_freem(q->ipqe_m);
1155 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1156 pool_put(&ipqent_pool, q);
1157 fp->ipq_nfrags--;
1158 ip_nfrags--;
1159 }
1160
1161 insert:
1162 /*
1163 * Stick new segment in its place;
1164 * check for complete reassembly.
1165 */
1166 if (p == NULL) {
1167 TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
1168 } else {
1169 TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
1170 }
1171 next = 0;
1172 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1173 p = q, q = TAILQ_NEXT(q, ipqe_q)) {
1174 if (ntohs(q->ipqe_ip->ip_off) != next)
1175 return (0);
1176 next += ntohs(q->ipqe_ip->ip_len);
1177 }
1178 if (p->ipqe_mff)
1179 return (0);
1180
1181 /*
1182 * Reassembly is complete. Check for a bogus message size and
1183 * concatenate fragments.
1184 */
1185 q = TAILQ_FIRST(&fp->ipq_fragq);
1186 ip = q->ipqe_ip;
1187 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
1188 ipstat.ips_toolong++;
1189 ip_freef(fp);
1190 return (0);
1191 }
1192 m = q->ipqe_m;
1193 t = m->m_next;
1194 m->m_next = 0;
1195 m_cat(m, t);
1196 nq = TAILQ_NEXT(q, ipqe_q);
1197 pool_put(&ipqent_pool, q);
1198 for (q = nq; q != NULL; q = nq) {
1199 t = q->ipqe_m;
1200 nq = TAILQ_NEXT(q, ipqe_q);
1201 pool_put(&ipqent_pool, q);
1202 m_cat(m, t);
1203 }
1204 ip_nfrags -= fp->ipq_nfrags;
1205
1206 /*
1207 * Create header for new ip packet by
1208 * modifying header of first packet;
1209 * dequeue and discard fragment reassembly header.
1210 * Make header visible.
1211 */
1212 ip->ip_len = htons(next);
1213 ip->ip_src = fp->ipq_src;
1214 ip->ip_dst = fp->ipq_dst;
1215 LIST_REMOVE(fp, ipq_q);
1216 FREE(fp, M_FTABLE);
1217 ip_nfragpackets--;
1218 m->m_len += (ip->ip_hl << 2);
1219 m->m_data -= (ip->ip_hl << 2);
1220 /* some debugging cruft by sklower, below, will go away soon */
1221 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1222 int plen = 0;
1223 for (t = m; t; t = t->m_next)
1224 plen += t->m_len;
1225 m->m_pkthdr.len = plen;
1226 }
1227 return (m);
1228
1229 dropfrag:
1230 if (fp != 0)
1231 fp->ipq_nfrags--;
1232 ip_nfrags--;
1233 ipstat.ips_fragdropped++;
1234 m_freem(m);
1235 pool_put(&ipqent_pool, ipqe);
1236 return (0);
1237 }
1238
1239 /*
1240 * Free a fragment reassembly header and all
1241 * associated datagrams.
1242 */
1243 void
1244 ip_freef(fp)
1245 struct ipq *fp;
1246 {
1247 struct ipqent *q, *p;
1248 u_int nfrags = 0;
1249
1250 IPQ_LOCK_CHECK();
1251
1252 for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
1253 p = TAILQ_NEXT(q, ipqe_q);
1254 m_freem(q->ipqe_m);
1255 nfrags++;
1256 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1257 pool_put(&ipqent_pool, q);
1258 }
1259
1260 if (nfrags != fp->ipq_nfrags)
1261 printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
1262 ip_nfrags -= nfrags;
1263 LIST_REMOVE(fp, ipq_q);
1264 FREE(fp, M_FTABLE);
1265 ip_nfragpackets--;
1266 }
1267
1268 /*
1269 * IP reassembly TTL machinery for multiplicative drop.
1270 */
1271 static u_int fragttl_histo[(IPFRAGTTL+1)];
1272
1273
1274 /*
1275 * Decrement TTL of all reasembly queue entries by `ticks'.
1276 * Count number of distinct fragments (as opposed to partial, fragmented
1277 * datagrams) in the reassembly queue. While we traverse the entire
1278 * reassembly queue, compute and return the median TTL over all fragments.
1279 */
1280 static u_int
1281 ip_reass_ttl_decr(u_int ticks)
1282 {
1283 u_int nfrags, median, dropfraction, keepfraction;
1284 struct ipq *fp, *nfp;
1285 int i;
1286
1287 nfrags = 0;
1288 memset(fragttl_histo, 0, sizeof fragttl_histo);
1289
1290 for (i = 0; i < IPREASS_NHASH; i++) {
1291 for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
1292 fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
1293 0 : fp->ipq_ttl - ticks);
1294 nfp = LIST_NEXT(fp, ipq_q);
1295 if (fp->ipq_ttl == 0) {
1296 ipstat.ips_fragtimeout++;
1297 ip_freef(fp);
1298 } else {
1299 nfrags += fp->ipq_nfrags;
1300 fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
1301 }
1302 }
1303 }
1304
1305 KASSERT(ip_nfrags == nfrags);
1306
1307 /* Find median (or other drop fraction) in histogram. */
1308 dropfraction = (ip_nfrags / 2);
1309 keepfraction = ip_nfrags - dropfraction;
1310 for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
1311 median += fragttl_histo[i];
1312 if (median >= keepfraction)
1313 break;
1314 }
1315
1316 /* Return TTL of median (or other fraction). */
1317 return (u_int)i;
1318 }
1319
1320 void
1321 ip_reass_drophalf(void)
1322 {
1323
1324 u_int median_ticks;
1325 /*
1326 * Compute median TTL of all fragments, and count frags
1327 * with that TTL or lower (roughly half of all fragments).
1328 */
1329 median_ticks = ip_reass_ttl_decr(0);
1330
1331 /* Drop half. */
1332 median_ticks = ip_reass_ttl_decr(median_ticks);
1333
1334 }
1335
1336 /*
1337 * IP timer processing;
1338 * if a timer expires on a reassembly
1339 * queue, discard it.
1340 */
1341 void
1342 ip_slowtimo()
1343 {
1344 static u_int dropscanidx = 0;
1345 u_int i;
1346 u_int median_ttl;
1347 int s = splsoftnet();
1348
1349 IPQ_LOCK();
1350
1351 /* Age TTL of all fragments by 1 tick .*/
1352 median_ttl = ip_reass_ttl_decr(1);
1353
1354 /* make sure fragment limit is up-to-date */
1355 CHECK_NMBCLUSTER_PARAMS();
1356
1357 /* If we have too many fragments, drop the older half. */
1358 if (ip_nfrags > ip_maxfrags)
1359 ip_reass_ttl_decr(median_ttl);
1360
1361 /*
1362 * If we are over the maximum number of fragmented packets
1363 * (due to the limit being lowered), drain off
1364 * enough to get down to the new limit. Start draining
1365 * from the reassembly hashqueue most recently drained.
1366 */
1367 if (ip_maxfragpackets < 0)
1368 ;
1369 else {
1370 int wrapped = 0;
1371
1372 i = dropscanidx;
1373 while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
1374 while (LIST_FIRST(&ipq[i]) != NULL)
1375 ip_freef(LIST_FIRST(&ipq[i]));
1376 if (++i >= IPREASS_NHASH) {
1377 i = 0;
1378 }
1379 /*
1380 * Dont scan forever even if fragment counters are
1381 * wrong: stop after scanning entire reassembly queue.
1382 */
1383 if (i == dropscanidx)
1384 wrapped = 1;
1385 }
1386 dropscanidx = i;
1387 }
1388 IPQ_UNLOCK();
1389 #ifdef GATEWAY
1390 ipflow_slowtimo();
1391 #endif
1392 splx(s);
1393 }
1394
1395 /*
1396 * Drain off all datagram fragments.
1397 */
1398 void
1399 ip_drain()
1400 {
1401
1402 /*
1403 * We may be called from a device's interrupt context. If
1404 * the ipq is already busy, just bail out now.
1405 */
1406 if (ipq_lock_try() == 0)
1407 return;
1408
1409 /*
1410 * Drop half the total fragments now. If more mbufs are needed,
1411 * we will be called again soon.
1412 */
1413 ip_reass_drophalf();
1414
1415 IPQ_UNLOCK();
1416 }
1417
1418 /*
1419 * Do option processing on a datagram,
1420 * possibly discarding it if bad options are encountered,
1421 * or forwarding it if source-routed.
1422 * Returns 1 if packet has been forwarded/freed,
1423 * 0 if the packet should be processed further.
1424 */
1425 int
1426 ip_dooptions(m)
1427 struct mbuf *m;
1428 {
1429 struct ip *ip = mtod(m, struct ip *);
1430 u_char *cp, *cp0;
1431 struct ip_timestamp *ipt;
1432 struct in_ifaddr *ia;
1433 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1434 struct in_addr dst;
1435 n_time ntime;
1436
1437 dst = ip->ip_dst;
1438 cp = (u_char *)(ip + 1);
1439 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1440 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1441 opt = cp[IPOPT_OPTVAL];
1442 if (opt == IPOPT_EOL)
1443 break;
1444 if (opt == IPOPT_NOP)
1445 optlen = 1;
1446 else {
1447 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1448 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1449 goto bad;
1450 }
1451 optlen = cp[IPOPT_OLEN];
1452 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1453 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1454 goto bad;
1455 }
1456 }
1457 switch (opt) {
1458
1459 default:
1460 break;
1461
1462 /*
1463 * Source routing with record.
1464 * Find interface with current destination address.
1465 * If none on this machine then drop if strictly routed,
1466 * or do nothing if loosely routed.
1467 * Record interface address and bring up next address
1468 * component. If strictly routed make sure next
1469 * address is on directly accessible net.
1470 */
1471 case IPOPT_LSRR:
1472 case IPOPT_SSRR:
1473 if (ip_allowsrcrt == 0) {
1474 type = ICMP_UNREACH;
1475 code = ICMP_UNREACH_NET_PROHIB;
1476 goto bad;
1477 }
1478 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1479 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1480 goto bad;
1481 }
1482 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1483 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1484 goto bad;
1485 }
1486 ipaddr.sin_addr = ip->ip_dst;
1487 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
1488 if (ia == 0) {
1489 if (opt == IPOPT_SSRR) {
1490 type = ICMP_UNREACH;
1491 code = ICMP_UNREACH_SRCFAIL;
1492 goto bad;
1493 }
1494 /*
1495 * Loose routing, and not at next destination
1496 * yet; nothing to do except forward.
1497 */
1498 break;
1499 }
1500 off--; /* 0 origin */
1501 if ((off + sizeof(struct in_addr)) > optlen) {
1502 /*
1503 * End of source route. Should be for us.
1504 */
1505 save_rte(cp, ip->ip_src);
1506 break;
1507 }
1508 /*
1509 * locate outgoing interface
1510 */
1511 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
1512 sizeof(ipaddr.sin_addr));
1513 if (opt == IPOPT_SSRR)
1514 ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
1515 else
1516 ia = ip_rtaddr(ipaddr.sin_addr);
1517 if (ia == 0) {
1518 type = ICMP_UNREACH;
1519 code = ICMP_UNREACH_SRCFAIL;
1520 goto bad;
1521 }
1522 ip->ip_dst = ipaddr.sin_addr;
1523 bcopy((caddr_t)&ia->ia_addr.sin_addr,
1524 (caddr_t)(cp + off), sizeof(struct in_addr));
1525 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1526 /*
1527 * Let ip_intr's mcast routing check handle mcast pkts
1528 */
1529 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1530 break;
1531
1532 case IPOPT_RR:
1533 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1534 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1535 goto bad;
1536 }
1537 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1538 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1539 goto bad;
1540 }
1541 /*
1542 * If no space remains, ignore.
1543 */
1544 off--; /* 0 origin */
1545 if ((off + sizeof(struct in_addr)) > optlen)
1546 break;
1547 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
1548 sizeof(ipaddr.sin_addr));
1549 /*
1550 * locate outgoing interface; if we're the destination,
1551 * use the incoming interface (should be same).
1552 */
1553 if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
1554 == NULL &&
1555 (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1556 type = ICMP_UNREACH;
1557 code = ICMP_UNREACH_HOST;
1558 goto bad;
1559 }
1560 bcopy((caddr_t)&ia->ia_addr.sin_addr,
1561 (caddr_t)(cp + off), sizeof(struct in_addr));
1562 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1563 break;
1564
1565 case IPOPT_TS:
1566 code = cp - (u_char *)ip;
1567 ipt = (struct ip_timestamp *)cp;
1568 if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1569 code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1570 goto bad;
1571 }
1572 if (ipt->ipt_ptr < 5) {
1573 code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1574 goto bad;
1575 }
1576 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
1577 if (++ipt->ipt_oflw == 0) {
1578 code = (u_char *)&ipt->ipt_ptr -
1579 (u_char *)ip;
1580 goto bad;
1581 }
1582 break;
1583 }
1584 cp0 = (cp + ipt->ipt_ptr - 1);
1585 switch (ipt->ipt_flg) {
1586
1587 case IPOPT_TS_TSONLY:
1588 break;
1589
1590 case IPOPT_TS_TSANDADDR:
1591 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1592 sizeof(struct in_addr) > ipt->ipt_len) {
1593 code = (u_char *)&ipt->ipt_ptr -
1594 (u_char *)ip;
1595 goto bad;
1596 }
1597 ipaddr.sin_addr = dst;
1598 ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1599 m->m_pkthdr.rcvif));
1600 if (ia == 0)
1601 continue;
1602 bcopy(&ia->ia_addr.sin_addr,
1603 cp0, sizeof(struct in_addr));
1604 ipt->ipt_ptr += sizeof(struct in_addr);
1605 break;
1606
1607 case IPOPT_TS_PRESPEC:
1608 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1609 sizeof(struct in_addr) > ipt->ipt_len) {
1610 code = (u_char *)&ipt->ipt_ptr -
1611 (u_char *)ip;
1612 goto bad;
1613 }
1614 bcopy(cp0, &ipaddr.sin_addr,
1615 sizeof(struct in_addr));
1616 if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
1617 == NULL)
1618 continue;
1619 ipt->ipt_ptr += sizeof(struct in_addr);
1620 break;
1621
1622 default:
1623 /* XXX can't take &ipt->ipt_flg */
1624 code = (u_char *)&ipt->ipt_ptr -
1625 (u_char *)ip + 1;
1626 goto bad;
1627 }
1628 ntime = iptime();
1629 cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
1630 bcopy(cp0, (caddr_t)cp + ipt->ipt_ptr - 1,
1631 sizeof(n_time));
1632 ipt->ipt_ptr += sizeof(n_time);
1633 }
1634 }
1635 if (forward) {
1636 if (ip_forwsrcrt == 0) {
1637 type = ICMP_UNREACH;
1638 code = ICMP_UNREACH_SRCFAIL;
1639 goto bad;
1640 }
1641 ip_forward(m, 1);
1642 return (1);
1643 }
1644 return (0);
1645 bad:
1646 icmp_error(m, type, code, 0, 0);
1647 ipstat.ips_badoptions++;
1648 return (1);
1649 }
1650
1651 /*
1652 * Given address of next destination (final or next hop),
1653 * return internet address info of interface to be used to get there.
1654 */
1655 struct in_ifaddr *
1656 ip_rtaddr(dst)
1657 struct in_addr dst;
1658 {
1659 struct sockaddr_in *sin;
1660
1661 sin = satosin(&ipforward_rt.ro_dst);
1662
1663 if (ipforward_rt.ro_rt == 0 || !in_hosteq(dst, sin->sin_addr)) {
1664 if (ipforward_rt.ro_rt) {
1665 RTFREE(ipforward_rt.ro_rt);
1666 ipforward_rt.ro_rt = 0;
1667 }
1668 sin->sin_family = AF_INET;
1669 sin->sin_len = sizeof(*sin);
1670 sin->sin_addr = dst;
1671
1672 rtalloc(&ipforward_rt);
1673 }
1674 if (ipforward_rt.ro_rt == 0)
1675 return ((struct in_ifaddr *)0);
1676 return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
1677 }
1678
1679 /*
1680 * Save incoming source route for use in replies,
1681 * to be picked up later by ip_srcroute if the receiver is interested.
1682 */
1683 void
1684 save_rte(option, dst)
1685 u_char *option;
1686 struct in_addr dst;
1687 {
1688 unsigned olen;
1689
1690 olen = option[IPOPT_OLEN];
1691 #ifdef DIAGNOSTIC
1692 if (ipprintfs)
1693 printf("save_rte: olen %d\n", olen);
1694 #endif /* 0 */
1695 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1696 return;
1697 bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
1698 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1699 ip_srcrt.dst = dst;
1700 }
1701
1702 /*
1703 * Retrieve incoming source route for use in replies,
1704 * in the same form used by setsockopt.
1705 * The first hop is placed before the options, will be removed later.
1706 */
1707 struct mbuf *
1708 ip_srcroute()
1709 {
1710 struct in_addr *p, *q;
1711 struct mbuf *m;
1712
1713 if (ip_nhops == 0)
1714 return ((struct mbuf *)0);
1715 m = m_get(M_DONTWAIT, MT_SOOPTS);
1716 if (m == 0)
1717 return ((struct mbuf *)0);
1718
1719 MCLAIM(m, &inetdomain.dom_mowner);
1720 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1721
1722 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1723 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1724 OPTSIZ;
1725 #ifdef DIAGNOSTIC
1726 if (ipprintfs)
1727 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1728 #endif
1729
1730 /*
1731 * First save first hop for return route
1732 */
1733 p = &ip_srcrt.route[ip_nhops - 1];
1734 *(mtod(m, struct in_addr *)) = *p--;
1735 #ifdef DIAGNOSTIC
1736 if (ipprintfs)
1737 printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1738 #endif
1739
1740 /*
1741 * Copy option fields and padding (nop) to mbuf.
1742 */
1743 ip_srcrt.nop = IPOPT_NOP;
1744 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1745 bcopy((caddr_t)&ip_srcrt.nop,
1746 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
1747 q = (struct in_addr *)(mtod(m, caddr_t) +
1748 sizeof(struct in_addr) + OPTSIZ);
1749 #undef OPTSIZ
1750 /*
1751 * Record return path as an IP source route,
1752 * reversing the path (pointers are now aligned).
1753 */
1754 while (p >= ip_srcrt.route) {
1755 #ifdef DIAGNOSTIC
1756 if (ipprintfs)
1757 printf(" %x", ntohl(q->s_addr));
1758 #endif
1759 *q++ = *p--;
1760 }
1761 /*
1762 * Last hop goes to final destination.
1763 */
1764 *q = ip_srcrt.dst;
1765 #ifdef DIAGNOSTIC
1766 if (ipprintfs)
1767 printf(" %x\n", ntohl(q->s_addr));
1768 #endif
1769 return (m);
1770 }
1771
1772 /*
1773 * Strip out IP options, at higher
1774 * level protocol in the kernel.
1775 * Second argument is buffer to which options
1776 * will be moved, and return value is their length.
1777 * XXX should be deleted; last arg currently ignored.
1778 */
1779 void
1780 ip_stripoptions(m, mopt)
1781 struct mbuf *m;
1782 struct mbuf *mopt;
1783 {
1784 int i;
1785 struct ip *ip = mtod(m, struct ip *);
1786 caddr_t opts;
1787 int olen;
1788
1789 olen = (ip->ip_hl << 2) - sizeof (struct ip);
1790 opts = (caddr_t)(ip + 1);
1791 i = m->m_len - (sizeof (struct ip) + olen);
1792 bcopy(opts + olen, opts, (unsigned)i);
1793 m->m_len -= olen;
1794 if (m->m_flags & M_PKTHDR)
1795 m->m_pkthdr.len -= olen;
1796 ip->ip_len = htons(ntohs(ip->ip_len) - olen);
1797 ip->ip_hl = sizeof (struct ip) >> 2;
1798 }
1799
1800 const int inetctlerrmap[PRC_NCMDS] = {
1801 0, 0, 0, 0,
1802 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1803 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1804 EMSGSIZE, EHOSTUNREACH, 0, 0,
1805 0, 0, 0, 0,
1806 ENOPROTOOPT
1807 };
1808
1809 /*
1810 * Forward a packet. If some error occurs return the sender
1811 * an icmp packet. Note we can't always generate a meaningful
1812 * icmp message because icmp doesn't have a large enough repertoire
1813 * of codes and types.
1814 *
1815 * If not forwarding, just drop the packet. This could be confusing
1816 * if ipforwarding was zero but some routing protocol was advancing
1817 * us as a gateway to somewhere. However, we must let the routing
1818 * protocol deal with that.
1819 *
1820 * The srcrt parameter indicates whether the packet is being forwarded
1821 * via a source route.
1822 */
1823 void
1824 ip_forward(m, srcrt)
1825 struct mbuf *m;
1826 int srcrt;
1827 {
1828 struct ip *ip = mtod(m, struct ip *);
1829 struct sockaddr_in *sin;
1830 struct rtentry *rt;
1831 int error, type = 0, code = 0;
1832 struct mbuf *mcopy;
1833 n_long dest;
1834 struct ifnet *destifp;
1835 #if defined(IPSEC) || defined(FAST_IPSEC)
1836 struct ifnet dummyifp;
1837 #endif
1838
1839 /*
1840 * We are now in the output path.
1841 */
1842 MCLAIM(m, &ip_tx_mowner);
1843
1844 /*
1845 * Clear any in-bound checksum flags for this packet.
1846 */
1847 m->m_pkthdr.csum_flags = 0;
1848
1849 dest = 0;
1850 #ifdef DIAGNOSTIC
1851 if (ipprintfs)
1852 printf("forward: src %2.2x dst %2.2x ttl %x\n",
1853 ntohl(ip->ip_src.s_addr),
1854 ntohl(ip->ip_dst.s_addr), ip->ip_ttl);
1855 #endif
1856 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1857 ipstat.ips_cantforward++;
1858 m_freem(m);
1859 return;
1860 }
1861 if (ip->ip_ttl <= IPTTLDEC) {
1862 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1863 return;
1864 }
1865 ip->ip_ttl -= IPTTLDEC;
1866
1867 sin = satosin(&ipforward_rt.ro_dst);
1868 if ((rt = ipforward_rt.ro_rt) == 0 ||
1869 !in_hosteq(ip->ip_dst, sin->sin_addr)) {
1870 if (ipforward_rt.ro_rt) {
1871 RTFREE(ipforward_rt.ro_rt);
1872 ipforward_rt.ro_rt = 0;
1873 }
1874 sin->sin_family = AF_INET;
1875 sin->sin_len = sizeof(struct sockaddr_in);
1876 sin->sin_addr = ip->ip_dst;
1877
1878 rtalloc(&ipforward_rt);
1879 if (ipforward_rt.ro_rt == 0) {
1880 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1881 return;
1882 }
1883 rt = ipforward_rt.ro_rt;
1884 }
1885
1886 /*
1887 * Save at most 68 bytes of the packet in case
1888 * we need to generate an ICMP message to the src.
1889 * Pullup to avoid sharing mbuf cluster between m and mcopy.
1890 */
1891 mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
1892 if (mcopy)
1893 mcopy = m_pullup(mcopy, ip->ip_hl << 2);
1894
1895 /*
1896 * If forwarding packet using same interface that it came in on,
1897 * perhaps should send a redirect to sender to shortcut a hop.
1898 * Only send redirect if source is sending directly to us,
1899 * and if packet was not source routed (or has any options).
1900 * Also, don't send redirect if forwarding using a default route
1901 * or a route modified by a redirect.
1902 */
1903 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1904 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1905 !in_nullhost(satosin(rt_key(rt))->sin_addr) &&
1906 ipsendredirects && !srcrt) {
1907 if (rt->rt_ifa &&
1908 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1909 ifatoia(rt->rt_ifa)->ia_subnet) {
1910 if (rt->rt_flags & RTF_GATEWAY)
1911 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1912 else
1913 dest = ip->ip_dst.s_addr;
1914 /*
1915 * Router requirements says to only send host
1916 * redirects.
1917 */
1918 type = ICMP_REDIRECT;
1919 code = ICMP_REDIRECT_HOST;
1920 #ifdef DIAGNOSTIC
1921 if (ipprintfs)
1922 printf("redirect (%d) to %x\n", code,
1923 (u_int32_t)dest);
1924 #endif
1925 }
1926 }
1927
1928 error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1929 (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1930 (struct ip_moptions *)NULL, (struct socket *)NULL);
1931
1932 if (error)
1933 ipstat.ips_cantforward++;
1934 else {
1935 ipstat.ips_forward++;
1936 if (type)
1937 ipstat.ips_redirectsent++;
1938 else {
1939 if (mcopy) {
1940 #ifdef GATEWAY
1941 if (mcopy->m_flags & M_CANFASTFWD)
1942 ipflow_create(&ipforward_rt, mcopy);
1943 #endif
1944 m_freem(mcopy);
1945 }
1946 return;
1947 }
1948 }
1949 if (mcopy == NULL)
1950 return;
1951 destifp = NULL;
1952
1953 switch (error) {
1954
1955 case 0: /* forwarded, but need redirect */
1956 /* type, code set above */
1957 break;
1958
1959 case ENETUNREACH: /* shouldn't happen, checked above */
1960 case EHOSTUNREACH:
1961 case ENETDOWN:
1962 case EHOSTDOWN:
1963 default:
1964 type = ICMP_UNREACH;
1965 code = ICMP_UNREACH_HOST;
1966 break;
1967
1968 case EMSGSIZE:
1969 type = ICMP_UNREACH;
1970 code = ICMP_UNREACH_NEEDFRAG;
1971 #if !defined(IPSEC) && !defined(FAST_IPSEC)
1972 if (ipforward_rt.ro_rt)
1973 destifp = ipforward_rt.ro_rt->rt_ifp;
1974 #else
1975 /*
1976 * If the packet is routed over IPsec tunnel, tell the
1977 * originator the tunnel MTU.
1978 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1979 * XXX quickhack!!!
1980 */
1981 if (ipforward_rt.ro_rt) {
1982 struct secpolicy *sp;
1983 int ipsecerror;
1984 size_t ipsechdr;
1985 struct route *ro;
1986
1987 sp = ipsec4_getpolicybyaddr(mcopy,
1988 IPSEC_DIR_OUTBOUND, IP_FORWARDING,
1989 &ipsecerror);
1990
1991 if (sp == NULL)
1992 destifp = ipforward_rt.ro_rt->rt_ifp;
1993 else {
1994 /* count IPsec header size */
1995 ipsechdr = ipsec4_hdrsiz(mcopy,
1996 IPSEC_DIR_OUTBOUND, NULL);
1997
1998 /*
1999 * find the correct route for outer IPv4
2000 * header, compute tunnel MTU.
2001 *
2002 * XXX BUG ALERT
2003 * The "dummyifp" code relies upon the fact
2004 * that icmp_error() touches only ifp->if_mtu.
2005 */
2006 /*XXX*/
2007 destifp = NULL;
2008 if (sp->req != NULL
2009 && sp->req->sav != NULL
2010 && sp->req->sav->sah != NULL) {
2011 ro = &sp->req->sav->sah->sa_route;
2012 if (ro->ro_rt && ro->ro_rt->rt_ifp) {
2013 dummyifp.if_mtu =
2014 ro->ro_rt->rt_rmx.rmx_mtu ?
2015 ro->ro_rt->rt_rmx.rmx_mtu :
2016 ro->ro_rt->rt_ifp->if_mtu;
2017 dummyifp.if_mtu -= ipsechdr;
2018 destifp = &dummyifp;
2019 }
2020 }
2021
2022 #ifdef IPSEC
2023 key_freesp(sp);
2024 #else
2025 KEY_FREESP(&sp);
2026 #endif
2027 }
2028 }
2029 #endif /*IPSEC*/
2030 ipstat.ips_cantfrag++;
2031 break;
2032
2033 case ENOBUFS:
2034 #if 1
2035 /*
2036 * a router should not generate ICMP_SOURCEQUENCH as
2037 * required in RFC1812 Requirements for IP Version 4 Routers.
2038 * source quench could be a big problem under DoS attacks,
2039 * or if the underlying interface is rate-limited.
2040 */
2041 if (mcopy)
2042 m_freem(mcopy);
2043 return;
2044 #else
2045 type = ICMP_SOURCEQUENCH;
2046 code = 0;
2047 break;
2048 #endif
2049 }
2050 icmp_error(mcopy, type, code, dest, destifp);
2051 }
2052
2053 void
2054 ip_savecontrol(inp, mp, ip, m)
2055 struct inpcb *inp;
2056 struct mbuf **mp;
2057 struct ip *ip;
2058 struct mbuf *m;
2059 {
2060
2061 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2062 struct timeval tv;
2063
2064 microtime(&tv);
2065 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2066 SCM_TIMESTAMP, SOL_SOCKET);
2067 if (*mp)
2068 mp = &(*mp)->m_next;
2069 }
2070 if (inp->inp_flags & INP_RECVDSTADDR) {
2071 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2072 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2073 if (*mp)
2074 mp = &(*mp)->m_next;
2075 }
2076 #ifdef notyet
2077 /*
2078 * XXX
2079 * Moving these out of udp_input() made them even more broken
2080 * than they already were.
2081 * - fenner (at) parc.xerox.com
2082 */
2083 /* options were tossed already */
2084 if (inp->inp_flags & INP_RECVOPTS) {
2085 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2086 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2087 if (*mp)
2088 mp = &(*mp)->m_next;
2089 }
2090 /* ip_srcroute doesn't do what we want here, need to fix */
2091 if (inp->inp_flags & INP_RECVRETOPTS) {
2092 *mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2093 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2094 if (*mp)
2095 mp = &(*mp)->m_next;
2096 }
2097 #endif
2098 if (inp->inp_flags & INP_RECVIF) {
2099 struct sockaddr_dl sdl;
2100
2101 sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]);
2102 sdl.sdl_family = AF_LINK;
2103 sdl.sdl_index = m->m_pkthdr.rcvif ?
2104 m->m_pkthdr.rcvif->if_index : 0;
2105 sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0;
2106 *mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len,
2107 IP_RECVIF, IPPROTO_IP);
2108 if (*mp)
2109 mp = &(*mp)->m_next;
2110 }
2111 }
2112
2113 /*
2114 * sysctl helper routine for net.inet.ip.mtudisctimeout. checks the
2115 * range of the new value and tweaks timers if it changes.
2116 */
2117 static int
2118 sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
2119 {
2120 int error, tmp;
2121 struct sysctlnode node;
2122
2123 node = *rnode;
2124 tmp = ip_mtudisc_timeout;
2125 node.sysctl_data = &tmp;
2126 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2127 if (error || newp == NULL)
2128 return (error);
2129 if (tmp < 0)
2130 return (EINVAL);
2131
2132 ip_mtudisc_timeout = tmp;
2133 rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
2134
2135 return (0);
2136 }
2137
2138 #ifdef GATEWAY
2139 /*
2140 * sysctl helper routine for net.inet.ip.maxflows. apparently if
2141 * maxflows is even looked up, we "reap flows".
2142 */
2143 static int
2144 sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
2145 {
2146 int s;
2147
2148 s = sysctl_lookup(SYSCTLFN_CALL(rnode));
2149 if (s)
2150 return (s);
2151
2152 s = splsoftnet();
2153 ipflow_reap(0);
2154 splx(s);
2155
2156 return (0);
2157 }
2158 #endif /* GATEWAY */
2159
2160
2161 SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
2162 {
2163 extern int subnetsarelocal, hostzeroisbroadcast;
2164
2165 sysctl_createv(clog, 0, NULL, NULL,
2166 CTLFLAG_PERMANENT,
2167 CTLTYPE_NODE, "net", NULL,
2168 NULL, 0, NULL, 0,
2169 CTL_NET, CTL_EOL);
2170 sysctl_createv(clog, 0, NULL, NULL,
2171 CTLFLAG_PERMANENT,
2172 CTLTYPE_NODE, "inet", NULL,
2173 NULL, 0, NULL, 0,
2174 CTL_NET, PF_INET, CTL_EOL);
2175 sysctl_createv(clog, 0, NULL, NULL,
2176 CTLFLAG_PERMANENT,
2177 CTLTYPE_NODE, "ip", NULL,
2178 NULL, 0, NULL, 0,
2179 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2180
2181 sysctl_createv(clog, 0, NULL, NULL,
2182 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2183 CTLTYPE_INT, "forwarding", NULL,
2184 NULL, 0, &ipforwarding, 0,
2185 CTL_NET, PF_INET, IPPROTO_IP,
2186 IPCTL_FORWARDING, CTL_EOL);
2187 sysctl_createv(clog, 0, NULL, NULL,
2188 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2189 CTLTYPE_INT, "redirect", NULL,
2190 NULL, 0, &ipsendredirects, 0,
2191 CTL_NET, PF_INET, IPPROTO_IP,
2192 IPCTL_SENDREDIRECTS, CTL_EOL);
2193 sysctl_createv(clog, 0, NULL, NULL,
2194 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2195 CTLTYPE_INT, "ttl", NULL,
2196 NULL, 0, &ip_defttl, 0,
2197 CTL_NET, PF_INET, IPPROTO_IP,
2198 IPCTL_DEFTTL, CTL_EOL);
2199 #ifdef IPCTL_DEFMTU
2200 sysctl_createv(clog, 0, NULL, NULL,
2201 CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
2202 CTLTYPE_INT, "mtu", NULL,
2203 NULL, 0, &ip_mtu, 0,
2204 CTL_NET, PF_INET, IPPROTO_IP,
2205 IPCTL_DEFMTU, CTL_EOL);
2206 #endif /* IPCTL_DEFMTU */
2207 sysctl_createv(clog, 0, NULL, NULL,
2208 CTLFLAG_PERMANENT|CTLFLAG_READONLY1,
2209 CTLTYPE_INT, "forwsrcrt", NULL,
2210 NULL, 0, &ip_forwsrcrt, 0,
2211 CTL_NET, PF_INET, IPPROTO_IP,
2212 IPCTL_FORWSRCRT, CTL_EOL);
2213 sysctl_createv(clog, 0, NULL, NULL,
2214 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2215 CTLTYPE_INT, "directed-broadcast", NULL,
2216 NULL, 0, &ip_directedbcast, 0,
2217 CTL_NET, PF_INET, IPPROTO_IP,
2218 IPCTL_DIRECTEDBCAST, CTL_EOL);
2219 sysctl_createv(clog, 0, NULL, NULL,
2220 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2221 CTLTYPE_INT, "allowsrcrt", NULL,
2222 NULL, 0, &ip_allowsrcrt, 0,
2223 CTL_NET, PF_INET, IPPROTO_IP,
2224 IPCTL_ALLOWSRCRT, CTL_EOL);
2225 sysctl_createv(clog, 0, NULL, NULL,
2226 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2227 CTLTYPE_INT, "subnetsarelocal", NULL,
2228 NULL, 0, &subnetsarelocal, 0,
2229 CTL_NET, PF_INET, IPPROTO_IP,
2230 IPCTL_SUBNETSARELOCAL, CTL_EOL);
2231 sysctl_createv(clog, 0, NULL, NULL,
2232 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2233 CTLTYPE_INT, "mtudisc", NULL,
2234 NULL, 0, &ip_mtudisc, 0,
2235 CTL_NET, PF_INET, IPPROTO_IP,
2236 IPCTL_MTUDISC, CTL_EOL);
2237 sysctl_createv(clog, 0, NULL, NULL,
2238 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2239 CTLTYPE_INT, "anonportmin", NULL,
2240 sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
2241 CTL_NET, PF_INET, IPPROTO_IP,
2242 IPCTL_ANONPORTMIN, CTL_EOL);
2243 sysctl_createv(clog, 0, NULL, NULL,
2244 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2245 CTLTYPE_INT, "anonportmax", NULL,
2246 sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
2247 CTL_NET, PF_INET, IPPROTO_IP,
2248 IPCTL_ANONPORTMAX, CTL_EOL);
2249 sysctl_createv(clog, 0, NULL, NULL,
2250 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2251 CTLTYPE_INT, "mtudisctimeout", NULL,
2252 sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
2253 CTL_NET, PF_INET, IPPROTO_IP,
2254 IPCTL_MTUDISCTIMEOUT, CTL_EOL);
2255 #ifdef GATEWAY
2256 sysctl_createv(clog, 0, NULL, NULL,
2257 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2258 CTLTYPE_INT, "maxflows", NULL,
2259 sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
2260 CTL_NET, PF_INET, IPPROTO_IP,
2261 IPCTL_MAXFLOWS, CTL_EOL);
2262 #endif /* GATEWAY */
2263 sysctl_createv(clog, 0, NULL, NULL,
2264 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2265 CTLTYPE_INT, "hostzerobroadcast", NULL,
2266 NULL, 0, &hostzeroisbroadcast, 0,
2267 CTL_NET, PF_INET, IPPROTO_IP,
2268 IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2269 #if NGIF > 0
2270 sysctl_createv(clog, 0, NULL, NULL,
2271 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2272 CTLTYPE_INT, "gifttl", NULL,
2273 NULL, 0, &ip_gif_ttl, 0,
2274 CTL_NET, PF_INET, IPPROTO_IP,
2275 IPCTL_GIF_TTL, CTL_EOL);
2276 #endif /* NGIF */
2277 #ifndef IPNOPRIVPORTS
2278 sysctl_createv(clog, 0, NULL, NULL,
2279 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2280 CTLTYPE_INT, "lowportmin", NULL,
2281 sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
2282 CTL_NET, PF_INET, IPPROTO_IP,
2283 IPCTL_LOWPORTMIN, CTL_EOL);
2284 sysctl_createv(clog, 0, NULL, NULL,
2285 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2286 CTLTYPE_INT, "lowportmax", NULL,
2287 sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
2288 CTL_NET, PF_INET, IPPROTO_IP,
2289 IPCTL_LOWPORTMAX, CTL_EOL);
2290 #endif /* IPNOPRIVPORTS */
2291 sysctl_createv(clog, 0, NULL, NULL,
2292 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2293 CTLTYPE_INT, "maxfragpackets", NULL,
2294 NULL, 0, &ip_maxfragpackets, 0,
2295 CTL_NET, PF_INET, IPPROTO_IP,
2296 IPCTL_MAXFRAGPACKETS, CTL_EOL);
2297 #if NGRE > 0
2298 sysctl_createv(clog, 0, NULL, NULL,
2299 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2300 CTLTYPE_INT, "grettl", NULL,
2301 NULL, 0, &ip_gre_ttl, 0,
2302 CTL_NET, PF_INET, IPPROTO_IP,
2303 IPCTL_GRE_TTL, CTL_EOL);
2304 #endif /* NGRE */
2305 sysctl_createv(clog, 0, NULL, NULL,
2306 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2307 CTLTYPE_INT, "checkinterface", NULL,
2308 NULL, 0, &ip_checkinterface, 0,
2309 CTL_NET, PF_INET, IPPROTO_IP,
2310 IPCTL_CHECKINTERFACE, CTL_EOL);
2311 sysctl_createv(clog, 0, NULL, NULL,
2312 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2313 CTLTYPE_INT, "random_id", NULL,
2314 NULL, 0, &ip_do_randomid, 0,
2315 CTL_NET, PF_INET, IPPROTO_IP,
2316 IPCTL_RANDOMID, CTL_EOL);
2317 }
2318