Home | History | Annotate | Line # | Download | only in netinet
ip_input.c revision 1.204
      1 /*	$NetBSD: ip_input.c,v 1.204 2004/09/29 21:28:34 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1993
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.204 2004/09/29 21:28:34 christos Exp $");
    102 
    103 #include "opt_inet.h"
    104 #include "opt_gateway.h"
    105 #include "opt_pfil_hooks.h"
    106 #include "opt_ipsec.h"
    107 #include "opt_mrouting.h"
    108 #include "opt_mbuftrace.h"
    109 #include "opt_inet_csum.h"
    110 
    111 #include <sys/param.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/domain.h>
    116 #include <sys/protosw.h>
    117 #include <sys/socket.h>
    118 #include <sys/socketvar.h>
    119 #include <sys/errno.h>
    120 #include <sys/time.h>
    121 #include <sys/kernel.h>
    122 #include <sys/pool.h>
    123 #include <sys/sysctl.h>
    124 
    125 #include <net/if.h>
    126 #include <net/if_dl.h>
    127 #include <net/route.h>
    128 #include <net/pfil.h>
    129 
    130 #include <netinet/in.h>
    131 #include <netinet/in_systm.h>
    132 #include <netinet/ip.h>
    133 #include <netinet/in_pcb.h>
    134 #include <netinet/in_var.h>
    135 #include <netinet/ip_var.h>
    136 #include <netinet/ip_icmp.h>
    137 /* just for gif_ttl */
    138 #include <netinet/in_gif.h>
    139 #include "gif.h"
    140 #include <net/if_gre.h>
    141 #include "gre.h"
    142 
    143 #ifdef MROUTING
    144 #include <netinet/ip_mroute.h>
    145 #endif
    146 
    147 #ifdef IPSEC
    148 #include <netinet6/ipsec.h>
    149 #include <netkey/key.h>
    150 #endif
    151 #ifdef FAST_IPSEC
    152 #include <netipsec/ipsec.h>
    153 #include <netipsec/key.h>
    154 #endif	/* FAST_IPSEC*/
    155 
    156 #ifndef	IPFORWARDING
    157 #ifdef GATEWAY
    158 #define	IPFORWARDING	1	/* forward IP packets not for us */
    159 #else /* GATEWAY */
    160 #define	IPFORWARDING	0	/* don't forward IP packets not for us */
    161 #endif /* GATEWAY */
    162 #endif /* IPFORWARDING */
    163 #ifndef	IPSENDREDIRECTS
    164 #define	IPSENDREDIRECTS	1
    165 #endif
    166 #ifndef IPFORWSRCRT
    167 #define	IPFORWSRCRT	1	/* forward source-routed packets */
    168 #endif
    169 #ifndef IPALLOWSRCRT
    170 #define	IPALLOWSRCRT	1	/* allow source-routed packets */
    171 #endif
    172 #ifndef IPMTUDISC
    173 #define IPMTUDISC	1
    174 #endif
    175 #ifndef IPMTUDISCTIMEOUT
    176 #define IPMTUDISCTIMEOUT (10 * 60)	/* as per RFC 1191 */
    177 #endif
    178 
    179 /*
    180  * Note: DIRECTED_BROADCAST is handled this way so that previous
    181  * configuration using this option will Just Work.
    182  */
    183 #ifndef IPDIRECTEDBCAST
    184 #ifdef DIRECTED_BROADCAST
    185 #define IPDIRECTEDBCAST	1
    186 #else
    187 #define	IPDIRECTEDBCAST	0
    188 #endif /* DIRECTED_BROADCAST */
    189 #endif /* IPDIRECTEDBCAST */
    190 int	ipforwarding = IPFORWARDING;
    191 int	ipsendredirects = IPSENDREDIRECTS;
    192 int	ip_defttl = IPDEFTTL;
    193 int	ip_forwsrcrt = IPFORWSRCRT;
    194 int	ip_directedbcast = IPDIRECTEDBCAST;
    195 int	ip_allowsrcrt = IPALLOWSRCRT;
    196 int	ip_mtudisc = IPMTUDISC;
    197 int	ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
    198 #ifdef DIAGNOSTIC
    199 int	ipprintfs = 0;
    200 #endif
    201 
    202 int	ip_do_randomid = 0;
    203 
    204 /*
    205  * XXX - Setting ip_checkinterface mostly implements the receive side of
    206  * the Strong ES model described in RFC 1122, but since the routing table
    207  * and transmit implementation do not implement the Strong ES model,
    208  * setting this to 1 results in an odd hybrid.
    209  *
    210  * XXX - ip_checkinterface currently must be disabled if you use ipnat
    211  * to translate the destination address to another local interface.
    212  *
    213  * XXX - ip_checkinterface must be disabled if you add IP aliases
    214  * to the loopback interface instead of the interface where the
    215  * packets for those addresses are received.
    216  */
    217 int	ip_checkinterface = 0;
    218 
    219 
    220 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
    221 
    222 int	ipqmaxlen = IFQ_MAXLEN;
    223 u_long	in_ifaddrhash;				/* size of hash table - 1 */
    224 int	in_ifaddrentries;			/* total number of addrs */
    225 struct in_ifaddrhead in_ifaddrhead;
    226 struct	in_ifaddrhashhead *in_ifaddrhashtbl;
    227 u_long	in_multihash;				/* size of hash table - 1 */
    228 int	in_multientries;			/* total number of addrs */
    229 struct	in_multihashhead *in_multihashtbl;
    230 struct	ifqueue ipintrq;
    231 struct	ipstat	ipstat;
    232 uint16_t ip_id;
    233 
    234 #ifdef PFIL_HOOKS
    235 struct pfil_head inet_pfil_hook;
    236 #endif
    237 
    238 /*
    239  * Cached copy of nmbclusters. If nbclusters is different,
    240  * recalculate IP parameters derived from nmbclusters.
    241  */
    242 static int	ip_nmbclusters;			/* copy of nmbclusters */
    243 static void	ip_nmbclusters_changed __P((void));	/* recalc limits */
    244 
    245 #define CHECK_NMBCLUSTER_PARAMS()				\
    246 do {								\
    247 	if (__predict_false(ip_nmbclusters != nmbclusters))	\
    248 		ip_nmbclusters_changed();			\
    249 } while (/*CONSTCOND*/0)
    250 
    251 /* IP datagram reassembly queues (hashed) */
    252 #define IPREASS_NHASH_LOG2      6
    253 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
    254 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
    255 #define IPREASS_HASH(x,y) \
    256 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
    257 struct ipqhead ipq[IPREASS_NHASH];
    258 int	ipq_locked;
    259 static int	ip_nfragpackets;	/* packets in reass queue */
    260 static int	ip_nfrags;		/* total fragments in reass queues */
    261 
    262 int	ip_maxfragpackets = 200;	/* limit on packets. XXX sysctl */
    263 int	ip_maxfrags;		        /* limit on fragments. XXX sysctl */
    264 
    265 
    266 /*
    267  * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
    268  * IP reassembly queue buffer managment.
    269  *
    270  * We keep a count of total IP fragments (NB: not fragmented packets!)
    271  * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
    272  * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
    273  * total fragments in  reassembly queues.This AIMD policy avoids
    274  * repeatedly deleting single packets under heavy fragmentation load
    275  * (e.g., from lossy NFS peers).
    276  */
    277 static u_int	ip_reass_ttl_decr __P((u_int ticks));
    278 static void	ip_reass_drophalf __P((void));
    279 
    280 
    281 static __inline int ipq_lock_try __P((void));
    282 static __inline void ipq_unlock __P((void));
    283 
    284 static __inline int
    285 ipq_lock_try()
    286 {
    287 	int s;
    288 
    289 	/*
    290 	 * Use splvm() -- we're blocking things that would cause
    291 	 * mbuf allocation.
    292 	 */
    293 	s = splvm();
    294 	if (ipq_locked) {
    295 		splx(s);
    296 		return (0);
    297 	}
    298 	ipq_locked = 1;
    299 	splx(s);
    300 	return (1);
    301 }
    302 
    303 static __inline void
    304 ipq_unlock()
    305 {
    306 	int s;
    307 
    308 	s = splvm();
    309 	ipq_locked = 0;
    310 	splx(s);
    311 }
    312 
    313 #ifdef DIAGNOSTIC
    314 #define	IPQ_LOCK()							\
    315 do {									\
    316 	if (ipq_lock_try() == 0) {					\
    317 		printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
    318 		panic("ipq_lock");					\
    319 	}								\
    320 } while (/*CONSTCOND*/ 0)
    321 #define	IPQ_LOCK_CHECK()						\
    322 do {									\
    323 	if (ipq_locked == 0) {						\
    324 		printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
    325 		panic("ipq lock check");				\
    326 	}								\
    327 } while (/*CONSTCOND*/ 0)
    328 #else
    329 #define	IPQ_LOCK()		(void) ipq_lock_try()
    330 #define	IPQ_LOCK_CHECK()	/* nothing */
    331 #endif
    332 
    333 #define	IPQ_UNLOCK()		ipq_unlock()
    334 
    335 POOL_INIT(inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", NULL);
    336 POOL_INIT(ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl", NULL);
    337 
    338 #ifdef INET_CSUM_COUNTERS
    339 #include <sys/device.h>
    340 
    341 struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    342     NULL, "inet", "hwcsum bad");
    343 struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    344     NULL, "inet", "hwcsum ok");
    345 struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    346     NULL, "inet", "swcsum");
    347 
    348 #define	INET_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    349 
    350 EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
    351 EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
    352 EVCNT_ATTACH_STATIC(ip_swcsum);
    353 
    354 #else
    355 
    356 #define	INET_CSUM_COUNTER_INCR(ev)	/* nothing */
    357 
    358 #endif /* INET_CSUM_COUNTERS */
    359 
    360 /*
    361  * We need to save the IP options in case a protocol wants to respond
    362  * to an incoming packet over the same route if the packet got here
    363  * using IP source routing.  This allows connection establishment and
    364  * maintenance when the remote end is on a network that is not known
    365  * to us.
    366  */
    367 int	ip_nhops = 0;
    368 static	struct ip_srcrt {
    369 	struct	in_addr dst;			/* final destination */
    370 	char	nop;				/* one NOP to align */
    371 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
    372 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
    373 } ip_srcrt;
    374 
    375 static void save_rte __P((u_char *, struct in_addr));
    376 
    377 #ifdef MBUFTRACE
    378 struct mowner ip_rx_mowner = { "internet", "rx" };
    379 struct mowner ip_tx_mowner = { "internet", "tx" };
    380 #endif
    381 
    382 /*
    383  * Compute IP limits derived from the value of nmbclusters.
    384  */
    385 static void
    386 ip_nmbclusters_changed(void)
    387 {
    388 	ip_maxfrags = nmbclusters / 4;
    389 	ip_nmbclusters =  nmbclusters;
    390 }
    391 
    392 /*
    393  * IP initialization: fill in IP protocol switch table.
    394  * All protocols not implemented in kernel go to raw IP protocol handler.
    395  */
    396 void
    397 ip_init()
    398 {
    399 	const struct protosw *pr;
    400 	int i;
    401 
    402 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
    403 	if (pr == 0)
    404 		panic("ip_init");
    405 	for (i = 0; i < IPPROTO_MAX; i++)
    406 		ip_protox[i] = pr - inetsw;
    407 	for (pr = inetdomain.dom_protosw;
    408 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
    409 		if (pr->pr_domain->dom_family == PF_INET &&
    410 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
    411 			ip_protox[pr->pr_protocol] = pr - inetsw;
    412 
    413 	for (i = 0; i < IPREASS_NHASH; i++)
    414 	    	LIST_INIT(&ipq[i]);
    415 
    416 	ip_id = time.tv_sec & 0xfffff;
    417 
    418 	ipintrq.ifq_maxlen = ipqmaxlen;
    419 	ip_nmbclusters_changed();
    420 
    421 	TAILQ_INIT(&in_ifaddrhead);
    422 	in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IFADDR,
    423 	    M_WAITOK, &in_ifaddrhash);
    424 	in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IPMADDR,
    425 	    M_WAITOK, &in_multihash);
    426 	ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
    427 #ifdef GATEWAY
    428 	ipflow_init();
    429 #endif
    430 
    431 #ifdef PFIL_HOOKS
    432 	/* Register our Packet Filter hook. */
    433 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
    434 	inet_pfil_hook.ph_af   = AF_INET;
    435 	i = pfil_head_register(&inet_pfil_hook);
    436 	if (i != 0)
    437 		printf("ip_init: WARNING: unable to register pfil hook, "
    438 		    "error %d\n", i);
    439 #endif /* PFIL_HOOKS */
    440 
    441 #ifdef MBUFTRACE
    442 	MOWNER_ATTACH(&ip_tx_mowner);
    443 	MOWNER_ATTACH(&ip_rx_mowner);
    444 #endif /* MBUFTRACE */
    445 }
    446 
    447 struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
    448 struct	route ipforward_rt;
    449 
    450 /*
    451  * IP software interrupt routine
    452  */
    453 void
    454 ipintr()
    455 {
    456 	int s;
    457 	struct mbuf *m;
    458 
    459 	while (1) {
    460 		s = splnet();
    461 		IF_DEQUEUE(&ipintrq, m);
    462 		splx(s);
    463 		if (m == 0)
    464 			return;
    465 		MCLAIM(m, &ip_rx_mowner);
    466 		ip_input(m);
    467 	}
    468 }
    469 
    470 /*
    471  * Ip input routine.  Checksum and byte swap header.  If fragmented
    472  * try to reassemble.  Process options.  Pass to next level.
    473  */
    474 void
    475 ip_input(struct mbuf *m)
    476 {
    477 	struct ip *ip = NULL;
    478 	struct ipq *fp;
    479 	struct in_ifaddr *ia;
    480 	struct ifaddr *ifa;
    481 	struct ipqent *ipqe;
    482 	int hlen = 0, mff, len;
    483 	int downmatch;
    484 	int checkif;
    485 	int srcrt = 0;
    486 	u_int hash;
    487 #ifdef FAST_IPSEC
    488 	struct m_tag *mtag;
    489 	struct tdb_ident *tdbi;
    490 	struct secpolicy *sp;
    491 	int s, error;
    492 #endif /* FAST_IPSEC */
    493 
    494 	MCLAIM(m, &ip_rx_mowner);
    495 #ifdef	DIAGNOSTIC
    496 	if ((m->m_flags & M_PKTHDR) == 0)
    497 		panic("ipintr no HDR");
    498 #endif
    499 
    500 	/*
    501 	 * If no IP addresses have been set yet but the interfaces
    502 	 * are receiving, can't do anything with incoming packets yet.
    503 	 */
    504 	if (TAILQ_FIRST(&in_ifaddrhead) == 0)
    505 		goto bad;
    506 	ipstat.ips_total++;
    507 	/*
    508 	 * If the IP header is not aligned, slurp it up into a new
    509 	 * mbuf with space for link headers, in the event we forward
    510 	 * it.  Otherwise, if it is aligned, make sure the entire
    511 	 * base IP header is in the first mbuf of the chain.
    512 	 */
    513 	if (IP_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) {
    514 		if ((m = m_copyup(m, sizeof(struct ip),
    515 				  (max_linkhdr + 3) & ~3)) == NULL) {
    516 			/* XXXJRT new stat, please */
    517 			ipstat.ips_toosmall++;
    518 			return;
    519 		}
    520 	} else if (__predict_false(m->m_len < sizeof (struct ip))) {
    521 		if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
    522 			ipstat.ips_toosmall++;
    523 			return;
    524 		}
    525 	}
    526 	ip = mtod(m, struct ip *);
    527 	if (ip->ip_v != IPVERSION) {
    528 		ipstat.ips_badvers++;
    529 		goto bad;
    530 	}
    531 	hlen = ip->ip_hl << 2;
    532 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
    533 		ipstat.ips_badhlen++;
    534 		goto bad;
    535 	}
    536 	if (hlen > m->m_len) {
    537 		if ((m = m_pullup(m, hlen)) == 0) {
    538 			ipstat.ips_badhlen++;
    539 			return;
    540 		}
    541 		ip = mtod(m, struct ip *);
    542 	}
    543 
    544 	/*
    545 	 * RFC1122: packets with a multicast source address are
    546 	 * not allowed.
    547 	 */
    548 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    549 		ipstat.ips_badaddr++;
    550 		goto bad;
    551 	}
    552 
    553 	/* 127/8 must not appear on wire - RFC1122 */
    554 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
    555 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
    556 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
    557 			ipstat.ips_badaddr++;
    558 			goto bad;
    559 		}
    560 	}
    561 
    562 	switch (m->m_pkthdr.csum_flags &
    563 		((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
    564 		 M_CSUM_IPv4_BAD)) {
    565 	case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
    566 		INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
    567 		goto badcsum;
    568 
    569 	case M_CSUM_IPv4:
    570 		/* Checksum was okay. */
    571 		INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
    572 		break;
    573 
    574 	default:
    575 		/* Must compute it ourselves. */
    576 		INET_CSUM_COUNTER_INCR(&ip_swcsum);
    577 		if (in_cksum(m, hlen) != 0)
    578 			goto badcsum;
    579 		break;
    580 	}
    581 
    582 	/* Retrieve the packet length. */
    583 	len = ntohs(ip->ip_len);
    584 
    585 	/*
    586 	 * Check for additional length bogosity
    587 	 */
    588 	if (len < hlen) {
    589 	 	ipstat.ips_badlen++;
    590 		goto bad;
    591 	}
    592 
    593 	/*
    594 	 * Check that the amount of data in the buffers
    595 	 * is as at least much as the IP header would have us expect.
    596 	 * Trim mbufs if longer than we expect.
    597 	 * Drop packet if shorter than we expect.
    598 	 */
    599 	if (m->m_pkthdr.len < len) {
    600 		ipstat.ips_tooshort++;
    601 		goto bad;
    602 	}
    603 	if (m->m_pkthdr.len > len) {
    604 		if (m->m_len == m->m_pkthdr.len) {
    605 			m->m_len = len;
    606 			m->m_pkthdr.len = len;
    607 		} else
    608 			m_adj(m, len - m->m_pkthdr.len);
    609 	}
    610 
    611 #if defined(IPSEC)
    612 	/* ipflow (IP fast forwarding) is not compatible with IPsec. */
    613 	m->m_flags &= ~M_CANFASTFWD;
    614 #else
    615 	/*
    616 	 * Assume that we can create a fast-forward IP flow entry
    617 	 * based on this packet.
    618 	 */
    619 	m->m_flags |= M_CANFASTFWD;
    620 #endif
    621 
    622 #ifdef PFIL_HOOKS
    623 	/*
    624 	 * Run through list of hooks for input packets.  If there are any
    625 	 * filters which require that additional packets in the flow are
    626 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
    627 	 * Note that filters must _never_ set this flag, as another filter
    628 	 * in the list may have previously cleared it.
    629 	 */
    630 	/*
    631 	 * let ipfilter look at packet on the wire,
    632 	 * not the decapsulated packet.
    633 	 */
    634 #ifdef IPSEC
    635 	if (!ipsec_getnhist(m))
    636 #elif defined(FAST_IPSEC)
    637 	if (!ipsec_indone(m))
    638 #else
    639 	if (1)
    640 #endif
    641 	{
    642 		struct in_addr odst;
    643 
    644 		odst = ip->ip_dst;
    645 		if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
    646 		    PFIL_IN) != 0)
    647 			return;
    648 		if (m == NULL)
    649 			return;
    650 		ip = mtod(m, struct ip *);
    651 		hlen = ip->ip_hl << 2;
    652 		srcrt = (odst.s_addr != ip->ip_dst.s_addr);
    653 	}
    654 #endif /* PFIL_HOOKS */
    655 
    656 #ifdef ALTQ
    657 	/* XXX Temporary until ALTQ is changed to use a pfil hook */
    658 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
    659 		/* packet dropped by traffic conditioner */
    660 		return;
    661 	}
    662 #endif
    663 
    664 	/*
    665 	 * Process options and, if not destined for us,
    666 	 * ship it on.  ip_dooptions returns 1 when an
    667 	 * error was detected (causing an icmp message
    668 	 * to be sent and the original packet to be freed).
    669 	 */
    670 	ip_nhops = 0;		/* for source routed packets */
    671 	if (hlen > sizeof (struct ip) && ip_dooptions(m))
    672 		return;
    673 
    674 	/*
    675 	 * Enable a consistency check between the destination address
    676 	 * and the arrival interface for a unicast packet (the RFC 1122
    677 	 * strong ES model) if IP forwarding is disabled and the packet
    678 	 * is not locally generated.
    679 	 *
    680 	 * XXX - Checking also should be disabled if the destination
    681 	 * address is ipnat'ed to a different interface.
    682 	 *
    683 	 * XXX - Checking is incompatible with IP aliases added
    684 	 * to the loopback interface instead of the interface where
    685 	 * the packets are received.
    686 	 *
    687 	 * XXX - We need to add a per ifaddr flag for this so that
    688 	 * we get finer grain control.
    689 	 */
    690 	checkif = ip_checkinterface && (ipforwarding == 0) &&
    691 	    (m->m_pkthdr.rcvif != NULL) &&
    692 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
    693 
    694 	/*
    695 	 * Check our list of addresses, to see if the packet is for us.
    696 	 *
    697 	 * Traditional 4.4BSD did not consult IFF_UP at all.
    698 	 * The behavior here is to treat addresses on !IFF_UP interface
    699 	 * as not mine.
    700 	 */
    701 	downmatch = 0;
    702 	LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
    703 		if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
    704 			if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
    705 				continue;
    706 			if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
    707 				break;
    708 			else
    709 				downmatch++;
    710 		}
    711 	}
    712 	if (ia != NULL)
    713 		goto ours;
    714 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
    715 		TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrlist, ifa_list) {
    716 			if (ifa->ifa_addr->sa_family != AF_INET)
    717 				continue;
    718 			ia = ifatoia(ifa);
    719 			if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
    720 			    in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
    721 			    /*
    722 			     * Look for all-0's host part (old broadcast addr),
    723 			     * either for subnet or net.
    724 			     */
    725 			    ip->ip_dst.s_addr == ia->ia_subnet ||
    726 			    ip->ip_dst.s_addr == ia->ia_net)
    727 				goto ours;
    728 			/*
    729 			 * An interface with IP address zero accepts
    730 			 * all packets that arrive on that interface.
    731 			 */
    732 			if (in_nullhost(ia->ia_addr.sin_addr))
    733 				goto ours;
    734 		}
    735 	}
    736 	if (IN_MULTICAST(ip->ip_dst.s_addr)) {
    737 		struct in_multi *inm;
    738 #ifdef MROUTING
    739 		extern struct socket *ip_mrouter;
    740 
    741 		if (ip_mrouter) {
    742 			/*
    743 			 * If we are acting as a multicast router, all
    744 			 * incoming multicast packets are passed to the
    745 			 * kernel-level multicast forwarding function.
    746 			 * The packet is returned (relatively) intact; if
    747 			 * ip_mforward() returns a non-zero value, the packet
    748 			 * must be discarded, else it may be accepted below.
    749 			 *
    750 			 * (The IP ident field is put in the same byte order
    751 			 * as expected when ip_mforward() is called from
    752 			 * ip_output().)
    753 			 */
    754 			if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
    755 				ipstat.ips_cantforward++;
    756 				m_freem(m);
    757 				return;
    758 			}
    759 
    760 			/*
    761 			 * The process-level routing demon needs to receive
    762 			 * all multicast IGMP packets, whether or not this
    763 			 * host belongs to their destination groups.
    764 			 */
    765 			if (ip->ip_p == IPPROTO_IGMP)
    766 				goto ours;
    767 			ipstat.ips_forward++;
    768 		}
    769 #endif
    770 		/*
    771 		 * See if we belong to the destination multicast group on the
    772 		 * arrival interface.
    773 		 */
    774 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
    775 		if (inm == NULL) {
    776 			ipstat.ips_cantforward++;
    777 			m_freem(m);
    778 			return;
    779 		}
    780 		goto ours;
    781 	}
    782 	if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
    783 	    in_nullhost(ip->ip_dst))
    784 		goto ours;
    785 
    786 	/*
    787 	 * Not for us; forward if possible and desirable.
    788 	 */
    789 	if (ipforwarding == 0) {
    790 		ipstat.ips_cantforward++;
    791 		m_freem(m);
    792 	} else {
    793 		/*
    794 		 * If ip_dst matched any of my address on !IFF_UP interface,
    795 		 * and there's no IFF_UP interface that matches ip_dst,
    796 		 * send icmp unreach.  Forwarding it will result in in-kernel
    797 		 * forwarding loop till TTL goes to 0.
    798 		 */
    799 		if (downmatch) {
    800 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
    801 			ipstat.ips_cantforward++;
    802 			return;
    803 		}
    804 #ifdef IPSEC
    805 		if (ipsec4_in_reject(m, NULL)) {
    806 			ipsecstat.in_polvio++;
    807 			goto bad;
    808 		}
    809 #endif
    810 #ifdef FAST_IPSEC
    811 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
    812 		s = splsoftnet();
    813 		if (mtag != NULL) {
    814 			tdbi = (struct tdb_ident *)(mtag + 1);
    815 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
    816 		} else {
    817 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
    818 						   IP_FORWARDING, &error);
    819 		}
    820 		if (sp == NULL) {	/* NB: can happen if error */
    821 			splx(s);
    822 			/*XXX error stat???*/
    823 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
    824 			goto bad;
    825 		}
    826 
    827 		/*
    828 		 * Check security policy against packet attributes.
    829 		 */
    830 		error = ipsec_in_reject(sp, m);
    831 		KEY_FREESP(&sp);
    832 		splx(s);
    833 		if (error) {
    834 			ipstat.ips_cantforward++;
    835 			goto bad;
    836 		}
    837 
    838 		/*
    839 		 * Peek at the outbound SP for this packet to determine if
    840 		 * it's a Fast Forward candidate.
    841 		 */
    842 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
    843 		if (mtag != NULL)
    844 			m->m_flags &= ~M_CANFASTFWD;
    845 		else {
    846 			s = splsoftnet();
    847 			sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
    848 			    (IP_FORWARDING |
    849 			     (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
    850 			    &error, NULL);
    851 			if (sp != NULL) {
    852 				m->m_flags &= ~M_CANFASTFWD;
    853 				KEY_FREESP(&sp);
    854 			}
    855 			splx(s);
    856 		}
    857 #endif	/* FAST_IPSEC */
    858 
    859 		ip_forward(m, srcrt);
    860 	}
    861 	return;
    862 
    863 ours:
    864 	/*
    865 	 * If offset or IP_MF are set, must reassemble.
    866 	 * Otherwise, nothing need be done.
    867 	 * (We could look in the reassembly queue to see
    868 	 * if the packet was previously fragmented,
    869 	 * but it's not worth the time; just let them time out.)
    870 	 */
    871 	if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
    872 
    873 		/*
    874 		 * Look for queue of fragments
    875 		 * of this datagram.
    876 		 */
    877 		IPQ_LOCK();
    878 		hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
    879 		/* XXX LIST_FOREACH(fp, &ipq[hash], ipq_q) */
    880 		for (fp = LIST_FIRST(&ipq[hash]); fp != NULL;
    881 		     fp = LIST_NEXT(fp, ipq_q)) {
    882 			if (ip->ip_id == fp->ipq_id &&
    883 			    in_hosteq(ip->ip_src, fp->ipq_src) &&
    884 			    in_hosteq(ip->ip_dst, fp->ipq_dst) &&
    885 			    ip->ip_p == fp->ipq_p)
    886 				goto found;
    887 
    888 		}
    889 		fp = 0;
    890 found:
    891 
    892 		/*
    893 		 * Adjust ip_len to not reflect header,
    894 		 * set ipqe_mff if more fragments are expected,
    895 		 * convert offset of this to bytes.
    896 		 */
    897 		ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
    898 		mff = (ip->ip_off & htons(IP_MF)) != 0;
    899 		if (mff) {
    900 		        /*
    901 		         * Make sure that fragments have a data length
    902 			 * that's a non-zero multiple of 8 bytes.
    903 		         */
    904 			if (ntohs(ip->ip_len) == 0 ||
    905 			    (ntohs(ip->ip_len) & 0x7) != 0) {
    906 				ipstat.ips_badfrags++;
    907 				IPQ_UNLOCK();
    908 				goto bad;
    909 			}
    910 		}
    911 		ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
    912 
    913 		/*
    914 		 * If datagram marked as having more fragments
    915 		 * or if this is not the first fragment,
    916 		 * attempt reassembly; if it succeeds, proceed.
    917 		 */
    918 		if (mff || ip->ip_off != htons(0)) {
    919 			ipstat.ips_fragments++;
    920 			ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
    921 			if (ipqe == NULL) {
    922 				ipstat.ips_rcvmemdrop++;
    923 				IPQ_UNLOCK();
    924 				goto bad;
    925 			}
    926 			ipqe->ipqe_mff = mff;
    927 			ipqe->ipqe_m = m;
    928 			ipqe->ipqe_ip = ip;
    929 			m = ip_reass(ipqe, fp, &ipq[hash]);
    930 			if (m == 0) {
    931 				IPQ_UNLOCK();
    932 				return;
    933 			}
    934 			ipstat.ips_reassembled++;
    935 			ip = mtod(m, struct ip *);
    936 			hlen = ip->ip_hl << 2;
    937 			ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
    938 		} else
    939 			if (fp)
    940 				ip_freef(fp);
    941 		IPQ_UNLOCK();
    942 	}
    943 
    944 #if defined(IPSEC)
    945 	/*
    946 	 * enforce IPsec policy checking if we are seeing last header.
    947 	 * note that we do not visit this with protocols with pcb layer
    948 	 * code - like udp/tcp/raw ip.
    949 	 */
    950 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
    951 	    ipsec4_in_reject(m, NULL)) {
    952 		ipsecstat.in_polvio++;
    953 		goto bad;
    954 	}
    955 #endif
    956 #if FAST_IPSEC
    957 	/*
    958 	 * enforce IPsec policy checking if we are seeing last header.
    959 	 * note that we do not visit this with protocols with pcb layer
    960 	 * code - like udp/tcp/raw ip.
    961 	 */
    962 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
    963 		/*
    964 		 * Check if the packet has already had IPsec processing
    965 		 * done.  If so, then just pass it along.  This tag gets
    966 		 * set during AH, ESP, etc. input handling, before the
    967 		 * packet is returned to the ip input queue for delivery.
    968 		 */
    969 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
    970 		s = splsoftnet();
    971 		if (mtag != NULL) {
    972 			tdbi = (struct tdb_ident *)(mtag + 1);
    973 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
    974 		} else {
    975 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
    976 						   IP_FORWARDING, &error);
    977 		}
    978 		if (sp != NULL) {
    979 			/*
    980 			 * Check security policy against packet attributes.
    981 			 */
    982 			error = ipsec_in_reject(sp, m);
    983 			KEY_FREESP(&sp);
    984 		} else {
    985 			/* XXX error stat??? */
    986 			error = EINVAL;
    987 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
    988 			goto bad;
    989 		}
    990 		splx(s);
    991 		if (error)
    992 			goto bad;
    993 	}
    994 #endif /* FAST_IPSEC */
    995 
    996 	/*
    997 	 * Switch out to protocol's input routine.
    998 	 */
    999 #if IFA_STATS
   1000 	if (ia && ip)
   1001 		ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
   1002 #endif
   1003 	ipstat.ips_delivered++;
   1004     {
   1005 	int off = hlen, nh = ip->ip_p;
   1006 
   1007 	(*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
   1008 	return;
   1009     }
   1010 bad:
   1011 	m_freem(m);
   1012 	return;
   1013 
   1014 badcsum:
   1015 	ipstat.ips_badsum++;
   1016 	m_freem(m);
   1017 }
   1018 
   1019 /*
   1020  * Take incoming datagram fragment and try to
   1021  * reassemble it into whole datagram.  If a chain for
   1022  * reassembly of this datagram already exists, then it
   1023  * is given as fp; otherwise have to make a chain.
   1024  */
   1025 struct mbuf *
   1026 ip_reass(ipqe, fp, ipqhead)
   1027 	struct ipqent *ipqe;
   1028 	struct ipq *fp;
   1029 	struct ipqhead *ipqhead;
   1030 {
   1031 	struct mbuf *m = ipqe->ipqe_m;
   1032 	struct ipqent *nq, *p, *q;
   1033 	struct ip *ip;
   1034 	struct mbuf *t;
   1035 	int hlen = ipqe->ipqe_ip->ip_hl << 2;
   1036 	int i, next;
   1037 
   1038 	IPQ_LOCK_CHECK();
   1039 
   1040 	/*
   1041 	 * Presence of header sizes in mbufs
   1042 	 * would confuse code below.
   1043 	 */
   1044 	m->m_data += hlen;
   1045 	m->m_len -= hlen;
   1046 
   1047 #ifdef	notyet
   1048 	/* make sure fragment limit is up-to-date */
   1049 	CHECK_NMBCLUSTER_PARAMS();
   1050 
   1051 	/* If we have too many fragments, drop the older half. */
   1052 	if (ip_nfrags >= ip_maxfrags)
   1053 		ip_reass_drophalf(void);
   1054 #endif
   1055 
   1056 	/*
   1057 	 * We are about to add a fragment; increment frag count.
   1058 	 */
   1059 	ip_nfrags++;
   1060 
   1061 	/*
   1062 	 * If first fragment to arrive, create a reassembly queue.
   1063 	 */
   1064 	if (fp == 0) {
   1065 		/*
   1066 		 * Enforce upper bound on number of fragmented packets
   1067 		 * for which we attempt reassembly;
   1068 		 * If maxfrag is 0, never accept fragments.
   1069 		 * If maxfrag is -1, accept all fragments without limitation.
   1070 		 */
   1071 		if (ip_maxfragpackets < 0)
   1072 			;
   1073 		else if (ip_nfragpackets >= ip_maxfragpackets)
   1074 			goto dropfrag;
   1075 		ip_nfragpackets++;
   1076 		MALLOC(fp, struct ipq *, sizeof (struct ipq),
   1077 		    M_FTABLE, M_NOWAIT);
   1078 		if (fp == NULL)
   1079 			goto dropfrag;
   1080 		LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
   1081 		fp->ipq_nfrags = 1;
   1082 		fp->ipq_ttl = IPFRAGTTL;
   1083 		fp->ipq_p = ipqe->ipqe_ip->ip_p;
   1084 		fp->ipq_id = ipqe->ipqe_ip->ip_id;
   1085 		TAILQ_INIT(&fp->ipq_fragq);
   1086 		fp->ipq_src = ipqe->ipqe_ip->ip_src;
   1087 		fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
   1088 		p = NULL;
   1089 		goto insert;
   1090 	} else {
   1091 		fp->ipq_nfrags++;
   1092 	}
   1093 
   1094 	/*
   1095 	 * Find a segment which begins after this one does.
   1096 	 */
   1097 	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
   1098 	    p = q, q = TAILQ_NEXT(q, ipqe_q))
   1099 		if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
   1100 			break;
   1101 
   1102 	/*
   1103 	 * If there is a preceding segment, it may provide some of
   1104 	 * our data already.  If so, drop the data from the incoming
   1105 	 * segment.  If it provides all of our data, drop us.
   1106 	 */
   1107 	if (p != NULL) {
   1108 		i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
   1109 		    ntohs(ipqe->ipqe_ip->ip_off);
   1110 		if (i > 0) {
   1111 			if (i >= ntohs(ipqe->ipqe_ip->ip_len))
   1112 				goto dropfrag;
   1113 			m_adj(ipqe->ipqe_m, i);
   1114 			ipqe->ipqe_ip->ip_off =
   1115 			    htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
   1116 			ipqe->ipqe_ip->ip_len =
   1117 			    htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
   1118 		}
   1119 	}
   1120 
   1121 	/*
   1122 	 * While we overlap succeeding segments trim them or,
   1123 	 * if they are completely covered, dequeue them.
   1124 	 */
   1125 	for (; q != NULL &&
   1126 	    ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
   1127 	    ntohs(q->ipqe_ip->ip_off); q = nq) {
   1128 		i = (ntohs(ipqe->ipqe_ip->ip_off) +
   1129 		    ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
   1130 		if (i < ntohs(q->ipqe_ip->ip_len)) {
   1131 			q->ipqe_ip->ip_len =
   1132 			    htons(ntohs(q->ipqe_ip->ip_len) - i);
   1133 			q->ipqe_ip->ip_off =
   1134 			    htons(ntohs(q->ipqe_ip->ip_off) + i);
   1135 			m_adj(q->ipqe_m, i);
   1136 			break;
   1137 		}
   1138 		nq = TAILQ_NEXT(q, ipqe_q);
   1139 		m_freem(q->ipqe_m);
   1140 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
   1141 		pool_put(&ipqent_pool, q);
   1142 		fp->ipq_nfrags--;
   1143 		ip_nfrags--;
   1144 	}
   1145 
   1146 insert:
   1147 	/*
   1148 	 * Stick new segment in its place;
   1149 	 * check for complete reassembly.
   1150 	 */
   1151 	if (p == NULL) {
   1152 		TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
   1153 	} else {
   1154 		TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
   1155 	}
   1156 	next = 0;
   1157 	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
   1158 	    p = q, q = TAILQ_NEXT(q, ipqe_q)) {
   1159 		if (ntohs(q->ipqe_ip->ip_off) != next)
   1160 			return (0);
   1161 		next += ntohs(q->ipqe_ip->ip_len);
   1162 	}
   1163 	if (p->ipqe_mff)
   1164 		return (0);
   1165 
   1166 	/*
   1167 	 * Reassembly is complete.  Check for a bogus message size and
   1168 	 * concatenate fragments.
   1169 	 */
   1170 	q = TAILQ_FIRST(&fp->ipq_fragq);
   1171 	ip = q->ipqe_ip;
   1172 	if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
   1173 		ipstat.ips_toolong++;
   1174 		ip_freef(fp);
   1175 		return (0);
   1176 	}
   1177 	m = q->ipqe_m;
   1178 	t = m->m_next;
   1179 	m->m_next = 0;
   1180 	m_cat(m, t);
   1181 	nq = TAILQ_NEXT(q, ipqe_q);
   1182 	pool_put(&ipqent_pool, q);
   1183 	for (q = nq; q != NULL; q = nq) {
   1184 		t = q->ipqe_m;
   1185 		nq = TAILQ_NEXT(q, ipqe_q);
   1186 		pool_put(&ipqent_pool, q);
   1187 		m_cat(m, t);
   1188 	}
   1189 	ip_nfrags -= fp->ipq_nfrags;
   1190 
   1191 	/*
   1192 	 * Create header for new ip packet by
   1193 	 * modifying header of first packet;
   1194 	 * dequeue and discard fragment reassembly header.
   1195 	 * Make header visible.
   1196 	 */
   1197 	ip->ip_len = htons(next);
   1198 	ip->ip_src = fp->ipq_src;
   1199 	ip->ip_dst = fp->ipq_dst;
   1200 	LIST_REMOVE(fp, ipq_q);
   1201 	FREE(fp, M_FTABLE);
   1202 	ip_nfragpackets--;
   1203 	m->m_len += (ip->ip_hl << 2);
   1204 	m->m_data -= (ip->ip_hl << 2);
   1205 	/* some debugging cruft by sklower, below, will go away soon */
   1206 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
   1207 		int plen = 0;
   1208 		for (t = m; t; t = t->m_next)
   1209 			plen += t->m_len;
   1210 		m->m_pkthdr.len = plen;
   1211 	}
   1212 	return (m);
   1213 
   1214 dropfrag:
   1215 	if (fp != 0)
   1216 		fp->ipq_nfrags--;
   1217 	ip_nfrags--;
   1218 	ipstat.ips_fragdropped++;
   1219 	m_freem(m);
   1220 	pool_put(&ipqent_pool, ipqe);
   1221 	return (0);
   1222 }
   1223 
   1224 /*
   1225  * Free a fragment reassembly header and all
   1226  * associated datagrams.
   1227  */
   1228 void
   1229 ip_freef(fp)
   1230 	struct ipq *fp;
   1231 {
   1232 	struct ipqent *q, *p;
   1233 	u_int nfrags = 0;
   1234 
   1235 	IPQ_LOCK_CHECK();
   1236 
   1237 	for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
   1238 		p = TAILQ_NEXT(q, ipqe_q);
   1239 		m_freem(q->ipqe_m);
   1240 		nfrags++;
   1241 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
   1242 		pool_put(&ipqent_pool, q);
   1243 	}
   1244 
   1245 	if (nfrags != fp->ipq_nfrags)
   1246 	    printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
   1247 	ip_nfrags -= nfrags;
   1248 	LIST_REMOVE(fp, ipq_q);
   1249 	FREE(fp, M_FTABLE);
   1250 	ip_nfragpackets--;
   1251 }
   1252 
   1253 /*
   1254  * IP reassembly TTL machinery for  multiplicative drop.
   1255  */
   1256 static u_int	fragttl_histo[(IPFRAGTTL+1)];
   1257 
   1258 
   1259 /*
   1260  * Decrement TTL of all reasembly queue entries by `ticks'.
   1261  * Count number of distinct fragments (as opposed to partial, fragmented
   1262  * datagrams) in the reassembly queue.  While we  traverse the entire
   1263  * reassembly queue, compute and return the median TTL over all fragments.
   1264  */
   1265 static u_int
   1266 ip_reass_ttl_decr(u_int ticks)
   1267 {
   1268 	u_int nfrags, median, dropfraction, keepfraction;
   1269 	struct ipq *fp, *nfp;
   1270 	int i;
   1271 
   1272 	nfrags = 0;
   1273 	memset(fragttl_histo, 0, sizeof fragttl_histo);
   1274 
   1275 	for (i = 0; i < IPREASS_NHASH; i++) {
   1276 		for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
   1277 			fp->ipq_ttl = ((fp->ipq_ttl  <= ticks) ?
   1278 				       0 : fp->ipq_ttl - ticks);
   1279 			nfp = LIST_NEXT(fp, ipq_q);
   1280 			if (fp->ipq_ttl == 0) {
   1281 				ipstat.ips_fragtimeout++;
   1282 				ip_freef(fp);
   1283 			} else {
   1284 				nfrags += fp->ipq_nfrags;
   1285 				fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
   1286 			}
   1287 		}
   1288 	}
   1289 
   1290 	KASSERT(ip_nfrags == nfrags);
   1291 
   1292 	/* Find median (or other drop fraction) in histogram. */
   1293 	dropfraction = (ip_nfrags / 2);
   1294 	keepfraction = ip_nfrags - dropfraction;
   1295 	for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
   1296 		median +=  fragttl_histo[i];
   1297 		if (median >= keepfraction)
   1298 			break;
   1299 	}
   1300 
   1301 	/* Return TTL of median (or other fraction). */
   1302 	return (u_int)i;
   1303 }
   1304 
   1305 void
   1306 ip_reass_drophalf(void)
   1307 {
   1308 
   1309 	u_int median_ticks;
   1310 	/*
   1311 	 * Compute median TTL of all fragments, and count frags
   1312 	 * with that TTL or lower (roughly half of all fragments).
   1313 	 */
   1314 	median_ticks = ip_reass_ttl_decr(0);
   1315 
   1316 	/* Drop half. */
   1317 	median_ticks = ip_reass_ttl_decr(median_ticks);
   1318 
   1319 }
   1320 
   1321 /*
   1322  * IP timer processing;
   1323  * if a timer expires on a reassembly
   1324  * queue, discard it.
   1325  */
   1326 void
   1327 ip_slowtimo()
   1328 {
   1329 	static u_int dropscanidx = 0;
   1330 	u_int i;
   1331 	u_int median_ttl;
   1332 	int s = splsoftnet();
   1333 
   1334 	IPQ_LOCK();
   1335 
   1336 	/* Age TTL of all fragments by 1 tick .*/
   1337 	median_ttl = ip_reass_ttl_decr(1);
   1338 
   1339 	/* make sure fragment limit is up-to-date */
   1340 	CHECK_NMBCLUSTER_PARAMS();
   1341 
   1342 	/* If we have too many fragments, drop the older half. */
   1343 	if (ip_nfrags > ip_maxfrags)
   1344 		ip_reass_ttl_decr(median_ttl);
   1345 
   1346 	/*
   1347 	 * If we are over the maximum number of fragmented packets
   1348 	 * (due to the limit being lowered), drain off
   1349 	 * enough to get down to the new limit. Start draining
   1350 	 * from the reassembly hashqueue most recently drained.
   1351 	 */
   1352 	if (ip_maxfragpackets < 0)
   1353 		;
   1354 	else {
   1355 		int wrapped = 0;
   1356 
   1357 		i = dropscanidx;
   1358 		while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
   1359 			while (LIST_FIRST(&ipq[i]) != NULL)
   1360 				ip_freef(LIST_FIRST(&ipq[i]));
   1361 			if (++i >= IPREASS_NHASH) {
   1362 				i = 0;
   1363 			}
   1364 			/*
   1365 			 * Dont scan forever even if fragment counters are
   1366 			 * wrong: stop after scanning entire reassembly queue.
   1367 			 */
   1368 			if (i == dropscanidx)
   1369 			    wrapped = 1;
   1370 		}
   1371 		dropscanidx = i;
   1372 	}
   1373 	IPQ_UNLOCK();
   1374 #ifdef GATEWAY
   1375 	ipflow_slowtimo();
   1376 #endif
   1377 	splx(s);
   1378 }
   1379 
   1380 /*
   1381  * Drain off all datagram fragments.
   1382  */
   1383 void
   1384 ip_drain()
   1385 {
   1386 
   1387 	/*
   1388 	 * We may be called from a device's interrupt context.  If
   1389 	 * the ipq is already busy, just bail out now.
   1390 	 */
   1391 	if (ipq_lock_try() == 0)
   1392 		return;
   1393 
   1394 	/*
   1395 	 * Drop half the total fragments now. If more mbufs are needed,
   1396 	 *  we will be called again soon.
   1397 	 */
   1398 	ip_reass_drophalf();
   1399 
   1400 	IPQ_UNLOCK();
   1401 }
   1402 
   1403 /*
   1404  * Do option processing on a datagram,
   1405  * possibly discarding it if bad options are encountered,
   1406  * or forwarding it if source-routed.
   1407  * Returns 1 if packet has been forwarded/freed,
   1408  * 0 if the packet should be processed further.
   1409  */
   1410 int
   1411 ip_dooptions(m)
   1412 	struct mbuf *m;
   1413 {
   1414 	struct ip *ip = mtod(m, struct ip *);
   1415 	u_char *cp, *cp0;
   1416 	struct ip_timestamp *ipt;
   1417 	struct in_ifaddr *ia;
   1418 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
   1419 	struct in_addr dst;
   1420 	n_time ntime;
   1421 
   1422 	dst = ip->ip_dst;
   1423 	cp = (u_char *)(ip + 1);
   1424 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
   1425 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1426 		opt = cp[IPOPT_OPTVAL];
   1427 		if (opt == IPOPT_EOL)
   1428 			break;
   1429 		if (opt == IPOPT_NOP)
   1430 			optlen = 1;
   1431 		else {
   1432 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
   1433 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
   1434 				goto bad;
   1435 			}
   1436 			optlen = cp[IPOPT_OLEN];
   1437 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
   1438 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
   1439 				goto bad;
   1440 			}
   1441 		}
   1442 		switch (opt) {
   1443 
   1444 		default:
   1445 			break;
   1446 
   1447 		/*
   1448 		 * Source routing with record.
   1449 		 * Find interface with current destination address.
   1450 		 * If none on this machine then drop if strictly routed,
   1451 		 * or do nothing if loosely routed.
   1452 		 * Record interface address and bring up next address
   1453 		 * component.  If strictly routed make sure next
   1454 		 * address is on directly accessible net.
   1455 		 */
   1456 		case IPOPT_LSRR:
   1457 		case IPOPT_SSRR:
   1458 			if (ip_allowsrcrt == 0) {
   1459 				type = ICMP_UNREACH;
   1460 				code = ICMP_UNREACH_NET_PROHIB;
   1461 				goto bad;
   1462 			}
   1463 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
   1464 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
   1465 				goto bad;
   1466 			}
   1467 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
   1468 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
   1469 				goto bad;
   1470 			}
   1471 			ipaddr.sin_addr = ip->ip_dst;
   1472 			ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
   1473 			if (ia == 0) {
   1474 				if (opt == IPOPT_SSRR) {
   1475 					type = ICMP_UNREACH;
   1476 					code = ICMP_UNREACH_SRCFAIL;
   1477 					goto bad;
   1478 				}
   1479 				/*
   1480 				 * Loose routing, and not at next destination
   1481 				 * yet; nothing to do except forward.
   1482 				 */
   1483 				break;
   1484 			}
   1485 			off--;			/* 0 origin */
   1486 			if ((off + sizeof(struct in_addr)) > optlen) {
   1487 				/*
   1488 				 * End of source route.  Should be for us.
   1489 				 */
   1490 				save_rte(cp, ip->ip_src);
   1491 				break;
   1492 			}
   1493 			/*
   1494 			 * locate outgoing interface
   1495 			 */
   1496 			bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
   1497 			    sizeof(ipaddr.sin_addr));
   1498 			if (opt == IPOPT_SSRR)
   1499 				ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
   1500 			else
   1501 				ia = ip_rtaddr(ipaddr.sin_addr);
   1502 			if (ia == 0) {
   1503 				type = ICMP_UNREACH;
   1504 				code = ICMP_UNREACH_SRCFAIL;
   1505 				goto bad;
   1506 			}
   1507 			ip->ip_dst = ipaddr.sin_addr;
   1508 			bcopy((caddr_t)&ia->ia_addr.sin_addr,
   1509 			    (caddr_t)(cp + off), sizeof(struct in_addr));
   1510 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
   1511 			/*
   1512 			 * Let ip_intr's mcast routing check handle mcast pkts
   1513 			 */
   1514 			forward = !IN_MULTICAST(ip->ip_dst.s_addr);
   1515 			break;
   1516 
   1517 		case IPOPT_RR:
   1518 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
   1519 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
   1520 				goto bad;
   1521 			}
   1522 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
   1523 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
   1524 				goto bad;
   1525 			}
   1526 			/*
   1527 			 * If no space remains, ignore.
   1528 			 */
   1529 			off--;			/* 0 origin */
   1530 			if ((off + sizeof(struct in_addr)) > optlen)
   1531 				break;
   1532 			bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
   1533 			    sizeof(ipaddr.sin_addr));
   1534 			/*
   1535 			 * locate outgoing interface; if we're the destination,
   1536 			 * use the incoming interface (should be same).
   1537 			 */
   1538 			if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
   1539 			    == NULL &&
   1540 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
   1541 				type = ICMP_UNREACH;
   1542 				code = ICMP_UNREACH_HOST;
   1543 				goto bad;
   1544 			}
   1545 			bcopy((caddr_t)&ia->ia_addr.sin_addr,
   1546 			    (caddr_t)(cp + off), sizeof(struct in_addr));
   1547 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
   1548 			break;
   1549 
   1550 		case IPOPT_TS:
   1551 			code = cp - (u_char *)ip;
   1552 			ipt = (struct ip_timestamp *)cp;
   1553 			if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
   1554 				code = (u_char *)&ipt->ipt_len - (u_char *)ip;
   1555 				goto bad;
   1556 			}
   1557 			if (ipt->ipt_ptr < 5) {
   1558 				code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
   1559 				goto bad;
   1560 			}
   1561 			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
   1562 				if (++ipt->ipt_oflw == 0) {
   1563 					code = (u_char *)&ipt->ipt_ptr -
   1564 					    (u_char *)ip;
   1565 					goto bad;
   1566 				}
   1567 				break;
   1568 			}
   1569 			cp0 = (cp + ipt->ipt_ptr - 1);
   1570 			switch (ipt->ipt_flg) {
   1571 
   1572 			case IPOPT_TS_TSONLY:
   1573 				break;
   1574 
   1575 			case IPOPT_TS_TSANDADDR:
   1576 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
   1577 				    sizeof(struct in_addr) > ipt->ipt_len) {
   1578 					code = (u_char *)&ipt->ipt_ptr -
   1579 					    (u_char *)ip;
   1580 					goto bad;
   1581 				}
   1582 				ipaddr.sin_addr = dst;
   1583 				ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
   1584 				    m->m_pkthdr.rcvif));
   1585 				if (ia == 0)
   1586 					continue;
   1587 				bcopy(&ia->ia_addr.sin_addr,
   1588 				    cp0, sizeof(struct in_addr));
   1589 				ipt->ipt_ptr += sizeof(struct in_addr);
   1590 				break;
   1591 
   1592 			case IPOPT_TS_PRESPEC:
   1593 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
   1594 				    sizeof(struct in_addr) > ipt->ipt_len) {
   1595 					code = (u_char *)&ipt->ipt_ptr -
   1596 					    (u_char *)ip;
   1597 					goto bad;
   1598 				}
   1599 				bcopy(cp0, &ipaddr.sin_addr,
   1600 				    sizeof(struct in_addr));
   1601 				if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
   1602 				    == NULL)
   1603 					continue;
   1604 				ipt->ipt_ptr += sizeof(struct in_addr);
   1605 				break;
   1606 
   1607 			default:
   1608 				/* XXX can't take &ipt->ipt_flg */
   1609 				code = (u_char *)&ipt->ipt_ptr -
   1610 				    (u_char *)ip + 1;
   1611 				goto bad;
   1612 			}
   1613 			ntime = iptime();
   1614 			cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
   1615 			bcopy(cp0, (caddr_t)cp + ipt->ipt_ptr - 1,
   1616 			    sizeof(n_time));
   1617 			ipt->ipt_ptr += sizeof(n_time);
   1618 		}
   1619 	}
   1620 	if (forward) {
   1621 		if (ip_forwsrcrt == 0) {
   1622 			type = ICMP_UNREACH;
   1623 			code = ICMP_UNREACH_SRCFAIL;
   1624 			goto bad;
   1625 		}
   1626 		ip_forward(m, 1);
   1627 		return (1);
   1628 	}
   1629 	return (0);
   1630 bad:
   1631 	icmp_error(m, type, code, 0, 0);
   1632 	ipstat.ips_badoptions++;
   1633 	return (1);
   1634 }
   1635 
   1636 /*
   1637  * Given address of next destination (final or next hop),
   1638  * return internet address info of interface to be used to get there.
   1639  */
   1640 struct in_ifaddr *
   1641 ip_rtaddr(dst)
   1642 	 struct in_addr dst;
   1643 {
   1644 	struct sockaddr_in *sin;
   1645 
   1646 	sin = satosin(&ipforward_rt.ro_dst);
   1647 
   1648 	if (ipforward_rt.ro_rt == 0 || !in_hosteq(dst, sin->sin_addr)) {
   1649 		if (ipforward_rt.ro_rt) {
   1650 			RTFREE(ipforward_rt.ro_rt);
   1651 			ipforward_rt.ro_rt = 0;
   1652 		}
   1653 		sin->sin_family = AF_INET;
   1654 		sin->sin_len = sizeof(*sin);
   1655 		sin->sin_addr = dst;
   1656 
   1657 		rtalloc(&ipforward_rt);
   1658 	}
   1659 	if (ipforward_rt.ro_rt == 0)
   1660 		return ((struct in_ifaddr *)0);
   1661 	return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
   1662 }
   1663 
   1664 /*
   1665  * Save incoming source route for use in replies,
   1666  * to be picked up later by ip_srcroute if the receiver is interested.
   1667  */
   1668 void
   1669 save_rte(option, dst)
   1670 	u_char *option;
   1671 	struct in_addr dst;
   1672 {
   1673 	unsigned olen;
   1674 
   1675 	olen = option[IPOPT_OLEN];
   1676 #ifdef DIAGNOSTIC
   1677 	if (ipprintfs)
   1678 		printf("save_rte: olen %d\n", olen);
   1679 #endif /* 0 */
   1680 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
   1681 		return;
   1682 	bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
   1683 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
   1684 	ip_srcrt.dst = dst;
   1685 }
   1686 
   1687 /*
   1688  * Retrieve incoming source route for use in replies,
   1689  * in the same form used by setsockopt.
   1690  * The first hop is placed before the options, will be removed later.
   1691  */
   1692 struct mbuf *
   1693 ip_srcroute()
   1694 {
   1695 	struct in_addr *p, *q;
   1696 	struct mbuf *m;
   1697 
   1698 	if (ip_nhops == 0)
   1699 		return ((struct mbuf *)0);
   1700 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1701 	if (m == 0)
   1702 		return ((struct mbuf *)0);
   1703 
   1704 	MCLAIM(m, &inetdomain.dom_mowner);
   1705 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
   1706 
   1707 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
   1708 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
   1709 	    OPTSIZ;
   1710 #ifdef DIAGNOSTIC
   1711 	if (ipprintfs)
   1712 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
   1713 #endif
   1714 
   1715 	/*
   1716 	 * First save first hop for return route
   1717 	 */
   1718 	p = &ip_srcrt.route[ip_nhops - 1];
   1719 	*(mtod(m, struct in_addr *)) = *p--;
   1720 #ifdef DIAGNOSTIC
   1721 	if (ipprintfs)
   1722 		printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
   1723 #endif
   1724 
   1725 	/*
   1726 	 * Copy option fields and padding (nop) to mbuf.
   1727 	 */
   1728 	ip_srcrt.nop = IPOPT_NOP;
   1729 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
   1730 	bcopy((caddr_t)&ip_srcrt.nop,
   1731 	    mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
   1732 	q = (struct in_addr *)(mtod(m, caddr_t) +
   1733 	    sizeof(struct in_addr) + OPTSIZ);
   1734 #undef OPTSIZ
   1735 	/*
   1736 	 * Record return path as an IP source route,
   1737 	 * reversing the path (pointers are now aligned).
   1738 	 */
   1739 	while (p >= ip_srcrt.route) {
   1740 #ifdef DIAGNOSTIC
   1741 		if (ipprintfs)
   1742 			printf(" %x", ntohl(q->s_addr));
   1743 #endif
   1744 		*q++ = *p--;
   1745 	}
   1746 	/*
   1747 	 * Last hop goes to final destination.
   1748 	 */
   1749 	*q = ip_srcrt.dst;
   1750 #ifdef DIAGNOSTIC
   1751 	if (ipprintfs)
   1752 		printf(" %x\n", ntohl(q->s_addr));
   1753 #endif
   1754 	return (m);
   1755 }
   1756 
   1757 /*
   1758  * Strip out IP options, at higher
   1759  * level protocol in the kernel.
   1760  * Second argument is buffer to which options
   1761  * will be moved, and return value is their length.
   1762  * XXX should be deleted; last arg currently ignored.
   1763  */
   1764 void
   1765 ip_stripoptions(m, mopt)
   1766 	struct mbuf *m;
   1767 	struct mbuf *mopt;
   1768 {
   1769 	int i;
   1770 	struct ip *ip = mtod(m, struct ip *);
   1771 	caddr_t opts;
   1772 	int olen;
   1773 
   1774 	olen = (ip->ip_hl << 2) - sizeof (struct ip);
   1775 	opts = (caddr_t)(ip + 1);
   1776 	i = m->m_len - (sizeof (struct ip) + olen);
   1777 	bcopy(opts  + olen, opts, (unsigned)i);
   1778 	m->m_len -= olen;
   1779 	if (m->m_flags & M_PKTHDR)
   1780 		m->m_pkthdr.len -= olen;
   1781 	ip->ip_len = htons(ntohs(ip->ip_len) - olen);
   1782 	ip->ip_hl = sizeof (struct ip) >> 2;
   1783 }
   1784 
   1785 const int inetctlerrmap[PRC_NCMDS] = {
   1786 	0,		0,		0,		0,
   1787 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
   1788 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
   1789 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
   1790 	0,		0,		0,		0,
   1791 	ENOPROTOOPT
   1792 };
   1793 
   1794 /*
   1795  * Forward a packet.  If some error occurs return the sender
   1796  * an icmp packet.  Note we can't always generate a meaningful
   1797  * icmp message because icmp doesn't have a large enough repertoire
   1798  * of codes and types.
   1799  *
   1800  * If not forwarding, just drop the packet.  This could be confusing
   1801  * if ipforwarding was zero but some routing protocol was advancing
   1802  * us as a gateway to somewhere.  However, we must let the routing
   1803  * protocol deal with that.
   1804  *
   1805  * The srcrt parameter indicates whether the packet is being forwarded
   1806  * via a source route.
   1807  */
   1808 void
   1809 ip_forward(m, srcrt)
   1810 	struct mbuf *m;
   1811 	int srcrt;
   1812 {
   1813 	struct ip *ip = mtod(m, struct ip *);
   1814 	struct sockaddr_in *sin;
   1815 	struct rtentry *rt;
   1816 	int error, type = 0, code = 0;
   1817 	struct mbuf *mcopy;
   1818 	n_long dest;
   1819 	struct ifnet *destifp;
   1820 #if defined(IPSEC) || defined(FAST_IPSEC)
   1821 	struct ifnet dummyifp;
   1822 #endif
   1823 
   1824 	/*
   1825 	 * We are now in the output path.
   1826 	 */
   1827 	MCLAIM(m, &ip_tx_mowner);
   1828 
   1829 	/*
   1830 	 * Clear any in-bound checksum flags for this packet.
   1831 	 */
   1832 	m->m_pkthdr.csum_flags = 0;
   1833 
   1834 	dest = 0;
   1835 #ifdef DIAGNOSTIC
   1836 	if (ipprintfs)
   1837 		printf("forward: src %2.2x dst %2.2x ttl %x\n",
   1838 		    ntohl(ip->ip_src.s_addr),
   1839 		    ntohl(ip->ip_dst.s_addr), ip->ip_ttl);
   1840 #endif
   1841 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
   1842 		ipstat.ips_cantforward++;
   1843 		m_freem(m);
   1844 		return;
   1845 	}
   1846 	if (ip->ip_ttl <= IPTTLDEC) {
   1847 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
   1848 		return;
   1849 	}
   1850 	ip->ip_ttl -= IPTTLDEC;
   1851 
   1852 	sin = satosin(&ipforward_rt.ro_dst);
   1853 	if ((rt = ipforward_rt.ro_rt) == 0 ||
   1854 	    !in_hosteq(ip->ip_dst, sin->sin_addr)) {
   1855 		if (ipforward_rt.ro_rt) {
   1856 			RTFREE(ipforward_rt.ro_rt);
   1857 			ipforward_rt.ro_rt = 0;
   1858 		}
   1859 		sin->sin_family = AF_INET;
   1860 		sin->sin_len = sizeof(struct sockaddr_in);
   1861 		sin->sin_addr = ip->ip_dst;
   1862 
   1863 		rtalloc(&ipforward_rt);
   1864 		if (ipforward_rt.ro_rt == 0) {
   1865 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
   1866 			return;
   1867 		}
   1868 		rt = ipforward_rt.ro_rt;
   1869 	}
   1870 
   1871 	/*
   1872 	 * Save at most 68 bytes of the packet in case
   1873 	 * we need to generate an ICMP message to the src.
   1874 	 * Pullup to avoid sharing mbuf cluster between m and mcopy.
   1875 	 */
   1876 	mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
   1877 	if (mcopy)
   1878 		mcopy = m_pullup(mcopy, ip->ip_hl << 2);
   1879 
   1880 	/*
   1881 	 * If forwarding packet using same interface that it came in on,
   1882 	 * perhaps should send a redirect to sender to shortcut a hop.
   1883 	 * Only send redirect if source is sending directly to us,
   1884 	 * and if packet was not source routed (or has any options).
   1885 	 * Also, don't send redirect if forwarding using a default route
   1886 	 * or a route modified by a redirect.
   1887 	 */
   1888 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
   1889 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
   1890 	    !in_nullhost(satosin(rt_key(rt))->sin_addr) &&
   1891 	    ipsendredirects && !srcrt) {
   1892 		if (rt->rt_ifa &&
   1893 		    (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
   1894 		    ifatoia(rt->rt_ifa)->ia_subnet) {
   1895 			if (rt->rt_flags & RTF_GATEWAY)
   1896 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
   1897 			else
   1898 				dest = ip->ip_dst.s_addr;
   1899 			/*
   1900 			 * Router requirements says to only send host
   1901 			 * redirects.
   1902 			 */
   1903 			type = ICMP_REDIRECT;
   1904 			code = ICMP_REDIRECT_HOST;
   1905 #ifdef DIAGNOSTIC
   1906 			if (ipprintfs)
   1907 				printf("redirect (%d) to %x\n", code,
   1908 				    (u_int32_t)dest);
   1909 #endif
   1910 		}
   1911 	}
   1912 
   1913 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
   1914 	    (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
   1915 	    (struct ip_moptions *)NULL, (struct socket *)NULL);
   1916 
   1917 	if (error)
   1918 		ipstat.ips_cantforward++;
   1919 	else {
   1920 		ipstat.ips_forward++;
   1921 		if (type)
   1922 			ipstat.ips_redirectsent++;
   1923 		else {
   1924 			if (mcopy) {
   1925 #ifdef GATEWAY
   1926 				if (mcopy->m_flags & M_CANFASTFWD)
   1927 					ipflow_create(&ipforward_rt, mcopy);
   1928 #endif
   1929 				m_freem(mcopy);
   1930 			}
   1931 			return;
   1932 		}
   1933 	}
   1934 	if (mcopy == NULL)
   1935 		return;
   1936 	destifp = NULL;
   1937 
   1938 	switch (error) {
   1939 
   1940 	case 0:				/* forwarded, but need redirect */
   1941 		/* type, code set above */
   1942 		break;
   1943 
   1944 	case ENETUNREACH:		/* shouldn't happen, checked above */
   1945 	case EHOSTUNREACH:
   1946 	case ENETDOWN:
   1947 	case EHOSTDOWN:
   1948 	default:
   1949 		type = ICMP_UNREACH;
   1950 		code = ICMP_UNREACH_HOST;
   1951 		break;
   1952 
   1953 	case EMSGSIZE:
   1954 		type = ICMP_UNREACH;
   1955 		code = ICMP_UNREACH_NEEDFRAG;
   1956 #if !defined(IPSEC) && !defined(FAST_IPSEC)
   1957 		if (ipforward_rt.ro_rt)
   1958 			destifp = ipforward_rt.ro_rt->rt_ifp;
   1959 #else
   1960 		/*
   1961 		 * If the packet is routed over IPsec tunnel, tell the
   1962 		 * originator the tunnel MTU.
   1963 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
   1964 		 * XXX quickhack!!!
   1965 		 */
   1966 		if (ipforward_rt.ro_rt) {
   1967 			struct secpolicy *sp;
   1968 			int ipsecerror;
   1969 			size_t ipsechdr;
   1970 			struct route *ro;
   1971 
   1972 			sp = ipsec4_getpolicybyaddr(mcopy,
   1973 			    IPSEC_DIR_OUTBOUND, IP_FORWARDING,
   1974 			    &ipsecerror);
   1975 
   1976 			if (sp == NULL)
   1977 				destifp = ipforward_rt.ro_rt->rt_ifp;
   1978 			else {
   1979 				/* count IPsec header size */
   1980 				ipsechdr = ipsec4_hdrsiz(mcopy,
   1981 				    IPSEC_DIR_OUTBOUND, NULL);
   1982 
   1983 				/*
   1984 				 * find the correct route for outer IPv4
   1985 				 * header, compute tunnel MTU.
   1986 				 *
   1987 				 * XXX BUG ALERT
   1988 				 * The "dummyifp" code relies upon the fact
   1989 				 * that icmp_error() touches only ifp->if_mtu.
   1990 				 */
   1991 				/*XXX*/
   1992 				destifp = NULL;
   1993 				if (sp->req != NULL
   1994 				 && sp->req->sav != NULL
   1995 				 && sp->req->sav->sah != NULL) {
   1996 					ro = &sp->req->sav->sah->sa_route;
   1997 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
   1998 						dummyifp.if_mtu =
   1999 						    ro->ro_rt->rt_rmx.rmx_mtu ?
   2000 						    ro->ro_rt->rt_rmx.rmx_mtu :
   2001 						    ro->ro_rt->rt_ifp->if_mtu;
   2002 						dummyifp.if_mtu -= ipsechdr;
   2003 						destifp = &dummyifp;
   2004 					}
   2005 				}
   2006 
   2007 #ifdef	IPSEC
   2008 				key_freesp(sp);
   2009 #else
   2010 				KEY_FREESP(&sp);
   2011 #endif
   2012 			}
   2013 		}
   2014 #endif /*IPSEC*/
   2015 		ipstat.ips_cantfrag++;
   2016 		break;
   2017 
   2018 	case ENOBUFS:
   2019 #if 1
   2020 		/*
   2021 		 * a router should not generate ICMP_SOURCEQUENCH as
   2022 		 * required in RFC1812 Requirements for IP Version 4 Routers.
   2023 		 * source quench could be a big problem under DoS attacks,
   2024 		 * or if the underlying interface is rate-limited.
   2025 		 */
   2026 		if (mcopy)
   2027 			m_freem(mcopy);
   2028 		return;
   2029 #else
   2030 		type = ICMP_SOURCEQUENCH;
   2031 		code = 0;
   2032 		break;
   2033 #endif
   2034 	}
   2035 	icmp_error(mcopy, type, code, dest, destifp);
   2036 }
   2037 
   2038 void
   2039 ip_savecontrol(inp, mp, ip, m)
   2040 	struct inpcb *inp;
   2041 	struct mbuf **mp;
   2042 	struct ip *ip;
   2043 	struct mbuf *m;
   2044 {
   2045 
   2046 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
   2047 		struct timeval tv;
   2048 
   2049 		microtime(&tv);
   2050 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
   2051 		    SCM_TIMESTAMP, SOL_SOCKET);
   2052 		if (*mp)
   2053 			mp = &(*mp)->m_next;
   2054 	}
   2055 	if (inp->inp_flags & INP_RECVDSTADDR) {
   2056 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
   2057 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
   2058 		if (*mp)
   2059 			mp = &(*mp)->m_next;
   2060 	}
   2061 #ifdef notyet
   2062 	/*
   2063 	 * XXX
   2064 	 * Moving these out of udp_input() made them even more broken
   2065 	 * than they already were.
   2066 	 *	- fenner (at) parc.xerox.com
   2067 	 */
   2068 	/* options were tossed already */
   2069 	if (inp->inp_flags & INP_RECVOPTS) {
   2070 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
   2071 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
   2072 		if (*mp)
   2073 			mp = &(*mp)->m_next;
   2074 	}
   2075 	/* ip_srcroute doesn't do what we want here, need to fix */
   2076 	if (inp->inp_flags & INP_RECVRETOPTS) {
   2077 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
   2078 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
   2079 		if (*mp)
   2080 			mp = &(*mp)->m_next;
   2081 	}
   2082 #endif
   2083 	if (inp->inp_flags & INP_RECVIF) {
   2084 		struct sockaddr_dl sdl;
   2085 
   2086 		sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]);
   2087 		sdl.sdl_family = AF_LINK;
   2088 		sdl.sdl_index = m->m_pkthdr.rcvif ?
   2089 		    m->m_pkthdr.rcvif->if_index : 0;
   2090 		sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0;
   2091 		*mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len,
   2092 		    IP_RECVIF, IPPROTO_IP);
   2093 		if (*mp)
   2094 			mp = &(*mp)->m_next;
   2095 	}
   2096 }
   2097 
   2098 /*
   2099  * sysctl helper routine for net.inet.ip.mtudisctimeout.  checks the
   2100  * range of the new value and tweaks timers if it changes.
   2101  */
   2102 static int
   2103 sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
   2104 {
   2105 	int error, tmp;
   2106 	struct sysctlnode node;
   2107 
   2108 	node = *rnode;
   2109 	tmp = ip_mtudisc_timeout;
   2110 	node.sysctl_data = &tmp;
   2111 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2112 	if (error || newp == NULL)
   2113 		return (error);
   2114 	if (tmp < 0)
   2115 		return (EINVAL);
   2116 
   2117 	ip_mtudisc_timeout = tmp;
   2118 	rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
   2119 
   2120 	return (0);
   2121 }
   2122 
   2123 #ifdef GATEWAY
   2124 /*
   2125  * sysctl helper routine for net.inet.ip.maxflows.  apparently if
   2126  * maxflows is even looked up, we "reap flows".
   2127  */
   2128 static int
   2129 sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
   2130 {
   2131 	int s;
   2132 
   2133 	s = sysctl_lookup(SYSCTLFN_CALL(rnode));
   2134 	if (s)
   2135 		return (s);
   2136 
   2137 	s = splsoftnet();
   2138 	ipflow_reap(0);
   2139 	splx(s);
   2140 
   2141 	return (0);
   2142 }
   2143 #endif /* GATEWAY */
   2144 
   2145 
   2146 SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
   2147 {
   2148 	extern int subnetsarelocal, hostzeroisbroadcast;
   2149 
   2150 	sysctl_createv(clog, 0, NULL, NULL,
   2151 		       CTLFLAG_PERMANENT,
   2152 		       CTLTYPE_NODE, "net", NULL,
   2153 		       NULL, 0, NULL, 0,
   2154 		       CTL_NET, CTL_EOL);
   2155 	sysctl_createv(clog, 0, NULL, NULL,
   2156 		       CTLFLAG_PERMANENT,
   2157 		       CTLTYPE_NODE, "inet",
   2158 		       SYSCTL_DESCR("PF_INET related settings"),
   2159 		       NULL, 0, NULL, 0,
   2160 		       CTL_NET, PF_INET, CTL_EOL);
   2161 	sysctl_createv(clog, 0, NULL, NULL,
   2162 		       CTLFLAG_PERMANENT,
   2163 		       CTLTYPE_NODE, "ip",
   2164 		       SYSCTL_DESCR("IPv4 related settings"),
   2165 		       NULL, 0, NULL, 0,
   2166 		       CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
   2167 
   2168 	sysctl_createv(clog, 0, NULL, NULL,
   2169 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2170 		       CTLTYPE_INT, "forwarding",
   2171 		       SYSCTL_DESCR("Enable forwarding of INET datagrams"),
   2172 		       NULL, 0, &ipforwarding, 0,
   2173 		       CTL_NET, PF_INET, IPPROTO_IP,
   2174 		       IPCTL_FORWARDING, CTL_EOL);
   2175 	sysctl_createv(clog, 0, NULL, NULL,
   2176 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2177 		       CTLTYPE_INT, "redirect",
   2178 		       SYSCTL_DESCR("Enable sending of ICMP redirect messages"),
   2179 		       NULL, 0, &ipsendredirects, 0,
   2180 		       CTL_NET, PF_INET, IPPROTO_IP,
   2181 		       IPCTL_SENDREDIRECTS, CTL_EOL);
   2182 	sysctl_createv(clog, 0, NULL, NULL,
   2183 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2184 		       CTLTYPE_INT, "ttl",
   2185 		       SYSCTL_DESCR("Default TTL for an INET datagram"),
   2186 		       NULL, 0, &ip_defttl, 0,
   2187 		       CTL_NET, PF_INET, IPPROTO_IP,
   2188 		       IPCTL_DEFTTL, CTL_EOL);
   2189 #ifdef IPCTL_DEFMTU
   2190 	sysctl_createv(clog, 0, NULL, NULL,
   2191 		       CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
   2192 		       CTLTYPE_INT, "mtu",
   2193 		       SYSCTL_DESCR("Default MTA for an INET route"),
   2194 		       NULL, 0, &ip_mtu, 0,
   2195 		       CTL_NET, PF_INET, IPPROTO_IP,
   2196 		       IPCTL_DEFMTU, CTL_EOL);
   2197 #endif /* IPCTL_DEFMTU */
   2198 	sysctl_createv(clog, 0, NULL, NULL,
   2199 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY1,
   2200 		       CTLTYPE_INT, "forwsrcrt",
   2201 		       SYSCTL_DESCR("Enable forwarding of source-routed "
   2202 				    "datagrams"),
   2203 		       NULL, 0, &ip_forwsrcrt, 0,
   2204 		       CTL_NET, PF_INET, IPPROTO_IP,
   2205 		       IPCTL_FORWSRCRT, CTL_EOL);
   2206 	sysctl_createv(clog, 0, NULL, NULL,
   2207 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2208 		       CTLTYPE_INT, "directed-broadcast",
   2209 		       SYSCTL_DESCR("Enable forwarding of broadcast datagrams"),
   2210 		       NULL, 0, &ip_directedbcast, 0,
   2211 		       CTL_NET, PF_INET, IPPROTO_IP,
   2212 		       IPCTL_DIRECTEDBCAST, CTL_EOL);
   2213 	sysctl_createv(clog, 0, NULL, NULL,
   2214 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2215 		       CTLTYPE_INT, "allowsrcrt",
   2216 		       SYSCTL_DESCR("Accept source-routed datagrams"),
   2217 		       NULL, 0, &ip_allowsrcrt, 0,
   2218 		       CTL_NET, PF_INET, IPPROTO_IP,
   2219 		       IPCTL_ALLOWSRCRT, CTL_EOL);
   2220 	sysctl_createv(clog, 0, NULL, NULL,
   2221 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2222 		       CTLTYPE_INT, "subnetsarelocal",
   2223 		       SYSCTL_DESCR("Whether logical subnets are considered "
   2224 				    "local"),
   2225 		       NULL, 0, &subnetsarelocal, 0,
   2226 		       CTL_NET, PF_INET, IPPROTO_IP,
   2227 		       IPCTL_SUBNETSARELOCAL, CTL_EOL);
   2228 	sysctl_createv(clog, 0, NULL, NULL,
   2229 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2230 		       CTLTYPE_INT, "mtudisc",
   2231 		       SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"),
   2232 		       NULL, 0, &ip_mtudisc, 0,
   2233 		       CTL_NET, PF_INET, IPPROTO_IP,
   2234 		       IPCTL_MTUDISC, CTL_EOL);
   2235 	sysctl_createv(clog, 0, NULL, NULL,
   2236 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2237 		       CTLTYPE_INT, "anonportmin",
   2238 		       SYSCTL_DESCR("Lowest ephemeral port number to assign"),
   2239 		       sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
   2240 		       CTL_NET, PF_INET, IPPROTO_IP,
   2241 		       IPCTL_ANONPORTMIN, CTL_EOL);
   2242 	sysctl_createv(clog, 0, NULL, NULL,
   2243 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2244 		       CTLTYPE_INT, "anonportmax",
   2245 		       SYSCTL_DESCR("Highest ephemeral port number to assign"),
   2246 		       sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
   2247 		       CTL_NET, PF_INET, IPPROTO_IP,
   2248 		       IPCTL_ANONPORTMAX, CTL_EOL);
   2249 	sysctl_createv(clog, 0, NULL, NULL,
   2250 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2251 		       CTLTYPE_INT, "mtudisctimeout",
   2252 		       SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"),
   2253 		       sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
   2254 		       CTL_NET, PF_INET, IPPROTO_IP,
   2255 		       IPCTL_MTUDISCTIMEOUT, CTL_EOL);
   2256 #ifdef GATEWAY
   2257 	sysctl_createv(clog, 0, NULL, NULL,
   2258 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2259 		       CTLTYPE_INT, "maxflows",
   2260 		       SYSCTL_DESCR("Number of flows for fast forwarding"),
   2261 		       sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
   2262 		       CTL_NET, PF_INET, IPPROTO_IP,
   2263 		       IPCTL_MAXFLOWS, CTL_EOL);
   2264 #endif /* GATEWAY */
   2265 	sysctl_createv(clog, 0, NULL, NULL,
   2266 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2267 		       CTLTYPE_INT, "hostzerobroadcast",
   2268 		       SYSCTL_DESCR("All zeroes address is broadcast address"),
   2269 		       NULL, 0, &hostzeroisbroadcast, 0,
   2270 		       CTL_NET, PF_INET, IPPROTO_IP,
   2271 		       IPCTL_HOSTZEROBROADCAST, CTL_EOL);
   2272 #if NGIF > 0
   2273 	sysctl_createv(clog, 0, NULL, NULL,
   2274 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2275 		       CTLTYPE_INT, "gifttl",
   2276 		       SYSCTL_DESCR("Default TTL for a gif tunnel datagram"),
   2277 		       NULL, 0, &ip_gif_ttl, 0,
   2278 		       CTL_NET, PF_INET, IPPROTO_IP,
   2279 		       IPCTL_GIF_TTL, CTL_EOL);
   2280 #endif /* NGIF */
   2281 #ifndef IPNOPRIVPORTS
   2282 	sysctl_createv(clog, 0, NULL, NULL,
   2283 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2284 		       CTLTYPE_INT, "lowportmin",
   2285 		       SYSCTL_DESCR("Lowest privileged ephemeral port number "
   2286 				    "to assign"),
   2287 		       sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
   2288 		       CTL_NET, PF_INET, IPPROTO_IP,
   2289 		       IPCTL_LOWPORTMIN, CTL_EOL);
   2290 	sysctl_createv(clog, 0, NULL, NULL,
   2291 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2292 		       CTLTYPE_INT, "lowportmax",
   2293 		       SYSCTL_DESCR("Highest privileged ephemeral port number "
   2294 				    "to assign"),
   2295 		       sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
   2296 		       CTL_NET, PF_INET, IPPROTO_IP,
   2297 		       IPCTL_LOWPORTMAX, CTL_EOL);
   2298 #endif /* IPNOPRIVPORTS */
   2299 	sysctl_createv(clog, 0, NULL, NULL,
   2300 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2301 		       CTLTYPE_INT, "maxfragpackets",
   2302 		       SYSCTL_DESCR("Maximum number of fragments to retain for "
   2303 				    "possible reassembly"),
   2304 		       NULL, 0, &ip_maxfragpackets, 0,
   2305 		       CTL_NET, PF_INET, IPPROTO_IP,
   2306 		       IPCTL_MAXFRAGPACKETS, CTL_EOL);
   2307 #if NGRE > 0
   2308 	sysctl_createv(clog, 0, NULL, NULL,
   2309 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2310 		       CTLTYPE_INT, "grettl",
   2311 		       SYSCTL_DESCR("Default TTL for a gre tunnel datagram"),
   2312 		       NULL, 0, &ip_gre_ttl, 0,
   2313 		       CTL_NET, PF_INET, IPPROTO_IP,
   2314 		       IPCTL_GRE_TTL, CTL_EOL);
   2315 #endif /* NGRE */
   2316 	sysctl_createv(clog, 0, NULL, NULL,
   2317 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2318 		       CTLTYPE_INT, "checkinterface",
   2319 		       SYSCTL_DESCR("Enable receive side of Strong ES model "
   2320 				    "from RFC1122"),
   2321 		       NULL, 0, &ip_checkinterface, 0,
   2322 		       CTL_NET, PF_INET, IPPROTO_IP,
   2323 		       IPCTL_CHECKINTERFACE, CTL_EOL);
   2324 	sysctl_createv(clog, 0, NULL, NULL,
   2325 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2326 		       CTLTYPE_INT, "random_id",
   2327 		       SYSCTL_DESCR("Assign random ip_id values"),
   2328 		       NULL, 0, &ip_do_randomid, 0,
   2329 		       CTL_NET, PF_INET, IPPROTO_IP,
   2330 		       IPCTL_RANDOMID, CTL_EOL);
   2331 }
   2332