ip_input.c revision 1.205 1 /* $NetBSD: ip_input.c,v 1.205 2004/10/06 01:34:11 darrenr Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.205 2004/10/06 01:34:11 darrenr Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_gateway.h"
105 #include "opt_pfil_hooks.h"
106 #include "opt_ipsec.h"
107 #include "opt_mrouting.h"
108 #include "opt_mbuftrace.h"
109 #include "opt_inet_csum.h"
110
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/domain.h>
116 #include <sys/protosw.h>
117 #include <sys/socket.h>
118 #include <sys/socketvar.h>
119 #include <sys/errno.h>
120 #include <sys/time.h>
121 #include <sys/kernel.h>
122 #include <sys/pool.h>
123 #include <sys/sysctl.h>
124
125 #include <net/if.h>
126 #include <net/if_dl.h>
127 #include <net/route.h>
128 #include <net/pfil.h>
129
130 #include <netinet/in.h>
131 #include <netinet/in_systm.h>
132 #include <netinet/ip.h>
133 #include <netinet/in_pcb.h>
134 #include <netinet/in_var.h>
135 #include <netinet/ip_var.h>
136 #include <netinet/ip_icmp.h>
137 /* just for gif_ttl */
138 #include <netinet/in_gif.h>
139 #include "gif.h"
140 #include <net/if_gre.h>
141 #include "gre.h"
142
143 #ifdef MROUTING
144 #include <netinet/ip_mroute.h>
145 #endif
146
147 #ifdef IPSEC
148 #include <netinet6/ipsec.h>
149 #include <netkey/key.h>
150 #endif
151 #ifdef FAST_IPSEC
152 #include <netipsec/ipsec.h>
153 #include <netipsec/key.h>
154 #endif /* FAST_IPSEC*/
155
156 #ifndef IPFORWARDING
157 #ifdef GATEWAY
158 #define IPFORWARDING 1 /* forward IP packets not for us */
159 #else /* GATEWAY */
160 #define IPFORWARDING 0 /* don't forward IP packets not for us */
161 #endif /* GATEWAY */
162 #endif /* IPFORWARDING */
163 #ifndef IPSENDREDIRECTS
164 #define IPSENDREDIRECTS 1
165 #endif
166 #ifndef IPFORWSRCRT
167 #define IPFORWSRCRT 1 /* forward source-routed packets */
168 #endif
169 #ifndef IPALLOWSRCRT
170 #define IPALLOWSRCRT 1 /* allow source-routed packets */
171 #endif
172 #ifndef IPMTUDISC
173 #define IPMTUDISC 1
174 #endif
175 #ifndef IPMTUDISCTIMEOUT
176 #define IPMTUDISCTIMEOUT (10 * 60) /* as per RFC 1191 */
177 #endif
178
179 /*
180 * Note: DIRECTED_BROADCAST is handled this way so that previous
181 * configuration using this option will Just Work.
182 */
183 #ifndef IPDIRECTEDBCAST
184 #ifdef DIRECTED_BROADCAST
185 #define IPDIRECTEDBCAST 1
186 #else
187 #define IPDIRECTEDBCAST 0
188 #endif /* DIRECTED_BROADCAST */
189 #endif /* IPDIRECTEDBCAST */
190 int ipforwarding = IPFORWARDING;
191 int ipsendredirects = IPSENDREDIRECTS;
192 int ip_defttl = IPDEFTTL;
193 int ip_forwsrcrt = IPFORWSRCRT;
194 int ip_directedbcast = IPDIRECTEDBCAST;
195 int ip_allowsrcrt = IPALLOWSRCRT;
196 int ip_mtudisc = IPMTUDISC;
197 int ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
198 #ifdef DIAGNOSTIC
199 int ipprintfs = 0;
200 #endif
201
202 int ip_do_randomid = 0;
203
204 /*
205 * XXX - Setting ip_checkinterface mostly implements the receive side of
206 * the Strong ES model described in RFC 1122, but since the routing table
207 * and transmit implementation do not implement the Strong ES model,
208 * setting this to 1 results in an odd hybrid.
209 *
210 * XXX - ip_checkinterface currently must be disabled if you use ipnat
211 * to translate the destination address to another local interface.
212 *
213 * XXX - ip_checkinterface must be disabled if you add IP aliases
214 * to the loopback interface instead of the interface where the
215 * packets for those addresses are received.
216 */
217 int ip_checkinterface = 0;
218
219
220 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
221
222 int ipqmaxlen = IFQ_MAXLEN;
223 u_long in_ifaddrhash; /* size of hash table - 1 */
224 int in_ifaddrentries; /* total number of addrs */
225 struct in_ifaddrhead in_ifaddrhead;
226 struct in_ifaddrhashhead *in_ifaddrhashtbl;
227 u_long in_multihash; /* size of hash table - 1 */
228 int in_multientries; /* total number of addrs */
229 struct in_multihashhead *in_multihashtbl;
230 struct ifqueue ipintrq;
231 struct ipstat ipstat;
232 uint16_t ip_id;
233
234 #ifdef PFIL_HOOKS
235 struct pfil_head inet_pfil_hook;
236 #endif
237
238 /*
239 * Cached copy of nmbclusters. If nbclusters is different,
240 * recalculate IP parameters derived from nmbclusters.
241 */
242 static int ip_nmbclusters; /* copy of nmbclusters */
243 static void ip_nmbclusters_changed __P((void)); /* recalc limits */
244
245 #define CHECK_NMBCLUSTER_PARAMS() \
246 do { \
247 if (__predict_false(ip_nmbclusters != nmbclusters)) \
248 ip_nmbclusters_changed(); \
249 } while (/*CONSTCOND*/0)
250
251 /* IP datagram reassembly queues (hashed) */
252 #define IPREASS_NHASH_LOG2 6
253 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
254 #define IPREASS_HMASK (IPREASS_NHASH - 1)
255 #define IPREASS_HASH(x,y) \
256 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
257 struct ipqhead ipq[IPREASS_NHASH];
258 int ipq_locked;
259 static int ip_nfragpackets; /* packets in reass queue */
260 static int ip_nfrags; /* total fragments in reass queues */
261
262 int ip_maxfragpackets = 200; /* limit on packets. XXX sysctl */
263 int ip_maxfrags; /* limit on fragments. XXX sysctl */
264
265
266 /*
267 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
268 * IP reassembly queue buffer managment.
269 *
270 * We keep a count of total IP fragments (NB: not fragmented packets!)
271 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
272 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
273 * total fragments in reassembly queues.This AIMD policy avoids
274 * repeatedly deleting single packets under heavy fragmentation load
275 * (e.g., from lossy NFS peers).
276 */
277 static u_int ip_reass_ttl_decr __P((u_int ticks));
278 static void ip_reass_drophalf __P((void));
279
280
281 static __inline int ipq_lock_try __P((void));
282 static __inline void ipq_unlock __P((void));
283
284 static __inline int
285 ipq_lock_try()
286 {
287 int s;
288
289 /*
290 * Use splvm() -- we're blocking things that would cause
291 * mbuf allocation.
292 */
293 s = splvm();
294 if (ipq_locked) {
295 splx(s);
296 return (0);
297 }
298 ipq_locked = 1;
299 splx(s);
300 return (1);
301 }
302
303 static __inline void
304 ipq_unlock()
305 {
306 int s;
307
308 s = splvm();
309 ipq_locked = 0;
310 splx(s);
311 }
312
313 #ifdef DIAGNOSTIC
314 #define IPQ_LOCK() \
315 do { \
316 if (ipq_lock_try() == 0) { \
317 printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
318 panic("ipq_lock"); \
319 } \
320 } while (/*CONSTCOND*/ 0)
321 #define IPQ_LOCK_CHECK() \
322 do { \
323 if (ipq_locked == 0) { \
324 printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
325 panic("ipq lock check"); \
326 } \
327 } while (/*CONSTCOND*/ 0)
328 #else
329 #define IPQ_LOCK() (void) ipq_lock_try()
330 #define IPQ_LOCK_CHECK() /* nothing */
331 #endif
332
333 #define IPQ_UNLOCK() ipq_unlock()
334
335 POOL_INIT(inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", NULL);
336 POOL_INIT(ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl", NULL);
337
338 #ifdef INET_CSUM_COUNTERS
339 #include <sys/device.h>
340
341 struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
342 NULL, "inet", "hwcsum bad");
343 struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
344 NULL, "inet", "hwcsum ok");
345 struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
346 NULL, "inet", "swcsum");
347
348 #define INET_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
349
350 EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
351 EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
352 EVCNT_ATTACH_STATIC(ip_swcsum);
353
354 #else
355
356 #define INET_CSUM_COUNTER_INCR(ev) /* nothing */
357
358 #endif /* INET_CSUM_COUNTERS */
359
360 /*
361 * We need to save the IP options in case a protocol wants to respond
362 * to an incoming packet over the same route if the packet got here
363 * using IP source routing. This allows connection establishment and
364 * maintenance when the remote end is on a network that is not known
365 * to us.
366 */
367 int ip_nhops = 0;
368 static struct ip_srcrt {
369 struct in_addr dst; /* final destination */
370 char nop; /* one NOP to align */
371 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
372 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
373 } ip_srcrt;
374
375 static void save_rte __P((u_char *, struct in_addr));
376
377 #ifdef MBUFTRACE
378 struct mowner ip_rx_mowner = { "internet", "rx" };
379 struct mowner ip_tx_mowner = { "internet", "tx" };
380 #endif
381
382 /*
383 * Compute IP limits derived from the value of nmbclusters.
384 */
385 static void
386 ip_nmbclusters_changed(void)
387 {
388 ip_maxfrags = nmbclusters / 4;
389 ip_nmbclusters = nmbclusters;
390 }
391
392 /*
393 * IP initialization: fill in IP protocol switch table.
394 * All protocols not implemented in kernel go to raw IP protocol handler.
395 */
396 void
397 ip_init()
398 {
399 const struct protosw *pr;
400 int i;
401
402 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
403 if (pr == 0)
404 panic("ip_init");
405 for (i = 0; i < IPPROTO_MAX; i++)
406 ip_protox[i] = pr - inetsw;
407 for (pr = inetdomain.dom_protosw;
408 pr < inetdomain.dom_protoswNPROTOSW; pr++)
409 if (pr->pr_domain->dom_family == PF_INET &&
410 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
411 ip_protox[pr->pr_protocol] = pr - inetsw;
412
413 for (i = 0; i < IPREASS_NHASH; i++)
414 LIST_INIT(&ipq[i]);
415
416 ip_id = time.tv_sec & 0xfffff;
417
418 ipintrq.ifq_maxlen = ipqmaxlen;
419 ip_nmbclusters_changed();
420
421 TAILQ_INIT(&in_ifaddrhead);
422 in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IFADDR,
423 M_WAITOK, &in_ifaddrhash);
424 in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IPMADDR,
425 M_WAITOK, &in_multihash);
426 ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
427 #ifdef GATEWAY
428 ipflow_init();
429 #endif
430
431 #ifdef PFIL_HOOKS
432 /* Register our Packet Filter hook. */
433 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
434 inet_pfil_hook.ph_af = AF_INET;
435 i = pfil_head_register(&inet_pfil_hook);
436 if (i != 0)
437 printf("ip_init: WARNING: unable to register pfil hook, "
438 "error %d\n", i);
439 #endif /* PFIL_HOOKS */
440
441 #ifdef MBUFTRACE
442 MOWNER_ATTACH(&ip_tx_mowner);
443 MOWNER_ATTACH(&ip_rx_mowner);
444 #endif /* MBUFTRACE */
445 }
446
447 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
448 struct route ipforward_rt;
449
450 /*
451 * IP software interrupt routine
452 */
453 void
454 ipintr()
455 {
456 int s;
457 struct mbuf *m;
458
459 while (1) {
460 s = splnet();
461 IF_DEQUEUE(&ipintrq, m);
462 splx(s);
463 if (m == 0)
464 return;
465 MCLAIM(m, &ip_rx_mowner);
466 ip_input(m);
467 }
468 }
469
470 /*
471 * Ip input routine. Checksum and byte swap header. If fragmented
472 * try to reassemble. Process options. Pass to next level.
473 */
474 void
475 ip_input(struct mbuf *m)
476 {
477 struct ip *ip = NULL;
478 struct ipq *fp;
479 struct in_ifaddr *ia;
480 struct ifaddr *ifa;
481 struct ipqent *ipqe;
482 int hlen = 0, mff, len;
483 int downmatch;
484 int checkif;
485 int srcrt = 0;
486 u_int hash;
487 #ifdef FAST_IPSEC
488 struct m_tag *mtag;
489 struct tdb_ident *tdbi;
490 struct secpolicy *sp;
491 int s, error;
492 #endif /* FAST_IPSEC */
493
494 MCLAIM(m, &ip_rx_mowner);
495 #ifdef DIAGNOSTIC
496 if ((m->m_flags & M_PKTHDR) == 0)
497 panic("ipintr no HDR");
498 #endif
499
500 /*
501 * If no IP addresses have been set yet but the interfaces
502 * are receiving, can't do anything with incoming packets yet.
503 */
504 if (TAILQ_FIRST(&in_ifaddrhead) == 0)
505 goto bad;
506 ipstat.ips_total++;
507 /*
508 * If the IP header is not aligned, slurp it up into a new
509 * mbuf with space for link headers, in the event we forward
510 * it. Otherwise, if it is aligned, make sure the entire
511 * base IP header is in the first mbuf of the chain.
512 */
513 if (IP_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) {
514 if ((m = m_copyup(m, sizeof(struct ip),
515 (max_linkhdr + 3) & ~3)) == NULL) {
516 /* XXXJRT new stat, please */
517 ipstat.ips_toosmall++;
518 return;
519 }
520 } else if (__predict_false(m->m_len < sizeof (struct ip))) {
521 if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
522 ipstat.ips_toosmall++;
523 return;
524 }
525 }
526 ip = mtod(m, struct ip *);
527 if (ip->ip_v != IPVERSION) {
528 ipstat.ips_badvers++;
529 goto bad;
530 }
531 hlen = ip->ip_hl << 2;
532 if (hlen < sizeof(struct ip)) { /* minimum header length */
533 ipstat.ips_badhlen++;
534 goto bad;
535 }
536 if (hlen > m->m_len) {
537 if ((m = m_pullup(m, hlen)) == 0) {
538 ipstat.ips_badhlen++;
539 return;
540 }
541 ip = mtod(m, struct ip *);
542 }
543
544 /*
545 * RFC1122: packets with a multicast source address are
546 * not allowed.
547 */
548 if (IN_MULTICAST(ip->ip_src.s_addr)) {
549 ipstat.ips_badaddr++;
550 goto bad;
551 }
552
553 /* 127/8 must not appear on wire - RFC1122 */
554 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
555 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
556 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
557 ipstat.ips_badaddr++;
558 goto bad;
559 }
560 }
561
562 switch (m->m_pkthdr.csum_flags &
563 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
564 M_CSUM_IPv4_BAD)) {
565 case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
566 INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
567 goto badcsum;
568
569 case M_CSUM_IPv4:
570 /* Checksum was okay. */
571 INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
572 break;
573
574 default:
575 /* Must compute it ourselves. */
576 INET_CSUM_COUNTER_INCR(&ip_swcsum);
577 if (in_cksum(m, hlen) != 0)
578 goto badcsum;
579 break;
580 }
581
582 /* Retrieve the packet length. */
583 len = ntohs(ip->ip_len);
584
585 /*
586 * Check for additional length bogosity
587 */
588 if (len < hlen) {
589 ipstat.ips_badlen++;
590 goto bad;
591 }
592
593 /*
594 * Check that the amount of data in the buffers
595 * is as at least much as the IP header would have us expect.
596 * Trim mbufs if longer than we expect.
597 * Drop packet if shorter than we expect.
598 */
599 if (m->m_pkthdr.len < len) {
600 ipstat.ips_tooshort++;
601 goto bad;
602 }
603 if (m->m_pkthdr.len > len) {
604 if (m->m_len == m->m_pkthdr.len) {
605 m->m_len = len;
606 m->m_pkthdr.len = len;
607 } else
608 m_adj(m, len - m->m_pkthdr.len);
609 }
610
611 #if defined(IPSEC)
612 /* ipflow (IP fast forwarding) is not compatible with IPsec. */
613 m->m_flags &= ~M_CANFASTFWD;
614 #else
615 /*
616 * Assume that we can create a fast-forward IP flow entry
617 * based on this packet.
618 */
619 m->m_flags |= M_CANFASTFWD;
620 #endif
621
622 #ifdef PFIL_HOOKS
623 /*
624 * Run through list of hooks for input packets. If there are any
625 * filters which require that additional packets in the flow are
626 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
627 * Note that filters must _never_ set this flag, as another filter
628 * in the list may have previously cleared it.
629 */
630 /*
631 * let ipfilter look at packet on the wire,
632 * not the decapsulated packet.
633 */
634 #ifdef IPSEC
635 if (!ipsec_getnhist(m))
636 #elif defined(FAST_IPSEC)
637 if (!ipsec_indone(m))
638 #else
639 if (1)
640 #endif
641 {
642 struct in_addr odst;
643
644 odst = ip->ip_dst;
645 if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
646 PFIL_IN) != 0)
647 return;
648 if (m == NULL)
649 return;
650 ip = mtod(m, struct ip *);
651 hlen = ip->ip_hl << 2;
652 /*
653 * XXX The setting of "srcrt" here is to prevent ip_forward()
654 * from generating ICMP redirects for packets that have
655 * been redirected by a hook back out on to the same LAN that
656 * they came from and is not an indication that the packet
657 * is being inffluenced by source routing options. This
658 * allows things like
659 * "rdr tlp0 0/0 port 80 -> 1.1.1.200 3128 tcp"
660 * where tlp0 is both on the 1.1.1.0/24 network and is the
661 * default route for hosts on 1.1.1.0/24. Of course this
662 * also requires a "map tlp0 ..." to complete the story.
663 * One might argue whether or not this kind of network config.
664 * should be supported in this manner...
665 */
666 srcrt = (odst.s_addr != ip->ip_dst.s_addr);
667 }
668 #endif /* PFIL_HOOKS */
669
670 #ifdef ALTQ
671 /* XXX Temporary until ALTQ is changed to use a pfil hook */
672 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
673 /* packet dropped by traffic conditioner */
674 return;
675 }
676 #endif
677
678 /*
679 * Process options and, if not destined for us,
680 * ship it on. ip_dooptions returns 1 when an
681 * error was detected (causing an icmp message
682 * to be sent and the original packet to be freed).
683 */
684 ip_nhops = 0; /* for source routed packets */
685 if (hlen > sizeof (struct ip) && ip_dooptions(m))
686 return;
687
688 /*
689 * Enable a consistency check between the destination address
690 * and the arrival interface for a unicast packet (the RFC 1122
691 * strong ES model) if IP forwarding is disabled and the packet
692 * is not locally generated.
693 *
694 * XXX - Checking also should be disabled if the destination
695 * address is ipnat'ed to a different interface.
696 *
697 * XXX - Checking is incompatible with IP aliases added
698 * to the loopback interface instead of the interface where
699 * the packets are received.
700 *
701 * XXX - We need to add a per ifaddr flag for this so that
702 * we get finer grain control.
703 */
704 checkif = ip_checkinterface && (ipforwarding == 0) &&
705 (m->m_pkthdr.rcvif != NULL) &&
706 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
707
708 /*
709 * Check our list of addresses, to see if the packet is for us.
710 *
711 * Traditional 4.4BSD did not consult IFF_UP at all.
712 * The behavior here is to treat addresses on !IFF_UP interface
713 * as not mine.
714 */
715 downmatch = 0;
716 LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
717 if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
718 if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
719 continue;
720 if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
721 break;
722 else
723 downmatch++;
724 }
725 }
726 if (ia != NULL)
727 goto ours;
728 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
729 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrlist, ifa_list) {
730 if (ifa->ifa_addr->sa_family != AF_INET)
731 continue;
732 ia = ifatoia(ifa);
733 if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
734 in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
735 /*
736 * Look for all-0's host part (old broadcast addr),
737 * either for subnet or net.
738 */
739 ip->ip_dst.s_addr == ia->ia_subnet ||
740 ip->ip_dst.s_addr == ia->ia_net)
741 goto ours;
742 /*
743 * An interface with IP address zero accepts
744 * all packets that arrive on that interface.
745 */
746 if (in_nullhost(ia->ia_addr.sin_addr))
747 goto ours;
748 }
749 }
750 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
751 struct in_multi *inm;
752 #ifdef MROUTING
753 extern struct socket *ip_mrouter;
754
755 if (ip_mrouter) {
756 /*
757 * If we are acting as a multicast router, all
758 * incoming multicast packets are passed to the
759 * kernel-level multicast forwarding function.
760 * The packet is returned (relatively) intact; if
761 * ip_mforward() returns a non-zero value, the packet
762 * must be discarded, else it may be accepted below.
763 *
764 * (The IP ident field is put in the same byte order
765 * as expected when ip_mforward() is called from
766 * ip_output().)
767 */
768 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
769 ipstat.ips_cantforward++;
770 m_freem(m);
771 return;
772 }
773
774 /*
775 * The process-level routing demon needs to receive
776 * all multicast IGMP packets, whether or not this
777 * host belongs to their destination groups.
778 */
779 if (ip->ip_p == IPPROTO_IGMP)
780 goto ours;
781 ipstat.ips_forward++;
782 }
783 #endif
784 /*
785 * See if we belong to the destination multicast group on the
786 * arrival interface.
787 */
788 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
789 if (inm == NULL) {
790 ipstat.ips_cantforward++;
791 m_freem(m);
792 return;
793 }
794 goto ours;
795 }
796 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
797 in_nullhost(ip->ip_dst))
798 goto ours;
799
800 /*
801 * Not for us; forward if possible and desirable.
802 */
803 if (ipforwarding == 0) {
804 ipstat.ips_cantforward++;
805 m_freem(m);
806 } else {
807 /*
808 * If ip_dst matched any of my address on !IFF_UP interface,
809 * and there's no IFF_UP interface that matches ip_dst,
810 * send icmp unreach. Forwarding it will result in in-kernel
811 * forwarding loop till TTL goes to 0.
812 */
813 if (downmatch) {
814 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
815 ipstat.ips_cantforward++;
816 return;
817 }
818 #ifdef IPSEC
819 if (ipsec4_in_reject(m, NULL)) {
820 ipsecstat.in_polvio++;
821 goto bad;
822 }
823 #endif
824 #ifdef FAST_IPSEC
825 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
826 s = splsoftnet();
827 if (mtag != NULL) {
828 tdbi = (struct tdb_ident *)(mtag + 1);
829 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
830 } else {
831 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
832 IP_FORWARDING, &error);
833 }
834 if (sp == NULL) { /* NB: can happen if error */
835 splx(s);
836 /*XXX error stat???*/
837 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
838 goto bad;
839 }
840
841 /*
842 * Check security policy against packet attributes.
843 */
844 error = ipsec_in_reject(sp, m);
845 KEY_FREESP(&sp);
846 splx(s);
847 if (error) {
848 ipstat.ips_cantforward++;
849 goto bad;
850 }
851
852 /*
853 * Peek at the outbound SP for this packet to determine if
854 * it's a Fast Forward candidate.
855 */
856 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
857 if (mtag != NULL)
858 m->m_flags &= ~M_CANFASTFWD;
859 else {
860 s = splsoftnet();
861 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
862 (IP_FORWARDING |
863 (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
864 &error, NULL);
865 if (sp != NULL) {
866 m->m_flags &= ~M_CANFASTFWD;
867 KEY_FREESP(&sp);
868 }
869 splx(s);
870 }
871 #endif /* FAST_IPSEC */
872
873 ip_forward(m, srcrt);
874 }
875 return;
876
877 ours:
878 /*
879 * If offset or IP_MF are set, must reassemble.
880 * Otherwise, nothing need be done.
881 * (We could look in the reassembly queue to see
882 * if the packet was previously fragmented,
883 * but it's not worth the time; just let them time out.)
884 */
885 if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
886
887 /*
888 * Look for queue of fragments
889 * of this datagram.
890 */
891 IPQ_LOCK();
892 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
893 /* XXX LIST_FOREACH(fp, &ipq[hash], ipq_q) */
894 for (fp = LIST_FIRST(&ipq[hash]); fp != NULL;
895 fp = LIST_NEXT(fp, ipq_q)) {
896 if (ip->ip_id == fp->ipq_id &&
897 in_hosteq(ip->ip_src, fp->ipq_src) &&
898 in_hosteq(ip->ip_dst, fp->ipq_dst) &&
899 ip->ip_p == fp->ipq_p)
900 goto found;
901
902 }
903 fp = 0;
904 found:
905
906 /*
907 * Adjust ip_len to not reflect header,
908 * set ipqe_mff if more fragments are expected,
909 * convert offset of this to bytes.
910 */
911 ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
912 mff = (ip->ip_off & htons(IP_MF)) != 0;
913 if (mff) {
914 /*
915 * Make sure that fragments have a data length
916 * that's a non-zero multiple of 8 bytes.
917 */
918 if (ntohs(ip->ip_len) == 0 ||
919 (ntohs(ip->ip_len) & 0x7) != 0) {
920 ipstat.ips_badfrags++;
921 IPQ_UNLOCK();
922 goto bad;
923 }
924 }
925 ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
926
927 /*
928 * If datagram marked as having more fragments
929 * or if this is not the first fragment,
930 * attempt reassembly; if it succeeds, proceed.
931 */
932 if (mff || ip->ip_off != htons(0)) {
933 ipstat.ips_fragments++;
934 ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
935 if (ipqe == NULL) {
936 ipstat.ips_rcvmemdrop++;
937 IPQ_UNLOCK();
938 goto bad;
939 }
940 ipqe->ipqe_mff = mff;
941 ipqe->ipqe_m = m;
942 ipqe->ipqe_ip = ip;
943 m = ip_reass(ipqe, fp, &ipq[hash]);
944 if (m == 0) {
945 IPQ_UNLOCK();
946 return;
947 }
948 ipstat.ips_reassembled++;
949 ip = mtod(m, struct ip *);
950 hlen = ip->ip_hl << 2;
951 ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
952 } else
953 if (fp)
954 ip_freef(fp);
955 IPQ_UNLOCK();
956 }
957
958 #if defined(IPSEC)
959 /*
960 * enforce IPsec policy checking if we are seeing last header.
961 * note that we do not visit this with protocols with pcb layer
962 * code - like udp/tcp/raw ip.
963 */
964 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
965 ipsec4_in_reject(m, NULL)) {
966 ipsecstat.in_polvio++;
967 goto bad;
968 }
969 #endif
970 #if FAST_IPSEC
971 /*
972 * enforce IPsec policy checking if we are seeing last header.
973 * note that we do not visit this with protocols with pcb layer
974 * code - like udp/tcp/raw ip.
975 */
976 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
977 /*
978 * Check if the packet has already had IPsec processing
979 * done. If so, then just pass it along. This tag gets
980 * set during AH, ESP, etc. input handling, before the
981 * packet is returned to the ip input queue for delivery.
982 */
983 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
984 s = splsoftnet();
985 if (mtag != NULL) {
986 tdbi = (struct tdb_ident *)(mtag + 1);
987 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
988 } else {
989 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
990 IP_FORWARDING, &error);
991 }
992 if (sp != NULL) {
993 /*
994 * Check security policy against packet attributes.
995 */
996 error = ipsec_in_reject(sp, m);
997 KEY_FREESP(&sp);
998 } else {
999 /* XXX error stat??? */
1000 error = EINVAL;
1001 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1002 goto bad;
1003 }
1004 splx(s);
1005 if (error)
1006 goto bad;
1007 }
1008 #endif /* FAST_IPSEC */
1009
1010 /*
1011 * Switch out to protocol's input routine.
1012 */
1013 #if IFA_STATS
1014 if (ia && ip)
1015 ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
1016 #endif
1017 ipstat.ips_delivered++;
1018 {
1019 int off = hlen, nh = ip->ip_p;
1020
1021 (*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
1022 return;
1023 }
1024 bad:
1025 m_freem(m);
1026 return;
1027
1028 badcsum:
1029 ipstat.ips_badsum++;
1030 m_freem(m);
1031 }
1032
1033 /*
1034 * Take incoming datagram fragment and try to
1035 * reassemble it into whole datagram. If a chain for
1036 * reassembly of this datagram already exists, then it
1037 * is given as fp; otherwise have to make a chain.
1038 */
1039 struct mbuf *
1040 ip_reass(ipqe, fp, ipqhead)
1041 struct ipqent *ipqe;
1042 struct ipq *fp;
1043 struct ipqhead *ipqhead;
1044 {
1045 struct mbuf *m = ipqe->ipqe_m;
1046 struct ipqent *nq, *p, *q;
1047 struct ip *ip;
1048 struct mbuf *t;
1049 int hlen = ipqe->ipqe_ip->ip_hl << 2;
1050 int i, next;
1051
1052 IPQ_LOCK_CHECK();
1053
1054 /*
1055 * Presence of header sizes in mbufs
1056 * would confuse code below.
1057 */
1058 m->m_data += hlen;
1059 m->m_len -= hlen;
1060
1061 #ifdef notyet
1062 /* make sure fragment limit is up-to-date */
1063 CHECK_NMBCLUSTER_PARAMS();
1064
1065 /* If we have too many fragments, drop the older half. */
1066 if (ip_nfrags >= ip_maxfrags)
1067 ip_reass_drophalf(void);
1068 #endif
1069
1070 /*
1071 * We are about to add a fragment; increment frag count.
1072 */
1073 ip_nfrags++;
1074
1075 /*
1076 * If first fragment to arrive, create a reassembly queue.
1077 */
1078 if (fp == 0) {
1079 /*
1080 * Enforce upper bound on number of fragmented packets
1081 * for which we attempt reassembly;
1082 * If maxfrag is 0, never accept fragments.
1083 * If maxfrag is -1, accept all fragments without limitation.
1084 */
1085 if (ip_maxfragpackets < 0)
1086 ;
1087 else if (ip_nfragpackets >= ip_maxfragpackets)
1088 goto dropfrag;
1089 ip_nfragpackets++;
1090 MALLOC(fp, struct ipq *, sizeof (struct ipq),
1091 M_FTABLE, M_NOWAIT);
1092 if (fp == NULL)
1093 goto dropfrag;
1094 LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
1095 fp->ipq_nfrags = 1;
1096 fp->ipq_ttl = IPFRAGTTL;
1097 fp->ipq_p = ipqe->ipqe_ip->ip_p;
1098 fp->ipq_id = ipqe->ipqe_ip->ip_id;
1099 TAILQ_INIT(&fp->ipq_fragq);
1100 fp->ipq_src = ipqe->ipqe_ip->ip_src;
1101 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
1102 p = NULL;
1103 goto insert;
1104 } else {
1105 fp->ipq_nfrags++;
1106 }
1107
1108 /*
1109 * Find a segment which begins after this one does.
1110 */
1111 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1112 p = q, q = TAILQ_NEXT(q, ipqe_q))
1113 if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
1114 break;
1115
1116 /*
1117 * If there is a preceding segment, it may provide some of
1118 * our data already. If so, drop the data from the incoming
1119 * segment. If it provides all of our data, drop us.
1120 */
1121 if (p != NULL) {
1122 i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
1123 ntohs(ipqe->ipqe_ip->ip_off);
1124 if (i > 0) {
1125 if (i >= ntohs(ipqe->ipqe_ip->ip_len))
1126 goto dropfrag;
1127 m_adj(ipqe->ipqe_m, i);
1128 ipqe->ipqe_ip->ip_off =
1129 htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
1130 ipqe->ipqe_ip->ip_len =
1131 htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
1132 }
1133 }
1134
1135 /*
1136 * While we overlap succeeding segments trim them or,
1137 * if they are completely covered, dequeue them.
1138 */
1139 for (; q != NULL &&
1140 ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
1141 ntohs(q->ipqe_ip->ip_off); q = nq) {
1142 i = (ntohs(ipqe->ipqe_ip->ip_off) +
1143 ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
1144 if (i < ntohs(q->ipqe_ip->ip_len)) {
1145 q->ipqe_ip->ip_len =
1146 htons(ntohs(q->ipqe_ip->ip_len) - i);
1147 q->ipqe_ip->ip_off =
1148 htons(ntohs(q->ipqe_ip->ip_off) + i);
1149 m_adj(q->ipqe_m, i);
1150 break;
1151 }
1152 nq = TAILQ_NEXT(q, ipqe_q);
1153 m_freem(q->ipqe_m);
1154 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1155 pool_put(&ipqent_pool, q);
1156 fp->ipq_nfrags--;
1157 ip_nfrags--;
1158 }
1159
1160 insert:
1161 /*
1162 * Stick new segment in its place;
1163 * check for complete reassembly.
1164 */
1165 if (p == NULL) {
1166 TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
1167 } else {
1168 TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
1169 }
1170 next = 0;
1171 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1172 p = q, q = TAILQ_NEXT(q, ipqe_q)) {
1173 if (ntohs(q->ipqe_ip->ip_off) != next)
1174 return (0);
1175 next += ntohs(q->ipqe_ip->ip_len);
1176 }
1177 if (p->ipqe_mff)
1178 return (0);
1179
1180 /*
1181 * Reassembly is complete. Check for a bogus message size and
1182 * concatenate fragments.
1183 */
1184 q = TAILQ_FIRST(&fp->ipq_fragq);
1185 ip = q->ipqe_ip;
1186 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
1187 ipstat.ips_toolong++;
1188 ip_freef(fp);
1189 return (0);
1190 }
1191 m = q->ipqe_m;
1192 t = m->m_next;
1193 m->m_next = 0;
1194 m_cat(m, t);
1195 nq = TAILQ_NEXT(q, ipqe_q);
1196 pool_put(&ipqent_pool, q);
1197 for (q = nq; q != NULL; q = nq) {
1198 t = q->ipqe_m;
1199 nq = TAILQ_NEXT(q, ipqe_q);
1200 pool_put(&ipqent_pool, q);
1201 m_cat(m, t);
1202 }
1203 ip_nfrags -= fp->ipq_nfrags;
1204
1205 /*
1206 * Create header for new ip packet by
1207 * modifying header of first packet;
1208 * dequeue and discard fragment reassembly header.
1209 * Make header visible.
1210 */
1211 ip->ip_len = htons(next);
1212 ip->ip_src = fp->ipq_src;
1213 ip->ip_dst = fp->ipq_dst;
1214 LIST_REMOVE(fp, ipq_q);
1215 FREE(fp, M_FTABLE);
1216 ip_nfragpackets--;
1217 m->m_len += (ip->ip_hl << 2);
1218 m->m_data -= (ip->ip_hl << 2);
1219 /* some debugging cruft by sklower, below, will go away soon */
1220 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1221 int plen = 0;
1222 for (t = m; t; t = t->m_next)
1223 plen += t->m_len;
1224 m->m_pkthdr.len = plen;
1225 }
1226 return (m);
1227
1228 dropfrag:
1229 if (fp != 0)
1230 fp->ipq_nfrags--;
1231 ip_nfrags--;
1232 ipstat.ips_fragdropped++;
1233 m_freem(m);
1234 pool_put(&ipqent_pool, ipqe);
1235 return (0);
1236 }
1237
1238 /*
1239 * Free a fragment reassembly header and all
1240 * associated datagrams.
1241 */
1242 void
1243 ip_freef(fp)
1244 struct ipq *fp;
1245 {
1246 struct ipqent *q, *p;
1247 u_int nfrags = 0;
1248
1249 IPQ_LOCK_CHECK();
1250
1251 for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
1252 p = TAILQ_NEXT(q, ipqe_q);
1253 m_freem(q->ipqe_m);
1254 nfrags++;
1255 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1256 pool_put(&ipqent_pool, q);
1257 }
1258
1259 if (nfrags != fp->ipq_nfrags)
1260 printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
1261 ip_nfrags -= nfrags;
1262 LIST_REMOVE(fp, ipq_q);
1263 FREE(fp, M_FTABLE);
1264 ip_nfragpackets--;
1265 }
1266
1267 /*
1268 * IP reassembly TTL machinery for multiplicative drop.
1269 */
1270 static u_int fragttl_histo[(IPFRAGTTL+1)];
1271
1272
1273 /*
1274 * Decrement TTL of all reasembly queue entries by `ticks'.
1275 * Count number of distinct fragments (as opposed to partial, fragmented
1276 * datagrams) in the reassembly queue. While we traverse the entire
1277 * reassembly queue, compute and return the median TTL over all fragments.
1278 */
1279 static u_int
1280 ip_reass_ttl_decr(u_int ticks)
1281 {
1282 u_int nfrags, median, dropfraction, keepfraction;
1283 struct ipq *fp, *nfp;
1284 int i;
1285
1286 nfrags = 0;
1287 memset(fragttl_histo, 0, sizeof fragttl_histo);
1288
1289 for (i = 0; i < IPREASS_NHASH; i++) {
1290 for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
1291 fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
1292 0 : fp->ipq_ttl - ticks);
1293 nfp = LIST_NEXT(fp, ipq_q);
1294 if (fp->ipq_ttl == 0) {
1295 ipstat.ips_fragtimeout++;
1296 ip_freef(fp);
1297 } else {
1298 nfrags += fp->ipq_nfrags;
1299 fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
1300 }
1301 }
1302 }
1303
1304 KASSERT(ip_nfrags == nfrags);
1305
1306 /* Find median (or other drop fraction) in histogram. */
1307 dropfraction = (ip_nfrags / 2);
1308 keepfraction = ip_nfrags - dropfraction;
1309 for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
1310 median += fragttl_histo[i];
1311 if (median >= keepfraction)
1312 break;
1313 }
1314
1315 /* Return TTL of median (or other fraction). */
1316 return (u_int)i;
1317 }
1318
1319 void
1320 ip_reass_drophalf(void)
1321 {
1322
1323 u_int median_ticks;
1324 /*
1325 * Compute median TTL of all fragments, and count frags
1326 * with that TTL or lower (roughly half of all fragments).
1327 */
1328 median_ticks = ip_reass_ttl_decr(0);
1329
1330 /* Drop half. */
1331 median_ticks = ip_reass_ttl_decr(median_ticks);
1332
1333 }
1334
1335 /*
1336 * IP timer processing;
1337 * if a timer expires on a reassembly
1338 * queue, discard it.
1339 */
1340 void
1341 ip_slowtimo()
1342 {
1343 static u_int dropscanidx = 0;
1344 u_int i;
1345 u_int median_ttl;
1346 int s = splsoftnet();
1347
1348 IPQ_LOCK();
1349
1350 /* Age TTL of all fragments by 1 tick .*/
1351 median_ttl = ip_reass_ttl_decr(1);
1352
1353 /* make sure fragment limit is up-to-date */
1354 CHECK_NMBCLUSTER_PARAMS();
1355
1356 /* If we have too many fragments, drop the older half. */
1357 if (ip_nfrags > ip_maxfrags)
1358 ip_reass_ttl_decr(median_ttl);
1359
1360 /*
1361 * If we are over the maximum number of fragmented packets
1362 * (due to the limit being lowered), drain off
1363 * enough to get down to the new limit. Start draining
1364 * from the reassembly hashqueue most recently drained.
1365 */
1366 if (ip_maxfragpackets < 0)
1367 ;
1368 else {
1369 int wrapped = 0;
1370
1371 i = dropscanidx;
1372 while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
1373 while (LIST_FIRST(&ipq[i]) != NULL)
1374 ip_freef(LIST_FIRST(&ipq[i]));
1375 if (++i >= IPREASS_NHASH) {
1376 i = 0;
1377 }
1378 /*
1379 * Dont scan forever even if fragment counters are
1380 * wrong: stop after scanning entire reassembly queue.
1381 */
1382 if (i == dropscanidx)
1383 wrapped = 1;
1384 }
1385 dropscanidx = i;
1386 }
1387 IPQ_UNLOCK();
1388 #ifdef GATEWAY
1389 ipflow_slowtimo();
1390 #endif
1391 splx(s);
1392 }
1393
1394 /*
1395 * Drain off all datagram fragments.
1396 */
1397 void
1398 ip_drain()
1399 {
1400
1401 /*
1402 * We may be called from a device's interrupt context. If
1403 * the ipq is already busy, just bail out now.
1404 */
1405 if (ipq_lock_try() == 0)
1406 return;
1407
1408 /*
1409 * Drop half the total fragments now. If more mbufs are needed,
1410 * we will be called again soon.
1411 */
1412 ip_reass_drophalf();
1413
1414 IPQ_UNLOCK();
1415 }
1416
1417 /*
1418 * Do option processing on a datagram,
1419 * possibly discarding it if bad options are encountered,
1420 * or forwarding it if source-routed.
1421 * Returns 1 if packet has been forwarded/freed,
1422 * 0 if the packet should be processed further.
1423 */
1424 int
1425 ip_dooptions(m)
1426 struct mbuf *m;
1427 {
1428 struct ip *ip = mtod(m, struct ip *);
1429 u_char *cp, *cp0;
1430 struct ip_timestamp *ipt;
1431 struct in_ifaddr *ia;
1432 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1433 struct in_addr dst;
1434 n_time ntime;
1435
1436 dst = ip->ip_dst;
1437 cp = (u_char *)(ip + 1);
1438 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1439 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1440 opt = cp[IPOPT_OPTVAL];
1441 if (opt == IPOPT_EOL)
1442 break;
1443 if (opt == IPOPT_NOP)
1444 optlen = 1;
1445 else {
1446 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1447 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1448 goto bad;
1449 }
1450 optlen = cp[IPOPT_OLEN];
1451 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1452 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1453 goto bad;
1454 }
1455 }
1456 switch (opt) {
1457
1458 default:
1459 break;
1460
1461 /*
1462 * Source routing with record.
1463 * Find interface with current destination address.
1464 * If none on this machine then drop if strictly routed,
1465 * or do nothing if loosely routed.
1466 * Record interface address and bring up next address
1467 * component. If strictly routed make sure next
1468 * address is on directly accessible net.
1469 */
1470 case IPOPT_LSRR:
1471 case IPOPT_SSRR:
1472 if (ip_allowsrcrt == 0) {
1473 type = ICMP_UNREACH;
1474 code = ICMP_UNREACH_NET_PROHIB;
1475 goto bad;
1476 }
1477 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1478 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1479 goto bad;
1480 }
1481 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1482 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1483 goto bad;
1484 }
1485 ipaddr.sin_addr = ip->ip_dst;
1486 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
1487 if (ia == 0) {
1488 if (opt == IPOPT_SSRR) {
1489 type = ICMP_UNREACH;
1490 code = ICMP_UNREACH_SRCFAIL;
1491 goto bad;
1492 }
1493 /*
1494 * Loose routing, and not at next destination
1495 * yet; nothing to do except forward.
1496 */
1497 break;
1498 }
1499 off--; /* 0 origin */
1500 if ((off + sizeof(struct in_addr)) > optlen) {
1501 /*
1502 * End of source route. Should be for us.
1503 */
1504 save_rte(cp, ip->ip_src);
1505 break;
1506 }
1507 /*
1508 * locate outgoing interface
1509 */
1510 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
1511 sizeof(ipaddr.sin_addr));
1512 if (opt == IPOPT_SSRR)
1513 ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
1514 else
1515 ia = ip_rtaddr(ipaddr.sin_addr);
1516 if (ia == 0) {
1517 type = ICMP_UNREACH;
1518 code = ICMP_UNREACH_SRCFAIL;
1519 goto bad;
1520 }
1521 ip->ip_dst = ipaddr.sin_addr;
1522 bcopy((caddr_t)&ia->ia_addr.sin_addr,
1523 (caddr_t)(cp + off), sizeof(struct in_addr));
1524 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1525 /*
1526 * Let ip_intr's mcast routing check handle mcast pkts
1527 */
1528 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1529 break;
1530
1531 case IPOPT_RR:
1532 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1533 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1534 goto bad;
1535 }
1536 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1537 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1538 goto bad;
1539 }
1540 /*
1541 * If no space remains, ignore.
1542 */
1543 off--; /* 0 origin */
1544 if ((off + sizeof(struct in_addr)) > optlen)
1545 break;
1546 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
1547 sizeof(ipaddr.sin_addr));
1548 /*
1549 * locate outgoing interface; if we're the destination,
1550 * use the incoming interface (should be same).
1551 */
1552 if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
1553 == NULL &&
1554 (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1555 type = ICMP_UNREACH;
1556 code = ICMP_UNREACH_HOST;
1557 goto bad;
1558 }
1559 bcopy((caddr_t)&ia->ia_addr.sin_addr,
1560 (caddr_t)(cp + off), sizeof(struct in_addr));
1561 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1562 break;
1563
1564 case IPOPT_TS:
1565 code = cp - (u_char *)ip;
1566 ipt = (struct ip_timestamp *)cp;
1567 if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1568 code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1569 goto bad;
1570 }
1571 if (ipt->ipt_ptr < 5) {
1572 code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1573 goto bad;
1574 }
1575 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
1576 if (++ipt->ipt_oflw == 0) {
1577 code = (u_char *)&ipt->ipt_ptr -
1578 (u_char *)ip;
1579 goto bad;
1580 }
1581 break;
1582 }
1583 cp0 = (cp + ipt->ipt_ptr - 1);
1584 switch (ipt->ipt_flg) {
1585
1586 case IPOPT_TS_TSONLY:
1587 break;
1588
1589 case IPOPT_TS_TSANDADDR:
1590 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1591 sizeof(struct in_addr) > ipt->ipt_len) {
1592 code = (u_char *)&ipt->ipt_ptr -
1593 (u_char *)ip;
1594 goto bad;
1595 }
1596 ipaddr.sin_addr = dst;
1597 ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1598 m->m_pkthdr.rcvif));
1599 if (ia == 0)
1600 continue;
1601 bcopy(&ia->ia_addr.sin_addr,
1602 cp0, sizeof(struct in_addr));
1603 ipt->ipt_ptr += sizeof(struct in_addr);
1604 break;
1605
1606 case IPOPT_TS_PRESPEC:
1607 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1608 sizeof(struct in_addr) > ipt->ipt_len) {
1609 code = (u_char *)&ipt->ipt_ptr -
1610 (u_char *)ip;
1611 goto bad;
1612 }
1613 bcopy(cp0, &ipaddr.sin_addr,
1614 sizeof(struct in_addr));
1615 if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
1616 == NULL)
1617 continue;
1618 ipt->ipt_ptr += sizeof(struct in_addr);
1619 break;
1620
1621 default:
1622 /* XXX can't take &ipt->ipt_flg */
1623 code = (u_char *)&ipt->ipt_ptr -
1624 (u_char *)ip + 1;
1625 goto bad;
1626 }
1627 ntime = iptime();
1628 cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
1629 bcopy(cp0, (caddr_t)cp + ipt->ipt_ptr - 1,
1630 sizeof(n_time));
1631 ipt->ipt_ptr += sizeof(n_time);
1632 }
1633 }
1634 if (forward) {
1635 if (ip_forwsrcrt == 0) {
1636 type = ICMP_UNREACH;
1637 code = ICMP_UNREACH_SRCFAIL;
1638 goto bad;
1639 }
1640 ip_forward(m, 1);
1641 return (1);
1642 }
1643 return (0);
1644 bad:
1645 icmp_error(m, type, code, 0, 0);
1646 ipstat.ips_badoptions++;
1647 return (1);
1648 }
1649
1650 /*
1651 * Given address of next destination (final or next hop),
1652 * return internet address info of interface to be used to get there.
1653 */
1654 struct in_ifaddr *
1655 ip_rtaddr(dst)
1656 struct in_addr dst;
1657 {
1658 struct sockaddr_in *sin;
1659
1660 sin = satosin(&ipforward_rt.ro_dst);
1661
1662 if (ipforward_rt.ro_rt == 0 || !in_hosteq(dst, sin->sin_addr)) {
1663 if (ipforward_rt.ro_rt) {
1664 RTFREE(ipforward_rt.ro_rt);
1665 ipforward_rt.ro_rt = 0;
1666 }
1667 sin->sin_family = AF_INET;
1668 sin->sin_len = sizeof(*sin);
1669 sin->sin_addr = dst;
1670
1671 rtalloc(&ipforward_rt);
1672 }
1673 if (ipforward_rt.ro_rt == 0)
1674 return ((struct in_ifaddr *)0);
1675 return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
1676 }
1677
1678 /*
1679 * Save incoming source route for use in replies,
1680 * to be picked up later by ip_srcroute if the receiver is interested.
1681 */
1682 void
1683 save_rte(option, dst)
1684 u_char *option;
1685 struct in_addr dst;
1686 {
1687 unsigned olen;
1688
1689 olen = option[IPOPT_OLEN];
1690 #ifdef DIAGNOSTIC
1691 if (ipprintfs)
1692 printf("save_rte: olen %d\n", olen);
1693 #endif /* 0 */
1694 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1695 return;
1696 bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
1697 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1698 ip_srcrt.dst = dst;
1699 }
1700
1701 /*
1702 * Retrieve incoming source route for use in replies,
1703 * in the same form used by setsockopt.
1704 * The first hop is placed before the options, will be removed later.
1705 */
1706 struct mbuf *
1707 ip_srcroute()
1708 {
1709 struct in_addr *p, *q;
1710 struct mbuf *m;
1711
1712 if (ip_nhops == 0)
1713 return ((struct mbuf *)0);
1714 m = m_get(M_DONTWAIT, MT_SOOPTS);
1715 if (m == 0)
1716 return ((struct mbuf *)0);
1717
1718 MCLAIM(m, &inetdomain.dom_mowner);
1719 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1720
1721 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1722 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1723 OPTSIZ;
1724 #ifdef DIAGNOSTIC
1725 if (ipprintfs)
1726 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1727 #endif
1728
1729 /*
1730 * First save first hop for return route
1731 */
1732 p = &ip_srcrt.route[ip_nhops - 1];
1733 *(mtod(m, struct in_addr *)) = *p--;
1734 #ifdef DIAGNOSTIC
1735 if (ipprintfs)
1736 printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1737 #endif
1738
1739 /*
1740 * Copy option fields and padding (nop) to mbuf.
1741 */
1742 ip_srcrt.nop = IPOPT_NOP;
1743 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1744 bcopy((caddr_t)&ip_srcrt.nop,
1745 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
1746 q = (struct in_addr *)(mtod(m, caddr_t) +
1747 sizeof(struct in_addr) + OPTSIZ);
1748 #undef OPTSIZ
1749 /*
1750 * Record return path as an IP source route,
1751 * reversing the path (pointers are now aligned).
1752 */
1753 while (p >= ip_srcrt.route) {
1754 #ifdef DIAGNOSTIC
1755 if (ipprintfs)
1756 printf(" %x", ntohl(q->s_addr));
1757 #endif
1758 *q++ = *p--;
1759 }
1760 /*
1761 * Last hop goes to final destination.
1762 */
1763 *q = ip_srcrt.dst;
1764 #ifdef DIAGNOSTIC
1765 if (ipprintfs)
1766 printf(" %x\n", ntohl(q->s_addr));
1767 #endif
1768 return (m);
1769 }
1770
1771 /*
1772 * Strip out IP options, at higher
1773 * level protocol in the kernel.
1774 * Second argument is buffer to which options
1775 * will be moved, and return value is their length.
1776 * XXX should be deleted; last arg currently ignored.
1777 */
1778 void
1779 ip_stripoptions(m, mopt)
1780 struct mbuf *m;
1781 struct mbuf *mopt;
1782 {
1783 int i;
1784 struct ip *ip = mtod(m, struct ip *);
1785 caddr_t opts;
1786 int olen;
1787
1788 olen = (ip->ip_hl << 2) - sizeof (struct ip);
1789 opts = (caddr_t)(ip + 1);
1790 i = m->m_len - (sizeof (struct ip) + olen);
1791 bcopy(opts + olen, opts, (unsigned)i);
1792 m->m_len -= olen;
1793 if (m->m_flags & M_PKTHDR)
1794 m->m_pkthdr.len -= olen;
1795 ip->ip_len = htons(ntohs(ip->ip_len) - olen);
1796 ip->ip_hl = sizeof (struct ip) >> 2;
1797 }
1798
1799 const int inetctlerrmap[PRC_NCMDS] = {
1800 0, 0, 0, 0,
1801 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1802 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1803 EMSGSIZE, EHOSTUNREACH, 0, 0,
1804 0, 0, 0, 0,
1805 ENOPROTOOPT
1806 };
1807
1808 /*
1809 * Forward a packet. If some error occurs return the sender
1810 * an icmp packet. Note we can't always generate a meaningful
1811 * icmp message because icmp doesn't have a large enough repertoire
1812 * of codes and types.
1813 *
1814 * If not forwarding, just drop the packet. This could be confusing
1815 * if ipforwarding was zero but some routing protocol was advancing
1816 * us as a gateway to somewhere. However, we must let the routing
1817 * protocol deal with that.
1818 *
1819 * The srcrt parameter indicates whether the packet is being forwarded
1820 * via a source route.
1821 */
1822 void
1823 ip_forward(m, srcrt)
1824 struct mbuf *m;
1825 int srcrt;
1826 {
1827 struct ip *ip = mtod(m, struct ip *);
1828 struct sockaddr_in *sin;
1829 struct rtentry *rt;
1830 int error, type = 0, code = 0;
1831 struct mbuf *mcopy;
1832 n_long dest;
1833 struct ifnet *destifp;
1834 #if defined(IPSEC) || defined(FAST_IPSEC)
1835 struct ifnet dummyifp;
1836 #endif
1837
1838 /*
1839 * We are now in the output path.
1840 */
1841 MCLAIM(m, &ip_tx_mowner);
1842
1843 /*
1844 * Clear any in-bound checksum flags for this packet.
1845 */
1846 m->m_pkthdr.csum_flags = 0;
1847
1848 dest = 0;
1849 #ifdef DIAGNOSTIC
1850 if (ipprintfs)
1851 printf("forward: src %2.2x dst %2.2x ttl %x\n",
1852 ntohl(ip->ip_src.s_addr),
1853 ntohl(ip->ip_dst.s_addr), ip->ip_ttl);
1854 #endif
1855 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1856 ipstat.ips_cantforward++;
1857 m_freem(m);
1858 return;
1859 }
1860 if (ip->ip_ttl <= IPTTLDEC) {
1861 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1862 return;
1863 }
1864 ip->ip_ttl -= IPTTLDEC;
1865
1866 sin = satosin(&ipforward_rt.ro_dst);
1867 if ((rt = ipforward_rt.ro_rt) == 0 ||
1868 !in_hosteq(ip->ip_dst, sin->sin_addr)) {
1869 if (ipforward_rt.ro_rt) {
1870 RTFREE(ipforward_rt.ro_rt);
1871 ipforward_rt.ro_rt = 0;
1872 }
1873 sin->sin_family = AF_INET;
1874 sin->sin_len = sizeof(struct sockaddr_in);
1875 sin->sin_addr = ip->ip_dst;
1876
1877 rtalloc(&ipforward_rt);
1878 if (ipforward_rt.ro_rt == 0) {
1879 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1880 return;
1881 }
1882 rt = ipforward_rt.ro_rt;
1883 }
1884
1885 /*
1886 * Save at most 68 bytes of the packet in case
1887 * we need to generate an ICMP message to the src.
1888 * Pullup to avoid sharing mbuf cluster between m and mcopy.
1889 */
1890 mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
1891 if (mcopy)
1892 mcopy = m_pullup(mcopy, ip->ip_hl << 2);
1893
1894 /*
1895 * If forwarding packet using same interface that it came in on,
1896 * perhaps should send a redirect to sender to shortcut a hop.
1897 * Only send redirect if source is sending directly to us,
1898 * and if packet was not source routed (or has any options).
1899 * Also, don't send redirect if forwarding using a default route
1900 * or a route modified by a redirect.
1901 */
1902 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1903 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1904 !in_nullhost(satosin(rt_key(rt))->sin_addr) &&
1905 ipsendredirects && !srcrt) {
1906 if (rt->rt_ifa &&
1907 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1908 ifatoia(rt->rt_ifa)->ia_subnet) {
1909 if (rt->rt_flags & RTF_GATEWAY)
1910 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1911 else
1912 dest = ip->ip_dst.s_addr;
1913 /*
1914 * Router requirements says to only send host
1915 * redirects.
1916 */
1917 type = ICMP_REDIRECT;
1918 code = ICMP_REDIRECT_HOST;
1919 #ifdef DIAGNOSTIC
1920 if (ipprintfs)
1921 printf("redirect (%d) to %x\n", code,
1922 (u_int32_t)dest);
1923 #endif
1924 }
1925 }
1926
1927 error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1928 (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1929 (struct ip_moptions *)NULL, (struct socket *)NULL);
1930
1931 if (error)
1932 ipstat.ips_cantforward++;
1933 else {
1934 ipstat.ips_forward++;
1935 if (type)
1936 ipstat.ips_redirectsent++;
1937 else {
1938 if (mcopy) {
1939 #ifdef GATEWAY
1940 if (mcopy->m_flags & M_CANFASTFWD)
1941 ipflow_create(&ipforward_rt, mcopy);
1942 #endif
1943 m_freem(mcopy);
1944 }
1945 return;
1946 }
1947 }
1948 if (mcopy == NULL)
1949 return;
1950 destifp = NULL;
1951
1952 switch (error) {
1953
1954 case 0: /* forwarded, but need redirect */
1955 /* type, code set above */
1956 break;
1957
1958 case ENETUNREACH: /* shouldn't happen, checked above */
1959 case EHOSTUNREACH:
1960 case ENETDOWN:
1961 case EHOSTDOWN:
1962 default:
1963 type = ICMP_UNREACH;
1964 code = ICMP_UNREACH_HOST;
1965 break;
1966
1967 case EMSGSIZE:
1968 type = ICMP_UNREACH;
1969 code = ICMP_UNREACH_NEEDFRAG;
1970 #if !defined(IPSEC) && !defined(FAST_IPSEC)
1971 if (ipforward_rt.ro_rt)
1972 destifp = ipforward_rt.ro_rt->rt_ifp;
1973 #else
1974 /*
1975 * If the packet is routed over IPsec tunnel, tell the
1976 * originator the tunnel MTU.
1977 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1978 * XXX quickhack!!!
1979 */
1980 if (ipforward_rt.ro_rt) {
1981 struct secpolicy *sp;
1982 int ipsecerror;
1983 size_t ipsechdr;
1984 struct route *ro;
1985
1986 sp = ipsec4_getpolicybyaddr(mcopy,
1987 IPSEC_DIR_OUTBOUND, IP_FORWARDING,
1988 &ipsecerror);
1989
1990 if (sp == NULL)
1991 destifp = ipforward_rt.ro_rt->rt_ifp;
1992 else {
1993 /* count IPsec header size */
1994 ipsechdr = ipsec4_hdrsiz(mcopy,
1995 IPSEC_DIR_OUTBOUND, NULL);
1996
1997 /*
1998 * find the correct route for outer IPv4
1999 * header, compute tunnel MTU.
2000 *
2001 * XXX BUG ALERT
2002 * The "dummyifp" code relies upon the fact
2003 * that icmp_error() touches only ifp->if_mtu.
2004 */
2005 /*XXX*/
2006 destifp = NULL;
2007 if (sp->req != NULL
2008 && sp->req->sav != NULL
2009 && sp->req->sav->sah != NULL) {
2010 ro = &sp->req->sav->sah->sa_route;
2011 if (ro->ro_rt && ro->ro_rt->rt_ifp) {
2012 dummyifp.if_mtu =
2013 ro->ro_rt->rt_rmx.rmx_mtu ?
2014 ro->ro_rt->rt_rmx.rmx_mtu :
2015 ro->ro_rt->rt_ifp->if_mtu;
2016 dummyifp.if_mtu -= ipsechdr;
2017 destifp = &dummyifp;
2018 }
2019 }
2020
2021 #ifdef IPSEC
2022 key_freesp(sp);
2023 #else
2024 KEY_FREESP(&sp);
2025 #endif
2026 }
2027 }
2028 #endif /*IPSEC*/
2029 ipstat.ips_cantfrag++;
2030 break;
2031
2032 case ENOBUFS:
2033 #if 1
2034 /*
2035 * a router should not generate ICMP_SOURCEQUENCH as
2036 * required in RFC1812 Requirements for IP Version 4 Routers.
2037 * source quench could be a big problem under DoS attacks,
2038 * or if the underlying interface is rate-limited.
2039 */
2040 if (mcopy)
2041 m_freem(mcopy);
2042 return;
2043 #else
2044 type = ICMP_SOURCEQUENCH;
2045 code = 0;
2046 break;
2047 #endif
2048 }
2049 icmp_error(mcopy, type, code, dest, destifp);
2050 }
2051
2052 void
2053 ip_savecontrol(inp, mp, ip, m)
2054 struct inpcb *inp;
2055 struct mbuf **mp;
2056 struct ip *ip;
2057 struct mbuf *m;
2058 {
2059
2060 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2061 struct timeval tv;
2062
2063 microtime(&tv);
2064 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2065 SCM_TIMESTAMP, SOL_SOCKET);
2066 if (*mp)
2067 mp = &(*mp)->m_next;
2068 }
2069 if (inp->inp_flags & INP_RECVDSTADDR) {
2070 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2071 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2072 if (*mp)
2073 mp = &(*mp)->m_next;
2074 }
2075 #ifdef notyet
2076 /*
2077 * XXX
2078 * Moving these out of udp_input() made them even more broken
2079 * than they already were.
2080 * - fenner (at) parc.xerox.com
2081 */
2082 /* options were tossed already */
2083 if (inp->inp_flags & INP_RECVOPTS) {
2084 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2085 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2086 if (*mp)
2087 mp = &(*mp)->m_next;
2088 }
2089 /* ip_srcroute doesn't do what we want here, need to fix */
2090 if (inp->inp_flags & INP_RECVRETOPTS) {
2091 *mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2092 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2093 if (*mp)
2094 mp = &(*mp)->m_next;
2095 }
2096 #endif
2097 if (inp->inp_flags & INP_RECVIF) {
2098 struct sockaddr_dl sdl;
2099
2100 sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]);
2101 sdl.sdl_family = AF_LINK;
2102 sdl.sdl_index = m->m_pkthdr.rcvif ?
2103 m->m_pkthdr.rcvif->if_index : 0;
2104 sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0;
2105 *mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len,
2106 IP_RECVIF, IPPROTO_IP);
2107 if (*mp)
2108 mp = &(*mp)->m_next;
2109 }
2110 }
2111
2112 /*
2113 * sysctl helper routine for net.inet.ip.mtudisctimeout. checks the
2114 * range of the new value and tweaks timers if it changes.
2115 */
2116 static int
2117 sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
2118 {
2119 int error, tmp;
2120 struct sysctlnode node;
2121
2122 node = *rnode;
2123 tmp = ip_mtudisc_timeout;
2124 node.sysctl_data = &tmp;
2125 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2126 if (error || newp == NULL)
2127 return (error);
2128 if (tmp < 0)
2129 return (EINVAL);
2130
2131 ip_mtudisc_timeout = tmp;
2132 rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
2133
2134 return (0);
2135 }
2136
2137 #ifdef GATEWAY
2138 /*
2139 * sysctl helper routine for net.inet.ip.maxflows. apparently if
2140 * maxflows is even looked up, we "reap flows".
2141 */
2142 static int
2143 sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
2144 {
2145 int s;
2146
2147 s = sysctl_lookup(SYSCTLFN_CALL(rnode));
2148 if (s)
2149 return (s);
2150
2151 s = splsoftnet();
2152 ipflow_reap(0);
2153 splx(s);
2154
2155 return (0);
2156 }
2157 #endif /* GATEWAY */
2158
2159
2160 SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
2161 {
2162 extern int subnetsarelocal, hostzeroisbroadcast;
2163
2164 sysctl_createv(clog, 0, NULL, NULL,
2165 CTLFLAG_PERMANENT,
2166 CTLTYPE_NODE, "net", NULL,
2167 NULL, 0, NULL, 0,
2168 CTL_NET, CTL_EOL);
2169 sysctl_createv(clog, 0, NULL, NULL,
2170 CTLFLAG_PERMANENT,
2171 CTLTYPE_NODE, "inet",
2172 SYSCTL_DESCR("PF_INET related settings"),
2173 NULL, 0, NULL, 0,
2174 CTL_NET, PF_INET, CTL_EOL);
2175 sysctl_createv(clog, 0, NULL, NULL,
2176 CTLFLAG_PERMANENT,
2177 CTLTYPE_NODE, "ip",
2178 SYSCTL_DESCR("IPv4 related settings"),
2179 NULL, 0, NULL, 0,
2180 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2181
2182 sysctl_createv(clog, 0, NULL, NULL,
2183 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2184 CTLTYPE_INT, "forwarding",
2185 SYSCTL_DESCR("Enable forwarding of INET datagrams"),
2186 NULL, 0, &ipforwarding, 0,
2187 CTL_NET, PF_INET, IPPROTO_IP,
2188 IPCTL_FORWARDING, CTL_EOL);
2189 sysctl_createv(clog, 0, NULL, NULL,
2190 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2191 CTLTYPE_INT, "redirect",
2192 SYSCTL_DESCR("Enable sending of ICMP redirect messages"),
2193 NULL, 0, &ipsendredirects, 0,
2194 CTL_NET, PF_INET, IPPROTO_IP,
2195 IPCTL_SENDREDIRECTS, CTL_EOL);
2196 sysctl_createv(clog, 0, NULL, NULL,
2197 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2198 CTLTYPE_INT, "ttl",
2199 SYSCTL_DESCR("Default TTL for an INET datagram"),
2200 NULL, 0, &ip_defttl, 0,
2201 CTL_NET, PF_INET, IPPROTO_IP,
2202 IPCTL_DEFTTL, CTL_EOL);
2203 #ifdef IPCTL_DEFMTU
2204 sysctl_createv(clog, 0, NULL, NULL,
2205 CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
2206 CTLTYPE_INT, "mtu",
2207 SYSCTL_DESCR("Default MTA for an INET route"),
2208 NULL, 0, &ip_mtu, 0,
2209 CTL_NET, PF_INET, IPPROTO_IP,
2210 IPCTL_DEFMTU, CTL_EOL);
2211 #endif /* IPCTL_DEFMTU */
2212 sysctl_createv(clog, 0, NULL, NULL,
2213 CTLFLAG_PERMANENT|CTLFLAG_READONLY1,
2214 CTLTYPE_INT, "forwsrcrt",
2215 SYSCTL_DESCR("Enable forwarding of source-routed "
2216 "datagrams"),
2217 NULL, 0, &ip_forwsrcrt, 0,
2218 CTL_NET, PF_INET, IPPROTO_IP,
2219 IPCTL_FORWSRCRT, CTL_EOL);
2220 sysctl_createv(clog, 0, NULL, NULL,
2221 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2222 CTLTYPE_INT, "directed-broadcast",
2223 SYSCTL_DESCR("Enable forwarding of broadcast datagrams"),
2224 NULL, 0, &ip_directedbcast, 0,
2225 CTL_NET, PF_INET, IPPROTO_IP,
2226 IPCTL_DIRECTEDBCAST, CTL_EOL);
2227 sysctl_createv(clog, 0, NULL, NULL,
2228 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2229 CTLTYPE_INT, "allowsrcrt",
2230 SYSCTL_DESCR("Accept source-routed datagrams"),
2231 NULL, 0, &ip_allowsrcrt, 0,
2232 CTL_NET, PF_INET, IPPROTO_IP,
2233 IPCTL_ALLOWSRCRT, CTL_EOL);
2234 sysctl_createv(clog, 0, NULL, NULL,
2235 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2236 CTLTYPE_INT, "subnetsarelocal",
2237 SYSCTL_DESCR("Whether logical subnets are considered "
2238 "local"),
2239 NULL, 0, &subnetsarelocal, 0,
2240 CTL_NET, PF_INET, IPPROTO_IP,
2241 IPCTL_SUBNETSARELOCAL, CTL_EOL);
2242 sysctl_createv(clog, 0, NULL, NULL,
2243 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2244 CTLTYPE_INT, "mtudisc",
2245 SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"),
2246 NULL, 0, &ip_mtudisc, 0,
2247 CTL_NET, PF_INET, IPPROTO_IP,
2248 IPCTL_MTUDISC, CTL_EOL);
2249 sysctl_createv(clog, 0, NULL, NULL,
2250 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2251 CTLTYPE_INT, "anonportmin",
2252 SYSCTL_DESCR("Lowest ephemeral port number to assign"),
2253 sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
2254 CTL_NET, PF_INET, IPPROTO_IP,
2255 IPCTL_ANONPORTMIN, CTL_EOL);
2256 sysctl_createv(clog, 0, NULL, NULL,
2257 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2258 CTLTYPE_INT, "anonportmax",
2259 SYSCTL_DESCR("Highest ephemeral port number to assign"),
2260 sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
2261 CTL_NET, PF_INET, IPPROTO_IP,
2262 IPCTL_ANONPORTMAX, CTL_EOL);
2263 sysctl_createv(clog, 0, NULL, NULL,
2264 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2265 CTLTYPE_INT, "mtudisctimeout",
2266 SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"),
2267 sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
2268 CTL_NET, PF_INET, IPPROTO_IP,
2269 IPCTL_MTUDISCTIMEOUT, CTL_EOL);
2270 #ifdef GATEWAY
2271 sysctl_createv(clog, 0, NULL, NULL,
2272 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2273 CTLTYPE_INT, "maxflows",
2274 SYSCTL_DESCR("Number of flows for fast forwarding"),
2275 sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
2276 CTL_NET, PF_INET, IPPROTO_IP,
2277 IPCTL_MAXFLOWS, CTL_EOL);
2278 #endif /* GATEWAY */
2279 sysctl_createv(clog, 0, NULL, NULL,
2280 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2281 CTLTYPE_INT, "hostzerobroadcast",
2282 SYSCTL_DESCR("All zeroes address is broadcast address"),
2283 NULL, 0, &hostzeroisbroadcast, 0,
2284 CTL_NET, PF_INET, IPPROTO_IP,
2285 IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2286 #if NGIF > 0
2287 sysctl_createv(clog, 0, NULL, NULL,
2288 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2289 CTLTYPE_INT, "gifttl",
2290 SYSCTL_DESCR("Default TTL for a gif tunnel datagram"),
2291 NULL, 0, &ip_gif_ttl, 0,
2292 CTL_NET, PF_INET, IPPROTO_IP,
2293 IPCTL_GIF_TTL, CTL_EOL);
2294 #endif /* NGIF */
2295 #ifndef IPNOPRIVPORTS
2296 sysctl_createv(clog, 0, NULL, NULL,
2297 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2298 CTLTYPE_INT, "lowportmin",
2299 SYSCTL_DESCR("Lowest privileged ephemeral port number "
2300 "to assign"),
2301 sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
2302 CTL_NET, PF_INET, IPPROTO_IP,
2303 IPCTL_LOWPORTMIN, CTL_EOL);
2304 sysctl_createv(clog, 0, NULL, NULL,
2305 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2306 CTLTYPE_INT, "lowportmax",
2307 SYSCTL_DESCR("Highest privileged ephemeral port number "
2308 "to assign"),
2309 sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
2310 CTL_NET, PF_INET, IPPROTO_IP,
2311 IPCTL_LOWPORTMAX, CTL_EOL);
2312 #endif /* IPNOPRIVPORTS */
2313 sysctl_createv(clog, 0, NULL, NULL,
2314 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2315 CTLTYPE_INT, "maxfragpackets",
2316 SYSCTL_DESCR("Maximum number of fragments to retain for "
2317 "possible reassembly"),
2318 NULL, 0, &ip_maxfragpackets, 0,
2319 CTL_NET, PF_INET, IPPROTO_IP,
2320 IPCTL_MAXFRAGPACKETS, CTL_EOL);
2321 #if NGRE > 0
2322 sysctl_createv(clog, 0, NULL, NULL,
2323 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2324 CTLTYPE_INT, "grettl",
2325 SYSCTL_DESCR("Default TTL for a gre tunnel datagram"),
2326 NULL, 0, &ip_gre_ttl, 0,
2327 CTL_NET, PF_INET, IPPROTO_IP,
2328 IPCTL_GRE_TTL, CTL_EOL);
2329 #endif /* NGRE */
2330 sysctl_createv(clog, 0, NULL, NULL,
2331 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2332 CTLTYPE_INT, "checkinterface",
2333 SYSCTL_DESCR("Enable receive side of Strong ES model "
2334 "from RFC1122"),
2335 NULL, 0, &ip_checkinterface, 0,
2336 CTL_NET, PF_INET, IPPROTO_IP,
2337 IPCTL_CHECKINTERFACE, CTL_EOL);
2338 sysctl_createv(clog, 0, NULL, NULL,
2339 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2340 CTLTYPE_INT, "random_id",
2341 SYSCTL_DESCR("Assign random ip_id values"),
2342 NULL, 0, &ip_do_randomid, 0,
2343 CTL_NET, PF_INET, IPPROTO_IP,
2344 IPCTL_RANDOMID, CTL_EOL);
2345 }
2346