ip_input.c revision 1.208 1 /* $NetBSD: ip_input.c,v 1.208 2004/12/19 06:42:24 christos Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.208 2004/12/19 06:42:24 christos Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_gateway.h"
105 #include "opt_pfil_hooks.h"
106 #include "opt_ipsec.h"
107 #include "opt_mrouting.h"
108 #include "opt_mbuftrace.h"
109 #include "opt_inet_csum.h"
110
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/domain.h>
116 #include <sys/protosw.h>
117 #include <sys/socket.h>
118 #include <sys/socketvar.h>
119 #include <sys/errno.h>
120 #include <sys/time.h>
121 #include <sys/kernel.h>
122 #include <sys/pool.h>
123 #include <sys/sysctl.h>
124
125 #include <net/if.h>
126 #include <net/if_dl.h>
127 #include <net/route.h>
128 #include <net/pfil.h>
129
130 #include <netinet/in.h>
131 #include <netinet/in_systm.h>
132 #include <netinet/ip.h>
133 #include <netinet/in_pcb.h>
134 #include <netinet/in_var.h>
135 #include <netinet/ip_var.h>
136 #include <netinet/ip_icmp.h>
137 /* just for gif_ttl */
138 #include <netinet/in_gif.h>
139 #include "gif.h"
140 #include <net/if_gre.h>
141 #include "gre.h"
142
143 #ifdef MROUTING
144 #include <netinet/ip_mroute.h>
145 #endif
146
147 #ifdef IPSEC
148 #include <netinet6/ipsec.h>
149 #include <netkey/key.h>
150 #endif
151 #ifdef FAST_IPSEC
152 #include <netipsec/ipsec.h>
153 #include <netipsec/key.h>
154 #endif /* FAST_IPSEC*/
155
156 #ifndef IPFORWARDING
157 #ifdef GATEWAY
158 #define IPFORWARDING 1 /* forward IP packets not for us */
159 #else /* GATEWAY */
160 #define IPFORWARDING 0 /* don't forward IP packets not for us */
161 #endif /* GATEWAY */
162 #endif /* IPFORWARDING */
163 #ifndef IPSENDREDIRECTS
164 #define IPSENDREDIRECTS 1
165 #endif
166 #ifndef IPFORWSRCRT
167 #define IPFORWSRCRT 1 /* forward source-routed packets */
168 #endif
169 #ifndef IPALLOWSRCRT
170 #define IPALLOWSRCRT 1 /* allow source-routed packets */
171 #endif
172 #ifndef IPMTUDISC
173 #define IPMTUDISC 1
174 #endif
175 #ifndef IPMTUDISCTIMEOUT
176 #define IPMTUDISCTIMEOUT (10 * 60) /* as per RFC 1191 */
177 #endif
178
179 /*
180 * Note: DIRECTED_BROADCAST is handled this way so that previous
181 * configuration using this option will Just Work.
182 */
183 #ifndef IPDIRECTEDBCAST
184 #ifdef DIRECTED_BROADCAST
185 #define IPDIRECTEDBCAST 1
186 #else
187 #define IPDIRECTEDBCAST 0
188 #endif /* DIRECTED_BROADCAST */
189 #endif /* IPDIRECTEDBCAST */
190 int ipforwarding = IPFORWARDING;
191 int ipsendredirects = IPSENDREDIRECTS;
192 int ip_defttl = IPDEFTTL;
193 int ip_forwsrcrt = IPFORWSRCRT;
194 int ip_directedbcast = IPDIRECTEDBCAST;
195 int ip_allowsrcrt = IPALLOWSRCRT;
196 int ip_mtudisc = IPMTUDISC;
197 int ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
198 #ifdef DIAGNOSTIC
199 int ipprintfs = 0;
200 #endif
201
202 int ip_do_randomid = 0;
203 int ip_do_loopback_cksum = 0;
204
205 /*
206 * XXX - Setting ip_checkinterface mostly implements the receive side of
207 * the Strong ES model described in RFC 1122, but since the routing table
208 * and transmit implementation do not implement the Strong ES model,
209 * setting this to 1 results in an odd hybrid.
210 *
211 * XXX - ip_checkinterface currently must be disabled if you use ipnat
212 * to translate the destination address to another local interface.
213 *
214 * XXX - ip_checkinterface must be disabled if you add IP aliases
215 * to the loopback interface instead of the interface where the
216 * packets for those addresses are received.
217 */
218 int ip_checkinterface = 0;
219
220
221 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
222
223 int ipqmaxlen = IFQ_MAXLEN;
224 u_long in_ifaddrhash; /* size of hash table - 1 */
225 int in_ifaddrentries; /* total number of addrs */
226 struct in_ifaddrhead in_ifaddrhead;
227 struct in_ifaddrhashhead *in_ifaddrhashtbl;
228 u_long in_multihash; /* size of hash table - 1 */
229 int in_multientries; /* total number of addrs */
230 struct in_multihashhead *in_multihashtbl;
231 struct ifqueue ipintrq;
232 struct ipstat ipstat;
233 uint16_t ip_id;
234
235 #ifdef PFIL_HOOKS
236 struct pfil_head inet_pfil_hook;
237 #endif
238
239 /*
240 * Cached copy of nmbclusters. If nbclusters is different,
241 * recalculate IP parameters derived from nmbclusters.
242 */
243 static int ip_nmbclusters; /* copy of nmbclusters */
244 static void ip_nmbclusters_changed __P((void)); /* recalc limits */
245
246 #define CHECK_NMBCLUSTER_PARAMS() \
247 do { \
248 if (__predict_false(ip_nmbclusters != nmbclusters)) \
249 ip_nmbclusters_changed(); \
250 } while (/*CONSTCOND*/0)
251
252 /* IP datagram reassembly queues (hashed) */
253 #define IPREASS_NHASH_LOG2 6
254 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
255 #define IPREASS_HMASK (IPREASS_NHASH - 1)
256 #define IPREASS_HASH(x,y) \
257 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
258 struct ipqhead ipq[IPREASS_NHASH];
259 int ipq_locked;
260 static int ip_nfragpackets; /* packets in reass queue */
261 static int ip_nfrags; /* total fragments in reass queues */
262
263 int ip_maxfragpackets = 200; /* limit on packets. XXX sysctl */
264 int ip_maxfrags; /* limit on fragments. XXX sysctl */
265
266
267 /*
268 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
269 * IP reassembly queue buffer managment.
270 *
271 * We keep a count of total IP fragments (NB: not fragmented packets!)
272 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
273 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
274 * total fragments in reassembly queues.This AIMD policy avoids
275 * repeatedly deleting single packets under heavy fragmentation load
276 * (e.g., from lossy NFS peers).
277 */
278 static u_int ip_reass_ttl_decr __P((u_int ticks));
279 static void ip_reass_drophalf __P((void));
280
281
282 static __inline int ipq_lock_try __P((void));
283 static __inline void ipq_unlock __P((void));
284
285 static __inline int
286 ipq_lock_try()
287 {
288 int s;
289
290 /*
291 * Use splvm() -- we're blocking things that would cause
292 * mbuf allocation.
293 */
294 s = splvm();
295 if (ipq_locked) {
296 splx(s);
297 return (0);
298 }
299 ipq_locked = 1;
300 splx(s);
301 return (1);
302 }
303
304 static __inline void
305 ipq_unlock()
306 {
307 int s;
308
309 s = splvm();
310 ipq_locked = 0;
311 splx(s);
312 }
313
314 #ifdef DIAGNOSTIC
315 #define IPQ_LOCK() \
316 do { \
317 if (ipq_lock_try() == 0) { \
318 printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
319 panic("ipq_lock"); \
320 } \
321 } while (/*CONSTCOND*/ 0)
322 #define IPQ_LOCK_CHECK() \
323 do { \
324 if (ipq_locked == 0) { \
325 printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
326 panic("ipq lock check"); \
327 } \
328 } while (/*CONSTCOND*/ 0)
329 #else
330 #define IPQ_LOCK() (void) ipq_lock_try()
331 #define IPQ_LOCK_CHECK() /* nothing */
332 #endif
333
334 #define IPQ_UNLOCK() ipq_unlock()
335
336 POOL_INIT(inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", NULL);
337 POOL_INIT(ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl", NULL);
338
339 #ifdef INET_CSUM_COUNTERS
340 #include <sys/device.h>
341
342 struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
343 NULL, "inet", "hwcsum bad");
344 struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
345 NULL, "inet", "hwcsum ok");
346 struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
347 NULL, "inet", "swcsum");
348
349 #define INET_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
350
351 EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
352 EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
353 EVCNT_ATTACH_STATIC(ip_swcsum);
354
355 #else
356
357 #define INET_CSUM_COUNTER_INCR(ev) /* nothing */
358
359 #endif /* INET_CSUM_COUNTERS */
360
361 /*
362 * We need to save the IP options in case a protocol wants to respond
363 * to an incoming packet over the same route if the packet got here
364 * using IP source routing. This allows connection establishment and
365 * maintenance when the remote end is on a network that is not known
366 * to us.
367 */
368 int ip_nhops = 0;
369 static struct ip_srcrt {
370 struct in_addr dst; /* final destination */
371 char nop; /* one NOP to align */
372 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
373 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
374 } ip_srcrt;
375
376 static void save_rte __P((u_char *, struct in_addr));
377
378 #ifdef MBUFTRACE
379 struct mowner ip_rx_mowner = { "internet", "rx" };
380 struct mowner ip_tx_mowner = { "internet", "tx" };
381 #endif
382
383 /*
384 * Compute IP limits derived from the value of nmbclusters.
385 */
386 static void
387 ip_nmbclusters_changed(void)
388 {
389 ip_maxfrags = nmbclusters / 4;
390 ip_nmbclusters = nmbclusters;
391 }
392
393 /*
394 * IP initialization: fill in IP protocol switch table.
395 * All protocols not implemented in kernel go to raw IP protocol handler.
396 */
397 void
398 ip_init()
399 {
400 const struct protosw *pr;
401 int i;
402
403 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
404 if (pr == 0)
405 panic("ip_init");
406 for (i = 0; i < IPPROTO_MAX; i++)
407 ip_protox[i] = pr - inetsw;
408 for (pr = inetdomain.dom_protosw;
409 pr < inetdomain.dom_protoswNPROTOSW; pr++)
410 if (pr->pr_domain->dom_family == PF_INET &&
411 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
412 ip_protox[pr->pr_protocol] = pr - inetsw;
413
414 for (i = 0; i < IPREASS_NHASH; i++)
415 LIST_INIT(&ipq[i]);
416
417 ip_id = time.tv_sec & 0xfffff;
418
419 ipintrq.ifq_maxlen = ipqmaxlen;
420 ip_nmbclusters_changed();
421
422 TAILQ_INIT(&in_ifaddrhead);
423 in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IFADDR,
424 M_WAITOK, &in_ifaddrhash);
425 in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IPMADDR,
426 M_WAITOK, &in_multihash);
427 ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
428 #ifdef GATEWAY
429 ipflow_init();
430 #endif
431
432 #ifdef PFIL_HOOKS
433 /* Register our Packet Filter hook. */
434 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
435 inet_pfil_hook.ph_af = AF_INET;
436 i = pfil_head_register(&inet_pfil_hook);
437 if (i != 0)
438 printf("ip_init: WARNING: unable to register pfil hook, "
439 "error %d\n", i);
440 #endif /* PFIL_HOOKS */
441
442 #ifdef MBUFTRACE
443 MOWNER_ATTACH(&ip_tx_mowner);
444 MOWNER_ATTACH(&ip_rx_mowner);
445 #endif /* MBUFTRACE */
446 }
447
448 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
449 struct route ipforward_rt;
450
451 /*
452 * IP software interrupt routine
453 */
454 void
455 ipintr()
456 {
457 int s;
458 struct mbuf *m;
459
460 while (1) {
461 s = splnet();
462 IF_DEQUEUE(&ipintrq, m);
463 splx(s);
464 if (m == 0)
465 return;
466 MCLAIM(m, &ip_rx_mowner);
467 ip_input(m);
468 }
469 }
470
471 /*
472 * Ip input routine. Checksum and byte swap header. If fragmented
473 * try to reassemble. Process options. Pass to next level.
474 */
475 void
476 ip_input(struct mbuf *m)
477 {
478 struct ip *ip = NULL;
479 struct ipq *fp;
480 struct in_ifaddr *ia;
481 struct ifaddr *ifa;
482 struct ipqent *ipqe;
483 int hlen = 0, mff, len;
484 int downmatch;
485 int checkif;
486 int srcrt = 0;
487 u_int hash;
488 #ifdef FAST_IPSEC
489 struct m_tag *mtag;
490 struct tdb_ident *tdbi;
491 struct secpolicy *sp;
492 int s, error;
493 #endif /* FAST_IPSEC */
494
495 MCLAIM(m, &ip_rx_mowner);
496 #ifdef DIAGNOSTIC
497 if ((m->m_flags & M_PKTHDR) == 0)
498 panic("ipintr no HDR");
499 #endif
500
501 /*
502 * If no IP addresses have been set yet but the interfaces
503 * are receiving, can't do anything with incoming packets yet.
504 */
505 if (TAILQ_FIRST(&in_ifaddrhead) == 0)
506 goto bad;
507 ipstat.ips_total++;
508 /*
509 * If the IP header is not aligned, slurp it up into a new
510 * mbuf with space for link headers, in the event we forward
511 * it. Otherwise, if it is aligned, make sure the entire
512 * base IP header is in the first mbuf of the chain.
513 */
514 if (IP_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) {
515 if ((m = m_copyup(m, sizeof(struct ip),
516 (max_linkhdr + 3) & ~3)) == NULL) {
517 /* XXXJRT new stat, please */
518 ipstat.ips_toosmall++;
519 return;
520 }
521 } else if (__predict_false(m->m_len < sizeof (struct ip))) {
522 if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
523 ipstat.ips_toosmall++;
524 return;
525 }
526 }
527 ip = mtod(m, struct ip *);
528 if (ip->ip_v != IPVERSION) {
529 ipstat.ips_badvers++;
530 goto bad;
531 }
532 hlen = ip->ip_hl << 2;
533 if (hlen < sizeof(struct ip)) { /* minimum header length */
534 ipstat.ips_badhlen++;
535 goto bad;
536 }
537 if (hlen > m->m_len) {
538 if ((m = m_pullup(m, hlen)) == 0) {
539 ipstat.ips_badhlen++;
540 return;
541 }
542 ip = mtod(m, struct ip *);
543 }
544
545 /*
546 * RFC1122: packets with a multicast source address are
547 * not allowed.
548 */
549 if (IN_MULTICAST(ip->ip_src.s_addr)) {
550 ipstat.ips_badaddr++;
551 goto bad;
552 }
553
554 /* 127/8 must not appear on wire - RFC1122 */
555 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
556 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
557 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
558 ipstat.ips_badaddr++;
559 goto bad;
560 }
561 }
562
563 switch (m->m_pkthdr.csum_flags &
564 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
565 M_CSUM_IPv4_BAD)) {
566 case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
567 INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
568 goto badcsum;
569
570 case M_CSUM_IPv4:
571 /* Checksum was okay. */
572 INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
573 break;
574
575 default:
576 /*
577 * Must compute it ourselves. Maybe skip checksum on
578 * loopback interfaces.
579 */
580 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
581 IFF_LOOPBACK) || ip_do_loopback_cksum)) {
582 INET_CSUM_COUNTER_INCR(&ip_swcsum);
583 if (in_cksum(m, hlen) != 0)
584 goto badcsum;
585 }
586 break;
587 }
588
589 /* Retrieve the packet length. */
590 len = ntohs(ip->ip_len);
591
592 /*
593 * Check for additional length bogosity
594 */
595 if (len < hlen) {
596 ipstat.ips_badlen++;
597 goto bad;
598 }
599
600 /*
601 * Check that the amount of data in the buffers
602 * is as at least much as the IP header would have us expect.
603 * Trim mbufs if longer than we expect.
604 * Drop packet if shorter than we expect.
605 */
606 if (m->m_pkthdr.len < len) {
607 ipstat.ips_tooshort++;
608 goto bad;
609 }
610 if (m->m_pkthdr.len > len) {
611 if (m->m_len == m->m_pkthdr.len) {
612 m->m_len = len;
613 m->m_pkthdr.len = len;
614 } else
615 m_adj(m, len - m->m_pkthdr.len);
616 }
617
618 #if defined(IPSEC)
619 /* ipflow (IP fast forwarding) is not compatible with IPsec. */
620 m->m_flags &= ~M_CANFASTFWD;
621 #else
622 /*
623 * Assume that we can create a fast-forward IP flow entry
624 * based on this packet.
625 */
626 m->m_flags |= M_CANFASTFWD;
627 #endif
628
629 #ifdef PFIL_HOOKS
630 /*
631 * Run through list of hooks for input packets. If there are any
632 * filters which require that additional packets in the flow are
633 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
634 * Note that filters must _never_ set this flag, as another filter
635 * in the list may have previously cleared it.
636 */
637 /*
638 * let ipfilter look at packet on the wire,
639 * not the decapsulated packet.
640 */
641 #ifdef IPSEC
642 if (!ipsec_getnhist(m))
643 #elif defined(FAST_IPSEC)
644 if (!ipsec_indone(m))
645 #else
646 if (1)
647 #endif
648 {
649 struct in_addr odst;
650
651 odst = ip->ip_dst;
652 if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
653 PFIL_IN) != 0)
654 return;
655 if (m == NULL)
656 return;
657 ip = mtod(m, struct ip *);
658 hlen = ip->ip_hl << 2;
659 /*
660 * XXX The setting of "srcrt" here is to prevent ip_forward()
661 * from generating ICMP redirects for packets that have
662 * been redirected by a hook back out on to the same LAN that
663 * they came from and is not an indication that the packet
664 * is being inffluenced by source routing options. This
665 * allows things like
666 * "rdr tlp0 0/0 port 80 -> 1.1.1.200 3128 tcp"
667 * where tlp0 is both on the 1.1.1.0/24 network and is the
668 * default route for hosts on 1.1.1.0/24. Of course this
669 * also requires a "map tlp0 ..." to complete the story.
670 * One might argue whether or not this kind of network config.
671 * should be supported in this manner...
672 */
673 srcrt = (odst.s_addr != ip->ip_dst.s_addr);
674 }
675 #endif /* PFIL_HOOKS */
676
677 #ifdef ALTQ
678 /* XXX Temporary until ALTQ is changed to use a pfil hook */
679 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
680 /* packet dropped by traffic conditioner */
681 return;
682 }
683 #endif
684
685 /*
686 * Process options and, if not destined for us,
687 * ship it on. ip_dooptions returns 1 when an
688 * error was detected (causing an icmp message
689 * to be sent and the original packet to be freed).
690 */
691 ip_nhops = 0; /* for source routed packets */
692 if (hlen > sizeof (struct ip) && ip_dooptions(m))
693 return;
694
695 /*
696 * Enable a consistency check between the destination address
697 * and the arrival interface for a unicast packet (the RFC 1122
698 * strong ES model) if IP forwarding is disabled and the packet
699 * is not locally generated.
700 *
701 * XXX - Checking also should be disabled if the destination
702 * address is ipnat'ed to a different interface.
703 *
704 * XXX - Checking is incompatible with IP aliases added
705 * to the loopback interface instead of the interface where
706 * the packets are received.
707 *
708 * XXX - We need to add a per ifaddr flag for this so that
709 * we get finer grain control.
710 */
711 checkif = ip_checkinterface && (ipforwarding == 0) &&
712 (m->m_pkthdr.rcvif != NULL) &&
713 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
714
715 /*
716 * Check our list of addresses, to see if the packet is for us.
717 *
718 * Traditional 4.4BSD did not consult IFF_UP at all.
719 * The behavior here is to treat addresses on !IFF_UP interface
720 * as not mine.
721 */
722 downmatch = 0;
723 LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
724 if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
725 if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
726 continue;
727 if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
728 break;
729 else
730 downmatch++;
731 }
732 }
733 if (ia != NULL)
734 goto ours;
735 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
736 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrlist, ifa_list) {
737 if (ifa->ifa_addr->sa_family != AF_INET)
738 continue;
739 ia = ifatoia(ifa);
740 if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
741 in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
742 /*
743 * Look for all-0's host part (old broadcast addr),
744 * either for subnet or net.
745 */
746 ip->ip_dst.s_addr == ia->ia_subnet ||
747 ip->ip_dst.s_addr == ia->ia_net)
748 goto ours;
749 /*
750 * An interface with IP address zero accepts
751 * all packets that arrive on that interface.
752 */
753 if (in_nullhost(ia->ia_addr.sin_addr))
754 goto ours;
755 }
756 }
757 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
758 struct in_multi *inm;
759 #ifdef MROUTING
760 extern struct socket *ip_mrouter;
761
762 if (ip_mrouter) {
763 /*
764 * If we are acting as a multicast router, all
765 * incoming multicast packets are passed to the
766 * kernel-level multicast forwarding function.
767 * The packet is returned (relatively) intact; if
768 * ip_mforward() returns a non-zero value, the packet
769 * must be discarded, else it may be accepted below.
770 *
771 * (The IP ident field is put in the same byte order
772 * as expected when ip_mforward() is called from
773 * ip_output().)
774 */
775 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
776 ipstat.ips_cantforward++;
777 m_freem(m);
778 return;
779 }
780
781 /*
782 * The process-level routing demon needs to receive
783 * all multicast IGMP packets, whether or not this
784 * host belongs to their destination groups.
785 */
786 if (ip->ip_p == IPPROTO_IGMP)
787 goto ours;
788 ipstat.ips_forward++;
789 }
790 #endif
791 /*
792 * See if we belong to the destination multicast group on the
793 * arrival interface.
794 */
795 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
796 if (inm == NULL) {
797 ipstat.ips_cantforward++;
798 m_freem(m);
799 return;
800 }
801 goto ours;
802 }
803 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
804 in_nullhost(ip->ip_dst))
805 goto ours;
806
807 /*
808 * Not for us; forward if possible and desirable.
809 */
810 if (ipforwarding == 0) {
811 ipstat.ips_cantforward++;
812 m_freem(m);
813 } else {
814 /*
815 * If ip_dst matched any of my address on !IFF_UP interface,
816 * and there's no IFF_UP interface that matches ip_dst,
817 * send icmp unreach. Forwarding it will result in in-kernel
818 * forwarding loop till TTL goes to 0.
819 */
820 if (downmatch) {
821 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
822 ipstat.ips_cantforward++;
823 return;
824 }
825 #ifdef IPSEC
826 if (ipsec4_in_reject(m, NULL)) {
827 ipsecstat.in_polvio++;
828 goto bad;
829 }
830 #endif
831 #ifdef FAST_IPSEC
832 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
833 s = splsoftnet();
834 if (mtag != NULL) {
835 tdbi = (struct tdb_ident *)(mtag + 1);
836 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
837 } else {
838 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
839 IP_FORWARDING, &error);
840 }
841 if (sp == NULL) { /* NB: can happen if error */
842 splx(s);
843 /*XXX error stat???*/
844 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
845 goto bad;
846 }
847
848 /*
849 * Check security policy against packet attributes.
850 */
851 error = ipsec_in_reject(sp, m);
852 KEY_FREESP(&sp);
853 splx(s);
854 if (error) {
855 ipstat.ips_cantforward++;
856 goto bad;
857 }
858
859 /*
860 * Peek at the outbound SP for this packet to determine if
861 * it's a Fast Forward candidate.
862 */
863 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
864 if (mtag != NULL)
865 m->m_flags &= ~M_CANFASTFWD;
866 else {
867 s = splsoftnet();
868 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
869 (IP_FORWARDING |
870 (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
871 &error, NULL);
872 if (sp != NULL) {
873 m->m_flags &= ~M_CANFASTFWD;
874 KEY_FREESP(&sp);
875 }
876 splx(s);
877 }
878 #endif /* FAST_IPSEC */
879
880 ip_forward(m, srcrt);
881 }
882 return;
883
884 ours:
885 /*
886 * If offset or IP_MF are set, must reassemble.
887 * Otherwise, nothing need be done.
888 * (We could look in the reassembly queue to see
889 * if the packet was previously fragmented,
890 * but it's not worth the time; just let them time out.)
891 */
892 if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
893
894 /*
895 * Look for queue of fragments
896 * of this datagram.
897 */
898 IPQ_LOCK();
899 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
900 /* XXX LIST_FOREACH(fp, &ipq[hash], ipq_q) */
901 for (fp = LIST_FIRST(&ipq[hash]); fp != NULL;
902 fp = LIST_NEXT(fp, ipq_q)) {
903 if (ip->ip_id == fp->ipq_id &&
904 in_hosteq(ip->ip_src, fp->ipq_src) &&
905 in_hosteq(ip->ip_dst, fp->ipq_dst) &&
906 ip->ip_p == fp->ipq_p)
907 goto found;
908
909 }
910 fp = 0;
911 found:
912
913 /*
914 * Adjust ip_len to not reflect header,
915 * set ipqe_mff if more fragments are expected,
916 * convert offset of this to bytes.
917 */
918 ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
919 mff = (ip->ip_off & htons(IP_MF)) != 0;
920 if (mff) {
921 /*
922 * Make sure that fragments have a data length
923 * that's a non-zero multiple of 8 bytes.
924 */
925 if (ntohs(ip->ip_len) == 0 ||
926 (ntohs(ip->ip_len) & 0x7) != 0) {
927 ipstat.ips_badfrags++;
928 IPQ_UNLOCK();
929 goto bad;
930 }
931 }
932 ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
933
934 /*
935 * If datagram marked as having more fragments
936 * or if this is not the first fragment,
937 * attempt reassembly; if it succeeds, proceed.
938 */
939 if (mff || ip->ip_off != htons(0)) {
940 ipstat.ips_fragments++;
941 ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
942 if (ipqe == NULL) {
943 ipstat.ips_rcvmemdrop++;
944 IPQ_UNLOCK();
945 goto bad;
946 }
947 ipqe->ipqe_mff = mff;
948 ipqe->ipqe_m = m;
949 ipqe->ipqe_ip = ip;
950 m = ip_reass(ipqe, fp, &ipq[hash]);
951 if (m == 0) {
952 IPQ_UNLOCK();
953 return;
954 }
955 ipstat.ips_reassembled++;
956 ip = mtod(m, struct ip *);
957 hlen = ip->ip_hl << 2;
958 ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
959 } else
960 if (fp)
961 ip_freef(fp);
962 IPQ_UNLOCK();
963 }
964
965 #if defined(IPSEC)
966 /*
967 * enforce IPsec policy checking if we are seeing last header.
968 * note that we do not visit this with protocols with pcb layer
969 * code - like udp/tcp/raw ip.
970 */
971 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
972 ipsec4_in_reject(m, NULL)) {
973 ipsecstat.in_polvio++;
974 goto bad;
975 }
976 #endif
977 #if FAST_IPSEC
978 /*
979 * enforce IPsec policy checking if we are seeing last header.
980 * note that we do not visit this with protocols with pcb layer
981 * code - like udp/tcp/raw ip.
982 */
983 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
984 /*
985 * Check if the packet has already had IPsec processing
986 * done. If so, then just pass it along. This tag gets
987 * set during AH, ESP, etc. input handling, before the
988 * packet is returned to the ip input queue for delivery.
989 */
990 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
991 s = splsoftnet();
992 if (mtag != NULL) {
993 tdbi = (struct tdb_ident *)(mtag + 1);
994 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
995 } else {
996 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
997 IP_FORWARDING, &error);
998 }
999 if (sp != NULL) {
1000 /*
1001 * Check security policy against packet attributes.
1002 */
1003 error = ipsec_in_reject(sp, m);
1004 KEY_FREESP(&sp);
1005 } else {
1006 /* XXX error stat??? */
1007 error = EINVAL;
1008 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1009 goto bad;
1010 }
1011 splx(s);
1012 if (error)
1013 goto bad;
1014 }
1015 #endif /* FAST_IPSEC */
1016
1017 /*
1018 * Switch out to protocol's input routine.
1019 */
1020 #if IFA_STATS
1021 if (ia && ip)
1022 ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
1023 #endif
1024 ipstat.ips_delivered++;
1025 {
1026 int off = hlen, nh = ip->ip_p;
1027
1028 (*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
1029 return;
1030 }
1031 bad:
1032 m_freem(m);
1033 return;
1034
1035 badcsum:
1036 ipstat.ips_badsum++;
1037 m_freem(m);
1038 }
1039
1040 /*
1041 * Take incoming datagram fragment and try to
1042 * reassemble it into whole datagram. If a chain for
1043 * reassembly of this datagram already exists, then it
1044 * is given as fp; otherwise have to make a chain.
1045 */
1046 struct mbuf *
1047 ip_reass(ipqe, fp, ipqhead)
1048 struct ipqent *ipqe;
1049 struct ipq *fp;
1050 struct ipqhead *ipqhead;
1051 {
1052 struct mbuf *m = ipqe->ipqe_m;
1053 struct ipqent *nq, *p, *q;
1054 struct ip *ip;
1055 struct mbuf *t;
1056 int hlen = ipqe->ipqe_ip->ip_hl << 2;
1057 int i, next;
1058
1059 IPQ_LOCK_CHECK();
1060
1061 /*
1062 * Presence of header sizes in mbufs
1063 * would confuse code below.
1064 */
1065 m->m_data += hlen;
1066 m->m_len -= hlen;
1067
1068 #ifdef notyet
1069 /* make sure fragment limit is up-to-date */
1070 CHECK_NMBCLUSTER_PARAMS();
1071
1072 /* If we have too many fragments, drop the older half. */
1073 if (ip_nfrags >= ip_maxfrags)
1074 ip_reass_drophalf(void);
1075 #endif
1076
1077 /*
1078 * We are about to add a fragment; increment frag count.
1079 */
1080 ip_nfrags++;
1081
1082 /*
1083 * If first fragment to arrive, create a reassembly queue.
1084 */
1085 if (fp == 0) {
1086 /*
1087 * Enforce upper bound on number of fragmented packets
1088 * for which we attempt reassembly;
1089 * If maxfrag is 0, never accept fragments.
1090 * If maxfrag is -1, accept all fragments without limitation.
1091 */
1092 if (ip_maxfragpackets < 0)
1093 ;
1094 else if (ip_nfragpackets >= ip_maxfragpackets)
1095 goto dropfrag;
1096 ip_nfragpackets++;
1097 MALLOC(fp, struct ipq *, sizeof (struct ipq),
1098 M_FTABLE, M_NOWAIT);
1099 if (fp == NULL)
1100 goto dropfrag;
1101 LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
1102 fp->ipq_nfrags = 1;
1103 fp->ipq_ttl = IPFRAGTTL;
1104 fp->ipq_p = ipqe->ipqe_ip->ip_p;
1105 fp->ipq_id = ipqe->ipqe_ip->ip_id;
1106 TAILQ_INIT(&fp->ipq_fragq);
1107 fp->ipq_src = ipqe->ipqe_ip->ip_src;
1108 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
1109 p = NULL;
1110 goto insert;
1111 } else {
1112 fp->ipq_nfrags++;
1113 }
1114
1115 /*
1116 * Find a segment which begins after this one does.
1117 */
1118 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1119 p = q, q = TAILQ_NEXT(q, ipqe_q))
1120 if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
1121 break;
1122
1123 /*
1124 * If there is a preceding segment, it may provide some of
1125 * our data already. If so, drop the data from the incoming
1126 * segment. If it provides all of our data, drop us.
1127 */
1128 if (p != NULL) {
1129 i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
1130 ntohs(ipqe->ipqe_ip->ip_off);
1131 if (i > 0) {
1132 if (i >= ntohs(ipqe->ipqe_ip->ip_len))
1133 goto dropfrag;
1134 m_adj(ipqe->ipqe_m, i);
1135 ipqe->ipqe_ip->ip_off =
1136 htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
1137 ipqe->ipqe_ip->ip_len =
1138 htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
1139 }
1140 }
1141
1142 /*
1143 * While we overlap succeeding segments trim them or,
1144 * if they are completely covered, dequeue them.
1145 */
1146 for (; q != NULL &&
1147 ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
1148 ntohs(q->ipqe_ip->ip_off); q = nq) {
1149 i = (ntohs(ipqe->ipqe_ip->ip_off) +
1150 ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
1151 if (i < ntohs(q->ipqe_ip->ip_len)) {
1152 q->ipqe_ip->ip_len =
1153 htons(ntohs(q->ipqe_ip->ip_len) - i);
1154 q->ipqe_ip->ip_off =
1155 htons(ntohs(q->ipqe_ip->ip_off) + i);
1156 m_adj(q->ipqe_m, i);
1157 break;
1158 }
1159 nq = TAILQ_NEXT(q, ipqe_q);
1160 m_freem(q->ipqe_m);
1161 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1162 pool_put(&ipqent_pool, q);
1163 fp->ipq_nfrags--;
1164 ip_nfrags--;
1165 }
1166
1167 insert:
1168 /*
1169 * Stick new segment in its place;
1170 * check for complete reassembly.
1171 */
1172 if (p == NULL) {
1173 TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
1174 } else {
1175 TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
1176 }
1177 next = 0;
1178 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1179 p = q, q = TAILQ_NEXT(q, ipqe_q)) {
1180 if (ntohs(q->ipqe_ip->ip_off) != next)
1181 return (0);
1182 next += ntohs(q->ipqe_ip->ip_len);
1183 }
1184 if (p->ipqe_mff)
1185 return (0);
1186
1187 /*
1188 * Reassembly is complete. Check for a bogus message size and
1189 * concatenate fragments.
1190 */
1191 q = TAILQ_FIRST(&fp->ipq_fragq);
1192 ip = q->ipqe_ip;
1193 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
1194 ipstat.ips_toolong++;
1195 ip_freef(fp);
1196 return (0);
1197 }
1198 m = q->ipqe_m;
1199 t = m->m_next;
1200 m->m_next = 0;
1201 m_cat(m, t);
1202 nq = TAILQ_NEXT(q, ipqe_q);
1203 pool_put(&ipqent_pool, q);
1204 for (q = nq; q != NULL; q = nq) {
1205 t = q->ipqe_m;
1206 nq = TAILQ_NEXT(q, ipqe_q);
1207 pool_put(&ipqent_pool, q);
1208 m_cat(m, t);
1209 }
1210 ip_nfrags -= fp->ipq_nfrags;
1211
1212 /*
1213 * Create header for new ip packet by
1214 * modifying header of first packet;
1215 * dequeue and discard fragment reassembly header.
1216 * Make header visible.
1217 */
1218 ip->ip_len = htons(next);
1219 ip->ip_src = fp->ipq_src;
1220 ip->ip_dst = fp->ipq_dst;
1221 LIST_REMOVE(fp, ipq_q);
1222 FREE(fp, M_FTABLE);
1223 ip_nfragpackets--;
1224 m->m_len += (ip->ip_hl << 2);
1225 m->m_data -= (ip->ip_hl << 2);
1226 /* some debugging cruft by sklower, below, will go away soon */
1227 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1228 int plen = 0;
1229 for (t = m; t; t = t->m_next)
1230 plen += t->m_len;
1231 m->m_pkthdr.len = plen;
1232 }
1233 return (m);
1234
1235 dropfrag:
1236 if (fp != 0)
1237 fp->ipq_nfrags--;
1238 ip_nfrags--;
1239 ipstat.ips_fragdropped++;
1240 m_freem(m);
1241 pool_put(&ipqent_pool, ipqe);
1242 return (0);
1243 }
1244
1245 /*
1246 * Free a fragment reassembly header and all
1247 * associated datagrams.
1248 */
1249 void
1250 ip_freef(fp)
1251 struct ipq *fp;
1252 {
1253 struct ipqent *q, *p;
1254 u_int nfrags = 0;
1255
1256 IPQ_LOCK_CHECK();
1257
1258 for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
1259 p = TAILQ_NEXT(q, ipqe_q);
1260 m_freem(q->ipqe_m);
1261 nfrags++;
1262 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1263 pool_put(&ipqent_pool, q);
1264 }
1265
1266 if (nfrags != fp->ipq_nfrags)
1267 printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
1268 ip_nfrags -= nfrags;
1269 LIST_REMOVE(fp, ipq_q);
1270 FREE(fp, M_FTABLE);
1271 ip_nfragpackets--;
1272 }
1273
1274 /*
1275 * IP reassembly TTL machinery for multiplicative drop.
1276 */
1277 static u_int fragttl_histo[(IPFRAGTTL+1)];
1278
1279
1280 /*
1281 * Decrement TTL of all reasembly queue entries by `ticks'.
1282 * Count number of distinct fragments (as opposed to partial, fragmented
1283 * datagrams) in the reassembly queue. While we traverse the entire
1284 * reassembly queue, compute and return the median TTL over all fragments.
1285 */
1286 static u_int
1287 ip_reass_ttl_decr(u_int ticks)
1288 {
1289 u_int nfrags, median, dropfraction, keepfraction;
1290 struct ipq *fp, *nfp;
1291 int i;
1292
1293 nfrags = 0;
1294 memset(fragttl_histo, 0, sizeof fragttl_histo);
1295
1296 for (i = 0; i < IPREASS_NHASH; i++) {
1297 for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
1298 fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
1299 0 : fp->ipq_ttl - ticks);
1300 nfp = LIST_NEXT(fp, ipq_q);
1301 if (fp->ipq_ttl == 0) {
1302 ipstat.ips_fragtimeout++;
1303 ip_freef(fp);
1304 } else {
1305 nfrags += fp->ipq_nfrags;
1306 fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
1307 }
1308 }
1309 }
1310
1311 KASSERT(ip_nfrags == nfrags);
1312
1313 /* Find median (or other drop fraction) in histogram. */
1314 dropfraction = (ip_nfrags / 2);
1315 keepfraction = ip_nfrags - dropfraction;
1316 for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
1317 median += fragttl_histo[i];
1318 if (median >= keepfraction)
1319 break;
1320 }
1321
1322 /* Return TTL of median (or other fraction). */
1323 return (u_int)i;
1324 }
1325
1326 void
1327 ip_reass_drophalf(void)
1328 {
1329
1330 u_int median_ticks;
1331 /*
1332 * Compute median TTL of all fragments, and count frags
1333 * with that TTL or lower (roughly half of all fragments).
1334 */
1335 median_ticks = ip_reass_ttl_decr(0);
1336
1337 /* Drop half. */
1338 median_ticks = ip_reass_ttl_decr(median_ticks);
1339
1340 }
1341
1342 /*
1343 * IP timer processing;
1344 * if a timer expires on a reassembly
1345 * queue, discard it.
1346 */
1347 void
1348 ip_slowtimo()
1349 {
1350 static u_int dropscanidx = 0;
1351 u_int i;
1352 u_int median_ttl;
1353 int s = splsoftnet();
1354
1355 IPQ_LOCK();
1356
1357 /* Age TTL of all fragments by 1 tick .*/
1358 median_ttl = ip_reass_ttl_decr(1);
1359
1360 /* make sure fragment limit is up-to-date */
1361 CHECK_NMBCLUSTER_PARAMS();
1362
1363 /* If we have too many fragments, drop the older half. */
1364 if (ip_nfrags > ip_maxfrags)
1365 ip_reass_ttl_decr(median_ttl);
1366
1367 /*
1368 * If we are over the maximum number of fragmented packets
1369 * (due to the limit being lowered), drain off
1370 * enough to get down to the new limit. Start draining
1371 * from the reassembly hashqueue most recently drained.
1372 */
1373 if (ip_maxfragpackets < 0)
1374 ;
1375 else {
1376 int wrapped = 0;
1377
1378 i = dropscanidx;
1379 while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
1380 while (LIST_FIRST(&ipq[i]) != NULL)
1381 ip_freef(LIST_FIRST(&ipq[i]));
1382 if (++i >= IPREASS_NHASH) {
1383 i = 0;
1384 }
1385 /*
1386 * Dont scan forever even if fragment counters are
1387 * wrong: stop after scanning entire reassembly queue.
1388 */
1389 if (i == dropscanidx)
1390 wrapped = 1;
1391 }
1392 dropscanidx = i;
1393 }
1394 IPQ_UNLOCK();
1395 #ifdef GATEWAY
1396 ipflow_slowtimo();
1397 #endif
1398 splx(s);
1399 }
1400
1401 /*
1402 * Drain off all datagram fragments.
1403 */
1404 void
1405 ip_drain()
1406 {
1407
1408 /*
1409 * We may be called from a device's interrupt context. If
1410 * the ipq is already busy, just bail out now.
1411 */
1412 if (ipq_lock_try() == 0)
1413 return;
1414
1415 /*
1416 * Drop half the total fragments now. If more mbufs are needed,
1417 * we will be called again soon.
1418 */
1419 ip_reass_drophalf();
1420
1421 IPQ_UNLOCK();
1422 }
1423
1424 /*
1425 * Do option processing on a datagram,
1426 * possibly discarding it if bad options are encountered,
1427 * or forwarding it if source-routed.
1428 * Returns 1 if packet has been forwarded/freed,
1429 * 0 if the packet should be processed further.
1430 */
1431 int
1432 ip_dooptions(m)
1433 struct mbuf *m;
1434 {
1435 struct ip *ip = mtod(m, struct ip *);
1436 u_char *cp, *cp0;
1437 struct ip_timestamp *ipt;
1438 struct in_ifaddr *ia;
1439 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1440 struct in_addr dst;
1441 n_time ntime;
1442
1443 dst = ip->ip_dst;
1444 cp = (u_char *)(ip + 1);
1445 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1446 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1447 opt = cp[IPOPT_OPTVAL];
1448 if (opt == IPOPT_EOL)
1449 break;
1450 if (opt == IPOPT_NOP)
1451 optlen = 1;
1452 else {
1453 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1454 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1455 goto bad;
1456 }
1457 optlen = cp[IPOPT_OLEN];
1458 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1459 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1460 goto bad;
1461 }
1462 }
1463 switch (opt) {
1464
1465 default:
1466 break;
1467
1468 /*
1469 * Source routing with record.
1470 * Find interface with current destination address.
1471 * If none on this machine then drop if strictly routed,
1472 * or do nothing if loosely routed.
1473 * Record interface address and bring up next address
1474 * component. If strictly routed make sure next
1475 * address is on directly accessible net.
1476 */
1477 case IPOPT_LSRR:
1478 case IPOPT_SSRR:
1479 if (ip_allowsrcrt == 0) {
1480 type = ICMP_UNREACH;
1481 code = ICMP_UNREACH_NET_PROHIB;
1482 goto bad;
1483 }
1484 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1485 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1486 goto bad;
1487 }
1488 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1489 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1490 goto bad;
1491 }
1492 ipaddr.sin_addr = ip->ip_dst;
1493 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
1494 if (ia == 0) {
1495 if (opt == IPOPT_SSRR) {
1496 type = ICMP_UNREACH;
1497 code = ICMP_UNREACH_SRCFAIL;
1498 goto bad;
1499 }
1500 /*
1501 * Loose routing, and not at next destination
1502 * yet; nothing to do except forward.
1503 */
1504 break;
1505 }
1506 off--; /* 0 origin */
1507 if ((off + sizeof(struct in_addr)) > optlen) {
1508 /*
1509 * End of source route. Should be for us.
1510 */
1511 save_rte(cp, ip->ip_src);
1512 break;
1513 }
1514 /*
1515 * locate outgoing interface
1516 */
1517 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
1518 sizeof(ipaddr.sin_addr));
1519 if (opt == IPOPT_SSRR)
1520 ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
1521 else
1522 ia = ip_rtaddr(ipaddr.sin_addr);
1523 if (ia == 0) {
1524 type = ICMP_UNREACH;
1525 code = ICMP_UNREACH_SRCFAIL;
1526 goto bad;
1527 }
1528 ip->ip_dst = ipaddr.sin_addr;
1529 bcopy((caddr_t)&ia->ia_addr.sin_addr,
1530 (caddr_t)(cp + off), sizeof(struct in_addr));
1531 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1532 /*
1533 * Let ip_intr's mcast routing check handle mcast pkts
1534 */
1535 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1536 break;
1537
1538 case IPOPT_RR:
1539 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1540 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1541 goto bad;
1542 }
1543 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1544 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1545 goto bad;
1546 }
1547 /*
1548 * If no space remains, ignore.
1549 */
1550 off--; /* 0 origin */
1551 if ((off + sizeof(struct in_addr)) > optlen)
1552 break;
1553 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
1554 sizeof(ipaddr.sin_addr));
1555 /*
1556 * locate outgoing interface; if we're the destination,
1557 * use the incoming interface (should be same).
1558 */
1559 if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
1560 == NULL &&
1561 (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1562 type = ICMP_UNREACH;
1563 code = ICMP_UNREACH_HOST;
1564 goto bad;
1565 }
1566 bcopy((caddr_t)&ia->ia_addr.sin_addr,
1567 (caddr_t)(cp + off), sizeof(struct in_addr));
1568 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1569 break;
1570
1571 case IPOPT_TS:
1572 code = cp - (u_char *)ip;
1573 ipt = (struct ip_timestamp *)cp;
1574 if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1575 code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1576 goto bad;
1577 }
1578 if (ipt->ipt_ptr < 5) {
1579 code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1580 goto bad;
1581 }
1582 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
1583 if (++ipt->ipt_oflw == 0) {
1584 code = (u_char *)&ipt->ipt_ptr -
1585 (u_char *)ip;
1586 goto bad;
1587 }
1588 break;
1589 }
1590 cp0 = (cp + ipt->ipt_ptr - 1);
1591 switch (ipt->ipt_flg) {
1592
1593 case IPOPT_TS_TSONLY:
1594 break;
1595
1596 case IPOPT_TS_TSANDADDR:
1597 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1598 sizeof(struct in_addr) > ipt->ipt_len) {
1599 code = (u_char *)&ipt->ipt_ptr -
1600 (u_char *)ip;
1601 goto bad;
1602 }
1603 ipaddr.sin_addr = dst;
1604 ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1605 m->m_pkthdr.rcvif));
1606 if (ia == 0)
1607 continue;
1608 bcopy(&ia->ia_addr.sin_addr,
1609 cp0, sizeof(struct in_addr));
1610 ipt->ipt_ptr += sizeof(struct in_addr);
1611 break;
1612
1613 case IPOPT_TS_PRESPEC:
1614 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1615 sizeof(struct in_addr) > ipt->ipt_len) {
1616 code = (u_char *)&ipt->ipt_ptr -
1617 (u_char *)ip;
1618 goto bad;
1619 }
1620 bcopy(cp0, &ipaddr.sin_addr,
1621 sizeof(struct in_addr));
1622 if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
1623 == NULL)
1624 continue;
1625 ipt->ipt_ptr += sizeof(struct in_addr);
1626 break;
1627
1628 default:
1629 /* XXX can't take &ipt->ipt_flg */
1630 code = (u_char *)&ipt->ipt_ptr -
1631 (u_char *)ip + 1;
1632 goto bad;
1633 }
1634 ntime = iptime();
1635 cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
1636 bcopy(cp0, (caddr_t)cp + ipt->ipt_ptr - 1,
1637 sizeof(n_time));
1638 ipt->ipt_ptr += sizeof(n_time);
1639 }
1640 }
1641 if (forward) {
1642 if (ip_forwsrcrt == 0) {
1643 type = ICMP_UNREACH;
1644 code = ICMP_UNREACH_SRCFAIL;
1645 goto bad;
1646 }
1647 ip_forward(m, 1);
1648 return (1);
1649 }
1650 return (0);
1651 bad:
1652 icmp_error(m, type, code, 0, 0);
1653 ipstat.ips_badoptions++;
1654 return (1);
1655 }
1656
1657 /*
1658 * Given address of next destination (final or next hop),
1659 * return internet address info of interface to be used to get there.
1660 */
1661 struct in_ifaddr *
1662 ip_rtaddr(dst)
1663 struct in_addr dst;
1664 {
1665 struct sockaddr_in *sin;
1666
1667 sin = satosin(&ipforward_rt.ro_dst);
1668
1669 if (ipforward_rt.ro_rt == 0 || !in_hosteq(dst, sin->sin_addr)) {
1670 if (ipforward_rt.ro_rt) {
1671 RTFREE(ipforward_rt.ro_rt);
1672 ipforward_rt.ro_rt = 0;
1673 }
1674 sin->sin_family = AF_INET;
1675 sin->sin_len = sizeof(*sin);
1676 sin->sin_addr = dst;
1677
1678 rtalloc(&ipforward_rt);
1679 }
1680 if (ipforward_rt.ro_rt == 0)
1681 return ((struct in_ifaddr *)0);
1682 return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
1683 }
1684
1685 /*
1686 * Save incoming source route for use in replies,
1687 * to be picked up later by ip_srcroute if the receiver is interested.
1688 */
1689 void
1690 save_rte(option, dst)
1691 u_char *option;
1692 struct in_addr dst;
1693 {
1694 unsigned olen;
1695
1696 olen = option[IPOPT_OLEN];
1697 #ifdef DIAGNOSTIC
1698 if (ipprintfs)
1699 printf("save_rte: olen %d\n", olen);
1700 #endif /* 0 */
1701 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1702 return;
1703 bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
1704 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1705 ip_srcrt.dst = dst;
1706 }
1707
1708 /*
1709 * Retrieve incoming source route for use in replies,
1710 * in the same form used by setsockopt.
1711 * The first hop is placed before the options, will be removed later.
1712 */
1713 struct mbuf *
1714 ip_srcroute()
1715 {
1716 struct in_addr *p, *q;
1717 struct mbuf *m;
1718
1719 if (ip_nhops == 0)
1720 return ((struct mbuf *)0);
1721 m = m_get(M_DONTWAIT, MT_SOOPTS);
1722 if (m == 0)
1723 return ((struct mbuf *)0);
1724
1725 MCLAIM(m, &inetdomain.dom_mowner);
1726 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1727
1728 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1729 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1730 OPTSIZ;
1731 #ifdef DIAGNOSTIC
1732 if (ipprintfs)
1733 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1734 #endif
1735
1736 /*
1737 * First save first hop for return route
1738 */
1739 p = &ip_srcrt.route[ip_nhops - 1];
1740 *(mtod(m, struct in_addr *)) = *p--;
1741 #ifdef DIAGNOSTIC
1742 if (ipprintfs)
1743 printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1744 #endif
1745
1746 /*
1747 * Copy option fields and padding (nop) to mbuf.
1748 */
1749 ip_srcrt.nop = IPOPT_NOP;
1750 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1751 bcopy((caddr_t)&ip_srcrt.nop,
1752 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
1753 q = (struct in_addr *)(mtod(m, caddr_t) +
1754 sizeof(struct in_addr) + OPTSIZ);
1755 #undef OPTSIZ
1756 /*
1757 * Record return path as an IP source route,
1758 * reversing the path (pointers are now aligned).
1759 */
1760 while (p >= ip_srcrt.route) {
1761 #ifdef DIAGNOSTIC
1762 if (ipprintfs)
1763 printf(" %x", ntohl(q->s_addr));
1764 #endif
1765 *q++ = *p--;
1766 }
1767 /*
1768 * Last hop goes to final destination.
1769 */
1770 *q = ip_srcrt.dst;
1771 #ifdef DIAGNOSTIC
1772 if (ipprintfs)
1773 printf(" %x\n", ntohl(q->s_addr));
1774 #endif
1775 return (m);
1776 }
1777
1778 /*
1779 * Strip out IP options, at higher
1780 * level protocol in the kernel.
1781 * Second argument is buffer to which options
1782 * will be moved, and return value is their length.
1783 * XXX should be deleted; last arg currently ignored.
1784 */
1785 void
1786 ip_stripoptions(m, mopt)
1787 struct mbuf *m;
1788 struct mbuf *mopt;
1789 {
1790 int i;
1791 struct ip *ip = mtod(m, struct ip *);
1792 caddr_t opts;
1793 int olen;
1794
1795 olen = (ip->ip_hl << 2) - sizeof (struct ip);
1796 opts = (caddr_t)(ip + 1);
1797 i = m->m_len - (sizeof (struct ip) + olen);
1798 bcopy(opts + olen, opts, (unsigned)i);
1799 m->m_len -= olen;
1800 if (m->m_flags & M_PKTHDR)
1801 m->m_pkthdr.len -= olen;
1802 ip->ip_len = htons(ntohs(ip->ip_len) - olen);
1803 ip->ip_hl = sizeof (struct ip) >> 2;
1804 }
1805
1806 const int inetctlerrmap[PRC_NCMDS] = {
1807 0, 0, 0, 0,
1808 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1809 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1810 EMSGSIZE, EHOSTUNREACH, 0, 0,
1811 0, 0, 0, 0,
1812 ENOPROTOOPT
1813 };
1814
1815 /*
1816 * Forward a packet. If some error occurs return the sender
1817 * an icmp packet. Note we can't always generate a meaningful
1818 * icmp message because icmp doesn't have a large enough repertoire
1819 * of codes and types.
1820 *
1821 * If not forwarding, just drop the packet. This could be confusing
1822 * if ipforwarding was zero but some routing protocol was advancing
1823 * us as a gateway to somewhere. However, we must let the routing
1824 * protocol deal with that.
1825 *
1826 * The srcrt parameter indicates whether the packet is being forwarded
1827 * via a source route.
1828 */
1829 void
1830 ip_forward(m, srcrt)
1831 struct mbuf *m;
1832 int srcrt;
1833 {
1834 struct ip *ip = mtod(m, struct ip *);
1835 struct sockaddr_in *sin;
1836 struct rtentry *rt;
1837 int error, type = 0, code = 0;
1838 struct mbuf *mcopy;
1839 n_long dest;
1840 struct ifnet *destifp;
1841 #if defined(IPSEC) || defined(FAST_IPSEC)
1842 struct ifnet dummyifp;
1843 #endif
1844
1845 /*
1846 * We are now in the output path.
1847 */
1848 MCLAIM(m, &ip_tx_mowner);
1849
1850 /*
1851 * Clear any in-bound checksum flags for this packet.
1852 */
1853 m->m_pkthdr.csum_flags = 0;
1854
1855 dest = 0;
1856 #ifdef DIAGNOSTIC
1857 if (ipprintfs)
1858 printf("forward: src %2.2x dst %2.2x ttl %x\n",
1859 ntohl(ip->ip_src.s_addr),
1860 ntohl(ip->ip_dst.s_addr), ip->ip_ttl);
1861 #endif
1862 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1863 ipstat.ips_cantforward++;
1864 m_freem(m);
1865 return;
1866 }
1867 if (ip->ip_ttl <= IPTTLDEC) {
1868 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1869 return;
1870 }
1871 ip->ip_ttl -= IPTTLDEC;
1872
1873 sin = satosin(&ipforward_rt.ro_dst);
1874 if ((rt = ipforward_rt.ro_rt) == 0 ||
1875 !in_hosteq(ip->ip_dst, sin->sin_addr)) {
1876 if (ipforward_rt.ro_rt) {
1877 RTFREE(ipforward_rt.ro_rt);
1878 ipforward_rt.ro_rt = 0;
1879 }
1880 sin->sin_family = AF_INET;
1881 sin->sin_len = sizeof(struct sockaddr_in);
1882 sin->sin_addr = ip->ip_dst;
1883
1884 rtalloc(&ipforward_rt);
1885 if (ipforward_rt.ro_rt == 0) {
1886 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1887 return;
1888 }
1889 rt = ipforward_rt.ro_rt;
1890 }
1891
1892 /*
1893 * Save at most 68 bytes of the packet in case
1894 * we need to generate an ICMP message to the src.
1895 * Pullup to avoid sharing mbuf cluster between m and mcopy.
1896 */
1897 mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
1898 if (mcopy)
1899 mcopy = m_pullup(mcopy, ip->ip_hl << 2);
1900
1901 /*
1902 * If forwarding packet using same interface that it came in on,
1903 * perhaps should send a redirect to sender to shortcut a hop.
1904 * Only send redirect if source is sending directly to us,
1905 * and if packet was not source routed (or has any options).
1906 * Also, don't send redirect if forwarding using a default route
1907 * or a route modified by a redirect.
1908 */
1909 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1910 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1911 !in_nullhost(satosin(rt_key(rt))->sin_addr) &&
1912 ipsendredirects && !srcrt) {
1913 if (rt->rt_ifa &&
1914 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1915 ifatoia(rt->rt_ifa)->ia_subnet) {
1916 if (rt->rt_flags & RTF_GATEWAY)
1917 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1918 else
1919 dest = ip->ip_dst.s_addr;
1920 /*
1921 * Router requirements says to only send host
1922 * redirects.
1923 */
1924 type = ICMP_REDIRECT;
1925 code = ICMP_REDIRECT_HOST;
1926 #ifdef DIAGNOSTIC
1927 if (ipprintfs)
1928 printf("redirect (%d) to %x\n", code,
1929 (u_int32_t)dest);
1930 #endif
1931 }
1932 }
1933
1934 error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1935 (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1936 (struct ip_moptions *)NULL, (struct socket *)NULL);
1937
1938 if (error)
1939 ipstat.ips_cantforward++;
1940 else {
1941 ipstat.ips_forward++;
1942 if (type)
1943 ipstat.ips_redirectsent++;
1944 else {
1945 if (mcopy) {
1946 #ifdef GATEWAY
1947 if (mcopy->m_flags & M_CANFASTFWD)
1948 ipflow_create(&ipforward_rt, mcopy);
1949 #endif
1950 m_freem(mcopy);
1951 }
1952 return;
1953 }
1954 }
1955 if (mcopy == NULL)
1956 return;
1957 destifp = NULL;
1958
1959 switch (error) {
1960
1961 case 0: /* forwarded, but need redirect */
1962 /* type, code set above */
1963 break;
1964
1965 case ENETUNREACH: /* shouldn't happen, checked above */
1966 case EHOSTUNREACH:
1967 case ENETDOWN:
1968 case EHOSTDOWN:
1969 default:
1970 type = ICMP_UNREACH;
1971 code = ICMP_UNREACH_HOST;
1972 break;
1973
1974 case EMSGSIZE:
1975 type = ICMP_UNREACH;
1976 code = ICMP_UNREACH_NEEDFRAG;
1977 #if !defined(IPSEC) && !defined(FAST_IPSEC)
1978 if (ipforward_rt.ro_rt)
1979 destifp = ipforward_rt.ro_rt->rt_ifp;
1980 #else
1981 /*
1982 * If the packet is routed over IPsec tunnel, tell the
1983 * originator the tunnel MTU.
1984 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1985 * XXX quickhack!!!
1986 */
1987 if (ipforward_rt.ro_rt) {
1988 struct secpolicy *sp;
1989 int ipsecerror;
1990 size_t ipsechdr;
1991 struct route *ro;
1992
1993 sp = ipsec4_getpolicybyaddr(mcopy,
1994 IPSEC_DIR_OUTBOUND, IP_FORWARDING,
1995 &ipsecerror);
1996
1997 if (sp == NULL)
1998 destifp = ipforward_rt.ro_rt->rt_ifp;
1999 else {
2000 /* count IPsec header size */
2001 ipsechdr = ipsec4_hdrsiz(mcopy,
2002 IPSEC_DIR_OUTBOUND, NULL);
2003
2004 /*
2005 * find the correct route for outer IPv4
2006 * header, compute tunnel MTU.
2007 *
2008 * XXX BUG ALERT
2009 * The "dummyifp" code relies upon the fact
2010 * that icmp_error() touches only ifp->if_mtu.
2011 */
2012 /*XXX*/
2013 destifp = NULL;
2014 if (sp->req != NULL
2015 && sp->req->sav != NULL
2016 && sp->req->sav->sah != NULL) {
2017 ro = &sp->req->sav->sah->sa_route;
2018 if (ro->ro_rt && ro->ro_rt->rt_ifp) {
2019 dummyifp.if_mtu =
2020 ro->ro_rt->rt_rmx.rmx_mtu ?
2021 ro->ro_rt->rt_rmx.rmx_mtu :
2022 ro->ro_rt->rt_ifp->if_mtu;
2023 dummyifp.if_mtu -= ipsechdr;
2024 destifp = &dummyifp;
2025 }
2026 }
2027
2028 #ifdef IPSEC
2029 key_freesp(sp);
2030 #else
2031 KEY_FREESP(&sp);
2032 #endif
2033 }
2034 }
2035 #endif /*IPSEC*/
2036 ipstat.ips_cantfrag++;
2037 break;
2038
2039 case ENOBUFS:
2040 #if 1
2041 /*
2042 * a router should not generate ICMP_SOURCEQUENCH as
2043 * required in RFC1812 Requirements for IP Version 4 Routers.
2044 * source quench could be a big problem under DoS attacks,
2045 * or if the underlying interface is rate-limited.
2046 */
2047 if (mcopy)
2048 m_freem(mcopy);
2049 return;
2050 #else
2051 type = ICMP_SOURCEQUENCH;
2052 code = 0;
2053 break;
2054 #endif
2055 }
2056 icmp_error(mcopy, type, code, dest, destifp);
2057 }
2058
2059 void
2060 ip_savecontrol(inp, mp, ip, m)
2061 struct inpcb *inp;
2062 struct mbuf **mp;
2063 struct ip *ip;
2064 struct mbuf *m;
2065 {
2066
2067 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2068 struct timeval tv;
2069
2070 microtime(&tv);
2071 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2072 SCM_TIMESTAMP, SOL_SOCKET);
2073 if (*mp)
2074 mp = &(*mp)->m_next;
2075 }
2076 if (inp->inp_flags & INP_RECVDSTADDR) {
2077 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2078 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2079 if (*mp)
2080 mp = &(*mp)->m_next;
2081 }
2082 #ifdef notyet
2083 /*
2084 * XXX
2085 * Moving these out of udp_input() made them even more broken
2086 * than they already were.
2087 * - fenner (at) parc.xerox.com
2088 */
2089 /* options were tossed already */
2090 if (inp->inp_flags & INP_RECVOPTS) {
2091 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2092 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2093 if (*mp)
2094 mp = &(*mp)->m_next;
2095 }
2096 /* ip_srcroute doesn't do what we want here, need to fix */
2097 if (inp->inp_flags & INP_RECVRETOPTS) {
2098 *mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2099 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2100 if (*mp)
2101 mp = &(*mp)->m_next;
2102 }
2103 #endif
2104 if (inp->inp_flags & INP_RECVIF) {
2105 struct sockaddr_dl sdl;
2106
2107 sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]);
2108 sdl.sdl_family = AF_LINK;
2109 sdl.sdl_index = m->m_pkthdr.rcvif ?
2110 m->m_pkthdr.rcvif->if_index : 0;
2111 sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0;
2112 *mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len,
2113 IP_RECVIF, IPPROTO_IP);
2114 if (*mp)
2115 mp = &(*mp)->m_next;
2116 }
2117 }
2118
2119 /*
2120 * sysctl helper routine for net.inet.ip.mtudisctimeout. checks the
2121 * range of the new value and tweaks timers if it changes.
2122 */
2123 static int
2124 sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
2125 {
2126 int error, tmp;
2127 struct sysctlnode node;
2128
2129 node = *rnode;
2130 tmp = ip_mtudisc_timeout;
2131 node.sysctl_data = &tmp;
2132 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2133 if (error || newp == NULL)
2134 return (error);
2135 if (tmp < 0)
2136 return (EINVAL);
2137
2138 ip_mtudisc_timeout = tmp;
2139 rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
2140
2141 return (0);
2142 }
2143
2144 #ifdef GATEWAY
2145 /*
2146 * sysctl helper routine for net.inet.ip.maxflows. apparently if
2147 * maxflows is even looked up, we "reap flows".
2148 */
2149 static int
2150 sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
2151 {
2152 int s;
2153
2154 s = sysctl_lookup(SYSCTLFN_CALL(rnode));
2155 if (s)
2156 return (s);
2157
2158 s = splsoftnet();
2159 ipflow_reap(0);
2160 splx(s);
2161
2162 return (0);
2163 }
2164 #endif /* GATEWAY */
2165
2166
2167 SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
2168 {
2169 extern int subnetsarelocal, hostzeroisbroadcast;
2170
2171 sysctl_createv(clog, 0, NULL, NULL,
2172 CTLFLAG_PERMANENT,
2173 CTLTYPE_NODE, "net", NULL,
2174 NULL, 0, NULL, 0,
2175 CTL_NET, CTL_EOL);
2176 sysctl_createv(clog, 0, NULL, NULL,
2177 CTLFLAG_PERMANENT,
2178 CTLTYPE_NODE, "inet",
2179 SYSCTL_DESCR("PF_INET related settings"),
2180 NULL, 0, NULL, 0,
2181 CTL_NET, PF_INET, CTL_EOL);
2182 sysctl_createv(clog, 0, NULL, NULL,
2183 CTLFLAG_PERMANENT,
2184 CTLTYPE_NODE, "ip",
2185 SYSCTL_DESCR("IPv4 related settings"),
2186 NULL, 0, NULL, 0,
2187 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2188
2189 sysctl_createv(clog, 0, NULL, NULL,
2190 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2191 CTLTYPE_INT, "forwarding",
2192 SYSCTL_DESCR("Enable forwarding of INET datagrams"),
2193 NULL, 0, &ipforwarding, 0,
2194 CTL_NET, PF_INET, IPPROTO_IP,
2195 IPCTL_FORWARDING, CTL_EOL);
2196 sysctl_createv(clog, 0, NULL, NULL,
2197 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2198 CTLTYPE_INT, "redirect",
2199 SYSCTL_DESCR("Enable sending of ICMP redirect messages"),
2200 NULL, 0, &ipsendredirects, 0,
2201 CTL_NET, PF_INET, IPPROTO_IP,
2202 IPCTL_SENDREDIRECTS, CTL_EOL);
2203 sysctl_createv(clog, 0, NULL, NULL,
2204 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2205 CTLTYPE_INT, "ttl",
2206 SYSCTL_DESCR("Default TTL for an INET datagram"),
2207 NULL, 0, &ip_defttl, 0,
2208 CTL_NET, PF_INET, IPPROTO_IP,
2209 IPCTL_DEFTTL, CTL_EOL);
2210 #ifdef IPCTL_DEFMTU
2211 sysctl_createv(clog, 0, NULL, NULL,
2212 CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
2213 CTLTYPE_INT, "mtu",
2214 SYSCTL_DESCR("Default MTA for an INET route"),
2215 NULL, 0, &ip_mtu, 0,
2216 CTL_NET, PF_INET, IPPROTO_IP,
2217 IPCTL_DEFMTU, CTL_EOL);
2218 #endif /* IPCTL_DEFMTU */
2219 sysctl_createv(clog, 0, NULL, NULL,
2220 CTLFLAG_PERMANENT|CTLFLAG_READONLY1,
2221 CTLTYPE_INT, "forwsrcrt",
2222 SYSCTL_DESCR("Enable forwarding of source-routed "
2223 "datagrams"),
2224 NULL, 0, &ip_forwsrcrt, 0,
2225 CTL_NET, PF_INET, IPPROTO_IP,
2226 IPCTL_FORWSRCRT, CTL_EOL);
2227 sysctl_createv(clog, 0, NULL, NULL,
2228 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2229 CTLTYPE_INT, "directed-broadcast",
2230 SYSCTL_DESCR("Enable forwarding of broadcast datagrams"),
2231 NULL, 0, &ip_directedbcast, 0,
2232 CTL_NET, PF_INET, IPPROTO_IP,
2233 IPCTL_DIRECTEDBCAST, CTL_EOL);
2234 sysctl_createv(clog, 0, NULL, NULL,
2235 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2236 CTLTYPE_INT, "allowsrcrt",
2237 SYSCTL_DESCR("Accept source-routed datagrams"),
2238 NULL, 0, &ip_allowsrcrt, 0,
2239 CTL_NET, PF_INET, IPPROTO_IP,
2240 IPCTL_ALLOWSRCRT, CTL_EOL);
2241 sysctl_createv(clog, 0, NULL, NULL,
2242 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2243 CTLTYPE_INT, "subnetsarelocal",
2244 SYSCTL_DESCR("Whether logical subnets are considered "
2245 "local"),
2246 NULL, 0, &subnetsarelocal, 0,
2247 CTL_NET, PF_INET, IPPROTO_IP,
2248 IPCTL_SUBNETSARELOCAL, CTL_EOL);
2249 sysctl_createv(clog, 0, NULL, NULL,
2250 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2251 CTLTYPE_INT, "mtudisc",
2252 SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"),
2253 NULL, 0, &ip_mtudisc, 0,
2254 CTL_NET, PF_INET, IPPROTO_IP,
2255 IPCTL_MTUDISC, CTL_EOL);
2256 sysctl_createv(clog, 0, NULL, NULL,
2257 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2258 CTLTYPE_INT, "anonportmin",
2259 SYSCTL_DESCR("Lowest ephemeral port number to assign"),
2260 sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
2261 CTL_NET, PF_INET, IPPROTO_IP,
2262 IPCTL_ANONPORTMIN, CTL_EOL);
2263 sysctl_createv(clog, 0, NULL, NULL,
2264 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2265 CTLTYPE_INT, "anonportmax",
2266 SYSCTL_DESCR("Highest ephemeral port number to assign"),
2267 sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
2268 CTL_NET, PF_INET, IPPROTO_IP,
2269 IPCTL_ANONPORTMAX, CTL_EOL);
2270 sysctl_createv(clog, 0, NULL, NULL,
2271 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2272 CTLTYPE_INT, "mtudisctimeout",
2273 SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"),
2274 sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
2275 CTL_NET, PF_INET, IPPROTO_IP,
2276 IPCTL_MTUDISCTIMEOUT, CTL_EOL);
2277 #ifdef GATEWAY
2278 sysctl_createv(clog, 0, NULL, NULL,
2279 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2280 CTLTYPE_INT, "maxflows",
2281 SYSCTL_DESCR("Number of flows for fast forwarding"),
2282 sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
2283 CTL_NET, PF_INET, IPPROTO_IP,
2284 IPCTL_MAXFLOWS, CTL_EOL);
2285 #endif /* GATEWAY */
2286 sysctl_createv(clog, 0, NULL, NULL,
2287 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2288 CTLTYPE_INT, "hostzerobroadcast",
2289 SYSCTL_DESCR("All zeroes address is broadcast address"),
2290 NULL, 0, &hostzeroisbroadcast, 0,
2291 CTL_NET, PF_INET, IPPROTO_IP,
2292 IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2293 #if NGIF > 0
2294 sysctl_createv(clog, 0, NULL, NULL,
2295 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2296 CTLTYPE_INT, "gifttl",
2297 SYSCTL_DESCR("Default TTL for a gif tunnel datagram"),
2298 NULL, 0, &ip_gif_ttl, 0,
2299 CTL_NET, PF_INET, IPPROTO_IP,
2300 IPCTL_GIF_TTL, CTL_EOL);
2301 #endif /* NGIF */
2302 #ifndef IPNOPRIVPORTS
2303 sysctl_createv(clog, 0, NULL, NULL,
2304 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2305 CTLTYPE_INT, "lowportmin",
2306 SYSCTL_DESCR("Lowest privileged ephemeral port number "
2307 "to assign"),
2308 sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
2309 CTL_NET, PF_INET, IPPROTO_IP,
2310 IPCTL_LOWPORTMIN, CTL_EOL);
2311 sysctl_createv(clog, 0, NULL, NULL,
2312 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2313 CTLTYPE_INT, "lowportmax",
2314 SYSCTL_DESCR("Highest privileged ephemeral port number "
2315 "to assign"),
2316 sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
2317 CTL_NET, PF_INET, IPPROTO_IP,
2318 IPCTL_LOWPORTMAX, CTL_EOL);
2319 #endif /* IPNOPRIVPORTS */
2320 sysctl_createv(clog, 0, NULL, NULL,
2321 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2322 CTLTYPE_INT, "maxfragpackets",
2323 SYSCTL_DESCR("Maximum number of fragments to retain for "
2324 "possible reassembly"),
2325 NULL, 0, &ip_maxfragpackets, 0,
2326 CTL_NET, PF_INET, IPPROTO_IP,
2327 IPCTL_MAXFRAGPACKETS, CTL_EOL);
2328 #if NGRE > 0
2329 sysctl_createv(clog, 0, NULL, NULL,
2330 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2331 CTLTYPE_INT, "grettl",
2332 SYSCTL_DESCR("Default TTL for a gre tunnel datagram"),
2333 NULL, 0, &ip_gre_ttl, 0,
2334 CTL_NET, PF_INET, IPPROTO_IP,
2335 IPCTL_GRE_TTL, CTL_EOL);
2336 #endif /* NGRE */
2337 sysctl_createv(clog, 0, NULL, NULL,
2338 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2339 CTLTYPE_INT, "checkinterface",
2340 SYSCTL_DESCR("Enable receive side of Strong ES model "
2341 "from RFC1122"),
2342 NULL, 0, &ip_checkinterface, 0,
2343 CTL_NET, PF_INET, IPPROTO_IP,
2344 IPCTL_CHECKINTERFACE, CTL_EOL);
2345 sysctl_createv(clog, 0, NULL, NULL,
2346 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2347 CTLTYPE_INT, "random_id",
2348 SYSCTL_DESCR("Assign random ip_id values"),
2349 NULL, 0, &ip_do_randomid, 0,
2350 CTL_NET, PF_INET, IPPROTO_IP,
2351 IPCTL_RANDOMID, CTL_EOL);
2352 sysctl_createv(clog, 0, NULL, NULL,
2353 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2354 CTLTYPE_INT, "do_loopback_cksum",
2355 SYSCTL_DESCR("Perform IP checksum on loopback"),
2356 NULL, 0, &ip_do_loopback_cksum, 0,
2357 CTL_NET, PF_INET, IPPROTO_IP,
2358 IPCTL_LOOPBACKCKSUM, CTL_EOL);
2359 }
2360