Home | History | Annotate | Line # | Download | only in netinet
ip_input.c revision 1.211
      1 /*	$NetBSD: ip_input.c,v 1.211 2005/02/03 22:56:42 perry Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1993
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.211 2005/02/03 22:56:42 perry Exp $");
    102 
    103 #include "opt_inet.h"
    104 #include "opt_gateway.h"
    105 #include "opt_pfil_hooks.h"
    106 #include "opt_ipsec.h"
    107 #include "opt_mrouting.h"
    108 #include "opt_mbuftrace.h"
    109 #include "opt_inet_csum.h"
    110 
    111 #include <sys/param.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/domain.h>
    116 #include <sys/protosw.h>
    117 #include <sys/socket.h>
    118 #include <sys/socketvar.h>
    119 #include <sys/errno.h>
    120 #include <sys/time.h>
    121 #include <sys/kernel.h>
    122 #include <sys/pool.h>
    123 #include <sys/sysctl.h>
    124 
    125 #include <net/if.h>
    126 #include <net/if_dl.h>
    127 #include <net/route.h>
    128 #include <net/pfil.h>
    129 
    130 #include <netinet/in.h>
    131 #include <netinet/in_systm.h>
    132 #include <netinet/ip.h>
    133 #include <netinet/in_pcb.h>
    134 #include <netinet/in_var.h>
    135 #include <netinet/ip_var.h>
    136 #include <netinet/ip_icmp.h>
    137 /* just for gif_ttl */
    138 #include <netinet/in_gif.h>
    139 #include "gif.h"
    140 #include <net/if_gre.h>
    141 #include "gre.h"
    142 
    143 #ifdef MROUTING
    144 #include <netinet/ip_mroute.h>
    145 #endif
    146 
    147 #ifdef IPSEC
    148 #include <netinet6/ipsec.h>
    149 #include <netkey/key.h>
    150 #endif
    151 #ifdef FAST_IPSEC
    152 #include <netipsec/ipsec.h>
    153 #include <netipsec/key.h>
    154 #endif	/* FAST_IPSEC*/
    155 
    156 #ifndef	IPFORWARDING
    157 #ifdef GATEWAY
    158 #define	IPFORWARDING	1	/* forward IP packets not for us */
    159 #else /* GATEWAY */
    160 #define	IPFORWARDING	0	/* don't forward IP packets not for us */
    161 #endif /* GATEWAY */
    162 #endif /* IPFORWARDING */
    163 #ifndef	IPSENDREDIRECTS
    164 #define	IPSENDREDIRECTS	1
    165 #endif
    166 #ifndef IPFORWSRCRT
    167 #define	IPFORWSRCRT	1	/* forward source-routed packets */
    168 #endif
    169 #ifndef IPALLOWSRCRT
    170 #define	IPALLOWSRCRT	1	/* allow source-routed packets */
    171 #endif
    172 #ifndef IPMTUDISC
    173 #define IPMTUDISC	1
    174 #endif
    175 #ifndef IPMTUDISCTIMEOUT
    176 #define IPMTUDISCTIMEOUT (10 * 60)	/* as per RFC 1191 */
    177 #endif
    178 
    179 /*
    180  * Note: DIRECTED_BROADCAST is handled this way so that previous
    181  * configuration using this option will Just Work.
    182  */
    183 #ifndef IPDIRECTEDBCAST
    184 #ifdef DIRECTED_BROADCAST
    185 #define IPDIRECTEDBCAST	1
    186 #else
    187 #define	IPDIRECTEDBCAST	0
    188 #endif /* DIRECTED_BROADCAST */
    189 #endif /* IPDIRECTEDBCAST */
    190 int	ipforwarding = IPFORWARDING;
    191 int	ipsendredirects = IPSENDREDIRECTS;
    192 int	ip_defttl = IPDEFTTL;
    193 int	ip_forwsrcrt = IPFORWSRCRT;
    194 int	ip_directedbcast = IPDIRECTEDBCAST;
    195 int	ip_allowsrcrt = IPALLOWSRCRT;
    196 int	ip_mtudisc = IPMTUDISC;
    197 int	ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
    198 #ifdef DIAGNOSTIC
    199 int	ipprintfs = 0;
    200 #endif
    201 
    202 int	ip_do_randomid = 0;
    203 int	ip_do_loopback_cksum = 0;
    204 
    205 /*
    206  * XXX - Setting ip_checkinterface mostly implements the receive side of
    207  * the Strong ES model described in RFC 1122, but since the routing table
    208  * and transmit implementation do not implement the Strong ES model,
    209  * setting this to 1 results in an odd hybrid.
    210  *
    211  * XXX - ip_checkinterface currently must be disabled if you use ipnat
    212  * to translate the destination address to another local interface.
    213  *
    214  * XXX - ip_checkinterface must be disabled if you add IP aliases
    215  * to the loopback interface instead of the interface where the
    216  * packets for those addresses are received.
    217  */
    218 int	ip_checkinterface = 0;
    219 
    220 
    221 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
    222 
    223 int	ipqmaxlen = IFQ_MAXLEN;
    224 u_long	in_ifaddrhash;				/* size of hash table - 1 */
    225 int	in_ifaddrentries;			/* total number of addrs */
    226 struct in_ifaddrhead in_ifaddrhead;
    227 struct	in_ifaddrhashhead *in_ifaddrhashtbl;
    228 u_long	in_multihash;				/* size of hash table - 1 */
    229 int	in_multientries;			/* total number of addrs */
    230 struct	in_multihashhead *in_multihashtbl;
    231 struct	ifqueue ipintrq;
    232 struct	ipstat	ipstat;
    233 uint16_t ip_id;
    234 
    235 #ifdef PFIL_HOOKS
    236 struct pfil_head inet_pfil_hook;
    237 #endif
    238 
    239 /*
    240  * Cached copy of nmbclusters. If nbclusters is different,
    241  * recalculate IP parameters derived from nmbclusters.
    242  */
    243 static int	ip_nmbclusters;			/* copy of nmbclusters */
    244 static void	ip_nmbclusters_changed(void);	/* recalc limits */
    245 
    246 #define CHECK_NMBCLUSTER_PARAMS()				\
    247 do {								\
    248 	if (__predict_false(ip_nmbclusters != nmbclusters))	\
    249 		ip_nmbclusters_changed();			\
    250 } while (/*CONSTCOND*/0)
    251 
    252 /* IP datagram reassembly queues (hashed) */
    253 #define IPREASS_NHASH_LOG2      6
    254 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
    255 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
    256 #define IPREASS_HASH(x,y) \
    257 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
    258 struct ipqhead ipq[IPREASS_NHASH];
    259 int	ipq_locked;
    260 static int	ip_nfragpackets;	/* packets in reass queue */
    261 static int	ip_nfrags;		/* total fragments in reass queues */
    262 
    263 int	ip_maxfragpackets = 200;	/* limit on packets. XXX sysctl */
    264 int	ip_maxfrags;		        /* limit on fragments. XXX sysctl */
    265 
    266 
    267 /*
    268  * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
    269  * IP reassembly queue buffer managment.
    270  *
    271  * We keep a count of total IP fragments (NB: not fragmented packets!)
    272  * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
    273  * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
    274  * total fragments in  reassembly queues.This AIMD policy avoids
    275  * repeatedly deleting single packets under heavy fragmentation load
    276  * (e.g., from lossy NFS peers).
    277  */
    278 static u_int	ip_reass_ttl_decr(u_int ticks);
    279 static void	ip_reass_drophalf(void);
    280 
    281 
    282 static __inline int ipq_lock_try(void);
    283 static __inline void ipq_unlock(void);
    284 
    285 static __inline int
    286 ipq_lock_try(void)
    287 {
    288 	int s;
    289 
    290 	/*
    291 	 * Use splvm() -- we're blocking things that would cause
    292 	 * mbuf allocation.
    293 	 */
    294 	s = splvm();
    295 	if (ipq_locked) {
    296 		splx(s);
    297 		return (0);
    298 	}
    299 	ipq_locked = 1;
    300 	splx(s);
    301 	return (1);
    302 }
    303 
    304 static __inline void
    305 ipq_unlock(void)
    306 {
    307 	int s;
    308 
    309 	s = splvm();
    310 	ipq_locked = 0;
    311 	splx(s);
    312 }
    313 
    314 #ifdef DIAGNOSTIC
    315 #define	IPQ_LOCK()							\
    316 do {									\
    317 	if (ipq_lock_try() == 0) {					\
    318 		printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
    319 		panic("ipq_lock");					\
    320 	}								\
    321 } while (/*CONSTCOND*/ 0)
    322 #define	IPQ_LOCK_CHECK()						\
    323 do {									\
    324 	if (ipq_locked == 0) {						\
    325 		printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
    326 		panic("ipq lock check");				\
    327 	}								\
    328 } while (/*CONSTCOND*/ 0)
    329 #else
    330 #define	IPQ_LOCK()		(void) ipq_lock_try()
    331 #define	IPQ_LOCK_CHECK()	/* nothing */
    332 #endif
    333 
    334 #define	IPQ_UNLOCK()		ipq_unlock()
    335 
    336 POOL_INIT(inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", NULL);
    337 POOL_INIT(ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl", NULL);
    338 
    339 #ifdef INET_CSUM_COUNTERS
    340 #include <sys/device.h>
    341 
    342 struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    343     NULL, "inet", "hwcsum bad");
    344 struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    345     NULL, "inet", "hwcsum ok");
    346 struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    347     NULL, "inet", "swcsum");
    348 
    349 #define	INET_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    350 
    351 EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
    352 EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
    353 EVCNT_ATTACH_STATIC(ip_swcsum);
    354 
    355 #else
    356 
    357 #define	INET_CSUM_COUNTER_INCR(ev)	/* nothing */
    358 
    359 #endif /* INET_CSUM_COUNTERS */
    360 
    361 /*
    362  * We need to save the IP options in case a protocol wants to respond
    363  * to an incoming packet over the same route if the packet got here
    364  * using IP source routing.  This allows connection establishment and
    365  * maintenance when the remote end is on a network that is not known
    366  * to us.
    367  */
    368 int	ip_nhops = 0;
    369 static	struct ip_srcrt {
    370 	struct	in_addr dst;			/* final destination */
    371 	char	nop;				/* one NOP to align */
    372 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
    373 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
    374 } ip_srcrt;
    375 
    376 static void save_rte(u_char *, struct in_addr);
    377 
    378 #ifdef MBUFTRACE
    379 struct mowner ip_rx_mowner = { "internet", "rx" };
    380 struct mowner ip_tx_mowner = { "internet", "tx" };
    381 #endif
    382 
    383 /*
    384  * Compute IP limits derived from the value of nmbclusters.
    385  */
    386 static void
    387 ip_nmbclusters_changed(void)
    388 {
    389 	ip_maxfrags = nmbclusters / 4;
    390 	ip_nmbclusters =  nmbclusters;
    391 }
    392 
    393 /*
    394  * IP initialization: fill in IP protocol switch table.
    395  * All protocols not implemented in kernel go to raw IP protocol handler.
    396  */
    397 void
    398 ip_init(void)
    399 {
    400 	const struct protosw *pr;
    401 	int i;
    402 
    403 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
    404 	if (pr == 0)
    405 		panic("ip_init");
    406 	for (i = 0; i < IPPROTO_MAX; i++)
    407 		ip_protox[i] = pr - inetsw;
    408 	for (pr = inetdomain.dom_protosw;
    409 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
    410 		if (pr->pr_domain->dom_family == PF_INET &&
    411 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
    412 			ip_protox[pr->pr_protocol] = pr - inetsw;
    413 
    414 	for (i = 0; i < IPREASS_NHASH; i++)
    415 	    	LIST_INIT(&ipq[i]);
    416 
    417 	ip_id = time.tv_sec & 0xfffff;
    418 
    419 	ipintrq.ifq_maxlen = ipqmaxlen;
    420 	ip_nmbclusters_changed();
    421 
    422 	TAILQ_INIT(&in_ifaddrhead);
    423 	in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IFADDR,
    424 	    M_WAITOK, &in_ifaddrhash);
    425 	in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IPMADDR,
    426 	    M_WAITOK, &in_multihash);
    427 	ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
    428 #ifdef GATEWAY
    429 	ipflow_init();
    430 #endif
    431 
    432 #ifdef PFIL_HOOKS
    433 	/* Register our Packet Filter hook. */
    434 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
    435 	inet_pfil_hook.ph_af   = AF_INET;
    436 	i = pfil_head_register(&inet_pfil_hook);
    437 	if (i != 0)
    438 		printf("ip_init: WARNING: unable to register pfil hook, "
    439 		    "error %d\n", i);
    440 #endif /* PFIL_HOOKS */
    441 
    442 #ifdef MBUFTRACE
    443 	MOWNER_ATTACH(&ip_tx_mowner);
    444 	MOWNER_ATTACH(&ip_rx_mowner);
    445 #endif /* MBUFTRACE */
    446 }
    447 
    448 struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
    449 struct	route ipforward_rt;
    450 
    451 /*
    452  * IP software interrupt routine
    453  */
    454 void
    455 ipintr(void)
    456 {
    457 	int s;
    458 	struct mbuf *m;
    459 
    460 	while (1) {
    461 		s = splnet();
    462 		IF_DEQUEUE(&ipintrq, m);
    463 		splx(s);
    464 		if (m == 0)
    465 			return;
    466 		MCLAIM(m, &ip_rx_mowner);
    467 		ip_input(m);
    468 	}
    469 }
    470 
    471 /*
    472  * Ip input routine.  Checksum and byte swap header.  If fragmented
    473  * try to reassemble.  Process options.  Pass to next level.
    474  */
    475 void
    476 ip_input(struct mbuf *m)
    477 {
    478 	struct ip *ip = NULL;
    479 	struct ipq *fp;
    480 	struct in_ifaddr *ia;
    481 	struct ifaddr *ifa;
    482 	struct ipqent *ipqe;
    483 	int hlen = 0, mff, len;
    484 	int downmatch;
    485 	int checkif;
    486 	int srcrt = 0;
    487 	u_int hash;
    488 #ifdef FAST_IPSEC
    489 	struct m_tag *mtag;
    490 	struct tdb_ident *tdbi;
    491 	struct secpolicy *sp;
    492 	int s, error;
    493 #endif /* FAST_IPSEC */
    494 
    495 	MCLAIM(m, &ip_rx_mowner);
    496 #ifdef	DIAGNOSTIC
    497 	if ((m->m_flags & M_PKTHDR) == 0)
    498 		panic("ipintr no HDR");
    499 #endif
    500 
    501 	/*
    502 	 * If no IP addresses have been set yet but the interfaces
    503 	 * are receiving, can't do anything with incoming packets yet.
    504 	 */
    505 	if (TAILQ_FIRST(&in_ifaddrhead) == 0)
    506 		goto bad;
    507 	ipstat.ips_total++;
    508 	/*
    509 	 * If the IP header is not aligned, slurp it up into a new
    510 	 * mbuf with space for link headers, in the event we forward
    511 	 * it.  Otherwise, if it is aligned, make sure the entire
    512 	 * base IP header is in the first mbuf of the chain.
    513 	 */
    514 	if (IP_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) {
    515 		if ((m = m_copyup(m, sizeof(struct ip),
    516 				  (max_linkhdr + 3) & ~3)) == NULL) {
    517 			/* XXXJRT new stat, please */
    518 			ipstat.ips_toosmall++;
    519 			return;
    520 		}
    521 	} else if (__predict_false(m->m_len < sizeof (struct ip))) {
    522 		if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
    523 			ipstat.ips_toosmall++;
    524 			return;
    525 		}
    526 	}
    527 	ip = mtod(m, struct ip *);
    528 	if (ip->ip_v != IPVERSION) {
    529 		ipstat.ips_badvers++;
    530 		goto bad;
    531 	}
    532 	hlen = ip->ip_hl << 2;
    533 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
    534 		ipstat.ips_badhlen++;
    535 		goto bad;
    536 	}
    537 	if (hlen > m->m_len) {
    538 		if ((m = m_pullup(m, hlen)) == 0) {
    539 			ipstat.ips_badhlen++;
    540 			return;
    541 		}
    542 		ip = mtod(m, struct ip *);
    543 	}
    544 
    545 	/*
    546 	 * RFC1122: packets with a multicast source address are
    547 	 * not allowed.
    548 	 */
    549 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    550 		ipstat.ips_badaddr++;
    551 		goto bad;
    552 	}
    553 
    554 	/* 127/8 must not appear on wire - RFC1122 */
    555 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
    556 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
    557 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
    558 			ipstat.ips_badaddr++;
    559 			goto bad;
    560 		}
    561 	}
    562 
    563 	switch (m->m_pkthdr.csum_flags &
    564 		((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
    565 		 M_CSUM_IPv4_BAD)) {
    566 	case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
    567 		INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
    568 		goto badcsum;
    569 
    570 	case M_CSUM_IPv4:
    571 		/* Checksum was okay. */
    572 		INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
    573 		break;
    574 
    575 	default:
    576 		/*
    577 		 * Must compute it ourselves.  Maybe skip checksum on
    578 		 * loopback interfaces.
    579 		 */
    580 		if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
    581 				     IFF_LOOPBACK) || ip_do_loopback_cksum)) {
    582 			INET_CSUM_COUNTER_INCR(&ip_swcsum);
    583 			if (in_cksum(m, hlen) != 0)
    584 				goto badcsum;
    585 		}
    586 		break;
    587 	}
    588 
    589 	/* Retrieve the packet length. */
    590 	len = ntohs(ip->ip_len);
    591 
    592 	/*
    593 	 * Check for additional length bogosity
    594 	 */
    595 	if (len < hlen) {
    596 	 	ipstat.ips_badlen++;
    597 		goto bad;
    598 	}
    599 
    600 	/*
    601 	 * Check that the amount of data in the buffers
    602 	 * is as at least much as the IP header would have us expect.
    603 	 * Trim mbufs if longer than we expect.
    604 	 * Drop packet if shorter than we expect.
    605 	 */
    606 	if (m->m_pkthdr.len < len) {
    607 		ipstat.ips_tooshort++;
    608 		goto bad;
    609 	}
    610 	if (m->m_pkthdr.len > len) {
    611 		if (m->m_len == m->m_pkthdr.len) {
    612 			m->m_len = len;
    613 			m->m_pkthdr.len = len;
    614 		} else
    615 			m_adj(m, len - m->m_pkthdr.len);
    616 	}
    617 
    618 #if defined(IPSEC)
    619 	/* ipflow (IP fast forwarding) is not compatible with IPsec. */
    620 	m->m_flags &= ~M_CANFASTFWD;
    621 #else
    622 	/*
    623 	 * Assume that we can create a fast-forward IP flow entry
    624 	 * based on this packet.
    625 	 */
    626 	m->m_flags |= M_CANFASTFWD;
    627 #endif
    628 
    629 #ifdef PFIL_HOOKS
    630 	/*
    631 	 * Run through list of hooks for input packets.  If there are any
    632 	 * filters which require that additional packets in the flow are
    633 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
    634 	 * Note that filters must _never_ set this flag, as another filter
    635 	 * in the list may have previously cleared it.
    636 	 */
    637 	/*
    638 	 * let ipfilter look at packet on the wire,
    639 	 * not the decapsulated packet.
    640 	 */
    641 #ifdef IPSEC
    642 	if (!ipsec_getnhist(m))
    643 #elif defined(FAST_IPSEC)
    644 	if (!ipsec_indone(m))
    645 #else
    646 	if (1)
    647 #endif
    648 	{
    649 		struct in_addr odst;
    650 
    651 		odst = ip->ip_dst;
    652 		if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
    653 		    PFIL_IN) != 0)
    654 			return;
    655 		if (m == NULL)
    656 			return;
    657 		ip = mtod(m, struct ip *);
    658 		hlen = ip->ip_hl << 2;
    659 		/*
    660 		 * XXX The setting of "srcrt" here is to prevent ip_forward()
    661 		 * from generating ICMP redirects for packets that have
    662 		 * been redirected by a hook back out on to the same LAN that
    663 		 * they came from and is not an indication that the packet
    664 		 * is being inffluenced by source routing options.  This
    665 		 * allows things like
    666 		 * "rdr tlp0 0/0 port 80 -> 1.1.1.200 3128 tcp"
    667 		 * where tlp0 is both on the 1.1.1.0/24 network and is the
    668 		 * default route for hosts on 1.1.1.0/24.  Of course this
    669 		 * also requires a "map tlp0 ..." to complete the story.
    670 		 * One might argue whether or not this kind of network config.
    671 		 * should be supported in this manner...
    672 		 */
    673 		srcrt = (odst.s_addr != ip->ip_dst.s_addr);
    674 	}
    675 #endif /* PFIL_HOOKS */
    676 
    677 #ifdef ALTQ
    678 	/* XXX Temporary until ALTQ is changed to use a pfil hook */
    679 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
    680 		/* packet dropped by traffic conditioner */
    681 		return;
    682 	}
    683 #endif
    684 
    685 	/*
    686 	 * Process options and, if not destined for us,
    687 	 * ship it on.  ip_dooptions returns 1 when an
    688 	 * error was detected (causing an icmp message
    689 	 * to be sent and the original packet to be freed).
    690 	 */
    691 	ip_nhops = 0;		/* for source routed packets */
    692 	if (hlen > sizeof (struct ip) && ip_dooptions(m))
    693 		return;
    694 
    695 	/*
    696 	 * Enable a consistency check between the destination address
    697 	 * and the arrival interface for a unicast packet (the RFC 1122
    698 	 * strong ES model) if IP forwarding is disabled and the packet
    699 	 * is not locally generated.
    700 	 *
    701 	 * XXX - Checking also should be disabled if the destination
    702 	 * address is ipnat'ed to a different interface.
    703 	 *
    704 	 * XXX - Checking is incompatible with IP aliases added
    705 	 * to the loopback interface instead of the interface where
    706 	 * the packets are received.
    707 	 *
    708 	 * XXX - We need to add a per ifaddr flag for this so that
    709 	 * we get finer grain control.
    710 	 */
    711 	checkif = ip_checkinterface && (ipforwarding == 0) &&
    712 	    (m->m_pkthdr.rcvif != NULL) &&
    713 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
    714 
    715 	/*
    716 	 * Check our list of addresses, to see if the packet is for us.
    717 	 *
    718 	 * Traditional 4.4BSD did not consult IFF_UP at all.
    719 	 * The behavior here is to treat addresses on !IFF_UP interface
    720 	 * as not mine.
    721 	 */
    722 	downmatch = 0;
    723 	LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
    724 		if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
    725 			if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
    726 				continue;
    727 			if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
    728 				break;
    729 			else
    730 				downmatch++;
    731 		}
    732 	}
    733 	if (ia != NULL)
    734 		goto ours;
    735 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
    736 		IFADDR_FOREACH(ifa, m->m_pkthdr.rcvif) {
    737 			if (ifa->ifa_addr->sa_family != AF_INET)
    738 				continue;
    739 			ia = ifatoia(ifa);
    740 			if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
    741 			    in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
    742 			    /*
    743 			     * Look for all-0's host part (old broadcast addr),
    744 			     * either for subnet or net.
    745 			     */
    746 			    ip->ip_dst.s_addr == ia->ia_subnet ||
    747 			    ip->ip_dst.s_addr == ia->ia_net)
    748 				goto ours;
    749 			/*
    750 			 * An interface with IP address zero accepts
    751 			 * all packets that arrive on that interface.
    752 			 */
    753 			if (in_nullhost(ia->ia_addr.sin_addr))
    754 				goto ours;
    755 		}
    756 	}
    757 	if (IN_MULTICAST(ip->ip_dst.s_addr)) {
    758 		struct in_multi *inm;
    759 #ifdef MROUTING
    760 		extern struct socket *ip_mrouter;
    761 
    762 		if (ip_mrouter) {
    763 			/*
    764 			 * If we are acting as a multicast router, all
    765 			 * incoming multicast packets are passed to the
    766 			 * kernel-level multicast forwarding function.
    767 			 * The packet is returned (relatively) intact; if
    768 			 * ip_mforward() returns a non-zero value, the packet
    769 			 * must be discarded, else it may be accepted below.
    770 			 *
    771 			 * (The IP ident field is put in the same byte order
    772 			 * as expected when ip_mforward() is called from
    773 			 * ip_output().)
    774 			 */
    775 			if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
    776 				ipstat.ips_cantforward++;
    777 				m_freem(m);
    778 				return;
    779 			}
    780 
    781 			/*
    782 			 * The process-level routing demon needs to receive
    783 			 * all multicast IGMP packets, whether or not this
    784 			 * host belongs to their destination groups.
    785 			 */
    786 			if (ip->ip_p == IPPROTO_IGMP)
    787 				goto ours;
    788 			ipstat.ips_forward++;
    789 		}
    790 #endif
    791 		/*
    792 		 * See if we belong to the destination multicast group on the
    793 		 * arrival interface.
    794 		 */
    795 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
    796 		if (inm == NULL) {
    797 			ipstat.ips_cantforward++;
    798 			m_freem(m);
    799 			return;
    800 		}
    801 		goto ours;
    802 	}
    803 	if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
    804 	    in_nullhost(ip->ip_dst))
    805 		goto ours;
    806 
    807 	/*
    808 	 * Not for us; forward if possible and desirable.
    809 	 */
    810 	if (ipforwarding == 0) {
    811 		ipstat.ips_cantforward++;
    812 		m_freem(m);
    813 	} else {
    814 		/*
    815 		 * If ip_dst matched any of my address on !IFF_UP interface,
    816 		 * and there's no IFF_UP interface that matches ip_dst,
    817 		 * send icmp unreach.  Forwarding it will result in in-kernel
    818 		 * forwarding loop till TTL goes to 0.
    819 		 */
    820 		if (downmatch) {
    821 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
    822 			ipstat.ips_cantforward++;
    823 			return;
    824 		}
    825 #ifdef IPSEC
    826 		if (ipsec4_in_reject(m, NULL)) {
    827 			ipsecstat.in_polvio++;
    828 			goto bad;
    829 		}
    830 #endif
    831 #ifdef FAST_IPSEC
    832 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
    833 		s = splsoftnet();
    834 		if (mtag != NULL) {
    835 			tdbi = (struct tdb_ident *)(mtag + 1);
    836 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
    837 		} else {
    838 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
    839 						   IP_FORWARDING, &error);
    840 		}
    841 		if (sp == NULL) {	/* NB: can happen if error */
    842 			splx(s);
    843 			/*XXX error stat???*/
    844 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
    845 			goto bad;
    846 		}
    847 
    848 		/*
    849 		 * Check security policy against packet attributes.
    850 		 */
    851 		error = ipsec_in_reject(sp, m);
    852 		KEY_FREESP(&sp);
    853 		splx(s);
    854 		if (error) {
    855 			ipstat.ips_cantforward++;
    856 			goto bad;
    857 		}
    858 
    859 		/*
    860 		 * Peek at the outbound SP for this packet to determine if
    861 		 * it's a Fast Forward candidate.
    862 		 */
    863 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
    864 		if (mtag != NULL)
    865 			m->m_flags &= ~M_CANFASTFWD;
    866 		else {
    867 			s = splsoftnet();
    868 			sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
    869 			    (IP_FORWARDING |
    870 			     (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
    871 			    &error, NULL);
    872 			if (sp != NULL) {
    873 				m->m_flags &= ~M_CANFASTFWD;
    874 				KEY_FREESP(&sp);
    875 			}
    876 			splx(s);
    877 		}
    878 #endif	/* FAST_IPSEC */
    879 
    880 		ip_forward(m, srcrt);
    881 	}
    882 	return;
    883 
    884 ours:
    885 	/*
    886 	 * If offset or IP_MF are set, must reassemble.
    887 	 * Otherwise, nothing need be done.
    888 	 * (We could look in the reassembly queue to see
    889 	 * if the packet was previously fragmented,
    890 	 * but it's not worth the time; just let them time out.)
    891 	 */
    892 	if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
    893 
    894 		/*
    895 		 * Look for queue of fragments
    896 		 * of this datagram.
    897 		 */
    898 		IPQ_LOCK();
    899 		hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
    900 		/* XXX LIST_FOREACH(fp, &ipq[hash], ipq_q) */
    901 		for (fp = LIST_FIRST(&ipq[hash]); fp != NULL;
    902 		     fp = LIST_NEXT(fp, ipq_q)) {
    903 			if (ip->ip_id == fp->ipq_id &&
    904 			    in_hosteq(ip->ip_src, fp->ipq_src) &&
    905 			    in_hosteq(ip->ip_dst, fp->ipq_dst) &&
    906 			    ip->ip_p == fp->ipq_p)
    907 				goto found;
    908 
    909 		}
    910 		fp = 0;
    911 found:
    912 
    913 		/*
    914 		 * Adjust ip_len to not reflect header,
    915 		 * set ipqe_mff if more fragments are expected,
    916 		 * convert offset of this to bytes.
    917 		 */
    918 		ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
    919 		mff = (ip->ip_off & htons(IP_MF)) != 0;
    920 		if (mff) {
    921 		        /*
    922 		         * Make sure that fragments have a data length
    923 			 * that's a non-zero multiple of 8 bytes.
    924 		         */
    925 			if (ntohs(ip->ip_len) == 0 ||
    926 			    (ntohs(ip->ip_len) & 0x7) != 0) {
    927 				ipstat.ips_badfrags++;
    928 				IPQ_UNLOCK();
    929 				goto bad;
    930 			}
    931 		}
    932 		ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
    933 
    934 		/*
    935 		 * If datagram marked as having more fragments
    936 		 * or if this is not the first fragment,
    937 		 * attempt reassembly; if it succeeds, proceed.
    938 		 */
    939 		if (mff || ip->ip_off != htons(0)) {
    940 			ipstat.ips_fragments++;
    941 			ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
    942 			if (ipqe == NULL) {
    943 				ipstat.ips_rcvmemdrop++;
    944 				IPQ_UNLOCK();
    945 				goto bad;
    946 			}
    947 			ipqe->ipqe_mff = mff;
    948 			ipqe->ipqe_m = m;
    949 			ipqe->ipqe_ip = ip;
    950 			m = ip_reass(ipqe, fp, &ipq[hash]);
    951 			if (m == 0) {
    952 				IPQ_UNLOCK();
    953 				return;
    954 			}
    955 			ipstat.ips_reassembled++;
    956 			ip = mtod(m, struct ip *);
    957 			hlen = ip->ip_hl << 2;
    958 			ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
    959 		} else
    960 			if (fp)
    961 				ip_freef(fp);
    962 		IPQ_UNLOCK();
    963 	}
    964 
    965 #if defined(IPSEC)
    966 	/*
    967 	 * enforce IPsec policy checking if we are seeing last header.
    968 	 * note that we do not visit this with protocols with pcb layer
    969 	 * code - like udp/tcp/raw ip.
    970 	 */
    971 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
    972 	    ipsec4_in_reject(m, NULL)) {
    973 		ipsecstat.in_polvio++;
    974 		goto bad;
    975 	}
    976 #endif
    977 #if FAST_IPSEC
    978 	/*
    979 	 * enforce IPsec policy checking if we are seeing last header.
    980 	 * note that we do not visit this with protocols with pcb layer
    981 	 * code - like udp/tcp/raw ip.
    982 	 */
    983 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
    984 		/*
    985 		 * Check if the packet has already had IPsec processing
    986 		 * done.  If so, then just pass it along.  This tag gets
    987 		 * set during AH, ESP, etc. input handling, before the
    988 		 * packet is returned to the ip input queue for delivery.
    989 		 */
    990 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
    991 		s = splsoftnet();
    992 		if (mtag != NULL) {
    993 			tdbi = (struct tdb_ident *)(mtag + 1);
    994 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
    995 		} else {
    996 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
    997 						   IP_FORWARDING, &error);
    998 		}
    999 		if (sp != NULL) {
   1000 			/*
   1001 			 * Check security policy against packet attributes.
   1002 			 */
   1003 			error = ipsec_in_reject(sp, m);
   1004 			KEY_FREESP(&sp);
   1005 		} else {
   1006 			/* XXX error stat??? */
   1007 			error = EINVAL;
   1008 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
   1009 			goto bad;
   1010 		}
   1011 		splx(s);
   1012 		if (error)
   1013 			goto bad;
   1014 	}
   1015 #endif /* FAST_IPSEC */
   1016 
   1017 	/*
   1018 	 * Switch out to protocol's input routine.
   1019 	 */
   1020 #if IFA_STATS
   1021 	if (ia && ip)
   1022 		ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
   1023 #endif
   1024 	ipstat.ips_delivered++;
   1025     {
   1026 	int off = hlen, nh = ip->ip_p;
   1027 
   1028 	(*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
   1029 	return;
   1030     }
   1031 bad:
   1032 	m_freem(m);
   1033 	return;
   1034 
   1035 badcsum:
   1036 	ipstat.ips_badsum++;
   1037 	m_freem(m);
   1038 }
   1039 
   1040 /*
   1041  * Take incoming datagram fragment and try to
   1042  * reassemble it into whole datagram.  If a chain for
   1043  * reassembly of this datagram already exists, then it
   1044  * is given as fp; otherwise have to make a chain.
   1045  */
   1046 struct mbuf *
   1047 ip_reass(struct ipqent *ipqe, struct ipq *fp, struct ipqhead *ipqhead)
   1048 {
   1049 	struct mbuf *m = ipqe->ipqe_m;
   1050 	struct ipqent *nq, *p, *q;
   1051 	struct ip *ip;
   1052 	struct mbuf *t;
   1053 	int hlen = ipqe->ipqe_ip->ip_hl << 2;
   1054 	int i, next;
   1055 
   1056 	IPQ_LOCK_CHECK();
   1057 
   1058 	/*
   1059 	 * Presence of header sizes in mbufs
   1060 	 * would confuse code below.
   1061 	 */
   1062 	m->m_data += hlen;
   1063 	m->m_len -= hlen;
   1064 
   1065 #ifdef	notyet
   1066 	/* make sure fragment limit is up-to-date */
   1067 	CHECK_NMBCLUSTER_PARAMS();
   1068 
   1069 	/* If we have too many fragments, drop the older half. */
   1070 	if (ip_nfrags >= ip_maxfrags)
   1071 		ip_reass_drophalf(void);
   1072 #endif
   1073 
   1074 	/*
   1075 	 * We are about to add a fragment; increment frag count.
   1076 	 */
   1077 	ip_nfrags++;
   1078 
   1079 	/*
   1080 	 * If first fragment to arrive, create a reassembly queue.
   1081 	 */
   1082 	if (fp == 0) {
   1083 		/*
   1084 		 * Enforce upper bound on number of fragmented packets
   1085 		 * for which we attempt reassembly;
   1086 		 * If maxfrag is 0, never accept fragments.
   1087 		 * If maxfrag is -1, accept all fragments without limitation.
   1088 		 */
   1089 		if (ip_maxfragpackets < 0)
   1090 			;
   1091 		else if (ip_nfragpackets >= ip_maxfragpackets)
   1092 			goto dropfrag;
   1093 		ip_nfragpackets++;
   1094 		MALLOC(fp, struct ipq *, sizeof (struct ipq),
   1095 		    M_FTABLE, M_NOWAIT);
   1096 		if (fp == NULL)
   1097 			goto dropfrag;
   1098 		LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
   1099 		fp->ipq_nfrags = 1;
   1100 		fp->ipq_ttl = IPFRAGTTL;
   1101 		fp->ipq_p = ipqe->ipqe_ip->ip_p;
   1102 		fp->ipq_id = ipqe->ipqe_ip->ip_id;
   1103 		TAILQ_INIT(&fp->ipq_fragq);
   1104 		fp->ipq_src = ipqe->ipqe_ip->ip_src;
   1105 		fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
   1106 		p = NULL;
   1107 		goto insert;
   1108 	} else {
   1109 		fp->ipq_nfrags++;
   1110 	}
   1111 
   1112 	/*
   1113 	 * Find a segment which begins after this one does.
   1114 	 */
   1115 	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
   1116 	    p = q, q = TAILQ_NEXT(q, ipqe_q))
   1117 		if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
   1118 			break;
   1119 
   1120 	/*
   1121 	 * If there is a preceding segment, it may provide some of
   1122 	 * our data already.  If so, drop the data from the incoming
   1123 	 * segment.  If it provides all of our data, drop us.
   1124 	 */
   1125 	if (p != NULL) {
   1126 		i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
   1127 		    ntohs(ipqe->ipqe_ip->ip_off);
   1128 		if (i > 0) {
   1129 			if (i >= ntohs(ipqe->ipqe_ip->ip_len))
   1130 				goto dropfrag;
   1131 			m_adj(ipqe->ipqe_m, i);
   1132 			ipqe->ipqe_ip->ip_off =
   1133 			    htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
   1134 			ipqe->ipqe_ip->ip_len =
   1135 			    htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
   1136 		}
   1137 	}
   1138 
   1139 	/*
   1140 	 * While we overlap succeeding segments trim them or,
   1141 	 * if they are completely covered, dequeue them.
   1142 	 */
   1143 	for (; q != NULL &&
   1144 	    ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
   1145 	    ntohs(q->ipqe_ip->ip_off); q = nq) {
   1146 		i = (ntohs(ipqe->ipqe_ip->ip_off) +
   1147 		    ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
   1148 		if (i < ntohs(q->ipqe_ip->ip_len)) {
   1149 			q->ipqe_ip->ip_len =
   1150 			    htons(ntohs(q->ipqe_ip->ip_len) - i);
   1151 			q->ipqe_ip->ip_off =
   1152 			    htons(ntohs(q->ipqe_ip->ip_off) + i);
   1153 			m_adj(q->ipqe_m, i);
   1154 			break;
   1155 		}
   1156 		nq = TAILQ_NEXT(q, ipqe_q);
   1157 		m_freem(q->ipqe_m);
   1158 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
   1159 		pool_put(&ipqent_pool, q);
   1160 		fp->ipq_nfrags--;
   1161 		ip_nfrags--;
   1162 	}
   1163 
   1164 insert:
   1165 	/*
   1166 	 * Stick new segment in its place;
   1167 	 * check for complete reassembly.
   1168 	 */
   1169 	if (p == NULL) {
   1170 		TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
   1171 	} else {
   1172 		TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
   1173 	}
   1174 	next = 0;
   1175 	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
   1176 	    p = q, q = TAILQ_NEXT(q, ipqe_q)) {
   1177 		if (ntohs(q->ipqe_ip->ip_off) != next)
   1178 			return (0);
   1179 		next += ntohs(q->ipqe_ip->ip_len);
   1180 	}
   1181 	if (p->ipqe_mff)
   1182 		return (0);
   1183 
   1184 	/*
   1185 	 * Reassembly is complete.  Check for a bogus message size and
   1186 	 * concatenate fragments.
   1187 	 */
   1188 	q = TAILQ_FIRST(&fp->ipq_fragq);
   1189 	ip = q->ipqe_ip;
   1190 	if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
   1191 		ipstat.ips_toolong++;
   1192 		ip_freef(fp);
   1193 		return (0);
   1194 	}
   1195 	m = q->ipqe_m;
   1196 	t = m->m_next;
   1197 	m->m_next = 0;
   1198 	m_cat(m, t);
   1199 	nq = TAILQ_NEXT(q, ipqe_q);
   1200 	pool_put(&ipqent_pool, q);
   1201 	for (q = nq; q != NULL; q = nq) {
   1202 		t = q->ipqe_m;
   1203 		nq = TAILQ_NEXT(q, ipqe_q);
   1204 		pool_put(&ipqent_pool, q);
   1205 		m_cat(m, t);
   1206 	}
   1207 	ip_nfrags -= fp->ipq_nfrags;
   1208 
   1209 	/*
   1210 	 * Create header for new ip packet by
   1211 	 * modifying header of first packet;
   1212 	 * dequeue and discard fragment reassembly header.
   1213 	 * Make header visible.
   1214 	 */
   1215 	ip->ip_len = htons(next);
   1216 	ip->ip_src = fp->ipq_src;
   1217 	ip->ip_dst = fp->ipq_dst;
   1218 	LIST_REMOVE(fp, ipq_q);
   1219 	FREE(fp, M_FTABLE);
   1220 	ip_nfragpackets--;
   1221 	m->m_len += (ip->ip_hl << 2);
   1222 	m->m_data -= (ip->ip_hl << 2);
   1223 	/* some debugging cruft by sklower, below, will go away soon */
   1224 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
   1225 		int plen = 0;
   1226 		for (t = m; t; t = t->m_next)
   1227 			plen += t->m_len;
   1228 		m->m_pkthdr.len = plen;
   1229 	}
   1230 	return (m);
   1231 
   1232 dropfrag:
   1233 	if (fp != 0)
   1234 		fp->ipq_nfrags--;
   1235 	ip_nfrags--;
   1236 	ipstat.ips_fragdropped++;
   1237 	m_freem(m);
   1238 	pool_put(&ipqent_pool, ipqe);
   1239 	return (0);
   1240 }
   1241 
   1242 /*
   1243  * Free a fragment reassembly header and all
   1244  * associated datagrams.
   1245  */
   1246 void
   1247 ip_freef(struct ipq *fp)
   1248 {
   1249 	struct ipqent *q, *p;
   1250 	u_int nfrags = 0;
   1251 
   1252 	IPQ_LOCK_CHECK();
   1253 
   1254 	for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
   1255 		p = TAILQ_NEXT(q, ipqe_q);
   1256 		m_freem(q->ipqe_m);
   1257 		nfrags++;
   1258 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
   1259 		pool_put(&ipqent_pool, q);
   1260 	}
   1261 
   1262 	if (nfrags != fp->ipq_nfrags)
   1263 	    printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
   1264 	ip_nfrags -= nfrags;
   1265 	LIST_REMOVE(fp, ipq_q);
   1266 	FREE(fp, M_FTABLE);
   1267 	ip_nfragpackets--;
   1268 }
   1269 
   1270 /*
   1271  * IP reassembly TTL machinery for  multiplicative drop.
   1272  */
   1273 static u_int	fragttl_histo[(IPFRAGTTL+1)];
   1274 
   1275 
   1276 /*
   1277  * Decrement TTL of all reasembly queue entries by `ticks'.
   1278  * Count number of distinct fragments (as opposed to partial, fragmented
   1279  * datagrams) in the reassembly queue.  While we  traverse the entire
   1280  * reassembly queue, compute and return the median TTL over all fragments.
   1281  */
   1282 static u_int
   1283 ip_reass_ttl_decr(u_int ticks)
   1284 {
   1285 	u_int nfrags, median, dropfraction, keepfraction;
   1286 	struct ipq *fp, *nfp;
   1287 	int i;
   1288 
   1289 	nfrags = 0;
   1290 	memset(fragttl_histo, 0, sizeof fragttl_histo);
   1291 
   1292 	for (i = 0; i < IPREASS_NHASH; i++) {
   1293 		for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
   1294 			fp->ipq_ttl = ((fp->ipq_ttl  <= ticks) ?
   1295 				       0 : fp->ipq_ttl - ticks);
   1296 			nfp = LIST_NEXT(fp, ipq_q);
   1297 			if (fp->ipq_ttl == 0) {
   1298 				ipstat.ips_fragtimeout++;
   1299 				ip_freef(fp);
   1300 			} else {
   1301 				nfrags += fp->ipq_nfrags;
   1302 				fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
   1303 			}
   1304 		}
   1305 	}
   1306 
   1307 	KASSERT(ip_nfrags == nfrags);
   1308 
   1309 	/* Find median (or other drop fraction) in histogram. */
   1310 	dropfraction = (ip_nfrags / 2);
   1311 	keepfraction = ip_nfrags - dropfraction;
   1312 	for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
   1313 		median +=  fragttl_histo[i];
   1314 		if (median >= keepfraction)
   1315 			break;
   1316 	}
   1317 
   1318 	/* Return TTL of median (or other fraction). */
   1319 	return (u_int)i;
   1320 }
   1321 
   1322 void
   1323 ip_reass_drophalf(void)
   1324 {
   1325 
   1326 	u_int median_ticks;
   1327 	/*
   1328 	 * Compute median TTL of all fragments, and count frags
   1329 	 * with that TTL or lower (roughly half of all fragments).
   1330 	 */
   1331 	median_ticks = ip_reass_ttl_decr(0);
   1332 
   1333 	/* Drop half. */
   1334 	median_ticks = ip_reass_ttl_decr(median_ticks);
   1335 
   1336 }
   1337 
   1338 /*
   1339  * IP timer processing;
   1340  * if a timer expires on a reassembly
   1341  * queue, discard it.
   1342  */
   1343 void
   1344 ip_slowtimo(void)
   1345 {
   1346 	static u_int dropscanidx = 0;
   1347 	u_int i;
   1348 	u_int median_ttl;
   1349 	int s = splsoftnet();
   1350 
   1351 	IPQ_LOCK();
   1352 
   1353 	/* Age TTL of all fragments by 1 tick .*/
   1354 	median_ttl = ip_reass_ttl_decr(1);
   1355 
   1356 	/* make sure fragment limit is up-to-date */
   1357 	CHECK_NMBCLUSTER_PARAMS();
   1358 
   1359 	/* If we have too many fragments, drop the older half. */
   1360 	if (ip_nfrags > ip_maxfrags)
   1361 		ip_reass_ttl_decr(median_ttl);
   1362 
   1363 	/*
   1364 	 * If we are over the maximum number of fragmented packets
   1365 	 * (due to the limit being lowered), drain off
   1366 	 * enough to get down to the new limit. Start draining
   1367 	 * from the reassembly hashqueue most recently drained.
   1368 	 */
   1369 	if (ip_maxfragpackets < 0)
   1370 		;
   1371 	else {
   1372 		int wrapped = 0;
   1373 
   1374 		i = dropscanidx;
   1375 		while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
   1376 			while (LIST_FIRST(&ipq[i]) != NULL)
   1377 				ip_freef(LIST_FIRST(&ipq[i]));
   1378 			if (++i >= IPREASS_NHASH) {
   1379 				i = 0;
   1380 			}
   1381 			/*
   1382 			 * Dont scan forever even if fragment counters are
   1383 			 * wrong: stop after scanning entire reassembly queue.
   1384 			 */
   1385 			if (i == dropscanidx)
   1386 			    wrapped = 1;
   1387 		}
   1388 		dropscanidx = i;
   1389 	}
   1390 	IPQ_UNLOCK();
   1391 #ifdef GATEWAY
   1392 	ipflow_slowtimo();
   1393 #endif
   1394 	splx(s);
   1395 }
   1396 
   1397 /*
   1398  * Drain off all datagram fragments.
   1399  */
   1400 void
   1401 ip_drain(void)
   1402 {
   1403 
   1404 	/*
   1405 	 * We may be called from a device's interrupt context.  If
   1406 	 * the ipq is already busy, just bail out now.
   1407 	 */
   1408 	if (ipq_lock_try() == 0)
   1409 		return;
   1410 
   1411 	/*
   1412 	 * Drop half the total fragments now. If more mbufs are needed,
   1413 	 *  we will be called again soon.
   1414 	 */
   1415 	ip_reass_drophalf();
   1416 
   1417 	IPQ_UNLOCK();
   1418 }
   1419 
   1420 /*
   1421  * Do option processing on a datagram,
   1422  * possibly discarding it if bad options are encountered,
   1423  * or forwarding it if source-routed.
   1424  * Returns 1 if packet has been forwarded/freed,
   1425  * 0 if the packet should be processed further.
   1426  */
   1427 int
   1428 ip_dooptions(struct mbuf *m)
   1429 {
   1430 	struct ip *ip = mtod(m, struct ip *);
   1431 	u_char *cp, *cp0;
   1432 	struct ip_timestamp *ipt;
   1433 	struct in_ifaddr *ia;
   1434 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
   1435 	struct in_addr dst;
   1436 	n_time ntime;
   1437 
   1438 	dst = ip->ip_dst;
   1439 	cp = (u_char *)(ip + 1);
   1440 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
   1441 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1442 		opt = cp[IPOPT_OPTVAL];
   1443 		if (opt == IPOPT_EOL)
   1444 			break;
   1445 		if (opt == IPOPT_NOP)
   1446 			optlen = 1;
   1447 		else {
   1448 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
   1449 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
   1450 				goto bad;
   1451 			}
   1452 			optlen = cp[IPOPT_OLEN];
   1453 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
   1454 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
   1455 				goto bad;
   1456 			}
   1457 		}
   1458 		switch (opt) {
   1459 
   1460 		default:
   1461 			break;
   1462 
   1463 		/*
   1464 		 * Source routing with record.
   1465 		 * Find interface with current destination address.
   1466 		 * If none on this machine then drop if strictly routed,
   1467 		 * or do nothing if loosely routed.
   1468 		 * Record interface address and bring up next address
   1469 		 * component.  If strictly routed make sure next
   1470 		 * address is on directly accessible net.
   1471 		 */
   1472 		case IPOPT_LSRR:
   1473 		case IPOPT_SSRR:
   1474 			if (ip_allowsrcrt == 0) {
   1475 				type = ICMP_UNREACH;
   1476 				code = ICMP_UNREACH_NET_PROHIB;
   1477 				goto bad;
   1478 			}
   1479 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
   1480 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
   1481 				goto bad;
   1482 			}
   1483 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
   1484 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
   1485 				goto bad;
   1486 			}
   1487 			ipaddr.sin_addr = ip->ip_dst;
   1488 			ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
   1489 			if (ia == 0) {
   1490 				if (opt == IPOPT_SSRR) {
   1491 					type = ICMP_UNREACH;
   1492 					code = ICMP_UNREACH_SRCFAIL;
   1493 					goto bad;
   1494 				}
   1495 				/*
   1496 				 * Loose routing, and not at next destination
   1497 				 * yet; nothing to do except forward.
   1498 				 */
   1499 				break;
   1500 			}
   1501 			off--;			/* 0 origin */
   1502 			if ((off + sizeof(struct in_addr)) > optlen) {
   1503 				/*
   1504 				 * End of source route.  Should be for us.
   1505 				 */
   1506 				save_rte(cp, ip->ip_src);
   1507 				break;
   1508 			}
   1509 			/*
   1510 			 * locate outgoing interface
   1511 			 */
   1512 			bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
   1513 			    sizeof(ipaddr.sin_addr));
   1514 			if (opt == IPOPT_SSRR)
   1515 				ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
   1516 			else
   1517 				ia = ip_rtaddr(ipaddr.sin_addr);
   1518 			if (ia == 0) {
   1519 				type = ICMP_UNREACH;
   1520 				code = ICMP_UNREACH_SRCFAIL;
   1521 				goto bad;
   1522 			}
   1523 			ip->ip_dst = ipaddr.sin_addr;
   1524 			bcopy((caddr_t)&ia->ia_addr.sin_addr,
   1525 			    (caddr_t)(cp + off), sizeof(struct in_addr));
   1526 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
   1527 			/*
   1528 			 * Let ip_intr's mcast routing check handle mcast pkts
   1529 			 */
   1530 			forward = !IN_MULTICAST(ip->ip_dst.s_addr);
   1531 			break;
   1532 
   1533 		case IPOPT_RR:
   1534 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
   1535 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
   1536 				goto bad;
   1537 			}
   1538 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
   1539 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
   1540 				goto bad;
   1541 			}
   1542 			/*
   1543 			 * If no space remains, ignore.
   1544 			 */
   1545 			off--;			/* 0 origin */
   1546 			if ((off + sizeof(struct in_addr)) > optlen)
   1547 				break;
   1548 			bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
   1549 			    sizeof(ipaddr.sin_addr));
   1550 			/*
   1551 			 * locate outgoing interface; if we're the destination,
   1552 			 * use the incoming interface (should be same).
   1553 			 */
   1554 			if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
   1555 			    == NULL &&
   1556 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
   1557 				type = ICMP_UNREACH;
   1558 				code = ICMP_UNREACH_HOST;
   1559 				goto bad;
   1560 			}
   1561 			bcopy((caddr_t)&ia->ia_addr.sin_addr,
   1562 			    (caddr_t)(cp + off), sizeof(struct in_addr));
   1563 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
   1564 			break;
   1565 
   1566 		case IPOPT_TS:
   1567 			code = cp - (u_char *)ip;
   1568 			ipt = (struct ip_timestamp *)cp;
   1569 			if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
   1570 				code = (u_char *)&ipt->ipt_len - (u_char *)ip;
   1571 				goto bad;
   1572 			}
   1573 			if (ipt->ipt_ptr < 5) {
   1574 				code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
   1575 				goto bad;
   1576 			}
   1577 			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
   1578 				if (++ipt->ipt_oflw == 0) {
   1579 					code = (u_char *)&ipt->ipt_ptr -
   1580 					    (u_char *)ip;
   1581 					goto bad;
   1582 				}
   1583 				break;
   1584 			}
   1585 			cp0 = (cp + ipt->ipt_ptr - 1);
   1586 			switch (ipt->ipt_flg) {
   1587 
   1588 			case IPOPT_TS_TSONLY:
   1589 				break;
   1590 
   1591 			case IPOPT_TS_TSANDADDR:
   1592 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
   1593 				    sizeof(struct in_addr) > ipt->ipt_len) {
   1594 					code = (u_char *)&ipt->ipt_ptr -
   1595 					    (u_char *)ip;
   1596 					goto bad;
   1597 				}
   1598 				ipaddr.sin_addr = dst;
   1599 				ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
   1600 				    m->m_pkthdr.rcvif));
   1601 				if (ia == 0)
   1602 					continue;
   1603 				bcopy(&ia->ia_addr.sin_addr,
   1604 				    cp0, sizeof(struct in_addr));
   1605 				ipt->ipt_ptr += sizeof(struct in_addr);
   1606 				break;
   1607 
   1608 			case IPOPT_TS_PRESPEC:
   1609 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
   1610 				    sizeof(struct in_addr) > ipt->ipt_len) {
   1611 					code = (u_char *)&ipt->ipt_ptr -
   1612 					    (u_char *)ip;
   1613 					goto bad;
   1614 				}
   1615 				bcopy(cp0, &ipaddr.sin_addr,
   1616 				    sizeof(struct in_addr));
   1617 				if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
   1618 				    == NULL)
   1619 					continue;
   1620 				ipt->ipt_ptr += sizeof(struct in_addr);
   1621 				break;
   1622 
   1623 			default:
   1624 				/* XXX can't take &ipt->ipt_flg */
   1625 				code = (u_char *)&ipt->ipt_ptr -
   1626 				    (u_char *)ip + 1;
   1627 				goto bad;
   1628 			}
   1629 			ntime = iptime();
   1630 			cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
   1631 			bcopy(cp0, (caddr_t)cp + ipt->ipt_ptr - 1,
   1632 			    sizeof(n_time));
   1633 			ipt->ipt_ptr += sizeof(n_time);
   1634 		}
   1635 	}
   1636 	if (forward) {
   1637 		if (ip_forwsrcrt == 0) {
   1638 			type = ICMP_UNREACH;
   1639 			code = ICMP_UNREACH_SRCFAIL;
   1640 			goto bad;
   1641 		}
   1642 		ip_forward(m, 1);
   1643 		return (1);
   1644 	}
   1645 	return (0);
   1646 bad:
   1647 	icmp_error(m, type, code, 0, 0);
   1648 	ipstat.ips_badoptions++;
   1649 	return (1);
   1650 }
   1651 
   1652 /*
   1653  * Given address of next destination (final or next hop),
   1654  * return internet address info of interface to be used to get there.
   1655  */
   1656 struct in_ifaddr *
   1657 ip_rtaddr(struct in_addr dst)
   1658 {
   1659 	struct sockaddr_in *sin;
   1660 
   1661 	sin = satosin(&ipforward_rt.ro_dst);
   1662 
   1663 	if (ipforward_rt.ro_rt == 0 || !in_hosteq(dst, sin->sin_addr)) {
   1664 		if (ipforward_rt.ro_rt) {
   1665 			RTFREE(ipforward_rt.ro_rt);
   1666 			ipforward_rt.ro_rt = 0;
   1667 		}
   1668 		sin->sin_family = AF_INET;
   1669 		sin->sin_len = sizeof(*sin);
   1670 		sin->sin_addr = dst;
   1671 
   1672 		rtalloc(&ipforward_rt);
   1673 	}
   1674 	if (ipforward_rt.ro_rt == 0)
   1675 		return ((struct in_ifaddr *)0);
   1676 	return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
   1677 }
   1678 
   1679 /*
   1680  * Save incoming source route for use in replies,
   1681  * to be picked up later by ip_srcroute if the receiver is interested.
   1682  */
   1683 void
   1684 save_rte(u_char *option, struct in_addr dst)
   1685 {
   1686 	unsigned olen;
   1687 
   1688 	olen = option[IPOPT_OLEN];
   1689 #ifdef DIAGNOSTIC
   1690 	if (ipprintfs)
   1691 		printf("save_rte: olen %d\n", olen);
   1692 #endif /* 0 */
   1693 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
   1694 		return;
   1695 	bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
   1696 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
   1697 	ip_srcrt.dst = dst;
   1698 }
   1699 
   1700 /*
   1701  * Retrieve incoming source route for use in replies,
   1702  * in the same form used by setsockopt.
   1703  * The first hop is placed before the options, will be removed later.
   1704  */
   1705 struct mbuf *
   1706 ip_srcroute(void)
   1707 {
   1708 	struct in_addr *p, *q;
   1709 	struct mbuf *m;
   1710 
   1711 	if (ip_nhops == 0)
   1712 		return ((struct mbuf *)0);
   1713 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1714 	if (m == 0)
   1715 		return ((struct mbuf *)0);
   1716 
   1717 	MCLAIM(m, &inetdomain.dom_mowner);
   1718 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
   1719 
   1720 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
   1721 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
   1722 	    OPTSIZ;
   1723 #ifdef DIAGNOSTIC
   1724 	if (ipprintfs)
   1725 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
   1726 #endif
   1727 
   1728 	/*
   1729 	 * First save first hop for return route
   1730 	 */
   1731 	p = &ip_srcrt.route[ip_nhops - 1];
   1732 	*(mtod(m, struct in_addr *)) = *p--;
   1733 #ifdef DIAGNOSTIC
   1734 	if (ipprintfs)
   1735 		printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
   1736 #endif
   1737 
   1738 	/*
   1739 	 * Copy option fields and padding (nop) to mbuf.
   1740 	 */
   1741 	ip_srcrt.nop = IPOPT_NOP;
   1742 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
   1743 	bcopy((caddr_t)&ip_srcrt.nop,
   1744 	    mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
   1745 	q = (struct in_addr *)(mtod(m, caddr_t) +
   1746 	    sizeof(struct in_addr) + OPTSIZ);
   1747 #undef OPTSIZ
   1748 	/*
   1749 	 * Record return path as an IP source route,
   1750 	 * reversing the path (pointers are now aligned).
   1751 	 */
   1752 	while (p >= ip_srcrt.route) {
   1753 #ifdef DIAGNOSTIC
   1754 		if (ipprintfs)
   1755 			printf(" %x", ntohl(q->s_addr));
   1756 #endif
   1757 		*q++ = *p--;
   1758 	}
   1759 	/*
   1760 	 * Last hop goes to final destination.
   1761 	 */
   1762 	*q = ip_srcrt.dst;
   1763 #ifdef DIAGNOSTIC
   1764 	if (ipprintfs)
   1765 		printf(" %x\n", ntohl(q->s_addr));
   1766 #endif
   1767 	return (m);
   1768 }
   1769 
   1770 /*
   1771  * Strip out IP options, at higher
   1772  * level protocol in the kernel.
   1773  * Second argument is buffer to which options
   1774  * will be moved, and return value is their length.
   1775  * XXX should be deleted; last arg currently ignored.
   1776  */
   1777 void
   1778 ip_stripoptions(struct mbuf *m, struct mbuf *mopt)
   1779 {
   1780 	int i;
   1781 	struct ip *ip = mtod(m, struct ip *);
   1782 	caddr_t opts;
   1783 	int olen;
   1784 
   1785 	olen = (ip->ip_hl << 2) - sizeof (struct ip);
   1786 	opts = (caddr_t)(ip + 1);
   1787 	i = m->m_len - (sizeof (struct ip) + olen);
   1788 	bcopy(opts  + olen, opts, (unsigned)i);
   1789 	m->m_len -= olen;
   1790 	if (m->m_flags & M_PKTHDR)
   1791 		m->m_pkthdr.len -= olen;
   1792 	ip->ip_len = htons(ntohs(ip->ip_len) - olen);
   1793 	ip->ip_hl = sizeof (struct ip) >> 2;
   1794 }
   1795 
   1796 const int inetctlerrmap[PRC_NCMDS] = {
   1797 	0,		0,		0,		0,
   1798 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
   1799 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
   1800 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
   1801 	0,		0,		0,		0,
   1802 	ENOPROTOOPT
   1803 };
   1804 
   1805 /*
   1806  * Forward a packet.  If some error occurs return the sender
   1807  * an icmp packet.  Note we can't always generate a meaningful
   1808  * icmp message because icmp doesn't have a large enough repertoire
   1809  * of codes and types.
   1810  *
   1811  * If not forwarding, just drop the packet.  This could be confusing
   1812  * if ipforwarding was zero but some routing protocol was advancing
   1813  * us as a gateway to somewhere.  However, we must let the routing
   1814  * protocol deal with that.
   1815  *
   1816  * The srcrt parameter indicates whether the packet is being forwarded
   1817  * via a source route.
   1818  */
   1819 void
   1820 ip_forward(struct mbuf *m, int srcrt)
   1821 {
   1822 	struct ip *ip = mtod(m, struct ip *);
   1823 	struct sockaddr_in *sin;
   1824 	struct rtentry *rt;
   1825 	int error, type = 0, code = 0;
   1826 	struct mbuf *mcopy;
   1827 	n_long dest;
   1828 	struct ifnet *destifp;
   1829 #if defined(IPSEC) || defined(FAST_IPSEC)
   1830 	struct ifnet dummyifp;
   1831 #endif
   1832 
   1833 	/*
   1834 	 * We are now in the output path.
   1835 	 */
   1836 	MCLAIM(m, &ip_tx_mowner);
   1837 
   1838 	/*
   1839 	 * Clear any in-bound checksum flags for this packet.
   1840 	 */
   1841 	m->m_pkthdr.csum_flags = 0;
   1842 
   1843 	dest = 0;
   1844 #ifdef DIAGNOSTIC
   1845 	if (ipprintfs)
   1846 		printf("forward: src %2.2x dst %2.2x ttl %x\n",
   1847 		    ntohl(ip->ip_src.s_addr),
   1848 		    ntohl(ip->ip_dst.s_addr), ip->ip_ttl);
   1849 #endif
   1850 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
   1851 		ipstat.ips_cantforward++;
   1852 		m_freem(m);
   1853 		return;
   1854 	}
   1855 	if (ip->ip_ttl <= IPTTLDEC) {
   1856 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
   1857 		return;
   1858 	}
   1859 	ip->ip_ttl -= IPTTLDEC;
   1860 
   1861 	sin = satosin(&ipforward_rt.ro_dst);
   1862 	if ((rt = ipforward_rt.ro_rt) == 0 ||
   1863 	    !in_hosteq(ip->ip_dst, sin->sin_addr)) {
   1864 		if (ipforward_rt.ro_rt) {
   1865 			RTFREE(ipforward_rt.ro_rt);
   1866 			ipforward_rt.ro_rt = 0;
   1867 		}
   1868 		sin->sin_family = AF_INET;
   1869 		sin->sin_len = sizeof(struct sockaddr_in);
   1870 		sin->sin_addr = ip->ip_dst;
   1871 
   1872 		rtalloc(&ipforward_rt);
   1873 		if (ipforward_rt.ro_rt == 0) {
   1874 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
   1875 			return;
   1876 		}
   1877 		rt = ipforward_rt.ro_rt;
   1878 	}
   1879 
   1880 	/*
   1881 	 * Save at most 68 bytes of the packet in case
   1882 	 * we need to generate an ICMP message to the src.
   1883 	 * Pullup to avoid sharing mbuf cluster between m and mcopy.
   1884 	 */
   1885 	mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
   1886 	if (mcopy)
   1887 		mcopy = m_pullup(mcopy, ip->ip_hl << 2);
   1888 
   1889 	/*
   1890 	 * If forwarding packet using same interface that it came in on,
   1891 	 * perhaps should send a redirect to sender to shortcut a hop.
   1892 	 * Only send redirect if source is sending directly to us,
   1893 	 * and if packet was not source routed (or has any options).
   1894 	 * Also, don't send redirect if forwarding using a default route
   1895 	 * or a route modified by a redirect.
   1896 	 */
   1897 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
   1898 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
   1899 	    !in_nullhost(satosin(rt_key(rt))->sin_addr) &&
   1900 	    ipsendredirects && !srcrt) {
   1901 		if (rt->rt_ifa &&
   1902 		    (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
   1903 		    ifatoia(rt->rt_ifa)->ia_subnet) {
   1904 			if (rt->rt_flags & RTF_GATEWAY)
   1905 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
   1906 			else
   1907 				dest = ip->ip_dst.s_addr;
   1908 			/*
   1909 			 * Router requirements says to only send host
   1910 			 * redirects.
   1911 			 */
   1912 			type = ICMP_REDIRECT;
   1913 			code = ICMP_REDIRECT_HOST;
   1914 #ifdef DIAGNOSTIC
   1915 			if (ipprintfs)
   1916 				printf("redirect (%d) to %x\n", code,
   1917 				    (u_int32_t)dest);
   1918 #endif
   1919 		}
   1920 	}
   1921 
   1922 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
   1923 	    (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
   1924 	    (struct ip_moptions *)NULL, (struct socket *)NULL);
   1925 
   1926 	if (error)
   1927 		ipstat.ips_cantforward++;
   1928 	else {
   1929 		ipstat.ips_forward++;
   1930 		if (type)
   1931 			ipstat.ips_redirectsent++;
   1932 		else {
   1933 			if (mcopy) {
   1934 #ifdef GATEWAY
   1935 				if (mcopy->m_flags & M_CANFASTFWD)
   1936 					ipflow_create(&ipforward_rt, mcopy);
   1937 #endif
   1938 				m_freem(mcopy);
   1939 			}
   1940 			return;
   1941 		}
   1942 	}
   1943 	if (mcopy == NULL)
   1944 		return;
   1945 	destifp = NULL;
   1946 
   1947 	switch (error) {
   1948 
   1949 	case 0:				/* forwarded, but need redirect */
   1950 		/* type, code set above */
   1951 		break;
   1952 
   1953 	case ENETUNREACH:		/* shouldn't happen, checked above */
   1954 	case EHOSTUNREACH:
   1955 	case ENETDOWN:
   1956 	case EHOSTDOWN:
   1957 	default:
   1958 		type = ICMP_UNREACH;
   1959 		code = ICMP_UNREACH_HOST;
   1960 		break;
   1961 
   1962 	case EMSGSIZE:
   1963 		type = ICMP_UNREACH;
   1964 		code = ICMP_UNREACH_NEEDFRAG;
   1965 #if !defined(IPSEC) && !defined(FAST_IPSEC)
   1966 		if (ipforward_rt.ro_rt)
   1967 			destifp = ipforward_rt.ro_rt->rt_ifp;
   1968 #else
   1969 		/*
   1970 		 * If the packet is routed over IPsec tunnel, tell the
   1971 		 * originator the tunnel MTU.
   1972 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
   1973 		 * XXX quickhack!!!
   1974 		 */
   1975 		if (ipforward_rt.ro_rt) {
   1976 			struct secpolicy *sp;
   1977 			int ipsecerror;
   1978 			size_t ipsechdr;
   1979 			struct route *ro;
   1980 
   1981 			sp = ipsec4_getpolicybyaddr(mcopy,
   1982 			    IPSEC_DIR_OUTBOUND, IP_FORWARDING,
   1983 			    &ipsecerror);
   1984 
   1985 			if (sp == NULL)
   1986 				destifp = ipforward_rt.ro_rt->rt_ifp;
   1987 			else {
   1988 				/* count IPsec header size */
   1989 				ipsechdr = ipsec4_hdrsiz(mcopy,
   1990 				    IPSEC_DIR_OUTBOUND, NULL);
   1991 
   1992 				/*
   1993 				 * find the correct route for outer IPv4
   1994 				 * header, compute tunnel MTU.
   1995 				 *
   1996 				 * XXX BUG ALERT
   1997 				 * The "dummyifp" code relies upon the fact
   1998 				 * that icmp_error() touches only ifp->if_mtu.
   1999 				 */
   2000 				/*XXX*/
   2001 				destifp = NULL;
   2002 				if (sp->req != NULL
   2003 				 && sp->req->sav != NULL
   2004 				 && sp->req->sav->sah != NULL) {
   2005 					ro = &sp->req->sav->sah->sa_route;
   2006 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
   2007 						dummyifp.if_mtu =
   2008 						    ro->ro_rt->rt_rmx.rmx_mtu ?
   2009 						    ro->ro_rt->rt_rmx.rmx_mtu :
   2010 						    ro->ro_rt->rt_ifp->if_mtu;
   2011 						dummyifp.if_mtu -= ipsechdr;
   2012 						destifp = &dummyifp;
   2013 					}
   2014 				}
   2015 
   2016 #ifdef	IPSEC
   2017 				key_freesp(sp);
   2018 #else
   2019 				KEY_FREESP(&sp);
   2020 #endif
   2021 			}
   2022 		}
   2023 #endif /*IPSEC*/
   2024 		ipstat.ips_cantfrag++;
   2025 		break;
   2026 
   2027 	case ENOBUFS:
   2028 #if 1
   2029 		/*
   2030 		 * a router should not generate ICMP_SOURCEQUENCH as
   2031 		 * required in RFC1812 Requirements for IP Version 4 Routers.
   2032 		 * source quench could be a big problem under DoS attacks,
   2033 		 * or if the underlying interface is rate-limited.
   2034 		 */
   2035 		if (mcopy)
   2036 			m_freem(mcopy);
   2037 		return;
   2038 #else
   2039 		type = ICMP_SOURCEQUENCH;
   2040 		code = 0;
   2041 		break;
   2042 #endif
   2043 	}
   2044 	icmp_error(mcopy, type, code, dest, destifp);
   2045 }
   2046 
   2047 void
   2048 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
   2049     struct mbuf *m)
   2050 {
   2051 
   2052 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
   2053 		struct timeval tv;
   2054 
   2055 		microtime(&tv);
   2056 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
   2057 		    SCM_TIMESTAMP, SOL_SOCKET);
   2058 		if (*mp)
   2059 			mp = &(*mp)->m_next;
   2060 	}
   2061 	if (inp->inp_flags & INP_RECVDSTADDR) {
   2062 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
   2063 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
   2064 		if (*mp)
   2065 			mp = &(*mp)->m_next;
   2066 	}
   2067 #ifdef notyet
   2068 	/*
   2069 	 * XXX
   2070 	 * Moving these out of udp_input() made them even more broken
   2071 	 * than they already were.
   2072 	 *	- fenner (at) parc.xerox.com
   2073 	 */
   2074 	/* options were tossed already */
   2075 	if (inp->inp_flags & INP_RECVOPTS) {
   2076 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
   2077 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
   2078 		if (*mp)
   2079 			mp = &(*mp)->m_next;
   2080 	}
   2081 	/* ip_srcroute doesn't do what we want here, need to fix */
   2082 	if (inp->inp_flags & INP_RECVRETOPTS) {
   2083 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
   2084 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
   2085 		if (*mp)
   2086 			mp = &(*mp)->m_next;
   2087 	}
   2088 #endif
   2089 	if (inp->inp_flags & INP_RECVIF) {
   2090 		struct sockaddr_dl sdl;
   2091 
   2092 		sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]);
   2093 		sdl.sdl_family = AF_LINK;
   2094 		sdl.sdl_index = m->m_pkthdr.rcvif ?
   2095 		    m->m_pkthdr.rcvif->if_index : 0;
   2096 		sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0;
   2097 		*mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len,
   2098 		    IP_RECVIF, IPPROTO_IP);
   2099 		if (*mp)
   2100 			mp = &(*mp)->m_next;
   2101 	}
   2102 }
   2103 
   2104 /*
   2105  * sysctl helper routine for net.inet.ip.mtudisctimeout.  checks the
   2106  * range of the new value and tweaks timers if it changes.
   2107  */
   2108 static int
   2109 sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
   2110 {
   2111 	int error, tmp;
   2112 	struct sysctlnode node;
   2113 
   2114 	node = *rnode;
   2115 	tmp = ip_mtudisc_timeout;
   2116 	node.sysctl_data = &tmp;
   2117 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2118 	if (error || newp == NULL)
   2119 		return (error);
   2120 	if (tmp < 0)
   2121 		return (EINVAL);
   2122 
   2123 	ip_mtudisc_timeout = tmp;
   2124 	rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
   2125 
   2126 	return (0);
   2127 }
   2128 
   2129 #ifdef GATEWAY
   2130 /*
   2131  * sysctl helper routine for net.inet.ip.maxflows.  apparently if
   2132  * maxflows is even looked up, we "reap flows".
   2133  */
   2134 static int
   2135 sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
   2136 {
   2137 	int s;
   2138 
   2139 	s = sysctl_lookup(SYSCTLFN_CALL(rnode));
   2140 	if (s)
   2141 		return (s);
   2142 
   2143 	s = splsoftnet();
   2144 	ipflow_reap(0);
   2145 	splx(s);
   2146 
   2147 	return (0);
   2148 }
   2149 #endif /* GATEWAY */
   2150 
   2151 
   2152 SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
   2153 {
   2154 	extern int subnetsarelocal, hostzeroisbroadcast;
   2155 
   2156 	sysctl_createv(clog, 0, NULL, NULL,
   2157 		       CTLFLAG_PERMANENT,
   2158 		       CTLTYPE_NODE, "net", NULL,
   2159 		       NULL, 0, NULL, 0,
   2160 		       CTL_NET, CTL_EOL);
   2161 	sysctl_createv(clog, 0, NULL, NULL,
   2162 		       CTLFLAG_PERMANENT,
   2163 		       CTLTYPE_NODE, "inet",
   2164 		       SYSCTL_DESCR("PF_INET related settings"),
   2165 		       NULL, 0, NULL, 0,
   2166 		       CTL_NET, PF_INET, CTL_EOL);
   2167 	sysctl_createv(clog, 0, NULL, NULL,
   2168 		       CTLFLAG_PERMANENT,
   2169 		       CTLTYPE_NODE, "ip",
   2170 		       SYSCTL_DESCR("IPv4 related settings"),
   2171 		       NULL, 0, NULL, 0,
   2172 		       CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
   2173 
   2174 	sysctl_createv(clog, 0, NULL, NULL,
   2175 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2176 		       CTLTYPE_INT, "forwarding",
   2177 		       SYSCTL_DESCR("Enable forwarding of INET datagrams"),
   2178 		       NULL, 0, &ipforwarding, 0,
   2179 		       CTL_NET, PF_INET, IPPROTO_IP,
   2180 		       IPCTL_FORWARDING, CTL_EOL);
   2181 	sysctl_createv(clog, 0, NULL, NULL,
   2182 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2183 		       CTLTYPE_INT, "redirect",
   2184 		       SYSCTL_DESCR("Enable sending of ICMP redirect messages"),
   2185 		       NULL, 0, &ipsendredirects, 0,
   2186 		       CTL_NET, PF_INET, IPPROTO_IP,
   2187 		       IPCTL_SENDREDIRECTS, CTL_EOL);
   2188 	sysctl_createv(clog, 0, NULL, NULL,
   2189 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2190 		       CTLTYPE_INT, "ttl",
   2191 		       SYSCTL_DESCR("Default TTL for an INET datagram"),
   2192 		       NULL, 0, &ip_defttl, 0,
   2193 		       CTL_NET, PF_INET, IPPROTO_IP,
   2194 		       IPCTL_DEFTTL, CTL_EOL);
   2195 #ifdef IPCTL_DEFMTU
   2196 	sysctl_createv(clog, 0, NULL, NULL,
   2197 		       CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
   2198 		       CTLTYPE_INT, "mtu",
   2199 		       SYSCTL_DESCR("Default MTA for an INET route"),
   2200 		       NULL, 0, &ip_mtu, 0,
   2201 		       CTL_NET, PF_INET, IPPROTO_IP,
   2202 		       IPCTL_DEFMTU, CTL_EOL);
   2203 #endif /* IPCTL_DEFMTU */
   2204 	sysctl_createv(clog, 0, NULL, NULL,
   2205 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY1,
   2206 		       CTLTYPE_INT, "forwsrcrt",
   2207 		       SYSCTL_DESCR("Enable forwarding of source-routed "
   2208 				    "datagrams"),
   2209 		       NULL, 0, &ip_forwsrcrt, 0,
   2210 		       CTL_NET, PF_INET, IPPROTO_IP,
   2211 		       IPCTL_FORWSRCRT, CTL_EOL);
   2212 	sysctl_createv(clog, 0, NULL, NULL,
   2213 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2214 		       CTLTYPE_INT, "directed-broadcast",
   2215 		       SYSCTL_DESCR("Enable forwarding of broadcast datagrams"),
   2216 		       NULL, 0, &ip_directedbcast, 0,
   2217 		       CTL_NET, PF_INET, IPPROTO_IP,
   2218 		       IPCTL_DIRECTEDBCAST, CTL_EOL);
   2219 	sysctl_createv(clog, 0, NULL, NULL,
   2220 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2221 		       CTLTYPE_INT, "allowsrcrt",
   2222 		       SYSCTL_DESCR("Accept source-routed datagrams"),
   2223 		       NULL, 0, &ip_allowsrcrt, 0,
   2224 		       CTL_NET, PF_INET, IPPROTO_IP,
   2225 		       IPCTL_ALLOWSRCRT, CTL_EOL);
   2226 	sysctl_createv(clog, 0, NULL, NULL,
   2227 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2228 		       CTLTYPE_INT, "subnetsarelocal",
   2229 		       SYSCTL_DESCR("Whether logical subnets are considered "
   2230 				    "local"),
   2231 		       NULL, 0, &subnetsarelocal, 0,
   2232 		       CTL_NET, PF_INET, IPPROTO_IP,
   2233 		       IPCTL_SUBNETSARELOCAL, CTL_EOL);
   2234 	sysctl_createv(clog, 0, NULL, NULL,
   2235 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2236 		       CTLTYPE_INT, "mtudisc",
   2237 		       SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"),
   2238 		       NULL, 0, &ip_mtudisc, 0,
   2239 		       CTL_NET, PF_INET, IPPROTO_IP,
   2240 		       IPCTL_MTUDISC, CTL_EOL);
   2241 	sysctl_createv(clog, 0, NULL, NULL,
   2242 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2243 		       CTLTYPE_INT, "anonportmin",
   2244 		       SYSCTL_DESCR("Lowest ephemeral port number to assign"),
   2245 		       sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
   2246 		       CTL_NET, PF_INET, IPPROTO_IP,
   2247 		       IPCTL_ANONPORTMIN, CTL_EOL);
   2248 	sysctl_createv(clog, 0, NULL, NULL,
   2249 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2250 		       CTLTYPE_INT, "anonportmax",
   2251 		       SYSCTL_DESCR("Highest ephemeral port number to assign"),
   2252 		       sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
   2253 		       CTL_NET, PF_INET, IPPROTO_IP,
   2254 		       IPCTL_ANONPORTMAX, CTL_EOL);
   2255 	sysctl_createv(clog, 0, NULL, NULL,
   2256 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2257 		       CTLTYPE_INT, "mtudisctimeout",
   2258 		       SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"),
   2259 		       sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
   2260 		       CTL_NET, PF_INET, IPPROTO_IP,
   2261 		       IPCTL_MTUDISCTIMEOUT, CTL_EOL);
   2262 #ifdef GATEWAY
   2263 	sysctl_createv(clog, 0, NULL, NULL,
   2264 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2265 		       CTLTYPE_INT, "maxflows",
   2266 		       SYSCTL_DESCR("Number of flows for fast forwarding"),
   2267 		       sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
   2268 		       CTL_NET, PF_INET, IPPROTO_IP,
   2269 		       IPCTL_MAXFLOWS, CTL_EOL);
   2270 #endif /* GATEWAY */
   2271 	sysctl_createv(clog, 0, NULL, NULL,
   2272 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2273 		       CTLTYPE_INT, "hostzerobroadcast",
   2274 		       SYSCTL_DESCR("All zeroes address is broadcast address"),
   2275 		       NULL, 0, &hostzeroisbroadcast, 0,
   2276 		       CTL_NET, PF_INET, IPPROTO_IP,
   2277 		       IPCTL_HOSTZEROBROADCAST, CTL_EOL);
   2278 #if NGIF > 0
   2279 	sysctl_createv(clog, 0, NULL, NULL,
   2280 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2281 		       CTLTYPE_INT, "gifttl",
   2282 		       SYSCTL_DESCR("Default TTL for a gif tunnel datagram"),
   2283 		       NULL, 0, &ip_gif_ttl, 0,
   2284 		       CTL_NET, PF_INET, IPPROTO_IP,
   2285 		       IPCTL_GIF_TTL, CTL_EOL);
   2286 #endif /* NGIF */
   2287 #ifndef IPNOPRIVPORTS
   2288 	sysctl_createv(clog, 0, NULL, NULL,
   2289 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2290 		       CTLTYPE_INT, "lowportmin",
   2291 		       SYSCTL_DESCR("Lowest privileged ephemeral port number "
   2292 				    "to assign"),
   2293 		       sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
   2294 		       CTL_NET, PF_INET, IPPROTO_IP,
   2295 		       IPCTL_LOWPORTMIN, CTL_EOL);
   2296 	sysctl_createv(clog, 0, NULL, NULL,
   2297 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2298 		       CTLTYPE_INT, "lowportmax",
   2299 		       SYSCTL_DESCR("Highest privileged ephemeral port number "
   2300 				    "to assign"),
   2301 		       sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
   2302 		       CTL_NET, PF_INET, IPPROTO_IP,
   2303 		       IPCTL_LOWPORTMAX, CTL_EOL);
   2304 #endif /* IPNOPRIVPORTS */
   2305 	sysctl_createv(clog, 0, NULL, NULL,
   2306 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2307 		       CTLTYPE_INT, "maxfragpackets",
   2308 		       SYSCTL_DESCR("Maximum number of fragments to retain for "
   2309 				    "possible reassembly"),
   2310 		       NULL, 0, &ip_maxfragpackets, 0,
   2311 		       CTL_NET, PF_INET, IPPROTO_IP,
   2312 		       IPCTL_MAXFRAGPACKETS, CTL_EOL);
   2313 #if NGRE > 0
   2314 	sysctl_createv(clog, 0, NULL, NULL,
   2315 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2316 		       CTLTYPE_INT, "grettl",
   2317 		       SYSCTL_DESCR("Default TTL for a gre tunnel datagram"),
   2318 		       NULL, 0, &ip_gre_ttl, 0,
   2319 		       CTL_NET, PF_INET, IPPROTO_IP,
   2320 		       IPCTL_GRE_TTL, CTL_EOL);
   2321 #endif /* NGRE */
   2322 	sysctl_createv(clog, 0, NULL, NULL,
   2323 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2324 		       CTLTYPE_INT, "checkinterface",
   2325 		       SYSCTL_DESCR("Enable receive side of Strong ES model "
   2326 				    "from RFC1122"),
   2327 		       NULL, 0, &ip_checkinterface, 0,
   2328 		       CTL_NET, PF_INET, IPPROTO_IP,
   2329 		       IPCTL_CHECKINTERFACE, CTL_EOL);
   2330 	sysctl_createv(clog, 0, NULL, NULL,
   2331 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2332 		       CTLTYPE_INT, "random_id",
   2333 		       SYSCTL_DESCR("Assign random ip_id values"),
   2334 		       NULL, 0, &ip_do_randomid, 0,
   2335 		       CTL_NET, PF_INET, IPPROTO_IP,
   2336 		       IPCTL_RANDOMID, CTL_EOL);
   2337 	sysctl_createv(clog, 0, NULL, NULL,
   2338 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2339 		       CTLTYPE_INT, "do_loopback_cksum",
   2340 		       SYSCTL_DESCR("Perform IP checksum on loopback"),
   2341 		       NULL, 0, &ip_do_loopback_cksum, 0,
   2342 		       CTL_NET, PF_INET, IPPROTO_IP,
   2343 		       IPCTL_LOOPBACKCKSUM, CTL_EOL);
   2344 }
   2345