ip_input.c revision 1.218.2.6 1 /* $NetBSD: ip_input.c,v 1.218.2.6 2007/11/15 11:45:07 yamt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.218.2.6 2007/11/15 11:45:07 yamt Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_gateway.h"
105 #include "opt_pfil_hooks.h"
106 #include "opt_ipsec.h"
107 #include "opt_mrouting.h"
108 #include "opt_mbuftrace.h"
109 #include "opt_inet_csum.h"
110
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/domain.h>
116 #include <sys/protosw.h>
117 #include <sys/socket.h>
118 #include <sys/socketvar.h>
119 #include <sys/errno.h>
120 #include <sys/time.h>
121 #include <sys/kernel.h>
122 #include <sys/pool.h>
123 #include <sys/sysctl.h>
124 #include <sys/kauth.h>
125
126 #include <net/if.h>
127 #include <net/if_dl.h>
128 #include <net/route.h>
129 #include <net/pfil.h>
130
131 #include <netinet/in.h>
132 #include <netinet/in_systm.h>
133 #include <netinet/ip.h>
134 #include <netinet/in_pcb.h>
135 #include <netinet/in_proto.h>
136 #include <netinet/in_var.h>
137 #include <netinet/ip_var.h>
138 #include <netinet/ip_icmp.h>
139 /* just for gif_ttl */
140 #include <netinet/in_gif.h>
141 #include "gif.h"
142 #include <net/if_gre.h>
143 #include "gre.h"
144
145 #ifdef MROUTING
146 #include <netinet/ip_mroute.h>
147 #endif
148
149 #ifdef IPSEC
150 #include <netinet6/ipsec.h>
151 #include <netkey/key.h>
152 #endif
153 #ifdef FAST_IPSEC
154 #include <netipsec/ipsec.h>
155 #include <netipsec/key.h>
156 #endif /* FAST_IPSEC*/
157
158 #ifndef IPFORWARDING
159 #ifdef GATEWAY
160 #define IPFORWARDING 1 /* forward IP packets not for us */
161 #else /* GATEWAY */
162 #define IPFORWARDING 0 /* don't forward IP packets not for us */
163 #endif /* GATEWAY */
164 #endif /* IPFORWARDING */
165 #ifndef IPSENDREDIRECTS
166 #define IPSENDREDIRECTS 1
167 #endif
168 #ifndef IPFORWSRCRT
169 #define IPFORWSRCRT 1 /* forward source-routed packets */
170 #endif
171 #ifndef IPALLOWSRCRT
172 #define IPALLOWSRCRT 1 /* allow source-routed packets */
173 #endif
174 #ifndef IPMTUDISC
175 #define IPMTUDISC 1
176 #endif
177 #ifndef IPMTUDISCTIMEOUT
178 #define IPMTUDISCTIMEOUT (10 * 60) /* as per RFC 1191 */
179 #endif
180
181 /*
182 * Note: DIRECTED_BROADCAST is handled this way so that previous
183 * configuration using this option will Just Work.
184 */
185 #ifndef IPDIRECTEDBCAST
186 #ifdef DIRECTED_BROADCAST
187 #define IPDIRECTEDBCAST 1
188 #else
189 #define IPDIRECTEDBCAST 0
190 #endif /* DIRECTED_BROADCAST */
191 #endif /* IPDIRECTEDBCAST */
192 int ipforwarding = IPFORWARDING;
193 int ipsendredirects = IPSENDREDIRECTS;
194 int ip_defttl = IPDEFTTL;
195 int ip_forwsrcrt = IPFORWSRCRT;
196 int ip_directedbcast = IPDIRECTEDBCAST;
197 int ip_allowsrcrt = IPALLOWSRCRT;
198 int ip_mtudisc = IPMTUDISC;
199 int ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
200 #ifdef DIAGNOSTIC
201 int ipprintfs = 0;
202 #endif
203
204 int ip_do_randomid = 0;
205
206 /*
207 * XXX - Setting ip_checkinterface mostly implements the receive side of
208 * the Strong ES model described in RFC 1122, but since the routing table
209 * and transmit implementation do not implement the Strong ES model,
210 * setting this to 1 results in an odd hybrid.
211 *
212 * XXX - ip_checkinterface currently must be disabled if you use ipnat
213 * to translate the destination address to another local interface.
214 *
215 * XXX - ip_checkinterface must be disabled if you add IP aliases
216 * to the loopback interface instead of the interface where the
217 * packets for those addresses are received.
218 */
219 int ip_checkinterface = 0;
220
221
222 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
223
224 int ipqmaxlen = IFQ_MAXLEN;
225 u_long in_ifaddrhash; /* size of hash table - 1 */
226 int in_ifaddrentries; /* total number of addrs */
227 struct in_ifaddrhead in_ifaddrhead;
228 struct in_ifaddrhashhead *in_ifaddrhashtbl;
229 u_long in_multihash; /* size of hash table - 1 */
230 int in_multientries; /* total number of addrs */
231 struct in_multihashhead *in_multihashtbl;
232 struct ifqueue ipintrq;
233 struct ipstat ipstat;
234 uint16_t ip_id;
235
236 #ifdef PFIL_HOOKS
237 struct pfil_head inet_pfil_hook;
238 #endif
239
240 /*
241 * Cached copy of nmbclusters. If nbclusters is different,
242 * recalculate IP parameters derived from nmbclusters.
243 */
244 static int ip_nmbclusters; /* copy of nmbclusters */
245 static void ip_nmbclusters_changed(void); /* recalc limits */
246
247 #define CHECK_NMBCLUSTER_PARAMS() \
248 do { \
249 if (__predict_false(ip_nmbclusters != nmbclusters)) \
250 ip_nmbclusters_changed(); \
251 } while (/*CONSTCOND*/0)
252
253 /* IP datagram reassembly queues (hashed) */
254 #define IPREASS_NHASH_LOG2 6
255 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
256 #define IPREASS_HMASK (IPREASS_NHASH - 1)
257 #define IPREASS_HASH(x,y) \
258 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
259 struct ipqhead ipq[IPREASS_NHASH];
260 int ipq_locked;
261 static int ip_nfragpackets; /* packets in reass queue */
262 static int ip_nfrags; /* total fragments in reass queues */
263
264 int ip_maxfragpackets = 200; /* limit on packets. XXX sysctl */
265 int ip_maxfrags; /* limit on fragments. XXX sysctl */
266
267
268 /*
269 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
270 * IP reassembly queue buffer managment.
271 *
272 * We keep a count of total IP fragments (NB: not fragmented packets!)
273 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
274 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
275 * total fragments in reassembly queues.This AIMD policy avoids
276 * repeatedly deleting single packets under heavy fragmentation load
277 * (e.g., from lossy NFS peers).
278 */
279 static u_int ip_reass_ttl_decr(u_int ticks);
280 static void ip_reass_drophalf(void);
281
282
283 static inline int ipq_lock_try(void);
284 static inline void ipq_unlock(void);
285
286 static inline int
287 ipq_lock_try(void)
288 {
289 int s;
290
291 /*
292 * Use splvm() -- we're blocking things that would cause
293 * mbuf allocation.
294 */
295 s = splvm();
296 if (ipq_locked) {
297 splx(s);
298 return (0);
299 }
300 ipq_locked = 1;
301 splx(s);
302 return (1);
303 }
304
305 static inline void
306 ipq_unlock(void)
307 {
308 int s;
309
310 s = splvm();
311 ipq_locked = 0;
312 splx(s);
313 }
314
315 #ifdef DIAGNOSTIC
316 #define IPQ_LOCK() \
317 do { \
318 if (ipq_lock_try() == 0) { \
319 printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
320 panic("ipq_lock"); \
321 } \
322 } while (/*CONSTCOND*/ 0)
323 #define IPQ_LOCK_CHECK() \
324 do { \
325 if (ipq_locked == 0) { \
326 printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
327 panic("ipq lock check"); \
328 } \
329 } while (/*CONSTCOND*/ 0)
330 #else
331 #define IPQ_LOCK() (void) ipq_lock_try()
332 #define IPQ_LOCK_CHECK() /* nothing */
333 #endif
334
335 #define IPQ_UNLOCK() ipq_unlock()
336
337 POOL_INIT(inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", NULL,
338 IPL_SOFTNET);
339 POOL_INIT(ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl", NULL,
340 IPL_VM);
341
342 #ifdef INET_CSUM_COUNTERS
343 #include <sys/device.h>
344
345 struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
346 NULL, "inet", "hwcsum bad");
347 struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
348 NULL, "inet", "hwcsum ok");
349 struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
350 NULL, "inet", "swcsum");
351
352 #define INET_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
353
354 EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
355 EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
356 EVCNT_ATTACH_STATIC(ip_swcsum);
357
358 #else
359
360 #define INET_CSUM_COUNTER_INCR(ev) /* nothing */
361
362 #endif /* INET_CSUM_COUNTERS */
363
364 /*
365 * We need to save the IP options in case a protocol wants to respond
366 * to an incoming packet over the same route if the packet got here
367 * using IP source routing. This allows connection establishment and
368 * maintenance when the remote end is on a network that is not known
369 * to us.
370 */
371 int ip_nhops = 0;
372 static struct ip_srcrt {
373 struct in_addr dst; /* final destination */
374 char nop; /* one NOP to align */
375 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
376 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
377 } ip_srcrt;
378
379 static void save_rte(u_char *, struct in_addr);
380
381 #ifdef MBUFTRACE
382 struct mowner ip_rx_mowner = MOWNER_INIT("internet", "rx");
383 struct mowner ip_tx_mowner = MOWNER_INIT("internet", "tx");
384 #endif
385
386 /*
387 * Compute IP limits derived from the value of nmbclusters.
388 */
389 static void
390 ip_nmbclusters_changed(void)
391 {
392 ip_maxfrags = nmbclusters / 4;
393 ip_nmbclusters = nmbclusters;
394 }
395
396 /*
397 * IP initialization: fill in IP protocol switch table.
398 * All protocols not implemented in kernel go to raw IP protocol handler.
399 */
400 void
401 ip_init(void)
402 {
403 const struct protosw *pr;
404 int i;
405
406 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
407 if (pr == 0)
408 panic("ip_init");
409 for (i = 0; i < IPPROTO_MAX; i++)
410 ip_protox[i] = pr - inetsw;
411 for (pr = inetdomain.dom_protosw;
412 pr < inetdomain.dom_protoswNPROTOSW; pr++)
413 if (pr->pr_domain->dom_family == PF_INET &&
414 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
415 ip_protox[pr->pr_protocol] = pr - inetsw;
416
417 for (i = 0; i < IPREASS_NHASH; i++)
418 LIST_INIT(&ipq[i]);
419
420 ip_id = time_second & 0xfffff;
421
422 ipintrq.ifq_maxlen = ipqmaxlen;
423 ip_nmbclusters_changed();
424
425 TAILQ_INIT(&in_ifaddrhead);
426 in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IFADDR,
427 M_WAITOK, &in_ifaddrhash);
428 in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IPMADDR,
429 M_WAITOK, &in_multihash);
430 ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
431 #ifdef GATEWAY
432 ipflow_init(ip_hashsize);
433 #endif
434
435 #ifdef PFIL_HOOKS
436 /* Register our Packet Filter hook. */
437 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
438 inet_pfil_hook.ph_af = AF_INET;
439 i = pfil_head_register(&inet_pfil_hook);
440 if (i != 0)
441 printf("ip_init: WARNING: unable to register pfil hook, "
442 "error %d\n", i);
443 #endif /* PFIL_HOOKS */
444
445 #ifdef MBUFTRACE
446 MOWNER_ATTACH(&ip_tx_mowner);
447 MOWNER_ATTACH(&ip_rx_mowner);
448 #endif /* MBUFTRACE */
449 }
450
451 struct sockaddr_in ipaddr = {
452 .sin_len = sizeof(ipaddr),
453 .sin_family = AF_INET,
454 };
455 struct route ipforward_rt;
456
457 /*
458 * IP software interrupt routine
459 */
460 void
461 ipintr(void)
462 {
463 int s;
464 struct mbuf *m;
465
466 while (!IF_IS_EMPTY(&ipintrq)) {
467 s = splnet();
468 IF_DEQUEUE(&ipintrq, m);
469 splx(s);
470 if (m == 0)
471 return;
472 ip_input(m);
473 }
474 }
475
476 /*
477 * Ip input routine. Checksum and byte swap header. If fragmented
478 * try to reassemble. Process options. Pass to next level.
479 */
480 void
481 ip_input(struct mbuf *m)
482 {
483 struct ip *ip = NULL;
484 struct ipq *fp;
485 struct in_ifaddr *ia;
486 struct ifaddr *ifa;
487 struct ipqent *ipqe;
488 int hlen = 0, mff, len;
489 int downmatch;
490 int checkif;
491 int srcrt = 0;
492 int s;
493 u_int hash;
494 #ifdef FAST_IPSEC
495 struct m_tag *mtag;
496 struct tdb_ident *tdbi;
497 struct secpolicy *sp;
498 int error;
499 #endif /* FAST_IPSEC */
500
501 MCLAIM(m, &ip_rx_mowner);
502 #ifdef DIAGNOSTIC
503 if ((m->m_flags & M_PKTHDR) == 0)
504 panic("ipintr no HDR");
505 #endif
506
507 /*
508 * If no IP addresses have been set yet but the interfaces
509 * are receiving, can't do anything with incoming packets yet.
510 */
511 if (TAILQ_FIRST(&in_ifaddrhead) == 0)
512 goto bad;
513 ipstat.ips_total++;
514 /*
515 * If the IP header is not aligned, slurp it up into a new
516 * mbuf with space for link headers, in the event we forward
517 * it. Otherwise, if it is aligned, make sure the entire
518 * base IP header is in the first mbuf of the chain.
519 */
520 if (IP_HDR_ALIGNED_P(mtod(m, void *)) == 0) {
521 if ((m = m_copyup(m, sizeof(struct ip),
522 (max_linkhdr + 3) & ~3)) == NULL) {
523 /* XXXJRT new stat, please */
524 ipstat.ips_toosmall++;
525 return;
526 }
527 } else if (__predict_false(m->m_len < sizeof (struct ip))) {
528 if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
529 ipstat.ips_toosmall++;
530 return;
531 }
532 }
533 ip = mtod(m, struct ip *);
534 if (ip->ip_v != IPVERSION) {
535 ipstat.ips_badvers++;
536 goto bad;
537 }
538 hlen = ip->ip_hl << 2;
539 if (hlen < sizeof(struct ip)) { /* minimum header length */
540 ipstat.ips_badhlen++;
541 goto bad;
542 }
543 if (hlen > m->m_len) {
544 if ((m = m_pullup(m, hlen)) == 0) {
545 ipstat.ips_badhlen++;
546 return;
547 }
548 ip = mtod(m, struct ip *);
549 }
550
551 /*
552 * RFC1122: packets with a multicast source address are
553 * not allowed.
554 */
555 if (IN_MULTICAST(ip->ip_src.s_addr)) {
556 ipstat.ips_badaddr++;
557 goto bad;
558 }
559
560 /* 127/8 must not appear on wire - RFC1122 */
561 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
562 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
563 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
564 ipstat.ips_badaddr++;
565 goto bad;
566 }
567 }
568
569 switch (m->m_pkthdr.csum_flags &
570 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
571 M_CSUM_IPv4_BAD)) {
572 case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
573 INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
574 goto badcsum;
575
576 case M_CSUM_IPv4:
577 /* Checksum was okay. */
578 INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
579 break;
580
581 default:
582 /*
583 * Must compute it ourselves. Maybe skip checksum on
584 * loopback interfaces.
585 */
586 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
587 IFF_LOOPBACK) || ip_do_loopback_cksum)) {
588 INET_CSUM_COUNTER_INCR(&ip_swcsum);
589 if (in_cksum(m, hlen) != 0)
590 goto badcsum;
591 }
592 break;
593 }
594
595 /* Retrieve the packet length. */
596 len = ntohs(ip->ip_len);
597
598 /*
599 * Check for additional length bogosity
600 */
601 if (len < hlen) {
602 ipstat.ips_badlen++;
603 goto bad;
604 }
605
606 /*
607 * Check that the amount of data in the buffers
608 * is as at least much as the IP header would have us expect.
609 * Trim mbufs if longer than we expect.
610 * Drop packet if shorter than we expect.
611 */
612 if (m->m_pkthdr.len < len) {
613 ipstat.ips_tooshort++;
614 goto bad;
615 }
616 if (m->m_pkthdr.len > len) {
617 if (m->m_len == m->m_pkthdr.len) {
618 m->m_len = len;
619 m->m_pkthdr.len = len;
620 } else
621 m_adj(m, len - m->m_pkthdr.len);
622 }
623
624 #if defined(IPSEC)
625 /* ipflow (IP fast forwarding) is not compatible with IPsec. */
626 m->m_flags &= ~M_CANFASTFWD;
627 #else
628 /*
629 * Assume that we can create a fast-forward IP flow entry
630 * based on this packet.
631 */
632 m->m_flags |= M_CANFASTFWD;
633 #endif
634
635 #ifdef PFIL_HOOKS
636 /*
637 * Run through list of hooks for input packets. If there are any
638 * filters which require that additional packets in the flow are
639 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
640 * Note that filters must _never_ set this flag, as another filter
641 * in the list may have previously cleared it.
642 */
643 /*
644 * let ipfilter look at packet on the wire,
645 * not the decapsulated packet.
646 */
647 #ifdef IPSEC
648 if (!ipsec_getnhist(m))
649 #elif defined(FAST_IPSEC)
650 if (!ipsec_indone(m))
651 #else
652 if (1)
653 #endif
654 {
655 struct in_addr odst;
656
657 odst = ip->ip_dst;
658 if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
659 PFIL_IN) != 0)
660 return;
661 if (m == NULL)
662 return;
663 ip = mtod(m, struct ip *);
664 hlen = ip->ip_hl << 2;
665 /*
666 * XXX The setting of "srcrt" here is to prevent ip_forward()
667 * from generating ICMP redirects for packets that have
668 * been redirected by a hook back out on to the same LAN that
669 * they came from and is not an indication that the packet
670 * is being inffluenced by source routing options. This
671 * allows things like
672 * "rdr tlp0 0/0 port 80 -> 1.1.1.200 3128 tcp"
673 * where tlp0 is both on the 1.1.1.0/24 network and is the
674 * default route for hosts on 1.1.1.0/24. Of course this
675 * also requires a "map tlp0 ..." to complete the story.
676 * One might argue whether or not this kind of network config.
677 * should be supported in this manner...
678 */
679 srcrt = (odst.s_addr != ip->ip_dst.s_addr);
680 }
681 #endif /* PFIL_HOOKS */
682
683 #ifdef ALTQ
684 /* XXX Temporary until ALTQ is changed to use a pfil hook */
685 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
686 /* packet dropped by traffic conditioner */
687 return;
688 }
689 #endif
690
691 /*
692 * Process options and, if not destined for us,
693 * ship it on. ip_dooptions returns 1 when an
694 * error was detected (causing an icmp message
695 * to be sent and the original packet to be freed).
696 */
697 ip_nhops = 0; /* for source routed packets */
698 if (hlen > sizeof (struct ip) && ip_dooptions(m))
699 return;
700
701 /*
702 * Enable a consistency check between the destination address
703 * and the arrival interface for a unicast packet (the RFC 1122
704 * strong ES model) if IP forwarding is disabled and the packet
705 * is not locally generated.
706 *
707 * XXX - Checking also should be disabled if the destination
708 * address is ipnat'ed to a different interface.
709 *
710 * XXX - Checking is incompatible with IP aliases added
711 * to the loopback interface instead of the interface where
712 * the packets are received.
713 *
714 * XXX - We need to add a per ifaddr flag for this so that
715 * we get finer grain control.
716 */
717 checkif = ip_checkinterface && (ipforwarding == 0) &&
718 (m->m_pkthdr.rcvif != NULL) &&
719 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
720
721 /*
722 * Check our list of addresses, to see if the packet is for us.
723 *
724 * Traditional 4.4BSD did not consult IFF_UP at all.
725 * The behavior here is to treat addresses on !IFF_UP interface
726 * as not mine.
727 */
728 downmatch = 0;
729 LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
730 if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
731 if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
732 continue;
733 if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
734 break;
735 else
736 downmatch++;
737 }
738 }
739 if (ia != NULL)
740 goto ours;
741 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
742 IFADDR_FOREACH(ifa, m->m_pkthdr.rcvif) {
743 if (ifa->ifa_addr->sa_family != AF_INET)
744 continue;
745 ia = ifatoia(ifa);
746 if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
747 in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
748 /*
749 * Look for all-0's host part (old broadcast addr),
750 * either for subnet or net.
751 */
752 ip->ip_dst.s_addr == ia->ia_subnet ||
753 ip->ip_dst.s_addr == ia->ia_net)
754 goto ours;
755 /*
756 * An interface with IP address zero accepts
757 * all packets that arrive on that interface.
758 */
759 if (in_nullhost(ia->ia_addr.sin_addr))
760 goto ours;
761 }
762 }
763 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
764 struct in_multi *inm;
765 #ifdef MROUTING
766 extern struct socket *ip_mrouter;
767
768 if (ip_mrouter) {
769 /*
770 * If we are acting as a multicast router, all
771 * incoming multicast packets are passed to the
772 * kernel-level multicast forwarding function.
773 * The packet is returned (relatively) intact; if
774 * ip_mforward() returns a non-zero value, the packet
775 * must be discarded, else it may be accepted below.
776 *
777 * (The IP ident field is put in the same byte order
778 * as expected when ip_mforward() is called from
779 * ip_output().)
780 */
781 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
782 ipstat.ips_cantforward++;
783 m_freem(m);
784 return;
785 }
786
787 /*
788 * The process-level routing demon needs to receive
789 * all multicast IGMP packets, whether or not this
790 * host belongs to their destination groups.
791 */
792 if (ip->ip_p == IPPROTO_IGMP)
793 goto ours;
794 ipstat.ips_forward++;
795 }
796 #endif
797 /*
798 * See if we belong to the destination multicast group on the
799 * arrival interface.
800 */
801 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
802 if (inm == NULL) {
803 ipstat.ips_cantforward++;
804 m_freem(m);
805 return;
806 }
807 goto ours;
808 }
809 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
810 in_nullhost(ip->ip_dst))
811 goto ours;
812
813 /*
814 * Not for us; forward if possible and desirable.
815 */
816 if (ipforwarding == 0) {
817 ipstat.ips_cantforward++;
818 m_freem(m);
819 } else {
820 /*
821 * If ip_dst matched any of my address on !IFF_UP interface,
822 * and there's no IFF_UP interface that matches ip_dst,
823 * send icmp unreach. Forwarding it will result in in-kernel
824 * forwarding loop till TTL goes to 0.
825 */
826 if (downmatch) {
827 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
828 ipstat.ips_cantforward++;
829 return;
830 }
831 #ifdef IPSEC
832 if (ipsec4_in_reject(m, NULL)) {
833 ipsecstat.in_polvio++;
834 goto bad;
835 }
836 #endif
837 #ifdef FAST_IPSEC
838 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
839 s = splsoftnet();
840 if (mtag != NULL) {
841 tdbi = (struct tdb_ident *)(mtag + 1);
842 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
843 } else {
844 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
845 IP_FORWARDING, &error);
846 }
847 if (sp == NULL) { /* NB: can happen if error */
848 splx(s);
849 /*XXX error stat???*/
850 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
851 goto bad;
852 }
853
854 /*
855 * Check security policy against packet attributes.
856 */
857 error = ipsec_in_reject(sp, m);
858 KEY_FREESP(&sp);
859 splx(s);
860 if (error) {
861 ipstat.ips_cantforward++;
862 goto bad;
863 }
864
865 /*
866 * Peek at the outbound SP for this packet to determine if
867 * it's a Fast Forward candidate.
868 */
869 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
870 if (mtag != NULL)
871 m->m_flags &= ~M_CANFASTFWD;
872 else {
873 s = splsoftnet();
874 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
875 (IP_FORWARDING |
876 (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
877 &error, NULL);
878 if (sp != NULL) {
879 m->m_flags &= ~M_CANFASTFWD;
880 KEY_FREESP(&sp);
881 }
882 splx(s);
883 }
884 #endif /* FAST_IPSEC */
885
886 ip_forward(m, srcrt);
887 }
888 return;
889
890 ours:
891 /*
892 * If offset or IP_MF are set, must reassemble.
893 * Otherwise, nothing need be done.
894 * (We could look in the reassembly queue to see
895 * if the packet was previously fragmented,
896 * but it's not worth the time; just let them time out.)
897 */
898 if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
899
900 /*
901 * Look for queue of fragments
902 * of this datagram.
903 */
904 IPQ_LOCK();
905 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
906 LIST_FOREACH(fp, &ipq[hash], ipq_q) {
907 if (ip->ip_id == fp->ipq_id &&
908 in_hosteq(ip->ip_src, fp->ipq_src) &&
909 in_hosteq(ip->ip_dst, fp->ipq_dst) &&
910 ip->ip_p == fp->ipq_p)
911 goto found;
912
913 }
914 fp = 0;
915 found:
916
917 /*
918 * Adjust ip_len to not reflect header,
919 * set ipqe_mff if more fragments are expected,
920 * convert offset of this to bytes.
921 */
922 ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
923 mff = (ip->ip_off & htons(IP_MF)) != 0;
924 if (mff) {
925 /*
926 * Make sure that fragments have a data length
927 * that's a non-zero multiple of 8 bytes.
928 */
929 if (ntohs(ip->ip_len) == 0 ||
930 (ntohs(ip->ip_len) & 0x7) != 0) {
931 ipstat.ips_badfrags++;
932 IPQ_UNLOCK();
933 goto bad;
934 }
935 }
936 ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
937
938 /*
939 * If datagram marked as having more fragments
940 * or if this is not the first fragment,
941 * attempt reassembly; if it succeeds, proceed.
942 */
943 if (mff || ip->ip_off != htons(0)) {
944 ipstat.ips_fragments++;
945 s = splvm();
946 ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
947 splx(s);
948 if (ipqe == NULL) {
949 ipstat.ips_rcvmemdrop++;
950 IPQ_UNLOCK();
951 goto bad;
952 }
953 ipqe->ipqe_mff = mff;
954 ipqe->ipqe_m = m;
955 ipqe->ipqe_ip = ip;
956 m = ip_reass(ipqe, fp, &ipq[hash]);
957 if (m == 0) {
958 IPQ_UNLOCK();
959 return;
960 }
961 ipstat.ips_reassembled++;
962 ip = mtod(m, struct ip *);
963 hlen = ip->ip_hl << 2;
964 ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
965 } else
966 if (fp)
967 ip_freef(fp);
968 IPQ_UNLOCK();
969 }
970
971 #if defined(IPSEC)
972 /*
973 * enforce IPsec policy checking if we are seeing last header.
974 * note that we do not visit this with protocols with pcb layer
975 * code - like udp/tcp/raw ip.
976 */
977 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
978 ipsec4_in_reject(m, NULL)) {
979 ipsecstat.in_polvio++;
980 goto bad;
981 }
982 #endif
983 #ifdef FAST_IPSEC
984 /*
985 * enforce IPsec policy checking if we are seeing last header.
986 * note that we do not visit this with protocols with pcb layer
987 * code - like udp/tcp/raw ip.
988 */
989 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
990 /*
991 * Check if the packet has already had IPsec processing
992 * done. If so, then just pass it along. This tag gets
993 * set during AH, ESP, etc. input handling, before the
994 * packet is returned to the ip input queue for delivery.
995 */
996 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
997 s = splsoftnet();
998 if (mtag != NULL) {
999 tdbi = (struct tdb_ident *)(mtag + 1);
1000 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1001 } else {
1002 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1003 IP_FORWARDING, &error);
1004 }
1005 if (sp != NULL) {
1006 /*
1007 * Check security policy against packet attributes.
1008 */
1009 error = ipsec_in_reject(sp, m);
1010 KEY_FREESP(&sp);
1011 } else {
1012 /* XXX error stat??? */
1013 error = EINVAL;
1014 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1015 }
1016 splx(s);
1017 if (error)
1018 goto bad;
1019 }
1020 #endif /* FAST_IPSEC */
1021
1022 /*
1023 * Switch out to protocol's input routine.
1024 */
1025 #if IFA_STATS
1026 if (ia && ip)
1027 ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
1028 #endif
1029 ipstat.ips_delivered++;
1030 {
1031 int off = hlen, nh = ip->ip_p;
1032
1033 (*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
1034 return;
1035 }
1036 bad:
1037 m_freem(m);
1038 return;
1039
1040 badcsum:
1041 ipstat.ips_badsum++;
1042 m_freem(m);
1043 }
1044
1045 /*
1046 * Take incoming datagram fragment and try to
1047 * reassemble it into whole datagram. If a chain for
1048 * reassembly of this datagram already exists, then it
1049 * is given as fp; otherwise have to make a chain.
1050 */
1051 struct mbuf *
1052 ip_reass(struct ipqent *ipqe, struct ipq *fp, struct ipqhead *ipqhead)
1053 {
1054 struct mbuf *m = ipqe->ipqe_m;
1055 struct ipqent *nq, *p, *q;
1056 struct ip *ip;
1057 struct mbuf *t;
1058 int hlen = ipqe->ipqe_ip->ip_hl << 2;
1059 int i, next, s;
1060
1061 IPQ_LOCK_CHECK();
1062
1063 /*
1064 * Presence of header sizes in mbufs
1065 * would confuse code below.
1066 */
1067 m->m_data += hlen;
1068 m->m_len -= hlen;
1069
1070 #ifdef notyet
1071 /* make sure fragment limit is up-to-date */
1072 CHECK_NMBCLUSTER_PARAMS();
1073
1074 /* If we have too many fragments, drop the older half. */
1075 if (ip_nfrags >= ip_maxfrags)
1076 ip_reass_drophalf(void);
1077 #endif
1078
1079 /*
1080 * We are about to add a fragment; increment frag count.
1081 */
1082 ip_nfrags++;
1083
1084 /*
1085 * If first fragment to arrive, create a reassembly queue.
1086 */
1087 if (fp == 0) {
1088 /*
1089 * Enforce upper bound on number of fragmented packets
1090 * for which we attempt reassembly;
1091 * If maxfrag is 0, never accept fragments.
1092 * If maxfrag is -1, accept all fragments without limitation.
1093 */
1094 if (ip_maxfragpackets < 0)
1095 ;
1096 else if (ip_nfragpackets >= ip_maxfragpackets)
1097 goto dropfrag;
1098 ip_nfragpackets++;
1099 MALLOC(fp, struct ipq *, sizeof (struct ipq),
1100 M_FTABLE, M_NOWAIT);
1101 if (fp == NULL)
1102 goto dropfrag;
1103 LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
1104 fp->ipq_nfrags = 1;
1105 fp->ipq_ttl = IPFRAGTTL;
1106 fp->ipq_p = ipqe->ipqe_ip->ip_p;
1107 fp->ipq_id = ipqe->ipqe_ip->ip_id;
1108 TAILQ_INIT(&fp->ipq_fragq);
1109 fp->ipq_src = ipqe->ipqe_ip->ip_src;
1110 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
1111 p = NULL;
1112 goto insert;
1113 } else {
1114 fp->ipq_nfrags++;
1115 }
1116
1117 /*
1118 * Find a segment which begins after this one does.
1119 */
1120 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1121 p = q, q = TAILQ_NEXT(q, ipqe_q))
1122 if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
1123 break;
1124
1125 /*
1126 * If there is a preceding segment, it may provide some of
1127 * our data already. If so, drop the data from the incoming
1128 * segment. If it provides all of our data, drop us.
1129 */
1130 if (p != NULL) {
1131 i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
1132 ntohs(ipqe->ipqe_ip->ip_off);
1133 if (i > 0) {
1134 if (i >= ntohs(ipqe->ipqe_ip->ip_len))
1135 goto dropfrag;
1136 m_adj(ipqe->ipqe_m, i);
1137 ipqe->ipqe_ip->ip_off =
1138 htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
1139 ipqe->ipqe_ip->ip_len =
1140 htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
1141 }
1142 }
1143
1144 /*
1145 * While we overlap succeeding segments trim them or,
1146 * if they are completely covered, dequeue them.
1147 */
1148 for (; q != NULL &&
1149 ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
1150 ntohs(q->ipqe_ip->ip_off); q = nq) {
1151 i = (ntohs(ipqe->ipqe_ip->ip_off) +
1152 ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
1153 if (i < ntohs(q->ipqe_ip->ip_len)) {
1154 q->ipqe_ip->ip_len =
1155 htons(ntohs(q->ipqe_ip->ip_len) - i);
1156 q->ipqe_ip->ip_off =
1157 htons(ntohs(q->ipqe_ip->ip_off) + i);
1158 m_adj(q->ipqe_m, i);
1159 break;
1160 }
1161 nq = TAILQ_NEXT(q, ipqe_q);
1162 m_freem(q->ipqe_m);
1163 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1164 s = splvm();
1165 pool_put(&ipqent_pool, q);
1166 splx(s);
1167 fp->ipq_nfrags--;
1168 ip_nfrags--;
1169 }
1170
1171 insert:
1172 /*
1173 * Stick new segment in its place;
1174 * check for complete reassembly.
1175 */
1176 if (p == NULL) {
1177 TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
1178 } else {
1179 TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
1180 }
1181 next = 0;
1182 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1183 p = q, q = TAILQ_NEXT(q, ipqe_q)) {
1184 if (ntohs(q->ipqe_ip->ip_off) != next)
1185 return (0);
1186 next += ntohs(q->ipqe_ip->ip_len);
1187 }
1188 if (p->ipqe_mff)
1189 return (0);
1190
1191 /*
1192 * Reassembly is complete. Check for a bogus message size and
1193 * concatenate fragments.
1194 */
1195 q = TAILQ_FIRST(&fp->ipq_fragq);
1196 ip = q->ipqe_ip;
1197 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
1198 ipstat.ips_toolong++;
1199 ip_freef(fp);
1200 return (0);
1201 }
1202 m = q->ipqe_m;
1203 t = m->m_next;
1204 m->m_next = 0;
1205 m_cat(m, t);
1206 nq = TAILQ_NEXT(q, ipqe_q);
1207 s = splvm();
1208 pool_put(&ipqent_pool, q);
1209 splx(s);
1210 for (q = nq; q != NULL; q = nq) {
1211 t = q->ipqe_m;
1212 nq = TAILQ_NEXT(q, ipqe_q);
1213 s = splvm();
1214 pool_put(&ipqent_pool, q);
1215 splx(s);
1216 m_cat(m, t);
1217 }
1218 ip_nfrags -= fp->ipq_nfrags;
1219
1220 /*
1221 * Create header for new ip packet by
1222 * modifying header of first packet;
1223 * dequeue and discard fragment reassembly header.
1224 * Make header visible.
1225 */
1226 ip->ip_len = htons(next);
1227 ip->ip_src = fp->ipq_src;
1228 ip->ip_dst = fp->ipq_dst;
1229 LIST_REMOVE(fp, ipq_q);
1230 FREE(fp, M_FTABLE);
1231 ip_nfragpackets--;
1232 m->m_len += (ip->ip_hl << 2);
1233 m->m_data -= (ip->ip_hl << 2);
1234 /* some debugging cruft by sklower, below, will go away soon */
1235 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1236 int plen = 0;
1237 for (t = m; t; t = t->m_next)
1238 plen += t->m_len;
1239 m->m_pkthdr.len = plen;
1240 m->m_pkthdr.csum_flags = 0;
1241 }
1242 return (m);
1243
1244 dropfrag:
1245 if (fp != 0)
1246 fp->ipq_nfrags--;
1247 ip_nfrags--;
1248 ipstat.ips_fragdropped++;
1249 m_freem(m);
1250 s = splvm();
1251 pool_put(&ipqent_pool, ipqe);
1252 splx(s);
1253 return (0);
1254 }
1255
1256 /*
1257 * Free a fragment reassembly header and all
1258 * associated datagrams.
1259 */
1260 void
1261 ip_freef(struct ipq *fp)
1262 {
1263 struct ipqent *q, *p;
1264 u_int nfrags = 0;
1265 int s;
1266
1267 IPQ_LOCK_CHECK();
1268
1269 for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
1270 p = TAILQ_NEXT(q, ipqe_q);
1271 m_freem(q->ipqe_m);
1272 nfrags++;
1273 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1274 s = splvm();
1275 pool_put(&ipqent_pool, q);
1276 splx(s);
1277 }
1278
1279 if (nfrags != fp->ipq_nfrags)
1280 printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
1281 ip_nfrags -= nfrags;
1282 LIST_REMOVE(fp, ipq_q);
1283 FREE(fp, M_FTABLE);
1284 ip_nfragpackets--;
1285 }
1286
1287 /*
1288 * IP reassembly TTL machinery for multiplicative drop.
1289 */
1290 static u_int fragttl_histo[(IPFRAGTTL+1)];
1291
1292
1293 /*
1294 * Decrement TTL of all reasembly queue entries by `ticks'.
1295 * Count number of distinct fragments (as opposed to partial, fragmented
1296 * datagrams) in the reassembly queue. While we traverse the entire
1297 * reassembly queue, compute and return the median TTL over all fragments.
1298 */
1299 static u_int
1300 ip_reass_ttl_decr(u_int ticks)
1301 {
1302 u_int nfrags, median, dropfraction, keepfraction;
1303 struct ipq *fp, *nfp;
1304 int i;
1305
1306 nfrags = 0;
1307 memset(fragttl_histo, 0, sizeof fragttl_histo);
1308
1309 for (i = 0; i < IPREASS_NHASH; i++) {
1310 for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
1311 fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
1312 0 : fp->ipq_ttl - ticks);
1313 nfp = LIST_NEXT(fp, ipq_q);
1314 if (fp->ipq_ttl == 0) {
1315 ipstat.ips_fragtimeout++;
1316 ip_freef(fp);
1317 } else {
1318 nfrags += fp->ipq_nfrags;
1319 fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
1320 }
1321 }
1322 }
1323
1324 KASSERT(ip_nfrags == nfrags);
1325
1326 /* Find median (or other drop fraction) in histogram. */
1327 dropfraction = (ip_nfrags / 2);
1328 keepfraction = ip_nfrags - dropfraction;
1329 for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
1330 median += fragttl_histo[i];
1331 if (median >= keepfraction)
1332 break;
1333 }
1334
1335 /* Return TTL of median (or other fraction). */
1336 return (u_int)i;
1337 }
1338
1339 void
1340 ip_reass_drophalf(void)
1341 {
1342
1343 u_int median_ticks;
1344 /*
1345 * Compute median TTL of all fragments, and count frags
1346 * with that TTL or lower (roughly half of all fragments).
1347 */
1348 median_ticks = ip_reass_ttl_decr(0);
1349
1350 /* Drop half. */
1351 median_ticks = ip_reass_ttl_decr(median_ticks);
1352
1353 }
1354
1355 /*
1356 * IP timer processing;
1357 * if a timer expires on a reassembly
1358 * queue, discard it.
1359 */
1360 void
1361 ip_slowtimo(void)
1362 {
1363 static u_int dropscanidx = 0;
1364 u_int i;
1365 u_int median_ttl;
1366 int s = splsoftnet();
1367
1368 IPQ_LOCK();
1369
1370 /* Age TTL of all fragments by 1 tick .*/
1371 median_ttl = ip_reass_ttl_decr(1);
1372
1373 /* make sure fragment limit is up-to-date */
1374 CHECK_NMBCLUSTER_PARAMS();
1375
1376 /* If we have too many fragments, drop the older half. */
1377 if (ip_nfrags > ip_maxfrags)
1378 ip_reass_ttl_decr(median_ttl);
1379
1380 /*
1381 * If we are over the maximum number of fragmented packets
1382 * (due to the limit being lowered), drain off
1383 * enough to get down to the new limit. Start draining
1384 * from the reassembly hashqueue most recently drained.
1385 */
1386 if (ip_maxfragpackets < 0)
1387 ;
1388 else {
1389 int wrapped = 0;
1390
1391 i = dropscanidx;
1392 while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
1393 while (LIST_FIRST(&ipq[i]) != NULL)
1394 ip_freef(LIST_FIRST(&ipq[i]));
1395 if (++i >= IPREASS_NHASH) {
1396 i = 0;
1397 }
1398 /*
1399 * Dont scan forever even if fragment counters are
1400 * wrong: stop after scanning entire reassembly queue.
1401 */
1402 if (i == dropscanidx)
1403 wrapped = 1;
1404 }
1405 dropscanidx = i;
1406 }
1407 IPQ_UNLOCK();
1408 splx(s);
1409 }
1410
1411 /*
1412 * Drain off all datagram fragments.
1413 */
1414 void
1415 ip_drain(void)
1416 {
1417
1418 /*
1419 * We may be called from a device's interrupt context. If
1420 * the ipq is already busy, just bail out now.
1421 */
1422 if (ipq_lock_try() == 0)
1423 return;
1424
1425 /*
1426 * Drop half the total fragments now. If more mbufs are needed,
1427 * we will be called again soon.
1428 */
1429 ip_reass_drophalf();
1430
1431 IPQ_UNLOCK();
1432 }
1433
1434 /*
1435 * Do option processing on a datagram,
1436 * possibly discarding it if bad options are encountered,
1437 * or forwarding it if source-routed.
1438 * Returns 1 if packet has been forwarded/freed,
1439 * 0 if the packet should be processed further.
1440 */
1441 int
1442 ip_dooptions(struct mbuf *m)
1443 {
1444 struct ip *ip = mtod(m, struct ip *);
1445 u_char *cp, *cp0;
1446 struct ip_timestamp *ipt;
1447 struct in_ifaddr *ia;
1448 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1449 struct in_addr dst;
1450 n_time ntime;
1451
1452 dst = ip->ip_dst;
1453 cp = (u_char *)(ip + 1);
1454 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1455 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1456 opt = cp[IPOPT_OPTVAL];
1457 if (opt == IPOPT_EOL)
1458 break;
1459 if (opt == IPOPT_NOP)
1460 optlen = 1;
1461 else {
1462 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1463 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1464 goto bad;
1465 }
1466 optlen = cp[IPOPT_OLEN];
1467 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1468 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1469 goto bad;
1470 }
1471 }
1472 switch (opt) {
1473
1474 default:
1475 break;
1476
1477 /*
1478 * Source routing with record.
1479 * Find interface with current destination address.
1480 * If none on this machine then drop if strictly routed,
1481 * or do nothing if loosely routed.
1482 * Record interface address and bring up next address
1483 * component. If strictly routed make sure next
1484 * address is on directly accessible net.
1485 */
1486 case IPOPT_LSRR:
1487 case IPOPT_SSRR:
1488 if (ip_allowsrcrt == 0) {
1489 type = ICMP_UNREACH;
1490 code = ICMP_UNREACH_NET_PROHIB;
1491 goto bad;
1492 }
1493 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1494 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1495 goto bad;
1496 }
1497 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1498 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1499 goto bad;
1500 }
1501 ipaddr.sin_addr = ip->ip_dst;
1502 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
1503 if (ia == 0) {
1504 if (opt == IPOPT_SSRR) {
1505 type = ICMP_UNREACH;
1506 code = ICMP_UNREACH_SRCFAIL;
1507 goto bad;
1508 }
1509 /*
1510 * Loose routing, and not at next destination
1511 * yet; nothing to do except forward.
1512 */
1513 break;
1514 }
1515 off--; /* 0 origin */
1516 if ((off + sizeof(struct in_addr)) > optlen) {
1517 /*
1518 * End of source route. Should be for us.
1519 */
1520 save_rte(cp, ip->ip_src);
1521 break;
1522 }
1523 /*
1524 * locate outgoing interface
1525 */
1526 bcopy((void *)(cp + off), (void *)&ipaddr.sin_addr,
1527 sizeof(ipaddr.sin_addr));
1528 if (opt == IPOPT_SSRR)
1529 ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
1530 else
1531 ia = ip_rtaddr(ipaddr.sin_addr);
1532 if (ia == 0) {
1533 type = ICMP_UNREACH;
1534 code = ICMP_UNREACH_SRCFAIL;
1535 goto bad;
1536 }
1537 ip->ip_dst = ipaddr.sin_addr;
1538 bcopy((void *)&ia->ia_addr.sin_addr,
1539 (void *)(cp + off), sizeof(struct in_addr));
1540 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1541 /*
1542 * Let ip_intr's mcast routing check handle mcast pkts
1543 */
1544 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1545 break;
1546
1547 case IPOPT_RR:
1548 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1549 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1550 goto bad;
1551 }
1552 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1553 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1554 goto bad;
1555 }
1556 /*
1557 * If no space remains, ignore.
1558 */
1559 off--; /* 0 origin */
1560 if ((off + sizeof(struct in_addr)) > optlen)
1561 break;
1562 bcopy((void *)(&ip->ip_dst), (void *)&ipaddr.sin_addr,
1563 sizeof(ipaddr.sin_addr));
1564 /*
1565 * locate outgoing interface; if we're the destination,
1566 * use the incoming interface (should be same).
1567 */
1568 if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
1569 == NULL &&
1570 (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1571 type = ICMP_UNREACH;
1572 code = ICMP_UNREACH_HOST;
1573 goto bad;
1574 }
1575 bcopy((void *)&ia->ia_addr.sin_addr,
1576 (void *)(cp + off), sizeof(struct in_addr));
1577 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1578 break;
1579
1580 case IPOPT_TS:
1581 code = cp - (u_char *)ip;
1582 ipt = (struct ip_timestamp *)cp;
1583 if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1584 code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1585 goto bad;
1586 }
1587 if (ipt->ipt_ptr < 5) {
1588 code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1589 goto bad;
1590 }
1591 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
1592 if (++ipt->ipt_oflw == 0) {
1593 code = (u_char *)&ipt->ipt_ptr -
1594 (u_char *)ip;
1595 goto bad;
1596 }
1597 break;
1598 }
1599 cp0 = (cp + ipt->ipt_ptr - 1);
1600 switch (ipt->ipt_flg) {
1601
1602 case IPOPT_TS_TSONLY:
1603 break;
1604
1605 case IPOPT_TS_TSANDADDR:
1606 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1607 sizeof(struct in_addr) > ipt->ipt_len) {
1608 code = (u_char *)&ipt->ipt_ptr -
1609 (u_char *)ip;
1610 goto bad;
1611 }
1612 ipaddr.sin_addr = dst;
1613 ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1614 m->m_pkthdr.rcvif));
1615 if (ia == 0)
1616 continue;
1617 bcopy(&ia->ia_addr.sin_addr,
1618 cp0, sizeof(struct in_addr));
1619 ipt->ipt_ptr += sizeof(struct in_addr);
1620 break;
1621
1622 case IPOPT_TS_PRESPEC:
1623 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1624 sizeof(struct in_addr) > ipt->ipt_len) {
1625 code = (u_char *)&ipt->ipt_ptr -
1626 (u_char *)ip;
1627 goto bad;
1628 }
1629 bcopy(cp0, &ipaddr.sin_addr,
1630 sizeof(struct in_addr));
1631 if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
1632 == NULL)
1633 continue;
1634 ipt->ipt_ptr += sizeof(struct in_addr);
1635 break;
1636
1637 default:
1638 /* XXX can't take &ipt->ipt_flg */
1639 code = (u_char *)&ipt->ipt_ptr -
1640 (u_char *)ip + 1;
1641 goto bad;
1642 }
1643 ntime = iptime();
1644 cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
1645 memmove((char *)cp + ipt->ipt_ptr - 1, cp0,
1646 sizeof(n_time));
1647 ipt->ipt_ptr += sizeof(n_time);
1648 }
1649 }
1650 if (forward) {
1651 if (ip_forwsrcrt == 0) {
1652 type = ICMP_UNREACH;
1653 code = ICMP_UNREACH_SRCFAIL;
1654 goto bad;
1655 }
1656 ip_forward(m, 1);
1657 return (1);
1658 }
1659 return (0);
1660 bad:
1661 icmp_error(m, type, code, 0, 0);
1662 ipstat.ips_badoptions++;
1663 return (1);
1664 }
1665
1666 /*
1667 * Given address of next destination (final or next hop),
1668 * return internet address info of interface to be used to get there.
1669 */
1670 struct in_ifaddr *
1671 ip_rtaddr(struct in_addr dst)
1672 {
1673 struct rtentry *rt;
1674 union {
1675 struct sockaddr dst;
1676 struct sockaddr_in dst4;
1677 } u;
1678
1679 sockaddr_in_init(&u.dst4, &dst, 0);
1680
1681 if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL)
1682 return NULL;
1683
1684 return ifatoia(rt->rt_ifa);
1685 }
1686
1687 /*
1688 * Save incoming source route for use in replies,
1689 * to be picked up later by ip_srcroute if the receiver is interested.
1690 */
1691 void
1692 save_rte(u_char *option, struct in_addr dst)
1693 {
1694 unsigned olen;
1695
1696 olen = option[IPOPT_OLEN];
1697 #ifdef DIAGNOSTIC
1698 if (ipprintfs)
1699 printf("save_rte: olen %d\n", olen);
1700 #endif /* 0 */
1701 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1702 return;
1703 bcopy((void *)option, (void *)ip_srcrt.srcopt, olen);
1704 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1705 ip_srcrt.dst = dst;
1706 }
1707
1708 /*
1709 * Retrieve incoming source route for use in replies,
1710 * in the same form used by setsockopt.
1711 * The first hop is placed before the options, will be removed later.
1712 */
1713 struct mbuf *
1714 ip_srcroute(void)
1715 {
1716 struct in_addr *p, *q;
1717 struct mbuf *m;
1718
1719 if (ip_nhops == 0)
1720 return NULL;
1721 m = m_get(M_DONTWAIT, MT_SOOPTS);
1722 if (m == 0)
1723 return NULL;
1724
1725 MCLAIM(m, &inetdomain.dom_mowner);
1726 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1727
1728 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1729 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1730 OPTSIZ;
1731 #ifdef DIAGNOSTIC
1732 if (ipprintfs)
1733 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1734 #endif
1735
1736 /*
1737 * First save first hop for return route
1738 */
1739 p = &ip_srcrt.route[ip_nhops - 1];
1740 *(mtod(m, struct in_addr *)) = *p--;
1741 #ifdef DIAGNOSTIC
1742 if (ipprintfs)
1743 printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1744 #endif
1745
1746 /*
1747 * Copy option fields and padding (nop) to mbuf.
1748 */
1749 ip_srcrt.nop = IPOPT_NOP;
1750 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1751 memmove(mtod(m, char *) + sizeof(struct in_addr), &ip_srcrt.nop,
1752 OPTSIZ);
1753 q = (struct in_addr *)(mtod(m, char *) +
1754 sizeof(struct in_addr) + OPTSIZ);
1755 #undef OPTSIZ
1756 /*
1757 * Record return path as an IP source route,
1758 * reversing the path (pointers are now aligned).
1759 */
1760 while (p >= ip_srcrt.route) {
1761 #ifdef DIAGNOSTIC
1762 if (ipprintfs)
1763 printf(" %x", ntohl(q->s_addr));
1764 #endif
1765 *q++ = *p--;
1766 }
1767 /*
1768 * Last hop goes to final destination.
1769 */
1770 *q = ip_srcrt.dst;
1771 #ifdef DIAGNOSTIC
1772 if (ipprintfs)
1773 printf(" %x\n", ntohl(q->s_addr));
1774 #endif
1775 return (m);
1776 }
1777
1778 const int inetctlerrmap[PRC_NCMDS] = {
1779 0, 0, 0, 0,
1780 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1781 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1782 EMSGSIZE, EHOSTUNREACH, 0, 0,
1783 0, 0, 0, 0,
1784 ENOPROTOOPT
1785 };
1786
1787 /*
1788 * Forward a packet. If some error occurs return the sender
1789 * an icmp packet. Note we can't always generate a meaningful
1790 * icmp message because icmp doesn't have a large enough repertoire
1791 * of codes and types.
1792 *
1793 * If not forwarding, just drop the packet. This could be confusing
1794 * if ipforwarding was zero but some routing protocol was advancing
1795 * us as a gateway to somewhere. However, we must let the routing
1796 * protocol deal with that.
1797 *
1798 * The srcrt parameter indicates whether the packet is being forwarded
1799 * via a source route.
1800 */
1801 void
1802 ip_forward(struct mbuf *m, int srcrt)
1803 {
1804 struct ip *ip = mtod(m, struct ip *);
1805 struct rtentry *rt;
1806 int error, type = 0, code = 0, destmtu = 0;
1807 struct mbuf *mcopy;
1808 n_long dest;
1809 union {
1810 struct sockaddr dst;
1811 struct sockaddr_in dst4;
1812 } u;
1813
1814 /*
1815 * We are now in the output path.
1816 */
1817 MCLAIM(m, &ip_tx_mowner);
1818
1819 /*
1820 * Clear any in-bound checksum flags for this packet.
1821 */
1822 m->m_pkthdr.csum_flags = 0;
1823
1824 dest = 0;
1825 #ifdef DIAGNOSTIC
1826 if (ipprintfs) {
1827 printf("forward: src %s ", inet_ntoa(ip->ip_src));
1828 printf("dst %s ttl %x\n", inet_ntoa(ip->ip_dst), ip->ip_ttl);
1829 }
1830 #endif
1831 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1832 ipstat.ips_cantforward++;
1833 m_freem(m);
1834 return;
1835 }
1836 if (ip->ip_ttl <= IPTTLDEC) {
1837 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1838 return;
1839 }
1840
1841 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
1842 if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL) {
1843 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_NET, dest, 0);
1844 return;
1845 }
1846
1847 /*
1848 * Save at most 68 bytes of the packet in case
1849 * we need to generate an ICMP message to the src.
1850 * Pullup to avoid sharing mbuf cluster between m and mcopy.
1851 */
1852 mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
1853 if (mcopy)
1854 mcopy = m_pullup(mcopy, ip->ip_hl << 2);
1855
1856 ip->ip_ttl -= IPTTLDEC;
1857
1858 /*
1859 * If forwarding packet using same interface that it came in on,
1860 * perhaps should send a redirect to sender to shortcut a hop.
1861 * Only send redirect if source is sending directly to us,
1862 * and if packet was not source routed (or has any options).
1863 * Also, don't send redirect if forwarding using a default route
1864 * or a route modified by a redirect.
1865 */
1866 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1867 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1868 !in_nullhost(satocsin(rt_getkey(rt))->sin_addr) &&
1869 ipsendredirects && !srcrt) {
1870 if (rt->rt_ifa &&
1871 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1872 ifatoia(rt->rt_ifa)->ia_subnet) {
1873 if (rt->rt_flags & RTF_GATEWAY)
1874 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1875 else
1876 dest = ip->ip_dst.s_addr;
1877 /*
1878 * Router requirements says to only send host
1879 * redirects.
1880 */
1881 type = ICMP_REDIRECT;
1882 code = ICMP_REDIRECT_HOST;
1883 #ifdef DIAGNOSTIC
1884 if (ipprintfs)
1885 printf("redirect (%d) to %x\n", code,
1886 (u_int32_t)dest);
1887 #endif
1888 }
1889 }
1890
1891 error = ip_output(m, NULL, &ipforward_rt,
1892 (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1893 (struct ip_moptions *)NULL, (struct socket *)NULL);
1894
1895 if (error)
1896 ipstat.ips_cantforward++;
1897 else {
1898 ipstat.ips_forward++;
1899 if (type)
1900 ipstat.ips_redirectsent++;
1901 else {
1902 if (mcopy) {
1903 #ifdef GATEWAY
1904 if (mcopy->m_flags & M_CANFASTFWD)
1905 ipflow_create(&ipforward_rt, mcopy);
1906 #endif
1907 m_freem(mcopy);
1908 }
1909 return;
1910 }
1911 }
1912 if (mcopy == NULL)
1913 return;
1914
1915 switch (error) {
1916
1917 case 0: /* forwarded, but need redirect */
1918 /* type, code set above */
1919 break;
1920
1921 case ENETUNREACH: /* shouldn't happen, checked above */
1922 case EHOSTUNREACH:
1923 case ENETDOWN:
1924 case EHOSTDOWN:
1925 default:
1926 type = ICMP_UNREACH;
1927 code = ICMP_UNREACH_HOST;
1928 break;
1929
1930 case EMSGSIZE:
1931 type = ICMP_UNREACH;
1932 code = ICMP_UNREACH_NEEDFRAG;
1933 #if !defined(IPSEC) && !defined(FAST_IPSEC)
1934 if (ipforward_rt.ro_rt != NULL)
1935 destmtu = ipforward_rt.ro_rt->rt_ifp->if_mtu;
1936 #else
1937 /*
1938 * If the packet is routed over IPsec tunnel, tell the
1939 * originator the tunnel MTU.
1940 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1941 * XXX quickhack!!!
1942 */
1943 if (ipforward_rt.ro_rt != NULL) {
1944 struct secpolicy *sp;
1945 int ipsecerror;
1946 size_t ipsechdr;
1947 struct route *ro;
1948
1949 sp = ipsec4_getpolicybyaddr(mcopy,
1950 IPSEC_DIR_OUTBOUND, IP_FORWARDING,
1951 &ipsecerror);
1952
1953 if (sp == NULL)
1954 destmtu = ipforward_rt.ro_rt->rt_ifp->if_mtu;
1955 else {
1956 /* count IPsec header size */
1957 ipsechdr = ipsec4_hdrsiz(mcopy,
1958 IPSEC_DIR_OUTBOUND, NULL);
1959
1960 /*
1961 * find the correct route for outer IPv4
1962 * header, compute tunnel MTU.
1963 */
1964
1965 if (sp->req != NULL
1966 && sp->req->sav != NULL
1967 && sp->req->sav->sah != NULL) {
1968 ro = &sp->req->sav->sah->sa_route;
1969 if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1970 destmtu =
1971 ro->ro_rt->rt_rmx.rmx_mtu ?
1972 ro->ro_rt->rt_rmx.rmx_mtu :
1973 ro->ro_rt->rt_ifp->if_mtu;
1974 destmtu -= ipsechdr;
1975 }
1976 }
1977
1978 #ifdef IPSEC
1979 key_freesp(sp);
1980 #else
1981 KEY_FREESP(&sp);
1982 #endif
1983 }
1984 }
1985 #endif /*IPSEC*/
1986 ipstat.ips_cantfrag++;
1987 break;
1988
1989 case ENOBUFS:
1990 #if 1
1991 /*
1992 * a router should not generate ICMP_SOURCEQUENCH as
1993 * required in RFC1812 Requirements for IP Version 4 Routers.
1994 * source quench could be a big problem under DoS attacks,
1995 * or if the underlying interface is rate-limited.
1996 */
1997 if (mcopy)
1998 m_freem(mcopy);
1999 return;
2000 #else
2001 type = ICMP_SOURCEQUENCH;
2002 code = 0;
2003 break;
2004 #endif
2005 }
2006 icmp_error(mcopy, type, code, dest, destmtu);
2007 }
2008
2009 void
2010 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2011 struct mbuf *m)
2012 {
2013
2014 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2015 struct timeval tv;
2016
2017 microtime(&tv);
2018 *mp = sbcreatecontrol((void *) &tv, sizeof(tv),
2019 SCM_TIMESTAMP, SOL_SOCKET);
2020 if (*mp)
2021 mp = &(*mp)->m_next;
2022 }
2023 if (inp->inp_flags & INP_RECVDSTADDR) {
2024 *mp = sbcreatecontrol((void *) &ip->ip_dst,
2025 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2026 if (*mp)
2027 mp = &(*mp)->m_next;
2028 }
2029 #ifdef notyet
2030 /*
2031 * XXX
2032 * Moving these out of udp_input() made them even more broken
2033 * than they already were.
2034 * - fenner (at) parc.xerox.com
2035 */
2036 /* options were tossed already */
2037 if (inp->inp_flags & INP_RECVOPTS) {
2038 *mp = sbcreatecontrol((void *) opts_deleted_above,
2039 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2040 if (*mp)
2041 mp = &(*mp)->m_next;
2042 }
2043 /* ip_srcroute doesn't do what we want here, need to fix */
2044 if (inp->inp_flags & INP_RECVRETOPTS) {
2045 *mp = sbcreatecontrol((void *) ip_srcroute(),
2046 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2047 if (*mp)
2048 mp = &(*mp)->m_next;
2049 }
2050 #endif
2051 if (inp->inp_flags & INP_RECVIF) {
2052 struct sockaddr_dl sdl;
2053
2054 sockaddr_dl_init(&sdl, sizeof(sdl),
2055 (m->m_pkthdr.rcvif != NULL)
2056 ? m->m_pkthdr.rcvif->if_index
2057 : 0,
2058 0, NULL, 0, NULL, 0);
2059 *mp = sbcreatecontrol(&sdl, sdl.sdl_len, IP_RECVIF, IPPROTO_IP);
2060 if (*mp)
2061 mp = &(*mp)->m_next;
2062 }
2063 }
2064
2065 /*
2066 * sysctl helper routine for net.inet.ip.forwsrcrt.
2067 */
2068 static int
2069 sysctl_net_inet_ip_forwsrcrt(SYSCTLFN_ARGS)
2070 {
2071 int error, tmp;
2072 struct sysctlnode node;
2073
2074 node = *rnode;
2075 tmp = ip_forwsrcrt;
2076 node.sysctl_data = &tmp;
2077 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2078 if (error || newp == NULL)
2079 return (error);
2080
2081 if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_FORWSRCRT,
2082 0, NULL, NULL, NULL))
2083 return (EPERM);
2084
2085 ip_forwsrcrt = tmp;
2086
2087 return (0);
2088 }
2089
2090 /*
2091 * sysctl helper routine for net.inet.ip.mtudisctimeout. checks the
2092 * range of the new value and tweaks timers if it changes.
2093 */
2094 static int
2095 sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
2096 {
2097 int error, tmp;
2098 struct sysctlnode node;
2099
2100 node = *rnode;
2101 tmp = ip_mtudisc_timeout;
2102 node.sysctl_data = &tmp;
2103 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2104 if (error || newp == NULL)
2105 return (error);
2106 if (tmp < 0)
2107 return (EINVAL);
2108
2109 ip_mtudisc_timeout = tmp;
2110 rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
2111
2112 return (0);
2113 }
2114
2115 #ifdef GATEWAY
2116 /*
2117 * sysctl helper routine for net.inet.ip.maxflows.
2118 */
2119 static int
2120 sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
2121 {
2122 int s;
2123
2124 s = sysctl_lookup(SYSCTLFN_CALL(rnode));
2125 if (s || newp == NULL)
2126 return (s);
2127
2128 s = splsoftnet();
2129 ipflow_reap(0);
2130 splx(s);
2131
2132 return (0);
2133 }
2134
2135 static int
2136 sysctl_net_inet_ip_hashsize(SYSCTLFN_ARGS)
2137 {
2138 int error, tmp;
2139 struct sysctlnode node;
2140
2141 node = *rnode;
2142 tmp = ip_hashsize;
2143 node.sysctl_data = &tmp;
2144 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2145 if (error || newp == NULL)
2146 return (error);
2147
2148 if ((tmp & (tmp - 1)) == 0 && tmp != 0) {
2149 /*
2150 * Can only fail due to malloc()
2151 */
2152 if (ipflow_invalidate_all(tmp))
2153 return ENOMEM;
2154 } else {
2155 /*
2156 * EINVAL if not a power of 2
2157 */
2158 return EINVAL;
2159 }
2160
2161 return (0);
2162 }
2163 #endif /* GATEWAY */
2164
2165
2166 SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
2167 {
2168 extern int subnetsarelocal, hostzeroisbroadcast;
2169
2170 sysctl_createv(clog, 0, NULL, NULL,
2171 CTLFLAG_PERMANENT,
2172 CTLTYPE_NODE, "net", NULL,
2173 NULL, 0, NULL, 0,
2174 CTL_NET, CTL_EOL);
2175 sysctl_createv(clog, 0, NULL, NULL,
2176 CTLFLAG_PERMANENT,
2177 CTLTYPE_NODE, "inet",
2178 SYSCTL_DESCR("PF_INET related settings"),
2179 NULL, 0, NULL, 0,
2180 CTL_NET, PF_INET, CTL_EOL);
2181 sysctl_createv(clog, 0, NULL, NULL,
2182 CTLFLAG_PERMANENT,
2183 CTLTYPE_NODE, "ip",
2184 SYSCTL_DESCR("IPv4 related settings"),
2185 NULL, 0, NULL, 0,
2186 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2187
2188 sysctl_createv(clog, 0, NULL, NULL,
2189 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2190 CTLTYPE_INT, "forwarding",
2191 SYSCTL_DESCR("Enable forwarding of INET datagrams"),
2192 NULL, 0, &ipforwarding, 0,
2193 CTL_NET, PF_INET, IPPROTO_IP,
2194 IPCTL_FORWARDING, CTL_EOL);
2195 sysctl_createv(clog, 0, NULL, NULL,
2196 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2197 CTLTYPE_INT, "redirect",
2198 SYSCTL_DESCR("Enable sending of ICMP redirect messages"),
2199 NULL, 0, &ipsendredirects, 0,
2200 CTL_NET, PF_INET, IPPROTO_IP,
2201 IPCTL_SENDREDIRECTS, CTL_EOL);
2202 sysctl_createv(clog, 0, NULL, NULL,
2203 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2204 CTLTYPE_INT, "ttl",
2205 SYSCTL_DESCR("Default TTL for an INET datagram"),
2206 NULL, 0, &ip_defttl, 0,
2207 CTL_NET, PF_INET, IPPROTO_IP,
2208 IPCTL_DEFTTL, CTL_EOL);
2209 #ifdef IPCTL_DEFMTU
2210 sysctl_createv(clog, 0, NULL, NULL,
2211 CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
2212 CTLTYPE_INT, "mtu",
2213 SYSCTL_DESCR("Default MTA for an INET route"),
2214 NULL, 0, &ip_mtu, 0,
2215 CTL_NET, PF_INET, IPPROTO_IP,
2216 IPCTL_DEFMTU, CTL_EOL);
2217 #endif /* IPCTL_DEFMTU */
2218 sysctl_createv(clog, 0, NULL, NULL,
2219 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2220 CTLTYPE_INT, "forwsrcrt",
2221 SYSCTL_DESCR("Enable forwarding of source-routed "
2222 "datagrams"),
2223 sysctl_net_inet_ip_forwsrcrt, 0, &ip_forwsrcrt, 0,
2224 CTL_NET, PF_INET, IPPROTO_IP,
2225 IPCTL_FORWSRCRT, CTL_EOL);
2226 sysctl_createv(clog, 0, NULL, NULL,
2227 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2228 CTLTYPE_INT, "directed-broadcast",
2229 SYSCTL_DESCR("Enable forwarding of broadcast datagrams"),
2230 NULL, 0, &ip_directedbcast, 0,
2231 CTL_NET, PF_INET, IPPROTO_IP,
2232 IPCTL_DIRECTEDBCAST, CTL_EOL);
2233 sysctl_createv(clog, 0, NULL, NULL,
2234 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2235 CTLTYPE_INT, "allowsrcrt",
2236 SYSCTL_DESCR("Accept source-routed datagrams"),
2237 NULL, 0, &ip_allowsrcrt, 0,
2238 CTL_NET, PF_INET, IPPROTO_IP,
2239 IPCTL_ALLOWSRCRT, CTL_EOL);
2240 sysctl_createv(clog, 0, NULL, NULL,
2241 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2242 CTLTYPE_INT, "subnetsarelocal",
2243 SYSCTL_DESCR("Whether logical subnets are considered "
2244 "local"),
2245 NULL, 0, &subnetsarelocal, 0,
2246 CTL_NET, PF_INET, IPPROTO_IP,
2247 IPCTL_SUBNETSARELOCAL, CTL_EOL);
2248 sysctl_createv(clog, 0, NULL, NULL,
2249 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2250 CTLTYPE_INT, "mtudisc",
2251 SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"),
2252 NULL, 0, &ip_mtudisc, 0,
2253 CTL_NET, PF_INET, IPPROTO_IP,
2254 IPCTL_MTUDISC, CTL_EOL);
2255 sysctl_createv(clog, 0, NULL, NULL,
2256 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2257 CTLTYPE_INT, "anonportmin",
2258 SYSCTL_DESCR("Lowest ephemeral port number to assign"),
2259 sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
2260 CTL_NET, PF_INET, IPPROTO_IP,
2261 IPCTL_ANONPORTMIN, CTL_EOL);
2262 sysctl_createv(clog, 0, NULL, NULL,
2263 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2264 CTLTYPE_INT, "anonportmax",
2265 SYSCTL_DESCR("Highest ephemeral port number to assign"),
2266 sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
2267 CTL_NET, PF_INET, IPPROTO_IP,
2268 IPCTL_ANONPORTMAX, CTL_EOL);
2269 sysctl_createv(clog, 0, NULL, NULL,
2270 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2271 CTLTYPE_INT, "mtudisctimeout",
2272 SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"),
2273 sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
2274 CTL_NET, PF_INET, IPPROTO_IP,
2275 IPCTL_MTUDISCTIMEOUT, CTL_EOL);
2276 #ifdef GATEWAY
2277 sysctl_createv(clog, 0, NULL, NULL,
2278 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2279 CTLTYPE_INT, "maxflows",
2280 SYSCTL_DESCR("Number of flows for fast forwarding"),
2281 sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
2282 CTL_NET, PF_INET, IPPROTO_IP,
2283 IPCTL_MAXFLOWS, CTL_EOL);
2284 sysctl_createv(clog, 0, NULL, NULL,
2285 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2286 CTLTYPE_INT, "hashsize",
2287 SYSCTL_DESCR("Size of hash table for fast forwarding (IPv4)"),
2288 sysctl_net_inet_ip_hashsize, 0, &ip_hashsize, 0,
2289 CTL_NET, PF_INET, IPPROTO_IP,
2290 CTL_CREATE, CTL_EOL);
2291 #endif /* GATEWAY */
2292 sysctl_createv(clog, 0, NULL, NULL,
2293 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2294 CTLTYPE_INT, "hostzerobroadcast",
2295 SYSCTL_DESCR("All zeroes address is broadcast address"),
2296 NULL, 0, &hostzeroisbroadcast, 0,
2297 CTL_NET, PF_INET, IPPROTO_IP,
2298 IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2299 #if NGIF > 0
2300 sysctl_createv(clog, 0, NULL, NULL,
2301 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2302 CTLTYPE_INT, "gifttl",
2303 SYSCTL_DESCR("Default TTL for a gif tunnel datagram"),
2304 NULL, 0, &ip_gif_ttl, 0,
2305 CTL_NET, PF_INET, IPPROTO_IP,
2306 IPCTL_GIF_TTL, CTL_EOL);
2307 #endif /* NGIF */
2308 #ifndef IPNOPRIVPORTS
2309 sysctl_createv(clog, 0, NULL, NULL,
2310 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2311 CTLTYPE_INT, "lowportmin",
2312 SYSCTL_DESCR("Lowest privileged ephemeral port number "
2313 "to assign"),
2314 sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
2315 CTL_NET, PF_INET, IPPROTO_IP,
2316 IPCTL_LOWPORTMIN, CTL_EOL);
2317 sysctl_createv(clog, 0, NULL, NULL,
2318 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2319 CTLTYPE_INT, "lowportmax",
2320 SYSCTL_DESCR("Highest privileged ephemeral port number "
2321 "to assign"),
2322 sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
2323 CTL_NET, PF_INET, IPPROTO_IP,
2324 IPCTL_LOWPORTMAX, CTL_EOL);
2325 #endif /* IPNOPRIVPORTS */
2326 sysctl_createv(clog, 0, NULL, NULL,
2327 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2328 CTLTYPE_INT, "maxfragpackets",
2329 SYSCTL_DESCR("Maximum number of fragments to retain for "
2330 "possible reassembly"),
2331 NULL, 0, &ip_maxfragpackets, 0,
2332 CTL_NET, PF_INET, IPPROTO_IP,
2333 IPCTL_MAXFRAGPACKETS, CTL_EOL);
2334 #if NGRE > 0
2335 sysctl_createv(clog, 0, NULL, NULL,
2336 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2337 CTLTYPE_INT, "grettl",
2338 SYSCTL_DESCR("Default TTL for a gre tunnel datagram"),
2339 NULL, 0, &ip_gre_ttl, 0,
2340 CTL_NET, PF_INET, IPPROTO_IP,
2341 IPCTL_GRE_TTL, CTL_EOL);
2342 #endif /* NGRE */
2343 sysctl_createv(clog, 0, NULL, NULL,
2344 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2345 CTLTYPE_INT, "checkinterface",
2346 SYSCTL_DESCR("Enable receive side of Strong ES model "
2347 "from RFC1122"),
2348 NULL, 0, &ip_checkinterface, 0,
2349 CTL_NET, PF_INET, IPPROTO_IP,
2350 IPCTL_CHECKINTERFACE, CTL_EOL);
2351 sysctl_createv(clog, 0, NULL, NULL,
2352 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2353 CTLTYPE_INT, "random_id",
2354 SYSCTL_DESCR("Assign random ip_id values"),
2355 NULL, 0, &ip_do_randomid, 0,
2356 CTL_NET, PF_INET, IPPROTO_IP,
2357 IPCTL_RANDOMID, CTL_EOL);
2358 sysctl_createv(clog, 0, NULL, NULL,
2359 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2360 CTLTYPE_INT, "do_loopback_cksum",
2361 SYSCTL_DESCR("Perform IP checksum on loopback"),
2362 NULL, 0, &ip_do_loopback_cksum, 0,
2363 CTL_NET, PF_INET, IPPROTO_IP,
2364 IPCTL_LOOPBACKCKSUM, CTL_EOL);
2365 sysctl_createv(clog, 0, NULL, NULL,
2366 CTLFLAG_PERMANENT,
2367 CTLTYPE_STRUCT, "stats",
2368 SYSCTL_DESCR("IP statistics"),
2369 NULL, 0, &ipstat, sizeof(ipstat),
2370 CTL_NET, PF_INET, IPPROTO_IP, IPCTL_STATS,
2371 CTL_EOL);
2372 }
2373