ip_input.c revision 1.22 1 /* $NetBSD: ip_input.c,v 1.22 1995/06/12 00:47:41 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/errno.h>
46 #include <sys/time.h>
47 #include <sys/kernel.h>
48
49 #include <net/if.h>
50 #include <net/route.h>
51
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/ip.h>
55 #include <netinet/in_pcb.h>
56 #include <netinet/in_var.h>
57 #include <netinet/ip_var.h>
58 #include <netinet/ip_icmp.h>
59
60 #ifndef IPFORWARDING
61 #ifdef GATEWAY
62 #define IPFORWARDING 1 /* forward IP packets not for us */
63 #else /* GATEWAY */
64 #define IPFORWARDING 0 /* don't forward IP packets not for us */
65 #endif /* GATEWAY */
66 #endif /* IPFORWARDING */
67 #ifndef IPSENDREDIRECTS
68 #define IPSENDREDIRECTS 1
69 #endif
70 int ipforwarding = IPFORWARDING;
71 int ipsendredirects = IPSENDREDIRECTS;
72 int ip_defttl = IPDEFTTL;
73 #ifdef DIAGNOSTIC
74 int ipprintfs = 0;
75 #endif
76
77 extern struct domain inetdomain;
78 extern struct protosw inetsw[];
79 u_char ip_protox[IPPROTO_MAX];
80 int ipqmaxlen = IFQ_MAXLEN;
81 struct in_ifaddrhead in_ifaddr;
82 struct ifqueue ipintrq;
83
84 /*
85 * We need to save the IP options in case a protocol wants to respond
86 * to an incoming packet over the same route if the packet got here
87 * using IP source routing. This allows connection establishment and
88 * maintenance when the remote end is on a network that is not known
89 * to us.
90 */
91 int ip_nhops = 0;
92 static struct ip_srcrt {
93 struct in_addr dst; /* final destination */
94 char nop; /* one NOP to align */
95 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
96 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
97 } ip_srcrt;
98
99 static void save_rte __P((u_char *, struct in_addr));
100 /*
101 * IP initialization: fill in IP protocol switch table.
102 * All protocols not implemented in kernel go to raw IP protocol handler.
103 */
104 void
105 ip_init()
106 {
107 register struct protosw *pr;
108 register int i;
109
110 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
111 if (pr == 0)
112 panic("ip_init");
113 for (i = 0; i < IPPROTO_MAX; i++)
114 ip_protox[i] = pr - inetsw;
115 for (pr = inetdomain.dom_protosw;
116 pr < inetdomain.dom_protoswNPROTOSW; pr++)
117 if (pr->pr_domain->dom_family == PF_INET &&
118 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
119 ip_protox[pr->pr_protocol] = pr - inetsw;
120 ipq.next = ipq.prev = &ipq;
121 ip_id = time.tv_sec & 0xffff;
122 ipintrq.ifq_maxlen = ipqmaxlen;
123 TAILQ_INIT(&in_ifaddr);
124 }
125
126 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
127 struct route ipforward_rt;
128
129 /*
130 * Ip input routine. Checksum and byte swap header. If fragmented
131 * try to reassemble. Process options. Pass to next level.
132 */
133 void
134 ipintr()
135 {
136 register struct ip *ip;
137 register struct mbuf *m;
138 register struct ipq *fp;
139 register struct in_ifaddr *ia;
140 int hlen, s;
141
142 next:
143 /*
144 * Get next datagram off input queue and get IP header
145 * in first mbuf.
146 */
147 s = splimp();
148 IF_DEQUEUE(&ipintrq, m);
149 splx(s);
150 if (m == 0)
151 return;
152 #ifdef DIAGNOSTIC
153 if ((m->m_flags & M_PKTHDR) == 0)
154 panic("ipintr no HDR");
155 #endif
156 /*
157 * If no IP addresses have been set yet but the interfaces
158 * are receiving, can't do anything with incoming packets yet.
159 */
160 if (in_ifaddr.tqh_first == 0)
161 goto bad;
162 ipstat.ips_total++;
163 if (m->m_len < sizeof (struct ip) &&
164 (m = m_pullup(m, sizeof (struct ip))) == 0) {
165 ipstat.ips_toosmall++;
166 goto next;
167 }
168 ip = mtod(m, struct ip *);
169 if (ip->ip_v != IPVERSION) {
170 ipstat.ips_badvers++;
171 goto bad;
172 }
173 hlen = ip->ip_hl << 2;
174 if (hlen < sizeof(struct ip)) { /* minimum header length */
175 ipstat.ips_badhlen++;
176 goto bad;
177 }
178 if (hlen > m->m_len) {
179 if ((m = m_pullup(m, hlen)) == 0) {
180 ipstat.ips_badhlen++;
181 goto next;
182 }
183 ip = mtod(m, struct ip *);
184 }
185 if (ip->ip_sum = in_cksum(m, hlen)) {
186 ipstat.ips_badsum++;
187 goto bad;
188 }
189
190 /*
191 * Convert fields to host representation.
192 */
193 NTOHS(ip->ip_len);
194 if (ip->ip_len < hlen) {
195 ipstat.ips_badlen++;
196 goto bad;
197 }
198 NTOHS(ip->ip_id);
199 NTOHS(ip->ip_off);
200
201 /*
202 * Check that the amount of data in the buffers
203 * is as at least much as the IP header would have us expect.
204 * Trim mbufs if longer than we expect.
205 * Drop packet if shorter than we expect.
206 */
207 if (m->m_pkthdr.len < ip->ip_len) {
208 ipstat.ips_tooshort++;
209 goto bad;
210 }
211 if (m->m_pkthdr.len > ip->ip_len) {
212 if (m->m_len == m->m_pkthdr.len) {
213 m->m_len = ip->ip_len;
214 m->m_pkthdr.len = ip->ip_len;
215 } else
216 m_adj(m, ip->ip_len - m->m_pkthdr.len);
217 }
218
219 /*
220 * Process options and, if not destined for us,
221 * ship it on. ip_dooptions returns 1 when an
222 * error was detected (causing an icmp message
223 * to be sent and the original packet to be freed).
224 */
225 ip_nhops = 0; /* for source routed packets */
226 if (hlen > sizeof (struct ip) && ip_dooptions(m))
227 goto next;
228
229 /*
230 * Check our list of addresses, to see if the packet is for us.
231 */
232 for (ia = in_ifaddr.tqh_first; ia; ia = ia->ia_list.tqe_next) {
233 if (ip->ip_dst.s_addr == ia->ia_addr.sin_addr.s_addr)
234 goto ours;
235 if (
236 #ifdef DIRECTED_BROADCAST
237 ia->ia_ifp == m->m_pkthdr.rcvif &&
238 #endif
239 (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
240 if (ip->ip_dst.s_addr == ia->ia_broadaddr.sin_addr.s_addr ||
241 ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr ||
242 /*
243 * Look for all-0's host part (old broadcast addr),
244 * either for subnet or net.
245 */
246 ip->ip_dst.s_addr == ia->ia_subnet ||
247 ip->ip_dst.s_addr == ia->ia_net)
248 goto ours;
249 }
250 }
251 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
252 struct in_multi *inm;
253 #ifdef MROUTING
254 extern struct socket *ip_mrouter;
255
256 if (m->m_flags & M_EXT) {
257 if ((m = m_pullup(m, hlen)) == 0) {
258 ipstat.ips_toosmall++;
259 goto next;
260 }
261 ip = mtod(m, struct ip *);
262 }
263
264 if (ip_mrouter) {
265 /*
266 * If we are acting as a multicast router, all
267 * incoming multicast packets are passed to the
268 * kernel-level multicast forwarding function.
269 * The packet is returned (relatively) intact; if
270 * ip_mforward() returns a non-zero value, the packet
271 * must be discarded, else it may be accepted below.
272 *
273 * (The IP ident field is put in the same byte order
274 * as expected when ip_mforward() is called from
275 * ip_output().)
276 */
277 ip->ip_id = htons(ip->ip_id);
278 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
279 ipstat.ips_cantforward++;
280 m_freem(m);
281 goto next;
282 }
283 ip->ip_id = ntohs(ip->ip_id);
284
285 /*
286 * The process-level routing demon needs to receive
287 * all multicast IGMP packets, whether or not this
288 * host belongs to their destination groups.
289 */
290 if (ip->ip_p == IPPROTO_IGMP)
291 goto ours;
292 ipstat.ips_forward++;
293 }
294 #endif
295 /*
296 * See if we belong to the destination multicast group on the
297 * arrival interface.
298 */
299 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
300 if (inm == NULL) {
301 ipstat.ips_cantforward++;
302 m_freem(m);
303 goto next;
304 }
305 goto ours;
306 }
307 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
308 ip->ip_dst.s_addr == INADDR_ANY)
309 goto ours;
310
311 /*
312 * Not for us; forward if possible and desirable.
313 */
314 if (ipforwarding == 0) {
315 ipstat.ips_cantforward++;
316 m_freem(m);
317 } else
318 ip_forward(m, 0);
319 goto next;
320
321 ours:
322 /*
323 * If offset or IP_MF are set, must reassemble.
324 * Otherwise, nothing need be done.
325 * (We could look in the reassembly queue to see
326 * if the packet was previously fragmented,
327 * but it's not worth the time; just let them time out.)
328 */
329 if (ip->ip_off &~ IP_DF) {
330 if (m->m_flags & M_EXT) { /* XXX */
331 if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
332 ipstat.ips_toosmall++;
333 goto next;
334 }
335 ip = mtod(m, struct ip *);
336 }
337 /*
338 * Look for queue of fragments
339 * of this datagram.
340 */
341 for (fp = ipq.next; fp != &ipq; fp = fp->next)
342 if (ip->ip_id == fp->ipq_id &&
343 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
344 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
345 ip->ip_p == fp->ipq_p)
346 goto found;
347 fp = 0;
348 found:
349
350 /*
351 * Adjust ip_len to not reflect header,
352 * set ip_mff if more fragments are expected,
353 * convert offset of this to bytes.
354 */
355 ip->ip_len -= hlen;
356 ((struct ipasfrag *)ip)->ipf_mff &= ~1;
357 if (ip->ip_off & IP_MF) {
358 /*
359 * Make sure that fragments have a data length
360 * that's a non-zero multiple of 8 bytes.
361 */
362 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
363 ipstat.ips_badfrags++;
364 goto bad;
365 }
366 ((struct ipasfrag *)ip)->ipf_mff |= 1;
367 }
368 ip->ip_off <<= 3;
369
370 /*
371 * If datagram marked as having more fragments
372 * or if this is not the first fragment,
373 * attempt reassembly; if it succeeds, proceed.
374 */
375 if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) {
376 ipstat.ips_fragments++;
377 ip = ip_reass((struct ipasfrag *)ip, fp);
378 if (ip == 0)
379 goto next;
380 ipstat.ips_reassembled++;
381 m = dtom(ip);
382 } else
383 if (fp)
384 ip_freef(fp);
385 } else
386 ip->ip_len -= hlen;
387
388 /*
389 * Switch out to protocol's input routine.
390 */
391 ipstat.ips_delivered++;
392 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
393 goto next;
394 bad:
395 m_freem(m);
396 goto next;
397 }
398
399 /*
400 * Take incoming datagram fragment and try to
401 * reassemble it into whole datagram. If a chain for
402 * reassembly of this datagram already exists, then it
403 * is given as fp; otherwise have to make a chain.
404 */
405 struct ip *
406 ip_reass(ip, fp)
407 register struct ipasfrag *ip;
408 register struct ipq *fp;
409 {
410 register struct mbuf *m = dtom(ip);
411 register struct ipasfrag *q;
412 struct mbuf *t;
413 int hlen = ip->ip_hl << 2;
414 int i, next;
415
416 /*
417 * Presence of header sizes in mbufs
418 * would confuse code below.
419 */
420 m->m_data += hlen;
421 m->m_len -= hlen;
422
423 /*
424 * If first fragment to arrive, create a reassembly queue.
425 */
426 if (fp == 0) {
427 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
428 goto dropfrag;
429 fp = mtod(t, struct ipq *);
430 insque(fp, &ipq);
431 fp->ipq_ttl = IPFRAGTTL;
432 fp->ipq_p = ip->ip_p;
433 fp->ipq_id = ip->ip_id;
434 fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
435 fp->ipq_src = ((struct ip *)ip)->ip_src;
436 fp->ipq_dst = ((struct ip *)ip)->ip_dst;
437 q = (struct ipasfrag *)fp;
438 goto insert;
439 }
440
441 /*
442 * Find a segment which begins after this one does.
443 */
444 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
445 if (q->ip_off > ip->ip_off)
446 break;
447
448 /*
449 * If there is a preceding segment, it may provide some of
450 * our data already. If so, drop the data from the incoming
451 * segment. If it provides all of our data, drop us.
452 */
453 if (q->ipf_prev != (struct ipasfrag *)fp) {
454 i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
455 if (i > 0) {
456 if (i >= ip->ip_len)
457 goto dropfrag;
458 m_adj(dtom(ip), i);
459 ip->ip_off += i;
460 ip->ip_len -= i;
461 }
462 }
463
464 /*
465 * While we overlap succeeding segments trim them or,
466 * if they are completely covered, dequeue them.
467 */
468 while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
469 i = (ip->ip_off + ip->ip_len) - q->ip_off;
470 if (i < q->ip_len) {
471 q->ip_len -= i;
472 q->ip_off += i;
473 m_adj(dtom(q), i);
474 break;
475 }
476 q = q->ipf_next;
477 m_freem(dtom(q->ipf_prev));
478 ip_deq(q->ipf_prev);
479 }
480
481 insert:
482 /*
483 * Stick new segment in its place;
484 * check for complete reassembly.
485 */
486 ip_enq(ip, q->ipf_prev);
487 next = 0;
488 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
489 if (q->ip_off != next)
490 return (0);
491 next += q->ip_len;
492 }
493 if (q->ipf_prev->ipf_mff & 1)
494 return (0);
495
496 /*
497 * Reassembly is complete; concatenate fragments.
498 */
499 q = fp->ipq_next;
500 m = dtom(q);
501 t = m->m_next;
502 m->m_next = 0;
503 m_cat(m, t);
504 q = q->ipf_next;
505 while (q != (struct ipasfrag *)fp) {
506 t = dtom(q);
507 q = q->ipf_next;
508 m_cat(m, t);
509 }
510
511 /*
512 * Create header for new ip packet by
513 * modifying header of first packet;
514 * dequeue and discard fragment reassembly header.
515 * Make header visible.
516 */
517 ip = fp->ipq_next;
518 ip->ip_len = next;
519 ip->ipf_mff &= ~1;
520 ((struct ip *)ip)->ip_src = fp->ipq_src;
521 ((struct ip *)ip)->ip_dst = fp->ipq_dst;
522 remque(fp);
523 (void) m_free(dtom(fp));
524 m = dtom(ip);
525 m->m_len += (ip->ip_hl << 2);
526 m->m_data -= (ip->ip_hl << 2);
527 /* some debugging cruft by sklower, below, will go away soon */
528 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
529 register int plen = 0;
530 for (t = m; m; m = m->m_next)
531 plen += m->m_len;
532 t->m_pkthdr.len = plen;
533 }
534 return ((struct ip *)ip);
535
536 dropfrag:
537 ipstat.ips_fragdropped++;
538 m_freem(m);
539 return (0);
540 }
541
542 /*
543 * Free a fragment reassembly header and all
544 * associated datagrams.
545 */
546 void
547 ip_freef(fp)
548 struct ipq *fp;
549 {
550 register struct ipasfrag *q, *p;
551
552 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
553 p = q->ipf_next;
554 ip_deq(q);
555 m_freem(dtom(q));
556 }
557 remque(fp);
558 (void) m_free(dtom(fp));
559 }
560
561 /*
562 * Put an ip fragment on a reassembly chain.
563 * Like insque, but pointers in middle of structure.
564 */
565 void
566 ip_enq(p, prev)
567 register struct ipasfrag *p, *prev;
568 {
569
570 p->ipf_prev = prev;
571 p->ipf_next = prev->ipf_next;
572 prev->ipf_next->ipf_prev = p;
573 prev->ipf_next = p;
574 }
575
576 /*
577 * To ip_enq as remque is to insque.
578 */
579 void
580 ip_deq(p)
581 register struct ipasfrag *p;
582 {
583
584 p->ipf_prev->ipf_next = p->ipf_next;
585 p->ipf_next->ipf_prev = p->ipf_prev;
586 }
587
588 /*
589 * IP timer processing;
590 * if a timer expires on a reassembly
591 * queue, discard it.
592 */
593 void
594 ip_slowtimo()
595 {
596 register struct ipq *fp;
597 int s = splnet();
598
599 fp = ipq.next;
600 if (fp == 0) {
601 splx(s);
602 return;
603 }
604 while (fp != &ipq) {
605 --fp->ipq_ttl;
606 fp = fp->next;
607 if (fp->prev->ipq_ttl == 0) {
608 ipstat.ips_fragtimeout++;
609 ip_freef(fp->prev);
610 }
611 }
612 splx(s);
613 }
614
615 /*
616 * Drain off all datagram fragments.
617 */
618 void
619 ip_drain()
620 {
621
622 while (ipq.next != &ipq) {
623 ipstat.ips_fragdropped++;
624 ip_freef(ipq.next);
625 }
626 }
627
628 /*
629 * Do option processing on a datagram,
630 * possibly discarding it if bad options are encountered,
631 * or forwarding it if source-routed.
632 * Returns 1 if packet has been forwarded/freed,
633 * 0 if the packet should be processed further.
634 */
635 int
636 ip_dooptions(m)
637 struct mbuf *m;
638 {
639 register struct ip *ip = mtod(m, struct ip *);
640 register u_char *cp;
641 register struct ip_timestamp *ipt;
642 register struct in_ifaddr *ia;
643 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
644 struct in_addr *sin, dst;
645 n_time ntime;
646
647 dst = ip->ip_dst;
648 cp = (u_char *)(ip + 1);
649 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
650 for (; cnt > 0; cnt -= optlen, cp += optlen) {
651 opt = cp[IPOPT_OPTVAL];
652 if (opt == IPOPT_EOL)
653 break;
654 if (opt == IPOPT_NOP)
655 optlen = 1;
656 else {
657 optlen = cp[IPOPT_OLEN];
658 if (optlen <= 0 || optlen > cnt) {
659 code = &cp[IPOPT_OLEN] - (u_char *)ip;
660 goto bad;
661 }
662 }
663 switch (opt) {
664
665 default:
666 break;
667
668 /*
669 * Source routing with record.
670 * Find interface with current destination address.
671 * If none on this machine then drop if strictly routed,
672 * or do nothing if loosely routed.
673 * Record interface address and bring up next address
674 * component. If strictly routed make sure next
675 * address is on directly accessible net.
676 */
677 case IPOPT_LSRR:
678 case IPOPT_SSRR:
679 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
680 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
681 goto bad;
682 }
683 ipaddr.sin_addr = ip->ip_dst;
684 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
685 if (ia == 0) {
686 if (opt == IPOPT_SSRR) {
687 type = ICMP_UNREACH;
688 code = ICMP_UNREACH_SRCFAIL;
689 goto bad;
690 }
691 /*
692 * Loose routing, and not at next destination
693 * yet; nothing to do except forward.
694 */
695 break;
696 }
697 off--; /* 0 origin */
698 if (off > optlen - sizeof(struct in_addr)) {
699 /*
700 * End of source route. Should be for us.
701 */
702 save_rte(cp, ip->ip_src);
703 break;
704 }
705 /*
706 * locate outgoing interface
707 */
708 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
709 sizeof(ipaddr.sin_addr));
710 if (opt == IPOPT_SSRR) {
711 #define INA struct in_ifaddr *
712 #define SA struct sockaddr *
713 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
714 ia = (INA)ifa_ifwithnet((SA)&ipaddr);
715 } else
716 ia = ip_rtaddr(ipaddr.sin_addr);
717 if (ia == 0) {
718 type = ICMP_UNREACH;
719 code = ICMP_UNREACH_SRCFAIL;
720 goto bad;
721 }
722 ip->ip_dst = ipaddr.sin_addr;
723 bcopy((caddr_t)&ia->ia_addr.sin_addr,
724 (caddr_t)(cp + off), sizeof(struct in_addr));
725 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
726 /*
727 * Let ip_intr's mcast routing check handle mcast pkts
728 */
729 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
730 break;
731
732 case IPOPT_RR:
733 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
734 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
735 goto bad;
736 }
737 /*
738 * If no space remains, ignore.
739 */
740 off--; /* 0 origin */
741 if (off > optlen - sizeof(struct in_addr))
742 break;
743 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
744 sizeof(ipaddr.sin_addr));
745 /*
746 * locate outgoing interface; if we're the destination,
747 * use the incoming interface (should be same).
748 */
749 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
750 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
751 type = ICMP_UNREACH;
752 code = ICMP_UNREACH_HOST;
753 goto bad;
754 }
755 bcopy((caddr_t)&ia->ia_addr.sin_addr,
756 (caddr_t)(cp + off), sizeof(struct in_addr));
757 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
758 break;
759
760 case IPOPT_TS:
761 code = cp - (u_char *)ip;
762 ipt = (struct ip_timestamp *)cp;
763 if (ipt->ipt_len < 5)
764 goto bad;
765 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
766 if (++ipt->ipt_oflw == 0)
767 goto bad;
768 break;
769 }
770 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
771 switch (ipt->ipt_flg) {
772
773 case IPOPT_TS_TSONLY:
774 break;
775
776 case IPOPT_TS_TSANDADDR:
777 if (ipt->ipt_ptr + sizeof(n_time) +
778 sizeof(struct in_addr) > ipt->ipt_len)
779 goto bad;
780 ipaddr.sin_addr = dst;
781 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
782 m->m_pkthdr.rcvif);
783 if (ia == 0)
784 continue;
785 bcopy((caddr_t)&ia->ia_addr.sin_addr,
786 (caddr_t)sin, sizeof(struct in_addr));
787 ipt->ipt_ptr += sizeof(struct in_addr);
788 break;
789
790 case IPOPT_TS_PRESPEC:
791 if (ipt->ipt_ptr + sizeof(n_time) +
792 sizeof(struct in_addr) > ipt->ipt_len)
793 goto bad;
794 bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
795 sizeof(struct in_addr));
796 if (ifa_ifwithaddr((SA)&ipaddr) == 0)
797 continue;
798 ipt->ipt_ptr += sizeof(struct in_addr);
799 break;
800
801 default:
802 goto bad;
803 }
804 ntime = iptime();
805 bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
806 sizeof(n_time));
807 ipt->ipt_ptr += sizeof(n_time);
808 }
809 }
810 if (forward) {
811 ip_forward(m, 1);
812 return (1);
813 }
814 return (0);
815 bad:
816 ip->ip_len -= ip->ip_hl << 2; /* XXX icmp_error adds in hdr length */
817 icmp_error(m, type, code, 0, 0);
818 ipstat.ips_badoptions++;
819 return (1);
820 }
821
822 /*
823 * Given address of next destination (final or next hop),
824 * return internet address info of interface to be used to get there.
825 */
826 struct in_ifaddr *
827 ip_rtaddr(dst)
828 struct in_addr dst;
829 {
830 register struct sockaddr_in *sin;
831
832 sin = satosin(&ipforward_rt.ro_dst);
833
834 if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
835 if (ipforward_rt.ro_rt) {
836 RTFREE(ipforward_rt.ro_rt);
837 ipforward_rt.ro_rt = 0;
838 }
839 sin->sin_family = AF_INET;
840 sin->sin_len = sizeof(*sin);
841 sin->sin_addr = dst;
842
843 rtalloc(&ipforward_rt);
844 }
845 if (ipforward_rt.ro_rt == 0)
846 return ((struct in_ifaddr *)0);
847 return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
848 }
849
850 /*
851 * Save incoming source route for use in replies,
852 * to be picked up later by ip_srcroute if the receiver is interested.
853 */
854 void
855 save_rte(option, dst)
856 u_char *option;
857 struct in_addr dst;
858 {
859 unsigned olen;
860
861 olen = option[IPOPT_OLEN];
862 #ifdef DIAGNOSTIC
863 if (ipprintfs)
864 printf("save_rte: olen %d\n", olen);
865 #endif
866 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
867 return;
868 bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
869 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
870 ip_srcrt.dst = dst;
871 }
872
873 /*
874 * Retrieve incoming source route for use in replies,
875 * in the same form used by setsockopt.
876 * The first hop is placed before the options, will be removed later.
877 */
878 struct mbuf *
879 ip_srcroute()
880 {
881 register struct in_addr *p, *q;
882 register struct mbuf *m;
883
884 if (ip_nhops == 0)
885 return ((struct mbuf *)0);
886 m = m_get(M_DONTWAIT, MT_SOOPTS);
887 if (m == 0)
888 return ((struct mbuf *)0);
889
890 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
891
892 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
893 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
894 OPTSIZ;
895 #ifdef DIAGNOSTIC
896 if (ipprintfs)
897 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
898 #endif
899
900 /*
901 * First save first hop for return route
902 */
903 p = &ip_srcrt.route[ip_nhops - 1];
904 *(mtod(m, struct in_addr *)) = *p--;
905 #ifdef DIAGNOSTIC
906 if (ipprintfs)
907 printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
908 #endif
909
910 /*
911 * Copy option fields and padding (nop) to mbuf.
912 */
913 ip_srcrt.nop = IPOPT_NOP;
914 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
915 bcopy((caddr_t)&ip_srcrt.nop,
916 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
917 q = (struct in_addr *)(mtod(m, caddr_t) +
918 sizeof(struct in_addr) + OPTSIZ);
919 #undef OPTSIZ
920 /*
921 * Record return path as an IP source route,
922 * reversing the path (pointers are now aligned).
923 */
924 while (p >= ip_srcrt.route) {
925 #ifdef DIAGNOSTIC
926 if (ipprintfs)
927 printf(" %lx", ntohl(q->s_addr));
928 #endif
929 *q++ = *p--;
930 }
931 /*
932 * Last hop goes to final destination.
933 */
934 *q = ip_srcrt.dst;
935 #ifdef DIAGNOSTIC
936 if (ipprintfs)
937 printf(" %lx\n", ntohl(q->s_addr));
938 #endif
939 return (m);
940 }
941
942 /*
943 * Strip out IP options, at higher
944 * level protocol in the kernel.
945 * Second argument is buffer to which options
946 * will be moved, and return value is their length.
947 * XXX should be deleted; last arg currently ignored.
948 */
949 void
950 ip_stripoptions(m, mopt)
951 register struct mbuf *m;
952 struct mbuf *mopt;
953 {
954 register int i;
955 struct ip *ip = mtod(m, struct ip *);
956 register caddr_t opts;
957 int olen;
958
959 olen = (ip->ip_hl<<2) - sizeof (struct ip);
960 opts = (caddr_t)(ip + 1);
961 i = m->m_len - (sizeof (struct ip) + olen);
962 bcopy(opts + olen, opts, (unsigned)i);
963 m->m_len -= olen;
964 if (m->m_flags & M_PKTHDR)
965 m->m_pkthdr.len -= olen;
966 ip->ip_hl = sizeof(struct ip) >> 2;
967 }
968
969 u_char inetctlerrmap[PRC_NCMDS] = {
970 0, 0, 0, 0,
971 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
972 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
973 EMSGSIZE, EHOSTUNREACH, 0, 0,
974 0, 0, 0, 0,
975 ENOPROTOOPT
976 };
977
978 /*
979 * Forward a packet. If some error occurs return the sender
980 * an icmp packet. Note we can't always generate a meaningful
981 * icmp message because icmp doesn't have a large enough repertoire
982 * of codes and types.
983 *
984 * If not forwarding, just drop the packet. This could be confusing
985 * if ipforwarding was zero but some routing protocol was advancing
986 * us as a gateway to somewhere. However, we must let the routing
987 * protocol deal with that.
988 *
989 * The srcrt parameter indicates whether the packet is being forwarded
990 * via a source route.
991 */
992 void
993 ip_forward(m, srcrt)
994 struct mbuf *m;
995 int srcrt;
996 {
997 register struct ip *ip = mtod(m, struct ip *);
998 register struct sockaddr_in *sin;
999 register struct rtentry *rt;
1000 int error, type = 0, code;
1001 struct mbuf *mcopy;
1002 n_long dest;
1003 struct ifnet *destifp;
1004
1005 dest = 0;
1006 #ifdef DIAGNOSTIC
1007 if (ipprintfs)
1008 printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
1009 ip->ip_dst, ip->ip_ttl);
1010 #endif
1011 if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1012 ipstat.ips_cantforward++;
1013 m_freem(m);
1014 return;
1015 }
1016 HTONS(ip->ip_id);
1017 if (ip->ip_ttl <= IPTTLDEC) {
1018 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1019 return;
1020 }
1021 ip->ip_ttl -= IPTTLDEC;
1022
1023 sin = satosin(&ipforward_rt.ro_dst);
1024 if ((rt = ipforward_rt.ro_rt) == 0 ||
1025 ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1026 if (ipforward_rt.ro_rt) {
1027 RTFREE(ipforward_rt.ro_rt);
1028 ipforward_rt.ro_rt = 0;
1029 }
1030 sin->sin_family = AF_INET;
1031 sin->sin_len = sizeof(*sin);
1032 sin->sin_addr = ip->ip_dst;
1033
1034 rtalloc(&ipforward_rt);
1035 if (ipforward_rt.ro_rt == 0) {
1036 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1037 return;
1038 }
1039 rt = ipforward_rt.ro_rt;
1040 }
1041
1042 /*
1043 * Save at most 64 bytes of the packet in case
1044 * we need to generate an ICMP message to the src.
1045 */
1046 mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1047
1048 /*
1049 * If forwarding packet using same interface that it came in on,
1050 * perhaps should send a redirect to sender to shortcut a hop.
1051 * Only send redirect if source is sending directly to us,
1052 * and if packet was not source routed (or has any options).
1053 * Also, don't send redirect if forwarding using a default route
1054 * or a route modified by a redirect.
1055 */
1056 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1057 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1058 satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1059 ipsendredirects && !srcrt) {
1060 if (rt->rt_ifa &&
1061 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1062 ifatoia(rt->rt_ifa)->ia_subnet) {
1063 if (rt->rt_flags & RTF_GATEWAY)
1064 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1065 else
1066 dest = ip->ip_dst.s_addr;
1067 /* Router requirements says to only send host redirects */
1068 type = ICMP_REDIRECT;
1069 code = ICMP_REDIRECT_HOST;
1070 #ifdef DIAGNOSTIC
1071 if (ipprintfs)
1072 printf("redirect (%d) to %lx\n", code, (u_int32_t)dest);
1073 #endif
1074 }
1075 }
1076
1077 error = ip_output(m, (struct mbuf *)0, &ipforward_rt, IP_FORWARDING
1078 #ifdef DIRECTED_BROADCAST
1079 | IP_ALLOWBROADCAST
1080 #endif
1081 , 0);
1082 if (error)
1083 ipstat.ips_cantforward++;
1084 else {
1085 ipstat.ips_forward++;
1086 if (type)
1087 ipstat.ips_redirectsent++;
1088 else {
1089 if (mcopy)
1090 m_freem(mcopy);
1091 return;
1092 }
1093 }
1094 if (mcopy == NULL)
1095 return;
1096 destifp = NULL;
1097
1098 switch (error) {
1099
1100 case 0: /* forwarded, but need redirect */
1101 /* type, code set above */
1102 break;
1103
1104 case ENETUNREACH: /* shouldn't happen, checked above */
1105 case EHOSTUNREACH:
1106 case ENETDOWN:
1107 case EHOSTDOWN:
1108 default:
1109 type = ICMP_UNREACH;
1110 code = ICMP_UNREACH_HOST;
1111 break;
1112
1113 case EMSGSIZE:
1114 type = ICMP_UNREACH;
1115 code = ICMP_UNREACH_NEEDFRAG;
1116 if (ipforward_rt.ro_rt)
1117 destifp = ipforward_rt.ro_rt->rt_ifp;
1118 ipstat.ips_cantfrag++;
1119 break;
1120
1121 case ENOBUFS:
1122 type = ICMP_SOURCEQUENCH;
1123 code = 0;
1124 break;
1125 }
1126 icmp_error(mcopy, type, code, dest, destifp);
1127 }
1128
1129 int
1130 ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
1131 int *name;
1132 u_int namelen;
1133 void *oldp;
1134 size_t *oldlenp;
1135 void *newp;
1136 size_t newlen;
1137 {
1138 /* All sysctl names at this level are terminal. */
1139 if (namelen != 1)
1140 return (ENOTDIR);
1141
1142 switch (name[0]) {
1143 case IPCTL_FORWARDING:
1144 return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
1145 case IPCTL_SENDREDIRECTS:
1146 return (sysctl_int(oldp, oldlenp, newp, newlen,
1147 &ipsendredirects));
1148 case IPCTL_DEFTTL:
1149 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
1150 #ifdef notyet
1151 case IPCTL_DEFMTU:
1152 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
1153 #endif
1154 default:
1155 return (EOPNOTSUPP);
1156 }
1157 /* NOTREACHED */
1158 }
1159