ip_input.c revision 1.229 1 /* $NetBSD: ip_input.c,v 1.229 2006/08/30 18:55:09 christos Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.229 2006/08/30 18:55:09 christos Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_gateway.h"
105 #include "opt_pfil_hooks.h"
106 #include "opt_ipsec.h"
107 #include "opt_mrouting.h"
108 #include "opt_mbuftrace.h"
109 #include "opt_inet_csum.h"
110
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/domain.h>
116 #include <sys/protosw.h>
117 #include <sys/socket.h>
118 #include <sys/socketvar.h>
119 #include <sys/errno.h>
120 #include <sys/time.h>
121 #include <sys/kernel.h>
122 #include <sys/pool.h>
123 #include <sys/sysctl.h>
124
125 #include <net/if.h>
126 #include <net/if_dl.h>
127 #include <net/route.h>
128 #include <net/pfil.h>
129
130 #include <netinet/in.h>
131 #include <netinet/in_systm.h>
132 #include <netinet/ip.h>
133 #include <netinet/in_pcb.h>
134 #include <netinet/in_proto.h>
135 #include <netinet/in_var.h>
136 #include <netinet/ip_var.h>
137 #include <netinet/ip_icmp.h>
138 /* just for gif_ttl */
139 #include <netinet/in_gif.h>
140 #include "gif.h"
141 #include <net/if_gre.h>
142 #include "gre.h"
143
144 #ifdef MROUTING
145 #include <netinet/ip_mroute.h>
146 #endif
147
148 #ifdef IPSEC
149 #include <netinet6/ipsec.h>
150 #include <netkey/key.h>
151 #endif
152 #ifdef FAST_IPSEC
153 #include <netipsec/ipsec.h>
154 #include <netipsec/key.h>
155 #endif /* FAST_IPSEC*/
156
157 #ifndef IPFORWARDING
158 #ifdef GATEWAY
159 #define IPFORWARDING 1 /* forward IP packets not for us */
160 #else /* GATEWAY */
161 #define IPFORWARDING 0 /* don't forward IP packets not for us */
162 #endif /* GATEWAY */
163 #endif /* IPFORWARDING */
164 #ifndef IPSENDREDIRECTS
165 #define IPSENDREDIRECTS 1
166 #endif
167 #ifndef IPFORWSRCRT
168 #define IPFORWSRCRT 1 /* forward source-routed packets */
169 #endif
170 #ifndef IPALLOWSRCRT
171 #define IPALLOWSRCRT 1 /* allow source-routed packets */
172 #endif
173 #ifndef IPMTUDISC
174 #define IPMTUDISC 1
175 #endif
176 #ifndef IPMTUDISCTIMEOUT
177 #define IPMTUDISCTIMEOUT (10 * 60) /* as per RFC 1191 */
178 #endif
179
180 /*
181 * Note: DIRECTED_BROADCAST is handled this way so that previous
182 * configuration using this option will Just Work.
183 */
184 #ifndef IPDIRECTEDBCAST
185 #ifdef DIRECTED_BROADCAST
186 #define IPDIRECTEDBCAST 1
187 #else
188 #define IPDIRECTEDBCAST 0
189 #endif /* DIRECTED_BROADCAST */
190 #endif /* IPDIRECTEDBCAST */
191 int ipforwarding = IPFORWARDING;
192 int ipsendredirects = IPSENDREDIRECTS;
193 int ip_defttl = IPDEFTTL;
194 int ip_forwsrcrt = IPFORWSRCRT;
195 int ip_directedbcast = IPDIRECTEDBCAST;
196 int ip_allowsrcrt = IPALLOWSRCRT;
197 int ip_mtudisc = IPMTUDISC;
198 int ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
199 #ifdef DIAGNOSTIC
200 int ipprintfs = 0;
201 #endif
202
203 int ip_do_randomid = 0;
204
205 /*
206 * XXX - Setting ip_checkinterface mostly implements the receive side of
207 * the Strong ES model described in RFC 1122, but since the routing table
208 * and transmit implementation do not implement the Strong ES model,
209 * setting this to 1 results in an odd hybrid.
210 *
211 * XXX - ip_checkinterface currently must be disabled if you use ipnat
212 * to translate the destination address to another local interface.
213 *
214 * XXX - ip_checkinterface must be disabled if you add IP aliases
215 * to the loopback interface instead of the interface where the
216 * packets for those addresses are received.
217 */
218 int ip_checkinterface = 0;
219
220
221 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
222
223 int ipqmaxlen = IFQ_MAXLEN;
224 u_long in_ifaddrhash; /* size of hash table - 1 */
225 int in_ifaddrentries; /* total number of addrs */
226 struct in_ifaddrhead in_ifaddrhead;
227 struct in_ifaddrhashhead *in_ifaddrhashtbl;
228 u_long in_multihash; /* size of hash table - 1 */
229 int in_multientries; /* total number of addrs */
230 struct in_multihashhead *in_multihashtbl;
231 struct ifqueue ipintrq;
232 struct ipstat ipstat;
233 uint16_t ip_id;
234
235 #ifdef PFIL_HOOKS
236 struct pfil_head inet_pfil_hook;
237 #endif
238
239 /*
240 * Cached copy of nmbclusters. If nbclusters is different,
241 * recalculate IP parameters derived from nmbclusters.
242 */
243 static int ip_nmbclusters; /* copy of nmbclusters */
244 static void ip_nmbclusters_changed(void); /* recalc limits */
245
246 #define CHECK_NMBCLUSTER_PARAMS() \
247 do { \
248 if (__predict_false(ip_nmbclusters != nmbclusters)) \
249 ip_nmbclusters_changed(); \
250 } while (/*CONSTCOND*/0)
251
252 /* IP datagram reassembly queues (hashed) */
253 #define IPREASS_NHASH_LOG2 6
254 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
255 #define IPREASS_HMASK (IPREASS_NHASH - 1)
256 #define IPREASS_HASH(x,y) \
257 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
258 struct ipqhead ipq[IPREASS_NHASH];
259 int ipq_locked;
260 static int ip_nfragpackets; /* packets in reass queue */
261 static int ip_nfrags; /* total fragments in reass queues */
262
263 int ip_maxfragpackets = 200; /* limit on packets. XXX sysctl */
264 int ip_maxfrags; /* limit on fragments. XXX sysctl */
265
266
267 /*
268 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
269 * IP reassembly queue buffer managment.
270 *
271 * We keep a count of total IP fragments (NB: not fragmented packets!)
272 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
273 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
274 * total fragments in reassembly queues.This AIMD policy avoids
275 * repeatedly deleting single packets under heavy fragmentation load
276 * (e.g., from lossy NFS peers).
277 */
278 static u_int ip_reass_ttl_decr(u_int ticks);
279 static void ip_reass_drophalf(void);
280
281
282 static inline int ipq_lock_try(void);
283 static inline void ipq_unlock(void);
284
285 static inline int
286 ipq_lock_try(void)
287 {
288 int s;
289
290 /*
291 * Use splvm() -- we're blocking things that would cause
292 * mbuf allocation.
293 */
294 s = splvm();
295 if (ipq_locked) {
296 splx(s);
297 return (0);
298 }
299 ipq_locked = 1;
300 splx(s);
301 return (1);
302 }
303
304 static inline void
305 ipq_unlock(void)
306 {
307 int s;
308
309 s = splvm();
310 ipq_locked = 0;
311 splx(s);
312 }
313
314 #ifdef DIAGNOSTIC
315 #define IPQ_LOCK() \
316 do { \
317 if (ipq_lock_try() == 0) { \
318 printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
319 panic("ipq_lock"); \
320 } \
321 } while (/*CONSTCOND*/ 0)
322 #define IPQ_LOCK_CHECK() \
323 do { \
324 if (ipq_locked == 0) { \
325 printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
326 panic("ipq lock check"); \
327 } \
328 } while (/*CONSTCOND*/ 0)
329 #else
330 #define IPQ_LOCK() (void) ipq_lock_try()
331 #define IPQ_LOCK_CHECK() /* nothing */
332 #endif
333
334 #define IPQ_UNLOCK() ipq_unlock()
335
336 POOL_INIT(inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", NULL);
337 POOL_INIT(ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl", NULL);
338
339 #ifdef INET_CSUM_COUNTERS
340 #include <sys/device.h>
341
342 struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
343 NULL, "inet", "hwcsum bad");
344 struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
345 NULL, "inet", "hwcsum ok");
346 struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
347 NULL, "inet", "swcsum");
348
349 #define INET_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
350
351 EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
352 EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
353 EVCNT_ATTACH_STATIC(ip_swcsum);
354
355 #else
356
357 #define INET_CSUM_COUNTER_INCR(ev) /* nothing */
358
359 #endif /* INET_CSUM_COUNTERS */
360
361 /*
362 * We need to save the IP options in case a protocol wants to respond
363 * to an incoming packet over the same route if the packet got here
364 * using IP source routing. This allows connection establishment and
365 * maintenance when the remote end is on a network that is not known
366 * to us.
367 */
368 int ip_nhops = 0;
369 static struct ip_srcrt {
370 struct in_addr dst; /* final destination */
371 char nop; /* one NOP to align */
372 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
373 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
374 } ip_srcrt;
375
376 static void save_rte(u_char *, struct in_addr);
377
378 #ifdef MBUFTRACE
379 struct mowner ip_rx_mowner = { "internet", "rx" };
380 struct mowner ip_tx_mowner = { "internet", "tx" };
381 #endif
382
383 /*
384 * Compute IP limits derived from the value of nmbclusters.
385 */
386 static void
387 ip_nmbclusters_changed(void)
388 {
389 ip_maxfrags = nmbclusters / 4;
390 ip_nmbclusters = nmbclusters;
391 }
392
393 /*
394 * IP initialization: fill in IP protocol switch table.
395 * All protocols not implemented in kernel go to raw IP protocol handler.
396 */
397 void
398 ip_init(void)
399 {
400 const struct protosw *pr;
401 int i;
402
403 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
404 if (pr == 0)
405 panic("ip_init");
406 for (i = 0; i < IPPROTO_MAX; i++)
407 ip_protox[i] = pr - inetsw;
408 for (pr = inetdomain.dom_protosw;
409 pr < inetdomain.dom_protoswNPROTOSW; pr++)
410 if (pr->pr_domain->dom_family == PF_INET &&
411 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
412 ip_protox[pr->pr_protocol] = pr - inetsw;
413
414 for (i = 0; i < IPREASS_NHASH; i++)
415 LIST_INIT(&ipq[i]);
416
417 ip_id = time_second & 0xfffff;
418
419 ipintrq.ifq_maxlen = ipqmaxlen;
420 ip_nmbclusters_changed();
421
422 TAILQ_INIT(&in_ifaddrhead);
423 in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IFADDR,
424 M_WAITOK, &in_ifaddrhash);
425 in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IPMADDR,
426 M_WAITOK, &in_multihash);
427 ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
428 #ifdef GATEWAY
429 ipflow_init();
430 #endif
431
432 #ifdef PFIL_HOOKS
433 /* Register our Packet Filter hook. */
434 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
435 inet_pfil_hook.ph_af = AF_INET;
436 i = pfil_head_register(&inet_pfil_hook);
437 if (i != 0)
438 printf("ip_init: WARNING: unable to register pfil hook, "
439 "error %d\n", i);
440 #endif /* PFIL_HOOKS */
441
442 #ifdef MBUFTRACE
443 MOWNER_ATTACH(&ip_tx_mowner);
444 MOWNER_ATTACH(&ip_rx_mowner);
445 #endif /* MBUFTRACE */
446 }
447
448 struct sockaddr_in ipaddr = {
449 .sin_len = sizeof(ipaddr),
450 .sin_family = AF_INET,
451 };
452 struct route ipforward_rt;
453
454 /*
455 * IP software interrupt routine
456 */
457 void
458 ipintr(void)
459 {
460 int s;
461 struct mbuf *m;
462
463 while (1) {
464 s = splnet();
465 IF_DEQUEUE(&ipintrq, m);
466 splx(s);
467 if (m == 0)
468 return;
469 MCLAIM(m, &ip_rx_mowner);
470 ip_input(m);
471 }
472 }
473
474 /*
475 * Ip input routine. Checksum and byte swap header. If fragmented
476 * try to reassemble. Process options. Pass to next level.
477 */
478 void
479 ip_input(struct mbuf *m)
480 {
481 struct ip *ip = NULL;
482 struct ipq *fp;
483 struct in_ifaddr *ia;
484 struct ifaddr *ifa;
485 struct ipqent *ipqe;
486 int hlen = 0, mff, len;
487 int downmatch;
488 int checkif;
489 int srcrt = 0;
490 u_int hash;
491 #ifdef FAST_IPSEC
492 struct m_tag *mtag;
493 struct tdb_ident *tdbi;
494 struct secpolicy *sp;
495 int s, error;
496 #endif /* FAST_IPSEC */
497
498 MCLAIM(m, &ip_rx_mowner);
499 #ifdef DIAGNOSTIC
500 if ((m->m_flags & M_PKTHDR) == 0)
501 panic("ipintr no HDR");
502 #endif
503
504 /*
505 * If no IP addresses have been set yet but the interfaces
506 * are receiving, can't do anything with incoming packets yet.
507 */
508 if (TAILQ_FIRST(&in_ifaddrhead) == 0)
509 goto bad;
510 ipstat.ips_total++;
511 /*
512 * If the IP header is not aligned, slurp it up into a new
513 * mbuf with space for link headers, in the event we forward
514 * it. Otherwise, if it is aligned, make sure the entire
515 * base IP header is in the first mbuf of the chain.
516 */
517 if (IP_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) {
518 if ((m = m_copyup(m, sizeof(struct ip),
519 (max_linkhdr + 3) & ~3)) == NULL) {
520 /* XXXJRT new stat, please */
521 ipstat.ips_toosmall++;
522 return;
523 }
524 } else if (__predict_false(m->m_len < sizeof (struct ip))) {
525 if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
526 ipstat.ips_toosmall++;
527 return;
528 }
529 }
530 ip = mtod(m, struct ip *);
531 if (ip->ip_v != IPVERSION) {
532 ipstat.ips_badvers++;
533 goto bad;
534 }
535 hlen = ip->ip_hl << 2;
536 if (hlen < sizeof(struct ip)) { /* minimum header length */
537 ipstat.ips_badhlen++;
538 goto bad;
539 }
540 if (hlen > m->m_len) {
541 if ((m = m_pullup(m, hlen)) == 0) {
542 ipstat.ips_badhlen++;
543 return;
544 }
545 ip = mtod(m, struct ip *);
546 }
547
548 /*
549 * RFC1122: packets with a multicast source address are
550 * not allowed.
551 */
552 if (IN_MULTICAST(ip->ip_src.s_addr)) {
553 ipstat.ips_badaddr++;
554 goto bad;
555 }
556
557 /* 127/8 must not appear on wire - RFC1122 */
558 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
559 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
560 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
561 ipstat.ips_badaddr++;
562 goto bad;
563 }
564 }
565
566 switch (m->m_pkthdr.csum_flags &
567 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
568 M_CSUM_IPv4_BAD)) {
569 case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
570 INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
571 goto badcsum;
572
573 case M_CSUM_IPv4:
574 /* Checksum was okay. */
575 INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
576 break;
577
578 default:
579 /*
580 * Must compute it ourselves. Maybe skip checksum on
581 * loopback interfaces.
582 */
583 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
584 IFF_LOOPBACK) || ip_do_loopback_cksum)) {
585 INET_CSUM_COUNTER_INCR(&ip_swcsum);
586 if (in_cksum(m, hlen) != 0)
587 goto badcsum;
588 }
589 break;
590 }
591
592 /* Retrieve the packet length. */
593 len = ntohs(ip->ip_len);
594
595 /*
596 * Check for additional length bogosity
597 */
598 if (len < hlen) {
599 ipstat.ips_badlen++;
600 goto bad;
601 }
602
603 /*
604 * Check that the amount of data in the buffers
605 * is as at least much as the IP header would have us expect.
606 * Trim mbufs if longer than we expect.
607 * Drop packet if shorter than we expect.
608 */
609 if (m->m_pkthdr.len < len) {
610 ipstat.ips_tooshort++;
611 goto bad;
612 }
613 if (m->m_pkthdr.len > len) {
614 if (m->m_len == m->m_pkthdr.len) {
615 m->m_len = len;
616 m->m_pkthdr.len = len;
617 } else
618 m_adj(m, len - m->m_pkthdr.len);
619 }
620
621 #if defined(IPSEC)
622 /* ipflow (IP fast forwarding) is not compatible with IPsec. */
623 m->m_flags &= ~M_CANFASTFWD;
624 #else
625 /*
626 * Assume that we can create a fast-forward IP flow entry
627 * based on this packet.
628 */
629 m->m_flags |= M_CANFASTFWD;
630 #endif
631
632 #ifdef PFIL_HOOKS
633 /*
634 * Run through list of hooks for input packets. If there are any
635 * filters which require that additional packets in the flow are
636 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
637 * Note that filters must _never_ set this flag, as another filter
638 * in the list may have previously cleared it.
639 */
640 /*
641 * let ipfilter look at packet on the wire,
642 * not the decapsulated packet.
643 */
644 #ifdef IPSEC
645 if (!ipsec_getnhist(m))
646 #elif defined(FAST_IPSEC)
647 if (!ipsec_indone(m))
648 #else
649 if (1)
650 #endif
651 {
652 struct in_addr odst;
653
654 odst = ip->ip_dst;
655 if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
656 PFIL_IN) != 0)
657 return;
658 if (m == NULL)
659 return;
660 ip = mtod(m, struct ip *);
661 hlen = ip->ip_hl << 2;
662 /*
663 * XXX The setting of "srcrt" here is to prevent ip_forward()
664 * from generating ICMP redirects for packets that have
665 * been redirected by a hook back out on to the same LAN that
666 * they came from and is not an indication that the packet
667 * is being inffluenced by source routing options. This
668 * allows things like
669 * "rdr tlp0 0/0 port 80 -> 1.1.1.200 3128 tcp"
670 * where tlp0 is both on the 1.1.1.0/24 network and is the
671 * default route for hosts on 1.1.1.0/24. Of course this
672 * also requires a "map tlp0 ..." to complete the story.
673 * One might argue whether or not this kind of network config.
674 * should be supported in this manner...
675 */
676 srcrt = (odst.s_addr != ip->ip_dst.s_addr);
677 }
678 #endif /* PFIL_HOOKS */
679
680 #ifdef ALTQ
681 /* XXX Temporary until ALTQ is changed to use a pfil hook */
682 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
683 /* packet dropped by traffic conditioner */
684 return;
685 }
686 #endif
687
688 /*
689 * Process options and, if not destined for us,
690 * ship it on. ip_dooptions returns 1 when an
691 * error was detected (causing an icmp message
692 * to be sent and the original packet to be freed).
693 */
694 ip_nhops = 0; /* for source routed packets */
695 if (hlen > sizeof (struct ip) && ip_dooptions(m))
696 return;
697
698 /*
699 * Enable a consistency check between the destination address
700 * and the arrival interface for a unicast packet (the RFC 1122
701 * strong ES model) if IP forwarding is disabled and the packet
702 * is not locally generated.
703 *
704 * XXX - Checking also should be disabled if the destination
705 * address is ipnat'ed to a different interface.
706 *
707 * XXX - Checking is incompatible with IP aliases added
708 * to the loopback interface instead of the interface where
709 * the packets are received.
710 *
711 * XXX - We need to add a per ifaddr flag for this so that
712 * we get finer grain control.
713 */
714 checkif = ip_checkinterface && (ipforwarding == 0) &&
715 (m->m_pkthdr.rcvif != NULL) &&
716 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
717
718 /*
719 * Check our list of addresses, to see if the packet is for us.
720 *
721 * Traditional 4.4BSD did not consult IFF_UP at all.
722 * The behavior here is to treat addresses on !IFF_UP interface
723 * as not mine.
724 */
725 downmatch = 0;
726 LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
727 if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
728 if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
729 continue;
730 if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
731 break;
732 else
733 downmatch++;
734 }
735 }
736 if (ia != NULL)
737 goto ours;
738 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
739 IFADDR_FOREACH(ifa, m->m_pkthdr.rcvif) {
740 if (ifa->ifa_addr->sa_family != AF_INET)
741 continue;
742 ia = ifatoia(ifa);
743 if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
744 in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
745 /*
746 * Look for all-0's host part (old broadcast addr),
747 * either for subnet or net.
748 */
749 ip->ip_dst.s_addr == ia->ia_subnet ||
750 ip->ip_dst.s_addr == ia->ia_net)
751 goto ours;
752 /*
753 * An interface with IP address zero accepts
754 * all packets that arrive on that interface.
755 */
756 if (in_nullhost(ia->ia_addr.sin_addr))
757 goto ours;
758 }
759 }
760 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
761 struct in_multi *inm;
762 #ifdef MROUTING
763 extern struct socket *ip_mrouter;
764
765 if (ip_mrouter) {
766 /*
767 * If we are acting as a multicast router, all
768 * incoming multicast packets are passed to the
769 * kernel-level multicast forwarding function.
770 * The packet is returned (relatively) intact; if
771 * ip_mforward() returns a non-zero value, the packet
772 * must be discarded, else it may be accepted below.
773 *
774 * (The IP ident field is put in the same byte order
775 * as expected when ip_mforward() is called from
776 * ip_output().)
777 */
778 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
779 ipstat.ips_cantforward++;
780 m_freem(m);
781 return;
782 }
783
784 /*
785 * The process-level routing demon needs to receive
786 * all multicast IGMP packets, whether or not this
787 * host belongs to their destination groups.
788 */
789 if (ip->ip_p == IPPROTO_IGMP)
790 goto ours;
791 ipstat.ips_forward++;
792 }
793 #endif
794 /*
795 * See if we belong to the destination multicast group on the
796 * arrival interface.
797 */
798 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
799 if (inm == NULL) {
800 ipstat.ips_cantforward++;
801 m_freem(m);
802 return;
803 }
804 goto ours;
805 }
806 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
807 in_nullhost(ip->ip_dst))
808 goto ours;
809
810 /*
811 * Not for us; forward if possible and desirable.
812 */
813 if (ipforwarding == 0) {
814 ipstat.ips_cantforward++;
815 m_freem(m);
816 } else {
817 /*
818 * If ip_dst matched any of my address on !IFF_UP interface,
819 * and there's no IFF_UP interface that matches ip_dst,
820 * send icmp unreach. Forwarding it will result in in-kernel
821 * forwarding loop till TTL goes to 0.
822 */
823 if (downmatch) {
824 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
825 ipstat.ips_cantforward++;
826 return;
827 }
828 #ifdef IPSEC
829 if (ipsec4_in_reject(m, NULL)) {
830 ipsecstat.in_polvio++;
831 goto bad;
832 }
833 #endif
834 #ifdef FAST_IPSEC
835 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
836 s = splsoftnet();
837 if (mtag != NULL) {
838 tdbi = (struct tdb_ident *)(mtag + 1);
839 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
840 } else {
841 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
842 IP_FORWARDING, &error);
843 }
844 if (sp == NULL) { /* NB: can happen if error */
845 splx(s);
846 /*XXX error stat???*/
847 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
848 goto bad;
849 }
850
851 /*
852 * Check security policy against packet attributes.
853 */
854 error = ipsec_in_reject(sp, m);
855 KEY_FREESP(&sp);
856 splx(s);
857 if (error) {
858 ipstat.ips_cantforward++;
859 goto bad;
860 }
861
862 /*
863 * Peek at the outbound SP for this packet to determine if
864 * it's a Fast Forward candidate.
865 */
866 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
867 if (mtag != NULL)
868 m->m_flags &= ~M_CANFASTFWD;
869 else {
870 s = splsoftnet();
871 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
872 (IP_FORWARDING |
873 (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
874 &error, NULL);
875 if (sp != NULL) {
876 m->m_flags &= ~M_CANFASTFWD;
877 KEY_FREESP(&sp);
878 }
879 splx(s);
880 }
881 #endif /* FAST_IPSEC */
882
883 ip_forward(m, srcrt);
884 }
885 return;
886
887 ours:
888 /*
889 * If offset or IP_MF are set, must reassemble.
890 * Otherwise, nothing need be done.
891 * (We could look in the reassembly queue to see
892 * if the packet was previously fragmented,
893 * but it's not worth the time; just let them time out.)
894 */
895 if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
896
897 /*
898 * Look for queue of fragments
899 * of this datagram.
900 */
901 IPQ_LOCK();
902 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
903 /* XXX LIST_FOREACH(fp, &ipq[hash], ipq_q) */
904 for (fp = LIST_FIRST(&ipq[hash]); fp != NULL;
905 fp = LIST_NEXT(fp, ipq_q)) {
906 if (ip->ip_id == fp->ipq_id &&
907 in_hosteq(ip->ip_src, fp->ipq_src) &&
908 in_hosteq(ip->ip_dst, fp->ipq_dst) &&
909 ip->ip_p == fp->ipq_p)
910 goto found;
911
912 }
913 fp = 0;
914 found:
915
916 /*
917 * Adjust ip_len to not reflect header,
918 * set ipqe_mff if more fragments are expected,
919 * convert offset of this to bytes.
920 */
921 ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
922 mff = (ip->ip_off & htons(IP_MF)) != 0;
923 if (mff) {
924 /*
925 * Make sure that fragments have a data length
926 * that's a non-zero multiple of 8 bytes.
927 */
928 if (ntohs(ip->ip_len) == 0 ||
929 (ntohs(ip->ip_len) & 0x7) != 0) {
930 ipstat.ips_badfrags++;
931 IPQ_UNLOCK();
932 goto bad;
933 }
934 }
935 ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
936
937 /*
938 * If datagram marked as having more fragments
939 * or if this is not the first fragment,
940 * attempt reassembly; if it succeeds, proceed.
941 */
942 if (mff || ip->ip_off != htons(0)) {
943 ipstat.ips_fragments++;
944 ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
945 if (ipqe == NULL) {
946 ipstat.ips_rcvmemdrop++;
947 IPQ_UNLOCK();
948 goto bad;
949 }
950 ipqe->ipqe_mff = mff;
951 ipqe->ipqe_m = m;
952 ipqe->ipqe_ip = ip;
953 m = ip_reass(ipqe, fp, &ipq[hash]);
954 if (m == 0) {
955 IPQ_UNLOCK();
956 return;
957 }
958 ipstat.ips_reassembled++;
959 ip = mtod(m, struct ip *);
960 hlen = ip->ip_hl << 2;
961 ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
962 } else
963 if (fp)
964 ip_freef(fp);
965 IPQ_UNLOCK();
966 }
967
968 #if defined(IPSEC)
969 /*
970 * enforce IPsec policy checking if we are seeing last header.
971 * note that we do not visit this with protocols with pcb layer
972 * code - like udp/tcp/raw ip.
973 */
974 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
975 ipsec4_in_reject(m, NULL)) {
976 ipsecstat.in_polvio++;
977 goto bad;
978 }
979 #endif
980 #ifdef FAST_IPSEC
981 /*
982 * enforce IPsec policy checking if we are seeing last header.
983 * note that we do not visit this with protocols with pcb layer
984 * code - like udp/tcp/raw ip.
985 */
986 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
987 /*
988 * Check if the packet has already had IPsec processing
989 * done. If so, then just pass it along. This tag gets
990 * set during AH, ESP, etc. input handling, before the
991 * packet is returned to the ip input queue for delivery.
992 */
993 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
994 s = splsoftnet();
995 if (mtag != NULL) {
996 tdbi = (struct tdb_ident *)(mtag + 1);
997 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
998 } else {
999 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1000 IP_FORWARDING, &error);
1001 }
1002 if (sp != NULL) {
1003 /*
1004 * Check security policy against packet attributes.
1005 */
1006 error = ipsec_in_reject(sp, m);
1007 KEY_FREESP(&sp);
1008 } else {
1009 /* XXX error stat??? */
1010 error = EINVAL;
1011 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1012 goto bad;
1013 }
1014 splx(s);
1015 if (error)
1016 goto bad;
1017 }
1018 #endif /* FAST_IPSEC */
1019
1020 /*
1021 * Switch out to protocol's input routine.
1022 */
1023 #if IFA_STATS
1024 if (ia && ip)
1025 ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
1026 #endif
1027 ipstat.ips_delivered++;
1028 {
1029 int off = hlen, nh = ip->ip_p;
1030
1031 (*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
1032 return;
1033 }
1034 bad:
1035 m_freem(m);
1036 return;
1037
1038 badcsum:
1039 ipstat.ips_badsum++;
1040 m_freem(m);
1041 }
1042
1043 /*
1044 * Take incoming datagram fragment and try to
1045 * reassemble it into whole datagram. If a chain for
1046 * reassembly of this datagram already exists, then it
1047 * is given as fp; otherwise have to make a chain.
1048 */
1049 struct mbuf *
1050 ip_reass(struct ipqent *ipqe, struct ipq *fp, struct ipqhead *ipqhead)
1051 {
1052 struct mbuf *m = ipqe->ipqe_m;
1053 struct ipqent *nq, *p, *q;
1054 struct ip *ip;
1055 struct mbuf *t;
1056 int hlen = ipqe->ipqe_ip->ip_hl << 2;
1057 int i, next;
1058
1059 IPQ_LOCK_CHECK();
1060
1061 /*
1062 * Presence of header sizes in mbufs
1063 * would confuse code below.
1064 */
1065 m->m_data += hlen;
1066 m->m_len -= hlen;
1067
1068 #ifdef notyet
1069 /* make sure fragment limit is up-to-date */
1070 CHECK_NMBCLUSTER_PARAMS();
1071
1072 /* If we have too many fragments, drop the older half. */
1073 if (ip_nfrags >= ip_maxfrags)
1074 ip_reass_drophalf(void);
1075 #endif
1076
1077 /*
1078 * We are about to add a fragment; increment frag count.
1079 */
1080 ip_nfrags++;
1081
1082 /*
1083 * If first fragment to arrive, create a reassembly queue.
1084 */
1085 if (fp == 0) {
1086 /*
1087 * Enforce upper bound on number of fragmented packets
1088 * for which we attempt reassembly;
1089 * If maxfrag is 0, never accept fragments.
1090 * If maxfrag is -1, accept all fragments without limitation.
1091 */
1092 if (ip_maxfragpackets < 0)
1093 ;
1094 else if (ip_nfragpackets >= ip_maxfragpackets)
1095 goto dropfrag;
1096 ip_nfragpackets++;
1097 MALLOC(fp, struct ipq *, sizeof (struct ipq),
1098 M_FTABLE, M_NOWAIT);
1099 if (fp == NULL)
1100 goto dropfrag;
1101 LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
1102 fp->ipq_nfrags = 1;
1103 fp->ipq_ttl = IPFRAGTTL;
1104 fp->ipq_p = ipqe->ipqe_ip->ip_p;
1105 fp->ipq_id = ipqe->ipqe_ip->ip_id;
1106 TAILQ_INIT(&fp->ipq_fragq);
1107 fp->ipq_src = ipqe->ipqe_ip->ip_src;
1108 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
1109 p = NULL;
1110 goto insert;
1111 } else {
1112 fp->ipq_nfrags++;
1113 }
1114
1115 /*
1116 * Find a segment which begins after this one does.
1117 */
1118 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1119 p = q, q = TAILQ_NEXT(q, ipqe_q))
1120 if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
1121 break;
1122
1123 /*
1124 * If there is a preceding segment, it may provide some of
1125 * our data already. If so, drop the data from the incoming
1126 * segment. If it provides all of our data, drop us.
1127 */
1128 if (p != NULL) {
1129 i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
1130 ntohs(ipqe->ipqe_ip->ip_off);
1131 if (i > 0) {
1132 if (i >= ntohs(ipqe->ipqe_ip->ip_len))
1133 goto dropfrag;
1134 m_adj(ipqe->ipqe_m, i);
1135 ipqe->ipqe_ip->ip_off =
1136 htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
1137 ipqe->ipqe_ip->ip_len =
1138 htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
1139 }
1140 }
1141
1142 /*
1143 * While we overlap succeeding segments trim them or,
1144 * if they are completely covered, dequeue them.
1145 */
1146 for (; q != NULL &&
1147 ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
1148 ntohs(q->ipqe_ip->ip_off); q = nq) {
1149 i = (ntohs(ipqe->ipqe_ip->ip_off) +
1150 ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
1151 if (i < ntohs(q->ipqe_ip->ip_len)) {
1152 q->ipqe_ip->ip_len =
1153 htons(ntohs(q->ipqe_ip->ip_len) - i);
1154 q->ipqe_ip->ip_off =
1155 htons(ntohs(q->ipqe_ip->ip_off) + i);
1156 m_adj(q->ipqe_m, i);
1157 break;
1158 }
1159 nq = TAILQ_NEXT(q, ipqe_q);
1160 m_freem(q->ipqe_m);
1161 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1162 pool_put(&ipqent_pool, q);
1163 fp->ipq_nfrags--;
1164 ip_nfrags--;
1165 }
1166
1167 insert:
1168 /*
1169 * Stick new segment in its place;
1170 * check for complete reassembly.
1171 */
1172 if (p == NULL) {
1173 TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
1174 } else {
1175 TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
1176 }
1177 next = 0;
1178 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1179 p = q, q = TAILQ_NEXT(q, ipqe_q)) {
1180 if (ntohs(q->ipqe_ip->ip_off) != next)
1181 return (0);
1182 next += ntohs(q->ipqe_ip->ip_len);
1183 }
1184 if (p->ipqe_mff)
1185 return (0);
1186
1187 /*
1188 * Reassembly is complete. Check for a bogus message size and
1189 * concatenate fragments.
1190 */
1191 q = TAILQ_FIRST(&fp->ipq_fragq);
1192 ip = q->ipqe_ip;
1193 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
1194 ipstat.ips_toolong++;
1195 ip_freef(fp);
1196 return (0);
1197 }
1198 m = q->ipqe_m;
1199 t = m->m_next;
1200 m->m_next = 0;
1201 m_cat(m, t);
1202 nq = TAILQ_NEXT(q, ipqe_q);
1203 pool_put(&ipqent_pool, q);
1204 for (q = nq; q != NULL; q = nq) {
1205 t = q->ipqe_m;
1206 nq = TAILQ_NEXT(q, ipqe_q);
1207 pool_put(&ipqent_pool, q);
1208 m_cat(m, t);
1209 }
1210 ip_nfrags -= fp->ipq_nfrags;
1211
1212 /*
1213 * Create header for new ip packet by
1214 * modifying header of first packet;
1215 * dequeue and discard fragment reassembly header.
1216 * Make header visible.
1217 */
1218 ip->ip_len = htons(next);
1219 ip->ip_src = fp->ipq_src;
1220 ip->ip_dst = fp->ipq_dst;
1221 LIST_REMOVE(fp, ipq_q);
1222 FREE(fp, M_FTABLE);
1223 ip_nfragpackets--;
1224 m->m_len += (ip->ip_hl << 2);
1225 m->m_data -= (ip->ip_hl << 2);
1226 /* some debugging cruft by sklower, below, will go away soon */
1227 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1228 int plen = 0;
1229 for (t = m; t; t = t->m_next)
1230 plen += t->m_len;
1231 m->m_pkthdr.len = plen;
1232 m->m_pkthdr.csum_flags = 0;
1233 }
1234 return (m);
1235
1236 dropfrag:
1237 if (fp != 0)
1238 fp->ipq_nfrags--;
1239 ip_nfrags--;
1240 ipstat.ips_fragdropped++;
1241 m_freem(m);
1242 pool_put(&ipqent_pool, ipqe);
1243 return (0);
1244 }
1245
1246 /*
1247 * Free a fragment reassembly header and all
1248 * associated datagrams.
1249 */
1250 void
1251 ip_freef(struct ipq *fp)
1252 {
1253 struct ipqent *q, *p;
1254 u_int nfrags = 0;
1255
1256 IPQ_LOCK_CHECK();
1257
1258 for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
1259 p = TAILQ_NEXT(q, ipqe_q);
1260 m_freem(q->ipqe_m);
1261 nfrags++;
1262 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1263 pool_put(&ipqent_pool, q);
1264 }
1265
1266 if (nfrags != fp->ipq_nfrags)
1267 printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
1268 ip_nfrags -= nfrags;
1269 LIST_REMOVE(fp, ipq_q);
1270 FREE(fp, M_FTABLE);
1271 ip_nfragpackets--;
1272 }
1273
1274 /*
1275 * IP reassembly TTL machinery for multiplicative drop.
1276 */
1277 static u_int fragttl_histo[(IPFRAGTTL+1)];
1278
1279
1280 /*
1281 * Decrement TTL of all reasembly queue entries by `ticks'.
1282 * Count number of distinct fragments (as opposed to partial, fragmented
1283 * datagrams) in the reassembly queue. While we traverse the entire
1284 * reassembly queue, compute and return the median TTL over all fragments.
1285 */
1286 static u_int
1287 ip_reass_ttl_decr(u_int ticks)
1288 {
1289 u_int nfrags, median, dropfraction, keepfraction;
1290 struct ipq *fp, *nfp;
1291 int i;
1292
1293 nfrags = 0;
1294 memset(fragttl_histo, 0, sizeof fragttl_histo);
1295
1296 for (i = 0; i < IPREASS_NHASH; i++) {
1297 for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
1298 fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
1299 0 : fp->ipq_ttl - ticks);
1300 nfp = LIST_NEXT(fp, ipq_q);
1301 if (fp->ipq_ttl == 0) {
1302 ipstat.ips_fragtimeout++;
1303 ip_freef(fp);
1304 } else {
1305 nfrags += fp->ipq_nfrags;
1306 fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
1307 }
1308 }
1309 }
1310
1311 KASSERT(ip_nfrags == nfrags);
1312
1313 /* Find median (or other drop fraction) in histogram. */
1314 dropfraction = (ip_nfrags / 2);
1315 keepfraction = ip_nfrags - dropfraction;
1316 for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
1317 median += fragttl_histo[i];
1318 if (median >= keepfraction)
1319 break;
1320 }
1321
1322 /* Return TTL of median (or other fraction). */
1323 return (u_int)i;
1324 }
1325
1326 void
1327 ip_reass_drophalf(void)
1328 {
1329
1330 u_int median_ticks;
1331 /*
1332 * Compute median TTL of all fragments, and count frags
1333 * with that TTL or lower (roughly half of all fragments).
1334 */
1335 median_ticks = ip_reass_ttl_decr(0);
1336
1337 /* Drop half. */
1338 median_ticks = ip_reass_ttl_decr(median_ticks);
1339
1340 }
1341
1342 /*
1343 * IP timer processing;
1344 * if a timer expires on a reassembly
1345 * queue, discard it.
1346 */
1347 void
1348 ip_slowtimo(void)
1349 {
1350 static u_int dropscanidx = 0;
1351 u_int i;
1352 u_int median_ttl;
1353 int s = splsoftnet();
1354
1355 IPQ_LOCK();
1356
1357 /* Age TTL of all fragments by 1 tick .*/
1358 median_ttl = ip_reass_ttl_decr(1);
1359
1360 /* make sure fragment limit is up-to-date */
1361 CHECK_NMBCLUSTER_PARAMS();
1362
1363 /* If we have too many fragments, drop the older half. */
1364 if (ip_nfrags > ip_maxfrags)
1365 ip_reass_ttl_decr(median_ttl);
1366
1367 /*
1368 * If we are over the maximum number of fragmented packets
1369 * (due to the limit being lowered), drain off
1370 * enough to get down to the new limit. Start draining
1371 * from the reassembly hashqueue most recently drained.
1372 */
1373 if (ip_maxfragpackets < 0)
1374 ;
1375 else {
1376 int wrapped = 0;
1377
1378 i = dropscanidx;
1379 while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
1380 while (LIST_FIRST(&ipq[i]) != NULL)
1381 ip_freef(LIST_FIRST(&ipq[i]));
1382 if (++i >= IPREASS_NHASH) {
1383 i = 0;
1384 }
1385 /*
1386 * Dont scan forever even if fragment counters are
1387 * wrong: stop after scanning entire reassembly queue.
1388 */
1389 if (i == dropscanidx)
1390 wrapped = 1;
1391 }
1392 dropscanidx = i;
1393 }
1394 IPQ_UNLOCK();
1395 #ifdef GATEWAY
1396 ipflow_slowtimo();
1397 #endif
1398 splx(s);
1399 }
1400
1401 /*
1402 * Drain off all datagram fragments.
1403 */
1404 void
1405 ip_drain(void)
1406 {
1407
1408 /*
1409 * We may be called from a device's interrupt context. If
1410 * the ipq is already busy, just bail out now.
1411 */
1412 if (ipq_lock_try() == 0)
1413 return;
1414
1415 /*
1416 * Drop half the total fragments now. If more mbufs are needed,
1417 * we will be called again soon.
1418 */
1419 ip_reass_drophalf();
1420
1421 IPQ_UNLOCK();
1422 }
1423
1424 /*
1425 * Do option processing on a datagram,
1426 * possibly discarding it if bad options are encountered,
1427 * or forwarding it if source-routed.
1428 * Returns 1 if packet has been forwarded/freed,
1429 * 0 if the packet should be processed further.
1430 */
1431 int
1432 ip_dooptions(struct mbuf *m)
1433 {
1434 struct ip *ip = mtod(m, struct ip *);
1435 u_char *cp, *cp0;
1436 struct ip_timestamp *ipt;
1437 struct in_ifaddr *ia;
1438 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1439 struct in_addr dst;
1440 n_time ntime;
1441
1442 dst = ip->ip_dst;
1443 cp = (u_char *)(ip + 1);
1444 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1445 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1446 opt = cp[IPOPT_OPTVAL];
1447 if (opt == IPOPT_EOL)
1448 break;
1449 if (opt == IPOPT_NOP)
1450 optlen = 1;
1451 else {
1452 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1453 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1454 goto bad;
1455 }
1456 optlen = cp[IPOPT_OLEN];
1457 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1458 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1459 goto bad;
1460 }
1461 }
1462 switch (opt) {
1463
1464 default:
1465 break;
1466
1467 /*
1468 * Source routing with record.
1469 * Find interface with current destination address.
1470 * If none on this machine then drop if strictly routed,
1471 * or do nothing if loosely routed.
1472 * Record interface address and bring up next address
1473 * component. If strictly routed make sure next
1474 * address is on directly accessible net.
1475 */
1476 case IPOPT_LSRR:
1477 case IPOPT_SSRR:
1478 if (ip_allowsrcrt == 0) {
1479 type = ICMP_UNREACH;
1480 code = ICMP_UNREACH_NET_PROHIB;
1481 goto bad;
1482 }
1483 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1484 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1485 goto bad;
1486 }
1487 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1488 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1489 goto bad;
1490 }
1491 ipaddr.sin_addr = ip->ip_dst;
1492 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
1493 if (ia == 0) {
1494 if (opt == IPOPT_SSRR) {
1495 type = ICMP_UNREACH;
1496 code = ICMP_UNREACH_SRCFAIL;
1497 goto bad;
1498 }
1499 /*
1500 * Loose routing, and not at next destination
1501 * yet; nothing to do except forward.
1502 */
1503 break;
1504 }
1505 off--; /* 0 origin */
1506 if ((off + sizeof(struct in_addr)) > optlen) {
1507 /*
1508 * End of source route. Should be for us.
1509 */
1510 save_rte(cp, ip->ip_src);
1511 break;
1512 }
1513 /*
1514 * locate outgoing interface
1515 */
1516 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
1517 sizeof(ipaddr.sin_addr));
1518 if (opt == IPOPT_SSRR)
1519 ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
1520 else
1521 ia = ip_rtaddr(ipaddr.sin_addr);
1522 if (ia == 0) {
1523 type = ICMP_UNREACH;
1524 code = ICMP_UNREACH_SRCFAIL;
1525 goto bad;
1526 }
1527 ip->ip_dst = ipaddr.sin_addr;
1528 bcopy((caddr_t)&ia->ia_addr.sin_addr,
1529 (caddr_t)(cp + off), sizeof(struct in_addr));
1530 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1531 /*
1532 * Let ip_intr's mcast routing check handle mcast pkts
1533 */
1534 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1535 break;
1536
1537 case IPOPT_RR:
1538 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1539 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1540 goto bad;
1541 }
1542 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1543 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1544 goto bad;
1545 }
1546 /*
1547 * If no space remains, ignore.
1548 */
1549 off--; /* 0 origin */
1550 if ((off + sizeof(struct in_addr)) > optlen)
1551 break;
1552 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
1553 sizeof(ipaddr.sin_addr));
1554 /*
1555 * locate outgoing interface; if we're the destination,
1556 * use the incoming interface (should be same).
1557 */
1558 if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
1559 == NULL &&
1560 (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1561 type = ICMP_UNREACH;
1562 code = ICMP_UNREACH_HOST;
1563 goto bad;
1564 }
1565 bcopy((caddr_t)&ia->ia_addr.sin_addr,
1566 (caddr_t)(cp + off), sizeof(struct in_addr));
1567 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1568 break;
1569
1570 case IPOPT_TS:
1571 code = cp - (u_char *)ip;
1572 ipt = (struct ip_timestamp *)cp;
1573 if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1574 code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1575 goto bad;
1576 }
1577 if (ipt->ipt_ptr < 5) {
1578 code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1579 goto bad;
1580 }
1581 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
1582 if (++ipt->ipt_oflw == 0) {
1583 code = (u_char *)&ipt->ipt_ptr -
1584 (u_char *)ip;
1585 goto bad;
1586 }
1587 break;
1588 }
1589 cp0 = (cp + ipt->ipt_ptr - 1);
1590 switch (ipt->ipt_flg) {
1591
1592 case IPOPT_TS_TSONLY:
1593 break;
1594
1595 case IPOPT_TS_TSANDADDR:
1596 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1597 sizeof(struct in_addr) > ipt->ipt_len) {
1598 code = (u_char *)&ipt->ipt_ptr -
1599 (u_char *)ip;
1600 goto bad;
1601 }
1602 ipaddr.sin_addr = dst;
1603 ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1604 m->m_pkthdr.rcvif));
1605 if (ia == 0)
1606 continue;
1607 bcopy(&ia->ia_addr.sin_addr,
1608 cp0, sizeof(struct in_addr));
1609 ipt->ipt_ptr += sizeof(struct in_addr);
1610 break;
1611
1612 case IPOPT_TS_PRESPEC:
1613 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1614 sizeof(struct in_addr) > ipt->ipt_len) {
1615 code = (u_char *)&ipt->ipt_ptr -
1616 (u_char *)ip;
1617 goto bad;
1618 }
1619 bcopy(cp0, &ipaddr.sin_addr,
1620 sizeof(struct in_addr));
1621 if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
1622 == NULL)
1623 continue;
1624 ipt->ipt_ptr += sizeof(struct in_addr);
1625 break;
1626
1627 default:
1628 /* XXX can't take &ipt->ipt_flg */
1629 code = (u_char *)&ipt->ipt_ptr -
1630 (u_char *)ip + 1;
1631 goto bad;
1632 }
1633 ntime = iptime();
1634 cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
1635 bcopy(cp0, (caddr_t)cp + ipt->ipt_ptr - 1,
1636 sizeof(n_time));
1637 ipt->ipt_ptr += sizeof(n_time);
1638 }
1639 }
1640 if (forward) {
1641 if (ip_forwsrcrt == 0) {
1642 type = ICMP_UNREACH;
1643 code = ICMP_UNREACH_SRCFAIL;
1644 goto bad;
1645 }
1646 ip_forward(m, 1);
1647 return (1);
1648 }
1649 return (0);
1650 bad:
1651 icmp_error(m, type, code, 0, 0);
1652 ipstat.ips_badoptions++;
1653 return (1);
1654 }
1655
1656 /*
1657 * Given address of next destination (final or next hop),
1658 * return internet address info of interface to be used to get there.
1659 */
1660 struct in_ifaddr *
1661 ip_rtaddr(struct in_addr dst)
1662 {
1663 struct sockaddr_in *sin;
1664
1665 sin = satosin(&ipforward_rt.ro_dst);
1666
1667 if (ipforward_rt.ro_rt == 0 || !in_hosteq(dst, sin->sin_addr)) {
1668 if (ipforward_rt.ro_rt) {
1669 RTFREE(ipforward_rt.ro_rt);
1670 ipforward_rt.ro_rt = 0;
1671 }
1672 sin->sin_family = AF_INET;
1673 sin->sin_len = sizeof(*sin);
1674 sin->sin_addr = dst;
1675
1676 rtalloc(&ipforward_rt);
1677 }
1678 if (ipforward_rt.ro_rt == 0)
1679 return ((struct in_ifaddr *)0);
1680 return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
1681 }
1682
1683 /*
1684 * Save incoming source route for use in replies,
1685 * to be picked up later by ip_srcroute if the receiver is interested.
1686 */
1687 void
1688 save_rte(u_char *option, struct in_addr dst)
1689 {
1690 unsigned olen;
1691
1692 olen = option[IPOPT_OLEN];
1693 #ifdef DIAGNOSTIC
1694 if (ipprintfs)
1695 printf("save_rte: olen %d\n", olen);
1696 #endif /* 0 */
1697 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1698 return;
1699 bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
1700 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1701 ip_srcrt.dst = dst;
1702 }
1703
1704 /*
1705 * Retrieve incoming source route for use in replies,
1706 * in the same form used by setsockopt.
1707 * The first hop is placed before the options, will be removed later.
1708 */
1709 struct mbuf *
1710 ip_srcroute(void)
1711 {
1712 struct in_addr *p, *q;
1713 struct mbuf *m;
1714
1715 if (ip_nhops == 0)
1716 return ((struct mbuf *)0);
1717 m = m_get(M_DONTWAIT, MT_SOOPTS);
1718 if (m == 0)
1719 return ((struct mbuf *)0);
1720
1721 MCLAIM(m, &inetdomain.dom_mowner);
1722 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1723
1724 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1725 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1726 OPTSIZ;
1727 #ifdef DIAGNOSTIC
1728 if (ipprintfs)
1729 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1730 #endif
1731
1732 /*
1733 * First save first hop for return route
1734 */
1735 p = &ip_srcrt.route[ip_nhops - 1];
1736 *(mtod(m, struct in_addr *)) = *p--;
1737 #ifdef DIAGNOSTIC
1738 if (ipprintfs)
1739 printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1740 #endif
1741
1742 /*
1743 * Copy option fields and padding (nop) to mbuf.
1744 */
1745 ip_srcrt.nop = IPOPT_NOP;
1746 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1747 bcopy((caddr_t)&ip_srcrt.nop,
1748 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
1749 q = (struct in_addr *)(mtod(m, caddr_t) +
1750 sizeof(struct in_addr) + OPTSIZ);
1751 #undef OPTSIZ
1752 /*
1753 * Record return path as an IP source route,
1754 * reversing the path (pointers are now aligned).
1755 */
1756 while (p >= ip_srcrt.route) {
1757 #ifdef DIAGNOSTIC
1758 if (ipprintfs)
1759 printf(" %x", ntohl(q->s_addr));
1760 #endif
1761 *q++ = *p--;
1762 }
1763 /*
1764 * Last hop goes to final destination.
1765 */
1766 *q = ip_srcrt.dst;
1767 #ifdef DIAGNOSTIC
1768 if (ipprintfs)
1769 printf(" %x\n", ntohl(q->s_addr));
1770 #endif
1771 return (m);
1772 }
1773
1774 /*
1775 * Strip out IP options, at higher
1776 * level protocol in the kernel.
1777 * Second argument is buffer to which options
1778 * will be moved, and return value is their length.
1779 * XXX should be deleted; last arg currently ignored.
1780 */
1781 void
1782 ip_stripoptions(struct mbuf *m, struct mbuf *mopt)
1783 {
1784 int i;
1785 struct ip *ip = mtod(m, struct ip *);
1786 caddr_t opts;
1787 int olen;
1788
1789 olen = (ip->ip_hl << 2) - sizeof (struct ip);
1790 opts = (caddr_t)(ip + 1);
1791 i = m->m_len - (sizeof (struct ip) + olen);
1792 bcopy(opts + olen, opts, (unsigned)i);
1793 m->m_len -= olen;
1794 if (m->m_flags & M_PKTHDR)
1795 m->m_pkthdr.len -= olen;
1796 ip->ip_len = htons(ntohs(ip->ip_len) - olen);
1797 ip->ip_hl = sizeof (struct ip) >> 2;
1798 }
1799
1800 const int inetctlerrmap[PRC_NCMDS] = {
1801 0, 0, 0, 0,
1802 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1803 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1804 EMSGSIZE, EHOSTUNREACH, 0, 0,
1805 0, 0, 0, 0,
1806 ENOPROTOOPT
1807 };
1808
1809 /*
1810 * Forward a packet. If some error occurs return the sender
1811 * an icmp packet. Note we can't always generate a meaningful
1812 * icmp message because icmp doesn't have a large enough repertoire
1813 * of codes and types.
1814 *
1815 * If not forwarding, just drop the packet. This could be confusing
1816 * if ipforwarding was zero but some routing protocol was advancing
1817 * us as a gateway to somewhere. However, we must let the routing
1818 * protocol deal with that.
1819 *
1820 * The srcrt parameter indicates whether the packet is being forwarded
1821 * via a source route.
1822 */
1823 void
1824 ip_forward(struct mbuf *m, int srcrt)
1825 {
1826 struct ip *ip = mtod(m, struct ip *);
1827 struct sockaddr_in *sin;
1828 struct rtentry *rt;
1829 int error, type = 0, code = 0, destmtu = 0;
1830 struct mbuf *mcopy;
1831 n_long dest;
1832
1833 /*
1834 * We are now in the output path.
1835 */
1836 MCLAIM(m, &ip_tx_mowner);
1837
1838 /*
1839 * Clear any in-bound checksum flags for this packet.
1840 */
1841 m->m_pkthdr.csum_flags = 0;
1842
1843 dest = 0;
1844 #ifdef DIAGNOSTIC
1845 if (ipprintfs) {
1846 printf("forward: src %s ", inet_ntoa(ip->ip_src));
1847 printf("dst %s ttl %x\n", inet_ntoa(ip->ip_dst), ip->ip_ttl);
1848 }
1849 #endif
1850 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1851 ipstat.ips_cantforward++;
1852 m_freem(m);
1853 return;
1854 }
1855 if (ip->ip_ttl <= IPTTLDEC) {
1856 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1857 return;
1858 }
1859
1860 sin = satosin(&ipforward_rt.ro_dst);
1861 if ((rt = ipforward_rt.ro_rt) == 0 ||
1862 !in_hosteq(ip->ip_dst, sin->sin_addr)) {
1863 if (ipforward_rt.ro_rt) {
1864 RTFREE(ipforward_rt.ro_rt);
1865 ipforward_rt.ro_rt = 0;
1866 }
1867 sin->sin_family = AF_INET;
1868 sin->sin_len = sizeof(struct sockaddr_in);
1869 sin->sin_addr = ip->ip_dst;
1870
1871 rtalloc(&ipforward_rt);
1872 if (ipforward_rt.ro_rt == 0) {
1873 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_NET, dest, 0);
1874 return;
1875 }
1876 rt = ipforward_rt.ro_rt;
1877 }
1878
1879 /*
1880 * Save at most 68 bytes of the packet in case
1881 * we need to generate an ICMP message to the src.
1882 * Pullup to avoid sharing mbuf cluster between m and mcopy.
1883 */
1884 mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
1885 if (mcopy)
1886 mcopy = m_pullup(mcopy, ip->ip_hl << 2);
1887
1888 ip->ip_ttl -= IPTTLDEC;
1889
1890 /*
1891 * If forwarding packet using same interface that it came in on,
1892 * perhaps should send a redirect to sender to shortcut a hop.
1893 * Only send redirect if source is sending directly to us,
1894 * and if packet was not source routed (or has any options).
1895 * Also, don't send redirect if forwarding using a default route
1896 * or a route modified by a redirect.
1897 */
1898 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1899 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1900 !in_nullhost(satosin(rt_key(rt))->sin_addr) &&
1901 ipsendredirects && !srcrt) {
1902 if (rt->rt_ifa &&
1903 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1904 ifatoia(rt->rt_ifa)->ia_subnet) {
1905 if (rt->rt_flags & RTF_GATEWAY)
1906 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1907 else
1908 dest = ip->ip_dst.s_addr;
1909 /*
1910 * Router requirements says to only send host
1911 * redirects.
1912 */
1913 type = ICMP_REDIRECT;
1914 code = ICMP_REDIRECT_HOST;
1915 #ifdef DIAGNOSTIC
1916 if (ipprintfs)
1917 printf("redirect (%d) to %x\n", code,
1918 (u_int32_t)dest);
1919 #endif
1920 }
1921 }
1922
1923 error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1924 (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1925 (struct ip_moptions *)NULL, (struct socket *)NULL);
1926
1927 if (error)
1928 ipstat.ips_cantforward++;
1929 else {
1930 ipstat.ips_forward++;
1931 if (type)
1932 ipstat.ips_redirectsent++;
1933 else {
1934 if (mcopy) {
1935 #ifdef GATEWAY
1936 if (mcopy->m_flags & M_CANFASTFWD)
1937 ipflow_create(&ipforward_rt, mcopy);
1938 #endif
1939 m_freem(mcopy);
1940 }
1941 return;
1942 }
1943 }
1944 if (mcopy == NULL)
1945 return;
1946
1947 switch (error) {
1948
1949 case 0: /* forwarded, but need redirect */
1950 /* type, code set above */
1951 break;
1952
1953 case ENETUNREACH: /* shouldn't happen, checked above */
1954 case EHOSTUNREACH:
1955 case ENETDOWN:
1956 case EHOSTDOWN:
1957 default:
1958 type = ICMP_UNREACH;
1959 code = ICMP_UNREACH_HOST;
1960 break;
1961
1962 case EMSGSIZE:
1963 type = ICMP_UNREACH;
1964 code = ICMP_UNREACH_NEEDFRAG;
1965 #if !defined(IPSEC) && !defined(FAST_IPSEC)
1966 if (ipforward_rt.ro_rt)
1967 destmtu = ipforward_rt.ro_rt->rt_ifp->if_mtu;
1968 #else
1969 /*
1970 * If the packet is routed over IPsec tunnel, tell the
1971 * originator the tunnel MTU.
1972 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1973 * XXX quickhack!!!
1974 */
1975 if (ipforward_rt.ro_rt) {
1976 struct secpolicy *sp;
1977 int ipsecerror;
1978 size_t ipsechdr;
1979 struct route *ro;
1980
1981 sp = ipsec4_getpolicybyaddr(mcopy,
1982 IPSEC_DIR_OUTBOUND, IP_FORWARDING,
1983 &ipsecerror);
1984
1985 if (sp == NULL)
1986 destmtu = ipforward_rt.ro_rt->rt_ifp->if_mtu;
1987 else {
1988 /* count IPsec header size */
1989 ipsechdr = ipsec4_hdrsiz(mcopy,
1990 IPSEC_DIR_OUTBOUND, NULL);
1991
1992 /*
1993 * find the correct route for outer IPv4
1994 * header, compute tunnel MTU.
1995 */
1996
1997 if (sp->req != NULL
1998 && sp->req->sav != NULL
1999 && sp->req->sav->sah != NULL) {
2000 ro = &sp->req->sav->sah->sa_route;
2001 if (ro->ro_rt && ro->ro_rt->rt_ifp) {
2002 destmtu =
2003 ro->ro_rt->rt_rmx.rmx_mtu ?
2004 ro->ro_rt->rt_rmx.rmx_mtu :
2005 ro->ro_rt->rt_ifp->if_mtu;
2006 destmtu -= ipsechdr;
2007 }
2008 }
2009
2010 #ifdef IPSEC
2011 key_freesp(sp);
2012 #else
2013 KEY_FREESP(&sp);
2014 #endif
2015 }
2016 }
2017 #endif /*IPSEC*/
2018 ipstat.ips_cantfrag++;
2019 break;
2020
2021 case ENOBUFS:
2022 #if 1
2023 /*
2024 * a router should not generate ICMP_SOURCEQUENCH as
2025 * required in RFC1812 Requirements for IP Version 4 Routers.
2026 * source quench could be a big problem under DoS attacks,
2027 * or if the underlying interface is rate-limited.
2028 */
2029 if (mcopy)
2030 m_freem(mcopy);
2031 return;
2032 #else
2033 type = ICMP_SOURCEQUENCH;
2034 code = 0;
2035 break;
2036 #endif
2037 }
2038 icmp_error(mcopy, type, code, dest, destmtu);
2039 }
2040
2041 void
2042 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2043 struct mbuf *m)
2044 {
2045
2046 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2047 struct timeval tv;
2048
2049 microtime(&tv);
2050 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2051 SCM_TIMESTAMP, SOL_SOCKET);
2052 if (*mp)
2053 mp = &(*mp)->m_next;
2054 }
2055 if (inp->inp_flags & INP_RECVDSTADDR) {
2056 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2057 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2058 if (*mp)
2059 mp = &(*mp)->m_next;
2060 }
2061 #ifdef notyet
2062 /*
2063 * XXX
2064 * Moving these out of udp_input() made them even more broken
2065 * than they already were.
2066 * - fenner (at) parc.xerox.com
2067 */
2068 /* options were tossed already */
2069 if (inp->inp_flags & INP_RECVOPTS) {
2070 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2071 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2072 if (*mp)
2073 mp = &(*mp)->m_next;
2074 }
2075 /* ip_srcroute doesn't do what we want here, need to fix */
2076 if (inp->inp_flags & INP_RECVRETOPTS) {
2077 *mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2078 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2079 if (*mp)
2080 mp = &(*mp)->m_next;
2081 }
2082 #endif
2083 if (inp->inp_flags & INP_RECVIF) {
2084 struct sockaddr_dl sdl;
2085
2086 sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]);
2087 sdl.sdl_family = AF_LINK;
2088 sdl.sdl_index = m->m_pkthdr.rcvif ?
2089 m->m_pkthdr.rcvif->if_index : 0;
2090 sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0;
2091 *mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len,
2092 IP_RECVIF, IPPROTO_IP);
2093 if (*mp)
2094 mp = &(*mp)->m_next;
2095 }
2096 }
2097
2098 /*
2099 * sysctl helper routine for net.inet.ip.forwsrcrt.
2100 */
2101 static int
2102 sysctl_net_inet_ip_forwsrcrt(SYSCTLFN_ARGS)
2103 {
2104 int error, tmp;
2105 struct sysctlnode node;
2106
2107 node = *rnode;
2108 tmp = ip_forwsrcrt;
2109 node.sysctl_data = &tmp;
2110 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2111 if (error || newp == NULL)
2112 return (error);
2113
2114 if (securelevel > 0)
2115 return (EPERM);
2116
2117 ip_forwsrcrt = tmp;
2118
2119 return (0);
2120 }
2121
2122 /*
2123 * sysctl helper routine for net.inet.ip.mtudisctimeout. checks the
2124 * range of the new value and tweaks timers if it changes.
2125 */
2126 static int
2127 sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
2128 {
2129 int error, tmp;
2130 struct sysctlnode node;
2131
2132 node = *rnode;
2133 tmp = ip_mtudisc_timeout;
2134 node.sysctl_data = &tmp;
2135 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2136 if (error || newp == NULL)
2137 return (error);
2138 if (tmp < 0)
2139 return (EINVAL);
2140
2141 ip_mtudisc_timeout = tmp;
2142 rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
2143
2144 return (0);
2145 }
2146
2147 #ifdef GATEWAY
2148 /*
2149 * sysctl helper routine for net.inet.ip.maxflows. apparently if
2150 * maxflows is even looked up, we "reap flows".
2151 */
2152 static int
2153 sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
2154 {
2155 int s;
2156
2157 s = sysctl_lookup(SYSCTLFN_CALL(rnode));
2158 if (s)
2159 return (s);
2160
2161 s = splsoftnet();
2162 ipflow_reap(0);
2163 splx(s);
2164
2165 return (0);
2166 }
2167 #endif /* GATEWAY */
2168
2169
2170 SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
2171 {
2172 extern int subnetsarelocal, hostzeroisbroadcast;
2173
2174 sysctl_createv(clog, 0, NULL, NULL,
2175 CTLFLAG_PERMANENT,
2176 CTLTYPE_NODE, "net", NULL,
2177 NULL, 0, NULL, 0,
2178 CTL_NET, CTL_EOL);
2179 sysctl_createv(clog, 0, NULL, NULL,
2180 CTLFLAG_PERMANENT,
2181 CTLTYPE_NODE, "inet",
2182 SYSCTL_DESCR("PF_INET related settings"),
2183 NULL, 0, NULL, 0,
2184 CTL_NET, PF_INET, CTL_EOL);
2185 sysctl_createv(clog, 0, NULL, NULL,
2186 CTLFLAG_PERMANENT,
2187 CTLTYPE_NODE, "ip",
2188 SYSCTL_DESCR("IPv4 related settings"),
2189 NULL, 0, NULL, 0,
2190 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2191
2192 sysctl_createv(clog, 0, NULL, NULL,
2193 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2194 CTLTYPE_INT, "forwarding",
2195 SYSCTL_DESCR("Enable forwarding of INET datagrams"),
2196 NULL, 0, &ipforwarding, 0,
2197 CTL_NET, PF_INET, IPPROTO_IP,
2198 IPCTL_FORWARDING, CTL_EOL);
2199 sysctl_createv(clog, 0, NULL, NULL,
2200 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2201 CTLTYPE_INT, "redirect",
2202 SYSCTL_DESCR("Enable sending of ICMP redirect messages"),
2203 NULL, 0, &ipsendredirects, 0,
2204 CTL_NET, PF_INET, IPPROTO_IP,
2205 IPCTL_SENDREDIRECTS, CTL_EOL);
2206 sysctl_createv(clog, 0, NULL, NULL,
2207 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2208 CTLTYPE_INT, "ttl",
2209 SYSCTL_DESCR("Default TTL for an INET datagram"),
2210 NULL, 0, &ip_defttl, 0,
2211 CTL_NET, PF_INET, IPPROTO_IP,
2212 IPCTL_DEFTTL, CTL_EOL);
2213 #ifdef IPCTL_DEFMTU
2214 sysctl_createv(clog, 0, NULL, NULL,
2215 CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
2216 CTLTYPE_INT, "mtu",
2217 SYSCTL_DESCR("Default MTA for an INET route"),
2218 NULL, 0, &ip_mtu, 0,
2219 CTL_NET, PF_INET, IPPROTO_IP,
2220 IPCTL_DEFMTU, CTL_EOL);
2221 #endif /* IPCTL_DEFMTU */
2222 sysctl_createv(clog, 0, NULL, NULL,
2223 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2224 CTLTYPE_INT, "forwsrcrt",
2225 SYSCTL_DESCR("Enable forwarding of source-routed "
2226 "datagrams"),
2227 sysctl_net_inet_ip_forwsrcrt, 0, &ip_forwsrcrt, 0,
2228 CTL_NET, PF_INET, IPPROTO_IP,
2229 IPCTL_FORWSRCRT, CTL_EOL);
2230 sysctl_createv(clog, 0, NULL, NULL,
2231 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2232 CTLTYPE_INT, "directed-broadcast",
2233 SYSCTL_DESCR("Enable forwarding of broadcast datagrams"),
2234 NULL, 0, &ip_directedbcast, 0,
2235 CTL_NET, PF_INET, IPPROTO_IP,
2236 IPCTL_DIRECTEDBCAST, CTL_EOL);
2237 sysctl_createv(clog, 0, NULL, NULL,
2238 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2239 CTLTYPE_INT, "allowsrcrt",
2240 SYSCTL_DESCR("Accept source-routed datagrams"),
2241 NULL, 0, &ip_allowsrcrt, 0,
2242 CTL_NET, PF_INET, IPPROTO_IP,
2243 IPCTL_ALLOWSRCRT, CTL_EOL);
2244 sysctl_createv(clog, 0, NULL, NULL,
2245 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2246 CTLTYPE_INT, "subnetsarelocal",
2247 SYSCTL_DESCR("Whether logical subnets are considered "
2248 "local"),
2249 NULL, 0, &subnetsarelocal, 0,
2250 CTL_NET, PF_INET, IPPROTO_IP,
2251 IPCTL_SUBNETSARELOCAL, CTL_EOL);
2252 sysctl_createv(clog, 0, NULL, NULL,
2253 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2254 CTLTYPE_INT, "mtudisc",
2255 SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"),
2256 NULL, 0, &ip_mtudisc, 0,
2257 CTL_NET, PF_INET, IPPROTO_IP,
2258 IPCTL_MTUDISC, CTL_EOL);
2259 sysctl_createv(clog, 0, NULL, NULL,
2260 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2261 CTLTYPE_INT, "anonportmin",
2262 SYSCTL_DESCR("Lowest ephemeral port number to assign"),
2263 sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
2264 CTL_NET, PF_INET, IPPROTO_IP,
2265 IPCTL_ANONPORTMIN, CTL_EOL);
2266 sysctl_createv(clog, 0, NULL, NULL,
2267 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2268 CTLTYPE_INT, "anonportmax",
2269 SYSCTL_DESCR("Highest ephemeral port number to assign"),
2270 sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
2271 CTL_NET, PF_INET, IPPROTO_IP,
2272 IPCTL_ANONPORTMAX, CTL_EOL);
2273 sysctl_createv(clog, 0, NULL, NULL,
2274 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2275 CTLTYPE_INT, "mtudisctimeout",
2276 SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"),
2277 sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
2278 CTL_NET, PF_INET, IPPROTO_IP,
2279 IPCTL_MTUDISCTIMEOUT, CTL_EOL);
2280 #ifdef GATEWAY
2281 sysctl_createv(clog, 0, NULL, NULL,
2282 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2283 CTLTYPE_INT, "maxflows",
2284 SYSCTL_DESCR("Number of flows for fast forwarding"),
2285 sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
2286 CTL_NET, PF_INET, IPPROTO_IP,
2287 IPCTL_MAXFLOWS, CTL_EOL);
2288 #endif /* GATEWAY */
2289 sysctl_createv(clog, 0, NULL, NULL,
2290 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2291 CTLTYPE_INT, "hostzerobroadcast",
2292 SYSCTL_DESCR("All zeroes address is broadcast address"),
2293 NULL, 0, &hostzeroisbroadcast, 0,
2294 CTL_NET, PF_INET, IPPROTO_IP,
2295 IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2296 #if NGIF > 0
2297 sysctl_createv(clog, 0, NULL, NULL,
2298 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2299 CTLTYPE_INT, "gifttl",
2300 SYSCTL_DESCR("Default TTL for a gif tunnel datagram"),
2301 NULL, 0, &ip_gif_ttl, 0,
2302 CTL_NET, PF_INET, IPPROTO_IP,
2303 IPCTL_GIF_TTL, CTL_EOL);
2304 #endif /* NGIF */
2305 #ifndef IPNOPRIVPORTS
2306 sysctl_createv(clog, 0, NULL, NULL,
2307 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2308 CTLTYPE_INT, "lowportmin",
2309 SYSCTL_DESCR("Lowest privileged ephemeral port number "
2310 "to assign"),
2311 sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
2312 CTL_NET, PF_INET, IPPROTO_IP,
2313 IPCTL_LOWPORTMIN, CTL_EOL);
2314 sysctl_createv(clog, 0, NULL, NULL,
2315 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2316 CTLTYPE_INT, "lowportmax",
2317 SYSCTL_DESCR("Highest privileged ephemeral port number "
2318 "to assign"),
2319 sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
2320 CTL_NET, PF_INET, IPPROTO_IP,
2321 IPCTL_LOWPORTMAX, CTL_EOL);
2322 #endif /* IPNOPRIVPORTS */
2323 sysctl_createv(clog, 0, NULL, NULL,
2324 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2325 CTLTYPE_INT, "maxfragpackets",
2326 SYSCTL_DESCR("Maximum number of fragments to retain for "
2327 "possible reassembly"),
2328 NULL, 0, &ip_maxfragpackets, 0,
2329 CTL_NET, PF_INET, IPPROTO_IP,
2330 IPCTL_MAXFRAGPACKETS, CTL_EOL);
2331 #if NGRE > 0
2332 sysctl_createv(clog, 0, NULL, NULL,
2333 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2334 CTLTYPE_INT, "grettl",
2335 SYSCTL_DESCR("Default TTL for a gre tunnel datagram"),
2336 NULL, 0, &ip_gre_ttl, 0,
2337 CTL_NET, PF_INET, IPPROTO_IP,
2338 IPCTL_GRE_TTL, CTL_EOL);
2339 #endif /* NGRE */
2340 sysctl_createv(clog, 0, NULL, NULL,
2341 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2342 CTLTYPE_INT, "checkinterface",
2343 SYSCTL_DESCR("Enable receive side of Strong ES model "
2344 "from RFC1122"),
2345 NULL, 0, &ip_checkinterface, 0,
2346 CTL_NET, PF_INET, IPPROTO_IP,
2347 IPCTL_CHECKINTERFACE, CTL_EOL);
2348 sysctl_createv(clog, 0, NULL, NULL,
2349 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2350 CTLTYPE_INT, "random_id",
2351 SYSCTL_DESCR("Assign random ip_id values"),
2352 NULL, 0, &ip_do_randomid, 0,
2353 CTL_NET, PF_INET, IPPROTO_IP,
2354 IPCTL_RANDOMID, CTL_EOL);
2355 sysctl_createv(clog, 0, NULL, NULL,
2356 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2357 CTLTYPE_INT, "do_loopback_cksum",
2358 SYSCTL_DESCR("Perform IP checksum on loopback"),
2359 NULL, 0, &ip_do_loopback_cksum, 0,
2360 CTL_NET, PF_INET, IPPROTO_IP,
2361 IPCTL_LOOPBACKCKSUM, CTL_EOL);
2362 sysctl_createv(clog, 0, NULL, NULL,
2363 CTLFLAG_PERMANENT,
2364 CTLTYPE_STRUCT, "stats",
2365 SYSCTL_DESCR("IP statistics"),
2366 NULL, 0, &ipstat, sizeof(ipstat),
2367 CTL_NET, PF_INET, IPPROTO_IP, IPCTL_STATS,
2368 CTL_EOL);
2369 }
2370