ip_input.c revision 1.249 1 /* $NetBSD: ip_input.c,v 1.249 2007/05/02 20:40:25 dyoung Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.249 2007/05/02 20:40:25 dyoung Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_gateway.h"
105 #include "opt_pfil_hooks.h"
106 #include "opt_ipsec.h"
107 #include "opt_mrouting.h"
108 #include "opt_mbuftrace.h"
109 #include "opt_inet_csum.h"
110
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/domain.h>
116 #include <sys/protosw.h>
117 #include <sys/socket.h>
118 #include <sys/socketvar.h>
119 #include <sys/errno.h>
120 #include <sys/time.h>
121 #include <sys/kernel.h>
122 #include <sys/pool.h>
123 #include <sys/sysctl.h>
124 #include <sys/kauth.h>
125
126 #include <net/if.h>
127 #include <net/if_dl.h>
128 #include <net/route.h>
129 #include <net/pfil.h>
130
131 #include <netinet/in.h>
132 #include <netinet/in_systm.h>
133 #include <netinet/ip.h>
134 #include <netinet/in_pcb.h>
135 #include <netinet/in_proto.h>
136 #include <netinet/in_var.h>
137 #include <netinet/ip_var.h>
138 #include <netinet/ip_icmp.h>
139 /* just for gif_ttl */
140 #include <netinet/in_gif.h>
141 #include "gif.h"
142 #include <net/if_gre.h>
143 #include "gre.h"
144
145 #ifdef MROUTING
146 #include <netinet/ip_mroute.h>
147 #endif
148
149 #ifdef IPSEC
150 #include <netinet6/ipsec.h>
151 #include <netkey/key.h>
152 #endif
153 #ifdef FAST_IPSEC
154 #include <netipsec/ipsec.h>
155 #include <netipsec/key.h>
156 #endif /* FAST_IPSEC*/
157
158 #ifndef IPFORWARDING
159 #ifdef GATEWAY
160 #define IPFORWARDING 1 /* forward IP packets not for us */
161 #else /* GATEWAY */
162 #define IPFORWARDING 0 /* don't forward IP packets not for us */
163 #endif /* GATEWAY */
164 #endif /* IPFORWARDING */
165 #ifndef IPSENDREDIRECTS
166 #define IPSENDREDIRECTS 1
167 #endif
168 #ifndef IPFORWSRCRT
169 #define IPFORWSRCRT 1 /* forward source-routed packets */
170 #endif
171 #ifndef IPALLOWSRCRT
172 #define IPALLOWSRCRT 1 /* allow source-routed packets */
173 #endif
174 #ifndef IPMTUDISC
175 #define IPMTUDISC 1
176 #endif
177 #ifndef IPMTUDISCTIMEOUT
178 #define IPMTUDISCTIMEOUT (10 * 60) /* as per RFC 1191 */
179 #endif
180
181 /*
182 * Note: DIRECTED_BROADCAST is handled this way so that previous
183 * configuration using this option will Just Work.
184 */
185 #ifndef IPDIRECTEDBCAST
186 #ifdef DIRECTED_BROADCAST
187 #define IPDIRECTEDBCAST 1
188 #else
189 #define IPDIRECTEDBCAST 0
190 #endif /* DIRECTED_BROADCAST */
191 #endif /* IPDIRECTEDBCAST */
192 int ipforwarding = IPFORWARDING;
193 int ipsendredirects = IPSENDREDIRECTS;
194 int ip_defttl = IPDEFTTL;
195 int ip_forwsrcrt = IPFORWSRCRT;
196 int ip_directedbcast = IPDIRECTEDBCAST;
197 int ip_allowsrcrt = IPALLOWSRCRT;
198 int ip_mtudisc = IPMTUDISC;
199 int ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
200 #ifdef DIAGNOSTIC
201 int ipprintfs = 0;
202 #endif
203
204 int ip_do_randomid = 0;
205
206 /*
207 * XXX - Setting ip_checkinterface mostly implements the receive side of
208 * the Strong ES model described in RFC 1122, but since the routing table
209 * and transmit implementation do not implement the Strong ES model,
210 * setting this to 1 results in an odd hybrid.
211 *
212 * XXX - ip_checkinterface currently must be disabled if you use ipnat
213 * to translate the destination address to another local interface.
214 *
215 * XXX - ip_checkinterface must be disabled if you add IP aliases
216 * to the loopback interface instead of the interface where the
217 * packets for those addresses are received.
218 */
219 int ip_checkinterface = 0;
220
221
222 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
223
224 int ipqmaxlen = IFQ_MAXLEN;
225 u_long in_ifaddrhash; /* size of hash table - 1 */
226 int in_ifaddrentries; /* total number of addrs */
227 struct in_ifaddrhead in_ifaddrhead;
228 struct in_ifaddrhashhead *in_ifaddrhashtbl;
229 u_long in_multihash; /* size of hash table - 1 */
230 int in_multientries; /* total number of addrs */
231 struct in_multihashhead *in_multihashtbl;
232 struct ifqueue ipintrq;
233 struct ipstat ipstat;
234 uint16_t ip_id;
235
236 #ifdef PFIL_HOOKS
237 struct pfil_head inet_pfil_hook;
238 #endif
239
240 /*
241 * Cached copy of nmbclusters. If nbclusters is different,
242 * recalculate IP parameters derived from nmbclusters.
243 */
244 static int ip_nmbclusters; /* copy of nmbclusters */
245 static void ip_nmbclusters_changed(void); /* recalc limits */
246
247 #define CHECK_NMBCLUSTER_PARAMS() \
248 do { \
249 if (__predict_false(ip_nmbclusters != nmbclusters)) \
250 ip_nmbclusters_changed(); \
251 } while (/*CONSTCOND*/0)
252
253 /* IP datagram reassembly queues (hashed) */
254 #define IPREASS_NHASH_LOG2 6
255 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
256 #define IPREASS_HMASK (IPREASS_NHASH - 1)
257 #define IPREASS_HASH(x,y) \
258 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
259 struct ipqhead ipq[IPREASS_NHASH];
260 int ipq_locked;
261 static int ip_nfragpackets; /* packets in reass queue */
262 static int ip_nfrags; /* total fragments in reass queues */
263
264 int ip_maxfragpackets = 200; /* limit on packets. XXX sysctl */
265 int ip_maxfrags; /* limit on fragments. XXX sysctl */
266
267
268 /*
269 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
270 * IP reassembly queue buffer managment.
271 *
272 * We keep a count of total IP fragments (NB: not fragmented packets!)
273 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
274 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
275 * total fragments in reassembly queues.This AIMD policy avoids
276 * repeatedly deleting single packets under heavy fragmentation load
277 * (e.g., from lossy NFS peers).
278 */
279 static u_int ip_reass_ttl_decr(u_int ticks);
280 static void ip_reass_drophalf(void);
281
282
283 static inline int ipq_lock_try(void);
284 static inline void ipq_unlock(void);
285
286 static inline int
287 ipq_lock_try(void)
288 {
289 int s;
290
291 /*
292 * Use splvm() -- we're blocking things that would cause
293 * mbuf allocation.
294 */
295 s = splvm();
296 if (ipq_locked) {
297 splx(s);
298 return (0);
299 }
300 ipq_locked = 1;
301 splx(s);
302 return (1);
303 }
304
305 static inline void
306 ipq_unlock(void)
307 {
308 int s;
309
310 s = splvm();
311 ipq_locked = 0;
312 splx(s);
313 }
314
315 #ifdef DIAGNOSTIC
316 #define IPQ_LOCK() \
317 do { \
318 if (ipq_lock_try() == 0) { \
319 printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
320 panic("ipq_lock"); \
321 } \
322 } while (/*CONSTCOND*/ 0)
323 #define IPQ_LOCK_CHECK() \
324 do { \
325 if (ipq_locked == 0) { \
326 printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
327 panic("ipq lock check"); \
328 } \
329 } while (/*CONSTCOND*/ 0)
330 #else
331 #define IPQ_LOCK() (void) ipq_lock_try()
332 #define IPQ_LOCK_CHECK() /* nothing */
333 #endif
334
335 #define IPQ_UNLOCK() ipq_unlock()
336
337 POOL_INIT(inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", NULL,
338 IPL_SOFTNET);
339 POOL_INIT(ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl", NULL,
340 IPL_VM);
341
342 #ifdef INET_CSUM_COUNTERS
343 #include <sys/device.h>
344
345 struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
346 NULL, "inet", "hwcsum bad");
347 struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
348 NULL, "inet", "hwcsum ok");
349 struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
350 NULL, "inet", "swcsum");
351
352 #define INET_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
353
354 EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
355 EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
356 EVCNT_ATTACH_STATIC(ip_swcsum);
357
358 #else
359
360 #define INET_CSUM_COUNTER_INCR(ev) /* nothing */
361
362 #endif /* INET_CSUM_COUNTERS */
363
364 /*
365 * We need to save the IP options in case a protocol wants to respond
366 * to an incoming packet over the same route if the packet got here
367 * using IP source routing. This allows connection establishment and
368 * maintenance when the remote end is on a network that is not known
369 * to us.
370 */
371 int ip_nhops = 0;
372 static struct ip_srcrt {
373 struct in_addr dst; /* final destination */
374 char nop; /* one NOP to align */
375 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
376 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
377 } ip_srcrt;
378
379 static void save_rte(u_char *, struct in_addr);
380
381 #ifdef MBUFTRACE
382 struct mowner ip_rx_mowner = MOWNER_INIT("internet", "rx");
383 struct mowner ip_tx_mowner = MOWNER_INIT("internet", "tx");
384 #endif
385
386 /*
387 * Compute IP limits derived from the value of nmbclusters.
388 */
389 static void
390 ip_nmbclusters_changed(void)
391 {
392 ip_maxfrags = nmbclusters / 4;
393 ip_nmbclusters = nmbclusters;
394 }
395
396 /*
397 * IP initialization: fill in IP protocol switch table.
398 * All protocols not implemented in kernel go to raw IP protocol handler.
399 */
400 void
401 ip_init(void)
402 {
403 const struct protosw *pr;
404 int i;
405
406 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
407 if (pr == 0)
408 panic("ip_init");
409 for (i = 0; i < IPPROTO_MAX; i++)
410 ip_protox[i] = pr - inetsw;
411 for (pr = inetdomain.dom_protosw;
412 pr < inetdomain.dom_protoswNPROTOSW; pr++)
413 if (pr->pr_domain->dom_family == PF_INET &&
414 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
415 ip_protox[pr->pr_protocol] = pr - inetsw;
416
417 for (i = 0; i < IPREASS_NHASH; i++)
418 LIST_INIT(&ipq[i]);
419
420 ip_id = time_second & 0xfffff;
421
422 ipintrq.ifq_maxlen = ipqmaxlen;
423 ip_nmbclusters_changed();
424
425 TAILQ_INIT(&in_ifaddrhead);
426 in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IFADDR,
427 M_WAITOK, &in_ifaddrhash);
428 in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IPMADDR,
429 M_WAITOK, &in_multihash);
430 ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
431 #ifdef GATEWAY
432 ipflow_init(ip_hashsize);
433 #endif
434
435 #ifdef PFIL_HOOKS
436 /* Register our Packet Filter hook. */
437 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
438 inet_pfil_hook.ph_af = AF_INET;
439 i = pfil_head_register(&inet_pfil_hook);
440 if (i != 0)
441 printf("ip_init: WARNING: unable to register pfil hook, "
442 "error %d\n", i);
443 #endif /* PFIL_HOOKS */
444
445 #ifdef MBUFTRACE
446 MOWNER_ATTACH(&ip_tx_mowner);
447 MOWNER_ATTACH(&ip_rx_mowner);
448 #endif /* MBUFTRACE */
449 }
450
451 struct sockaddr_in ipaddr = {
452 .sin_len = sizeof(ipaddr),
453 .sin_family = AF_INET,
454 };
455 struct route ipforward_rt;
456
457 /*
458 * IP software interrupt routine
459 */
460 void
461 ipintr(void)
462 {
463 int s;
464 struct mbuf *m;
465
466 while (!IF_IS_EMPTY(&ipintrq)) {
467 s = splnet();
468 IF_DEQUEUE(&ipintrq, m);
469 splx(s);
470 if (m == 0)
471 return;
472 MCLAIM(m, &ip_rx_mowner);
473 ip_input(m);
474 }
475 }
476
477 /*
478 * Ip input routine. Checksum and byte swap header. If fragmented
479 * try to reassemble. Process options. Pass to next level.
480 */
481 void
482 ip_input(struct mbuf *m)
483 {
484 struct ip *ip = NULL;
485 struct ipq *fp;
486 struct in_ifaddr *ia;
487 struct ifaddr *ifa;
488 struct ipqent *ipqe;
489 int hlen = 0, mff, len;
490 int downmatch;
491 int checkif;
492 int srcrt = 0;
493 int s;
494 u_int hash;
495 #ifdef FAST_IPSEC
496 struct m_tag *mtag;
497 struct tdb_ident *tdbi;
498 struct secpolicy *sp;
499 int error;
500 #endif /* FAST_IPSEC */
501
502 MCLAIM(m, &ip_rx_mowner);
503 #ifdef DIAGNOSTIC
504 if ((m->m_flags & M_PKTHDR) == 0)
505 panic("ipintr no HDR");
506 #endif
507
508 /*
509 * If no IP addresses have been set yet but the interfaces
510 * are receiving, can't do anything with incoming packets yet.
511 */
512 if (TAILQ_FIRST(&in_ifaddrhead) == 0)
513 goto bad;
514 ipstat.ips_total++;
515 /*
516 * If the IP header is not aligned, slurp it up into a new
517 * mbuf with space for link headers, in the event we forward
518 * it. Otherwise, if it is aligned, make sure the entire
519 * base IP header is in the first mbuf of the chain.
520 */
521 if (IP_HDR_ALIGNED_P(mtod(m, void *)) == 0) {
522 if ((m = m_copyup(m, sizeof(struct ip),
523 (max_linkhdr + 3) & ~3)) == NULL) {
524 /* XXXJRT new stat, please */
525 ipstat.ips_toosmall++;
526 return;
527 }
528 } else if (__predict_false(m->m_len < sizeof (struct ip))) {
529 if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
530 ipstat.ips_toosmall++;
531 return;
532 }
533 }
534 ip = mtod(m, struct ip *);
535 if (ip->ip_v != IPVERSION) {
536 ipstat.ips_badvers++;
537 goto bad;
538 }
539 hlen = ip->ip_hl << 2;
540 if (hlen < sizeof(struct ip)) { /* minimum header length */
541 ipstat.ips_badhlen++;
542 goto bad;
543 }
544 if (hlen > m->m_len) {
545 if ((m = m_pullup(m, hlen)) == 0) {
546 ipstat.ips_badhlen++;
547 return;
548 }
549 ip = mtod(m, struct ip *);
550 }
551
552 /*
553 * RFC1122: packets with a multicast source address are
554 * not allowed.
555 */
556 if (IN_MULTICAST(ip->ip_src.s_addr)) {
557 ipstat.ips_badaddr++;
558 goto bad;
559 }
560
561 /* 127/8 must not appear on wire - RFC1122 */
562 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
563 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
564 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
565 ipstat.ips_badaddr++;
566 goto bad;
567 }
568 }
569
570 switch (m->m_pkthdr.csum_flags &
571 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
572 M_CSUM_IPv4_BAD)) {
573 case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
574 INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
575 goto badcsum;
576
577 case M_CSUM_IPv4:
578 /* Checksum was okay. */
579 INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
580 break;
581
582 default:
583 /*
584 * Must compute it ourselves. Maybe skip checksum on
585 * loopback interfaces.
586 */
587 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
588 IFF_LOOPBACK) || ip_do_loopback_cksum)) {
589 INET_CSUM_COUNTER_INCR(&ip_swcsum);
590 if (in_cksum(m, hlen) != 0)
591 goto badcsum;
592 }
593 break;
594 }
595
596 /* Retrieve the packet length. */
597 len = ntohs(ip->ip_len);
598
599 /*
600 * Check for additional length bogosity
601 */
602 if (len < hlen) {
603 ipstat.ips_badlen++;
604 goto bad;
605 }
606
607 /*
608 * Check that the amount of data in the buffers
609 * is as at least much as the IP header would have us expect.
610 * Trim mbufs if longer than we expect.
611 * Drop packet if shorter than we expect.
612 */
613 if (m->m_pkthdr.len < len) {
614 ipstat.ips_tooshort++;
615 goto bad;
616 }
617 if (m->m_pkthdr.len > len) {
618 if (m->m_len == m->m_pkthdr.len) {
619 m->m_len = len;
620 m->m_pkthdr.len = len;
621 } else
622 m_adj(m, len - m->m_pkthdr.len);
623 }
624
625 #if defined(IPSEC)
626 /* ipflow (IP fast forwarding) is not compatible with IPsec. */
627 m->m_flags &= ~M_CANFASTFWD;
628 #else
629 /*
630 * Assume that we can create a fast-forward IP flow entry
631 * based on this packet.
632 */
633 m->m_flags |= M_CANFASTFWD;
634 #endif
635
636 #ifdef PFIL_HOOKS
637 /*
638 * Run through list of hooks for input packets. If there are any
639 * filters which require that additional packets in the flow are
640 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
641 * Note that filters must _never_ set this flag, as another filter
642 * in the list may have previously cleared it.
643 */
644 /*
645 * let ipfilter look at packet on the wire,
646 * not the decapsulated packet.
647 */
648 #ifdef IPSEC
649 if (!ipsec_getnhist(m))
650 #elif defined(FAST_IPSEC)
651 if (!ipsec_indone(m))
652 #else
653 if (1)
654 #endif
655 {
656 struct in_addr odst;
657
658 odst = ip->ip_dst;
659 if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
660 PFIL_IN) != 0)
661 return;
662 if (m == NULL)
663 return;
664 ip = mtod(m, struct ip *);
665 hlen = ip->ip_hl << 2;
666 /*
667 * XXX The setting of "srcrt" here is to prevent ip_forward()
668 * from generating ICMP redirects for packets that have
669 * been redirected by a hook back out on to the same LAN that
670 * they came from and is not an indication that the packet
671 * is being inffluenced by source routing options. This
672 * allows things like
673 * "rdr tlp0 0/0 port 80 -> 1.1.1.200 3128 tcp"
674 * where tlp0 is both on the 1.1.1.0/24 network and is the
675 * default route for hosts on 1.1.1.0/24. Of course this
676 * also requires a "map tlp0 ..." to complete the story.
677 * One might argue whether or not this kind of network config.
678 * should be supported in this manner...
679 */
680 srcrt = (odst.s_addr != ip->ip_dst.s_addr);
681 }
682 #endif /* PFIL_HOOKS */
683
684 #ifdef ALTQ
685 /* XXX Temporary until ALTQ is changed to use a pfil hook */
686 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
687 /* packet dropped by traffic conditioner */
688 return;
689 }
690 #endif
691
692 /*
693 * Process options and, if not destined for us,
694 * ship it on. ip_dooptions returns 1 when an
695 * error was detected (causing an icmp message
696 * to be sent and the original packet to be freed).
697 */
698 ip_nhops = 0; /* for source routed packets */
699 if (hlen > sizeof (struct ip) && ip_dooptions(m))
700 return;
701
702 /*
703 * Enable a consistency check between the destination address
704 * and the arrival interface for a unicast packet (the RFC 1122
705 * strong ES model) if IP forwarding is disabled and the packet
706 * is not locally generated.
707 *
708 * XXX - Checking also should be disabled if the destination
709 * address is ipnat'ed to a different interface.
710 *
711 * XXX - Checking is incompatible with IP aliases added
712 * to the loopback interface instead of the interface where
713 * the packets are received.
714 *
715 * XXX - We need to add a per ifaddr flag for this so that
716 * we get finer grain control.
717 */
718 checkif = ip_checkinterface && (ipforwarding == 0) &&
719 (m->m_pkthdr.rcvif != NULL) &&
720 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
721
722 /*
723 * Check our list of addresses, to see if the packet is for us.
724 *
725 * Traditional 4.4BSD did not consult IFF_UP at all.
726 * The behavior here is to treat addresses on !IFF_UP interface
727 * as not mine.
728 */
729 downmatch = 0;
730 LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
731 if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
732 if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
733 continue;
734 if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
735 break;
736 else
737 downmatch++;
738 }
739 }
740 if (ia != NULL)
741 goto ours;
742 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
743 IFADDR_FOREACH(ifa, m->m_pkthdr.rcvif) {
744 if (ifa->ifa_addr->sa_family != AF_INET)
745 continue;
746 ia = ifatoia(ifa);
747 if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
748 in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
749 /*
750 * Look for all-0's host part (old broadcast addr),
751 * either for subnet or net.
752 */
753 ip->ip_dst.s_addr == ia->ia_subnet ||
754 ip->ip_dst.s_addr == ia->ia_net)
755 goto ours;
756 /*
757 * An interface with IP address zero accepts
758 * all packets that arrive on that interface.
759 */
760 if (in_nullhost(ia->ia_addr.sin_addr))
761 goto ours;
762 }
763 }
764 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
765 struct in_multi *inm;
766 #ifdef MROUTING
767 extern struct socket *ip_mrouter;
768
769 if (ip_mrouter) {
770 /*
771 * If we are acting as a multicast router, all
772 * incoming multicast packets are passed to the
773 * kernel-level multicast forwarding function.
774 * The packet is returned (relatively) intact; if
775 * ip_mforward() returns a non-zero value, the packet
776 * must be discarded, else it may be accepted below.
777 *
778 * (The IP ident field is put in the same byte order
779 * as expected when ip_mforward() is called from
780 * ip_output().)
781 */
782 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
783 ipstat.ips_cantforward++;
784 m_freem(m);
785 return;
786 }
787
788 /*
789 * The process-level routing demon needs to receive
790 * all multicast IGMP packets, whether or not this
791 * host belongs to their destination groups.
792 */
793 if (ip->ip_p == IPPROTO_IGMP)
794 goto ours;
795 ipstat.ips_forward++;
796 }
797 #endif
798 /*
799 * See if we belong to the destination multicast group on the
800 * arrival interface.
801 */
802 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
803 if (inm == NULL) {
804 ipstat.ips_cantforward++;
805 m_freem(m);
806 return;
807 }
808 goto ours;
809 }
810 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
811 in_nullhost(ip->ip_dst))
812 goto ours;
813
814 /*
815 * Not for us; forward if possible and desirable.
816 */
817 if (ipforwarding == 0) {
818 ipstat.ips_cantforward++;
819 m_freem(m);
820 } else {
821 /*
822 * If ip_dst matched any of my address on !IFF_UP interface,
823 * and there's no IFF_UP interface that matches ip_dst,
824 * send icmp unreach. Forwarding it will result in in-kernel
825 * forwarding loop till TTL goes to 0.
826 */
827 if (downmatch) {
828 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
829 ipstat.ips_cantforward++;
830 return;
831 }
832 #ifdef IPSEC
833 if (ipsec4_in_reject(m, NULL)) {
834 ipsecstat.in_polvio++;
835 goto bad;
836 }
837 #endif
838 #ifdef FAST_IPSEC
839 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
840 s = splsoftnet();
841 if (mtag != NULL) {
842 tdbi = (struct tdb_ident *)(mtag + 1);
843 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
844 } else {
845 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
846 IP_FORWARDING, &error);
847 }
848 if (sp == NULL) { /* NB: can happen if error */
849 splx(s);
850 /*XXX error stat???*/
851 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
852 goto bad;
853 }
854
855 /*
856 * Check security policy against packet attributes.
857 */
858 error = ipsec_in_reject(sp, m);
859 KEY_FREESP(&sp);
860 splx(s);
861 if (error) {
862 ipstat.ips_cantforward++;
863 goto bad;
864 }
865
866 /*
867 * Peek at the outbound SP for this packet to determine if
868 * it's a Fast Forward candidate.
869 */
870 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
871 if (mtag != NULL)
872 m->m_flags &= ~M_CANFASTFWD;
873 else {
874 s = splsoftnet();
875 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
876 (IP_FORWARDING |
877 (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
878 &error, NULL);
879 if (sp != NULL) {
880 m->m_flags &= ~M_CANFASTFWD;
881 KEY_FREESP(&sp);
882 }
883 splx(s);
884 }
885 #endif /* FAST_IPSEC */
886
887 ip_forward(m, srcrt);
888 }
889 return;
890
891 ours:
892 /*
893 * If offset or IP_MF are set, must reassemble.
894 * Otherwise, nothing need be done.
895 * (We could look in the reassembly queue to see
896 * if the packet was previously fragmented,
897 * but it's not worth the time; just let them time out.)
898 */
899 if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
900
901 /*
902 * Look for queue of fragments
903 * of this datagram.
904 */
905 IPQ_LOCK();
906 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
907 /* XXX LIST_FOREACH(fp, &ipq[hash], ipq_q) */
908 for (fp = LIST_FIRST(&ipq[hash]); fp != NULL;
909 fp = LIST_NEXT(fp, ipq_q)) {
910 if (ip->ip_id == fp->ipq_id &&
911 in_hosteq(ip->ip_src, fp->ipq_src) &&
912 in_hosteq(ip->ip_dst, fp->ipq_dst) &&
913 ip->ip_p == fp->ipq_p)
914 goto found;
915
916 }
917 fp = 0;
918 found:
919
920 /*
921 * Adjust ip_len to not reflect header,
922 * set ipqe_mff if more fragments are expected,
923 * convert offset of this to bytes.
924 */
925 ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
926 mff = (ip->ip_off & htons(IP_MF)) != 0;
927 if (mff) {
928 /*
929 * Make sure that fragments have a data length
930 * that's a non-zero multiple of 8 bytes.
931 */
932 if (ntohs(ip->ip_len) == 0 ||
933 (ntohs(ip->ip_len) & 0x7) != 0) {
934 ipstat.ips_badfrags++;
935 IPQ_UNLOCK();
936 goto bad;
937 }
938 }
939 ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
940
941 /*
942 * If datagram marked as having more fragments
943 * or if this is not the first fragment,
944 * attempt reassembly; if it succeeds, proceed.
945 */
946 if (mff || ip->ip_off != htons(0)) {
947 ipstat.ips_fragments++;
948 s = splvm();
949 ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
950 splx(s);
951 if (ipqe == NULL) {
952 ipstat.ips_rcvmemdrop++;
953 IPQ_UNLOCK();
954 goto bad;
955 }
956 ipqe->ipqe_mff = mff;
957 ipqe->ipqe_m = m;
958 ipqe->ipqe_ip = ip;
959 m = ip_reass(ipqe, fp, &ipq[hash]);
960 if (m == 0) {
961 IPQ_UNLOCK();
962 return;
963 }
964 ipstat.ips_reassembled++;
965 ip = mtod(m, struct ip *);
966 hlen = ip->ip_hl << 2;
967 ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
968 } else
969 if (fp)
970 ip_freef(fp);
971 IPQ_UNLOCK();
972 }
973
974 #if defined(IPSEC)
975 /*
976 * enforce IPsec policy checking if we are seeing last header.
977 * note that we do not visit this with protocols with pcb layer
978 * code - like udp/tcp/raw ip.
979 */
980 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
981 ipsec4_in_reject(m, NULL)) {
982 ipsecstat.in_polvio++;
983 goto bad;
984 }
985 #endif
986 #ifdef FAST_IPSEC
987 /*
988 * enforce IPsec policy checking if we are seeing last header.
989 * note that we do not visit this with protocols with pcb layer
990 * code - like udp/tcp/raw ip.
991 */
992 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
993 /*
994 * Check if the packet has already had IPsec processing
995 * done. If so, then just pass it along. This tag gets
996 * set during AH, ESP, etc. input handling, before the
997 * packet is returned to the ip input queue for delivery.
998 */
999 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1000 s = splsoftnet();
1001 if (mtag != NULL) {
1002 tdbi = (struct tdb_ident *)(mtag + 1);
1003 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1004 } else {
1005 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1006 IP_FORWARDING, &error);
1007 }
1008 if (sp != NULL) {
1009 /*
1010 * Check security policy against packet attributes.
1011 */
1012 error = ipsec_in_reject(sp, m);
1013 KEY_FREESP(&sp);
1014 } else {
1015 /* XXX error stat??? */
1016 error = EINVAL;
1017 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1018 goto bad;
1019 }
1020 splx(s);
1021 if (error)
1022 goto bad;
1023 }
1024 #endif /* FAST_IPSEC */
1025
1026 /*
1027 * Switch out to protocol's input routine.
1028 */
1029 #if IFA_STATS
1030 if (ia && ip)
1031 ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
1032 #endif
1033 ipstat.ips_delivered++;
1034 {
1035 int off = hlen, nh = ip->ip_p;
1036
1037 (*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
1038 return;
1039 }
1040 bad:
1041 m_freem(m);
1042 return;
1043
1044 badcsum:
1045 ipstat.ips_badsum++;
1046 m_freem(m);
1047 }
1048
1049 /*
1050 * Take incoming datagram fragment and try to
1051 * reassemble it into whole datagram. If a chain for
1052 * reassembly of this datagram already exists, then it
1053 * is given as fp; otherwise have to make a chain.
1054 */
1055 struct mbuf *
1056 ip_reass(struct ipqent *ipqe, struct ipq *fp, struct ipqhead *ipqhead)
1057 {
1058 struct mbuf *m = ipqe->ipqe_m;
1059 struct ipqent *nq, *p, *q;
1060 struct ip *ip;
1061 struct mbuf *t;
1062 int hlen = ipqe->ipqe_ip->ip_hl << 2;
1063 int i, next, s;
1064
1065 IPQ_LOCK_CHECK();
1066
1067 /*
1068 * Presence of header sizes in mbufs
1069 * would confuse code below.
1070 */
1071 m->m_data += hlen;
1072 m->m_len -= hlen;
1073
1074 #ifdef notyet
1075 /* make sure fragment limit is up-to-date */
1076 CHECK_NMBCLUSTER_PARAMS();
1077
1078 /* If we have too many fragments, drop the older half. */
1079 if (ip_nfrags >= ip_maxfrags)
1080 ip_reass_drophalf(void);
1081 #endif
1082
1083 /*
1084 * We are about to add a fragment; increment frag count.
1085 */
1086 ip_nfrags++;
1087
1088 /*
1089 * If first fragment to arrive, create a reassembly queue.
1090 */
1091 if (fp == 0) {
1092 /*
1093 * Enforce upper bound on number of fragmented packets
1094 * for which we attempt reassembly;
1095 * If maxfrag is 0, never accept fragments.
1096 * If maxfrag is -1, accept all fragments without limitation.
1097 */
1098 if (ip_maxfragpackets < 0)
1099 ;
1100 else if (ip_nfragpackets >= ip_maxfragpackets)
1101 goto dropfrag;
1102 ip_nfragpackets++;
1103 MALLOC(fp, struct ipq *, sizeof (struct ipq),
1104 M_FTABLE, M_NOWAIT);
1105 if (fp == NULL)
1106 goto dropfrag;
1107 LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
1108 fp->ipq_nfrags = 1;
1109 fp->ipq_ttl = IPFRAGTTL;
1110 fp->ipq_p = ipqe->ipqe_ip->ip_p;
1111 fp->ipq_id = ipqe->ipqe_ip->ip_id;
1112 TAILQ_INIT(&fp->ipq_fragq);
1113 fp->ipq_src = ipqe->ipqe_ip->ip_src;
1114 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
1115 p = NULL;
1116 goto insert;
1117 } else {
1118 fp->ipq_nfrags++;
1119 }
1120
1121 /*
1122 * Find a segment which begins after this one does.
1123 */
1124 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1125 p = q, q = TAILQ_NEXT(q, ipqe_q))
1126 if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
1127 break;
1128
1129 /*
1130 * If there is a preceding segment, it may provide some of
1131 * our data already. If so, drop the data from the incoming
1132 * segment. If it provides all of our data, drop us.
1133 */
1134 if (p != NULL) {
1135 i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
1136 ntohs(ipqe->ipqe_ip->ip_off);
1137 if (i > 0) {
1138 if (i >= ntohs(ipqe->ipqe_ip->ip_len))
1139 goto dropfrag;
1140 m_adj(ipqe->ipqe_m, i);
1141 ipqe->ipqe_ip->ip_off =
1142 htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
1143 ipqe->ipqe_ip->ip_len =
1144 htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
1145 }
1146 }
1147
1148 /*
1149 * While we overlap succeeding segments trim them or,
1150 * if they are completely covered, dequeue them.
1151 */
1152 for (; q != NULL &&
1153 ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
1154 ntohs(q->ipqe_ip->ip_off); q = nq) {
1155 i = (ntohs(ipqe->ipqe_ip->ip_off) +
1156 ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
1157 if (i < ntohs(q->ipqe_ip->ip_len)) {
1158 q->ipqe_ip->ip_len =
1159 htons(ntohs(q->ipqe_ip->ip_len) - i);
1160 q->ipqe_ip->ip_off =
1161 htons(ntohs(q->ipqe_ip->ip_off) + i);
1162 m_adj(q->ipqe_m, i);
1163 break;
1164 }
1165 nq = TAILQ_NEXT(q, ipqe_q);
1166 m_freem(q->ipqe_m);
1167 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1168 s = splvm();
1169 pool_put(&ipqent_pool, q);
1170 splx(s);
1171 fp->ipq_nfrags--;
1172 ip_nfrags--;
1173 }
1174
1175 insert:
1176 /*
1177 * Stick new segment in its place;
1178 * check for complete reassembly.
1179 */
1180 if (p == NULL) {
1181 TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
1182 } else {
1183 TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
1184 }
1185 next = 0;
1186 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1187 p = q, q = TAILQ_NEXT(q, ipqe_q)) {
1188 if (ntohs(q->ipqe_ip->ip_off) != next)
1189 return (0);
1190 next += ntohs(q->ipqe_ip->ip_len);
1191 }
1192 if (p->ipqe_mff)
1193 return (0);
1194
1195 /*
1196 * Reassembly is complete. Check for a bogus message size and
1197 * concatenate fragments.
1198 */
1199 q = TAILQ_FIRST(&fp->ipq_fragq);
1200 ip = q->ipqe_ip;
1201 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
1202 ipstat.ips_toolong++;
1203 ip_freef(fp);
1204 return (0);
1205 }
1206 m = q->ipqe_m;
1207 t = m->m_next;
1208 m->m_next = 0;
1209 m_cat(m, t);
1210 nq = TAILQ_NEXT(q, ipqe_q);
1211 s = splvm();
1212 pool_put(&ipqent_pool, q);
1213 splx(s);
1214 for (q = nq; q != NULL; q = nq) {
1215 t = q->ipqe_m;
1216 nq = TAILQ_NEXT(q, ipqe_q);
1217 s = splvm();
1218 pool_put(&ipqent_pool, q);
1219 splx(s);
1220 m_cat(m, t);
1221 }
1222 ip_nfrags -= fp->ipq_nfrags;
1223
1224 /*
1225 * Create header for new ip packet by
1226 * modifying header of first packet;
1227 * dequeue and discard fragment reassembly header.
1228 * Make header visible.
1229 */
1230 ip->ip_len = htons(next);
1231 ip->ip_src = fp->ipq_src;
1232 ip->ip_dst = fp->ipq_dst;
1233 LIST_REMOVE(fp, ipq_q);
1234 FREE(fp, M_FTABLE);
1235 ip_nfragpackets--;
1236 m->m_len += (ip->ip_hl << 2);
1237 m->m_data -= (ip->ip_hl << 2);
1238 /* some debugging cruft by sklower, below, will go away soon */
1239 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1240 int plen = 0;
1241 for (t = m; t; t = t->m_next)
1242 plen += t->m_len;
1243 m->m_pkthdr.len = plen;
1244 m->m_pkthdr.csum_flags = 0;
1245 }
1246 return (m);
1247
1248 dropfrag:
1249 if (fp != 0)
1250 fp->ipq_nfrags--;
1251 ip_nfrags--;
1252 ipstat.ips_fragdropped++;
1253 m_freem(m);
1254 s = splvm();
1255 pool_put(&ipqent_pool, ipqe);
1256 splx(s);
1257 return (0);
1258 }
1259
1260 /*
1261 * Free a fragment reassembly header and all
1262 * associated datagrams.
1263 */
1264 void
1265 ip_freef(struct ipq *fp)
1266 {
1267 struct ipqent *q, *p;
1268 u_int nfrags = 0;
1269 int s;
1270
1271 IPQ_LOCK_CHECK();
1272
1273 for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
1274 p = TAILQ_NEXT(q, ipqe_q);
1275 m_freem(q->ipqe_m);
1276 nfrags++;
1277 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1278 s = splvm();
1279 pool_put(&ipqent_pool, q);
1280 splx(s);
1281 }
1282
1283 if (nfrags != fp->ipq_nfrags)
1284 printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
1285 ip_nfrags -= nfrags;
1286 LIST_REMOVE(fp, ipq_q);
1287 FREE(fp, M_FTABLE);
1288 ip_nfragpackets--;
1289 }
1290
1291 /*
1292 * IP reassembly TTL machinery for multiplicative drop.
1293 */
1294 static u_int fragttl_histo[(IPFRAGTTL+1)];
1295
1296
1297 /*
1298 * Decrement TTL of all reasembly queue entries by `ticks'.
1299 * Count number of distinct fragments (as opposed to partial, fragmented
1300 * datagrams) in the reassembly queue. While we traverse the entire
1301 * reassembly queue, compute and return the median TTL over all fragments.
1302 */
1303 static u_int
1304 ip_reass_ttl_decr(u_int ticks)
1305 {
1306 u_int nfrags, median, dropfraction, keepfraction;
1307 struct ipq *fp, *nfp;
1308 int i;
1309
1310 nfrags = 0;
1311 memset(fragttl_histo, 0, sizeof fragttl_histo);
1312
1313 for (i = 0; i < IPREASS_NHASH; i++) {
1314 for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
1315 fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
1316 0 : fp->ipq_ttl - ticks);
1317 nfp = LIST_NEXT(fp, ipq_q);
1318 if (fp->ipq_ttl == 0) {
1319 ipstat.ips_fragtimeout++;
1320 ip_freef(fp);
1321 } else {
1322 nfrags += fp->ipq_nfrags;
1323 fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
1324 }
1325 }
1326 }
1327
1328 KASSERT(ip_nfrags == nfrags);
1329
1330 /* Find median (or other drop fraction) in histogram. */
1331 dropfraction = (ip_nfrags / 2);
1332 keepfraction = ip_nfrags - dropfraction;
1333 for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
1334 median += fragttl_histo[i];
1335 if (median >= keepfraction)
1336 break;
1337 }
1338
1339 /* Return TTL of median (or other fraction). */
1340 return (u_int)i;
1341 }
1342
1343 void
1344 ip_reass_drophalf(void)
1345 {
1346
1347 u_int median_ticks;
1348 /*
1349 * Compute median TTL of all fragments, and count frags
1350 * with that TTL or lower (roughly half of all fragments).
1351 */
1352 median_ticks = ip_reass_ttl_decr(0);
1353
1354 /* Drop half. */
1355 median_ticks = ip_reass_ttl_decr(median_ticks);
1356
1357 }
1358
1359 /*
1360 * IP timer processing;
1361 * if a timer expires on a reassembly
1362 * queue, discard it.
1363 */
1364 void
1365 ip_slowtimo(void)
1366 {
1367 static u_int dropscanidx = 0;
1368 u_int i;
1369 u_int median_ttl;
1370 int s = splsoftnet();
1371
1372 IPQ_LOCK();
1373
1374 /* Age TTL of all fragments by 1 tick .*/
1375 median_ttl = ip_reass_ttl_decr(1);
1376
1377 /* make sure fragment limit is up-to-date */
1378 CHECK_NMBCLUSTER_PARAMS();
1379
1380 /* If we have too many fragments, drop the older half. */
1381 if (ip_nfrags > ip_maxfrags)
1382 ip_reass_ttl_decr(median_ttl);
1383
1384 /*
1385 * If we are over the maximum number of fragmented packets
1386 * (due to the limit being lowered), drain off
1387 * enough to get down to the new limit. Start draining
1388 * from the reassembly hashqueue most recently drained.
1389 */
1390 if (ip_maxfragpackets < 0)
1391 ;
1392 else {
1393 int wrapped = 0;
1394
1395 i = dropscanidx;
1396 while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
1397 while (LIST_FIRST(&ipq[i]) != NULL)
1398 ip_freef(LIST_FIRST(&ipq[i]));
1399 if (++i >= IPREASS_NHASH) {
1400 i = 0;
1401 }
1402 /*
1403 * Dont scan forever even if fragment counters are
1404 * wrong: stop after scanning entire reassembly queue.
1405 */
1406 if (i == dropscanidx)
1407 wrapped = 1;
1408 }
1409 dropscanidx = i;
1410 }
1411 IPQ_UNLOCK();
1412 splx(s);
1413 }
1414
1415 /*
1416 * Drain off all datagram fragments.
1417 */
1418 void
1419 ip_drain(void)
1420 {
1421
1422 /*
1423 * We may be called from a device's interrupt context. If
1424 * the ipq is already busy, just bail out now.
1425 */
1426 if (ipq_lock_try() == 0)
1427 return;
1428
1429 /*
1430 * Drop half the total fragments now. If more mbufs are needed,
1431 * we will be called again soon.
1432 */
1433 ip_reass_drophalf();
1434
1435 IPQ_UNLOCK();
1436 }
1437
1438 /*
1439 * Do option processing on a datagram,
1440 * possibly discarding it if bad options are encountered,
1441 * or forwarding it if source-routed.
1442 * Returns 1 if packet has been forwarded/freed,
1443 * 0 if the packet should be processed further.
1444 */
1445 int
1446 ip_dooptions(struct mbuf *m)
1447 {
1448 struct ip *ip = mtod(m, struct ip *);
1449 u_char *cp, *cp0;
1450 struct ip_timestamp *ipt;
1451 struct in_ifaddr *ia;
1452 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1453 struct in_addr dst;
1454 n_time ntime;
1455
1456 dst = ip->ip_dst;
1457 cp = (u_char *)(ip + 1);
1458 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1459 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1460 opt = cp[IPOPT_OPTVAL];
1461 if (opt == IPOPT_EOL)
1462 break;
1463 if (opt == IPOPT_NOP)
1464 optlen = 1;
1465 else {
1466 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1467 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1468 goto bad;
1469 }
1470 optlen = cp[IPOPT_OLEN];
1471 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1472 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1473 goto bad;
1474 }
1475 }
1476 switch (opt) {
1477
1478 default:
1479 break;
1480
1481 /*
1482 * Source routing with record.
1483 * Find interface with current destination address.
1484 * If none on this machine then drop if strictly routed,
1485 * or do nothing if loosely routed.
1486 * Record interface address and bring up next address
1487 * component. If strictly routed make sure next
1488 * address is on directly accessible net.
1489 */
1490 case IPOPT_LSRR:
1491 case IPOPT_SSRR:
1492 if (ip_allowsrcrt == 0) {
1493 type = ICMP_UNREACH;
1494 code = ICMP_UNREACH_NET_PROHIB;
1495 goto bad;
1496 }
1497 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1498 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1499 goto bad;
1500 }
1501 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1502 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1503 goto bad;
1504 }
1505 ipaddr.sin_addr = ip->ip_dst;
1506 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
1507 if (ia == 0) {
1508 if (opt == IPOPT_SSRR) {
1509 type = ICMP_UNREACH;
1510 code = ICMP_UNREACH_SRCFAIL;
1511 goto bad;
1512 }
1513 /*
1514 * Loose routing, and not at next destination
1515 * yet; nothing to do except forward.
1516 */
1517 break;
1518 }
1519 off--; /* 0 origin */
1520 if ((off + sizeof(struct in_addr)) > optlen) {
1521 /*
1522 * End of source route. Should be for us.
1523 */
1524 save_rte(cp, ip->ip_src);
1525 break;
1526 }
1527 /*
1528 * locate outgoing interface
1529 */
1530 bcopy((void *)(cp + off), (void *)&ipaddr.sin_addr,
1531 sizeof(ipaddr.sin_addr));
1532 if (opt == IPOPT_SSRR)
1533 ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
1534 else
1535 ia = ip_rtaddr(ipaddr.sin_addr);
1536 if (ia == 0) {
1537 type = ICMP_UNREACH;
1538 code = ICMP_UNREACH_SRCFAIL;
1539 goto bad;
1540 }
1541 ip->ip_dst = ipaddr.sin_addr;
1542 bcopy((void *)&ia->ia_addr.sin_addr,
1543 (void *)(cp + off), sizeof(struct in_addr));
1544 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1545 /*
1546 * Let ip_intr's mcast routing check handle mcast pkts
1547 */
1548 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1549 break;
1550
1551 case IPOPT_RR:
1552 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1553 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1554 goto bad;
1555 }
1556 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1557 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1558 goto bad;
1559 }
1560 /*
1561 * If no space remains, ignore.
1562 */
1563 off--; /* 0 origin */
1564 if ((off + sizeof(struct in_addr)) > optlen)
1565 break;
1566 bcopy((void *)(&ip->ip_dst), (void *)&ipaddr.sin_addr,
1567 sizeof(ipaddr.sin_addr));
1568 /*
1569 * locate outgoing interface; if we're the destination,
1570 * use the incoming interface (should be same).
1571 */
1572 if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
1573 == NULL &&
1574 (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1575 type = ICMP_UNREACH;
1576 code = ICMP_UNREACH_HOST;
1577 goto bad;
1578 }
1579 bcopy((void *)&ia->ia_addr.sin_addr,
1580 (void *)(cp + off), sizeof(struct in_addr));
1581 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1582 break;
1583
1584 case IPOPT_TS:
1585 code = cp - (u_char *)ip;
1586 ipt = (struct ip_timestamp *)cp;
1587 if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1588 code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1589 goto bad;
1590 }
1591 if (ipt->ipt_ptr < 5) {
1592 code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1593 goto bad;
1594 }
1595 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
1596 if (++ipt->ipt_oflw == 0) {
1597 code = (u_char *)&ipt->ipt_ptr -
1598 (u_char *)ip;
1599 goto bad;
1600 }
1601 break;
1602 }
1603 cp0 = (cp + ipt->ipt_ptr - 1);
1604 switch (ipt->ipt_flg) {
1605
1606 case IPOPT_TS_TSONLY:
1607 break;
1608
1609 case IPOPT_TS_TSANDADDR:
1610 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1611 sizeof(struct in_addr) > ipt->ipt_len) {
1612 code = (u_char *)&ipt->ipt_ptr -
1613 (u_char *)ip;
1614 goto bad;
1615 }
1616 ipaddr.sin_addr = dst;
1617 ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1618 m->m_pkthdr.rcvif));
1619 if (ia == 0)
1620 continue;
1621 bcopy(&ia->ia_addr.sin_addr,
1622 cp0, sizeof(struct in_addr));
1623 ipt->ipt_ptr += sizeof(struct in_addr);
1624 break;
1625
1626 case IPOPT_TS_PRESPEC:
1627 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1628 sizeof(struct in_addr) > ipt->ipt_len) {
1629 code = (u_char *)&ipt->ipt_ptr -
1630 (u_char *)ip;
1631 goto bad;
1632 }
1633 bcopy(cp0, &ipaddr.sin_addr,
1634 sizeof(struct in_addr));
1635 if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
1636 == NULL)
1637 continue;
1638 ipt->ipt_ptr += sizeof(struct in_addr);
1639 break;
1640
1641 default:
1642 /* XXX can't take &ipt->ipt_flg */
1643 code = (u_char *)&ipt->ipt_ptr -
1644 (u_char *)ip + 1;
1645 goto bad;
1646 }
1647 ntime = iptime();
1648 cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
1649 memmove((char *)cp + ipt->ipt_ptr - 1, cp0,
1650 sizeof(n_time));
1651 ipt->ipt_ptr += sizeof(n_time);
1652 }
1653 }
1654 if (forward) {
1655 if (ip_forwsrcrt == 0) {
1656 type = ICMP_UNREACH;
1657 code = ICMP_UNREACH_SRCFAIL;
1658 goto bad;
1659 }
1660 ip_forward(m, 1);
1661 return (1);
1662 }
1663 return (0);
1664 bad:
1665 icmp_error(m, type, code, 0, 0);
1666 ipstat.ips_badoptions++;
1667 return (1);
1668 }
1669
1670 /*
1671 * Given address of next destination (final or next hop),
1672 * return internet address info of interface to be used to get there.
1673 */
1674 struct in_ifaddr *
1675 ip_rtaddr(struct in_addr dst)
1676 {
1677 struct rtentry *rt;
1678 union {
1679 struct sockaddr dst;
1680 struct sockaddr_in dst4;
1681 } u;
1682
1683 sockaddr_in_init(&u.dst4, &dst, 0);
1684
1685 if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL)
1686 return NULL;
1687
1688 return ifatoia(rt->rt_ifa);
1689 }
1690
1691 /*
1692 * Save incoming source route for use in replies,
1693 * to be picked up later by ip_srcroute if the receiver is interested.
1694 */
1695 void
1696 save_rte(u_char *option, struct in_addr dst)
1697 {
1698 unsigned olen;
1699
1700 olen = option[IPOPT_OLEN];
1701 #ifdef DIAGNOSTIC
1702 if (ipprintfs)
1703 printf("save_rte: olen %d\n", olen);
1704 #endif /* 0 */
1705 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1706 return;
1707 bcopy((void *)option, (void *)ip_srcrt.srcopt, olen);
1708 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1709 ip_srcrt.dst = dst;
1710 }
1711
1712 /*
1713 * Retrieve incoming source route for use in replies,
1714 * in the same form used by setsockopt.
1715 * The first hop is placed before the options, will be removed later.
1716 */
1717 struct mbuf *
1718 ip_srcroute(void)
1719 {
1720 struct in_addr *p, *q;
1721 struct mbuf *m;
1722
1723 if (ip_nhops == 0)
1724 return NULL;
1725 m = m_get(M_DONTWAIT, MT_SOOPTS);
1726 if (m == 0)
1727 return NULL;
1728
1729 MCLAIM(m, &inetdomain.dom_mowner);
1730 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1731
1732 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1733 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1734 OPTSIZ;
1735 #ifdef DIAGNOSTIC
1736 if (ipprintfs)
1737 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1738 #endif
1739
1740 /*
1741 * First save first hop for return route
1742 */
1743 p = &ip_srcrt.route[ip_nhops - 1];
1744 *(mtod(m, struct in_addr *)) = *p--;
1745 #ifdef DIAGNOSTIC
1746 if (ipprintfs)
1747 printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1748 #endif
1749
1750 /*
1751 * Copy option fields and padding (nop) to mbuf.
1752 */
1753 ip_srcrt.nop = IPOPT_NOP;
1754 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1755 memmove(mtod(m, char *) + sizeof(struct in_addr), &ip_srcrt.nop,
1756 OPTSIZ);
1757 q = (struct in_addr *)(mtod(m, char *) +
1758 sizeof(struct in_addr) + OPTSIZ);
1759 #undef OPTSIZ
1760 /*
1761 * Record return path as an IP source route,
1762 * reversing the path (pointers are now aligned).
1763 */
1764 while (p >= ip_srcrt.route) {
1765 #ifdef DIAGNOSTIC
1766 if (ipprintfs)
1767 printf(" %x", ntohl(q->s_addr));
1768 #endif
1769 *q++ = *p--;
1770 }
1771 /*
1772 * Last hop goes to final destination.
1773 */
1774 *q = ip_srcrt.dst;
1775 #ifdef DIAGNOSTIC
1776 if (ipprintfs)
1777 printf(" %x\n", ntohl(q->s_addr));
1778 #endif
1779 return (m);
1780 }
1781
1782 /*
1783 * Strip out IP options, at higher
1784 * level protocol in the kernel.
1785 * Second argument is buffer to which options
1786 * will be moved, and return value is their length.
1787 * XXX should be deleted; last arg currently ignored.
1788 */
1789 void
1790 ip_stripoptions(struct mbuf *m, struct mbuf *mopt)
1791 {
1792 int i;
1793 struct ip *ip = mtod(m, struct ip *);
1794 void *opts;
1795 int olen;
1796
1797 olen = (ip->ip_hl << 2) - sizeof (struct ip);
1798 opts = (void *)(ip + 1);
1799 i = m->m_len - (sizeof (struct ip) + olen);
1800 memmove(opts, (char *)opts + olen, (unsigned)i);
1801 m->m_len -= olen;
1802 if (m->m_flags & M_PKTHDR)
1803 m->m_pkthdr.len -= olen;
1804 ip->ip_len = htons(ntohs(ip->ip_len) - olen);
1805 ip->ip_hl = sizeof (struct ip) >> 2;
1806 }
1807
1808 const int inetctlerrmap[PRC_NCMDS] = {
1809 0, 0, 0, 0,
1810 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1811 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1812 EMSGSIZE, EHOSTUNREACH, 0, 0,
1813 0, 0, 0, 0,
1814 ENOPROTOOPT
1815 };
1816
1817 /*
1818 * Forward a packet. If some error occurs return the sender
1819 * an icmp packet. Note we can't always generate a meaningful
1820 * icmp message because icmp doesn't have a large enough repertoire
1821 * of codes and types.
1822 *
1823 * If not forwarding, just drop the packet. This could be confusing
1824 * if ipforwarding was zero but some routing protocol was advancing
1825 * us as a gateway to somewhere. However, we must let the routing
1826 * protocol deal with that.
1827 *
1828 * The srcrt parameter indicates whether the packet is being forwarded
1829 * via a source route.
1830 */
1831 void
1832 ip_forward(struct mbuf *m, int srcrt)
1833 {
1834 struct ip *ip = mtod(m, struct ip *);
1835 struct rtentry *rt;
1836 int error, type = 0, code = 0, destmtu = 0;
1837 struct mbuf *mcopy;
1838 n_long dest;
1839 union {
1840 struct sockaddr dst;
1841 struct sockaddr_in dst4;
1842 } u;
1843
1844 /*
1845 * We are now in the output path.
1846 */
1847 MCLAIM(m, &ip_tx_mowner);
1848
1849 /*
1850 * Clear any in-bound checksum flags for this packet.
1851 */
1852 m->m_pkthdr.csum_flags = 0;
1853
1854 dest = 0;
1855 #ifdef DIAGNOSTIC
1856 if (ipprintfs) {
1857 printf("forward: src %s ", inet_ntoa(ip->ip_src));
1858 printf("dst %s ttl %x\n", inet_ntoa(ip->ip_dst), ip->ip_ttl);
1859 }
1860 #endif
1861 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1862 ipstat.ips_cantforward++;
1863 m_freem(m);
1864 return;
1865 }
1866 if (ip->ip_ttl <= IPTTLDEC) {
1867 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1868 return;
1869 }
1870
1871 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
1872 if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL) {
1873 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_NET, dest, 0);
1874 return;
1875 }
1876
1877 /*
1878 * Save at most 68 bytes of the packet in case
1879 * we need to generate an ICMP message to the src.
1880 * Pullup to avoid sharing mbuf cluster between m and mcopy.
1881 */
1882 mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
1883 if (mcopy)
1884 mcopy = m_pullup(mcopy, ip->ip_hl << 2);
1885
1886 ip->ip_ttl -= IPTTLDEC;
1887
1888 /*
1889 * If forwarding packet using same interface that it came in on,
1890 * perhaps should send a redirect to sender to shortcut a hop.
1891 * Only send redirect if source is sending directly to us,
1892 * and if packet was not source routed (or has any options).
1893 * Also, don't send redirect if forwarding using a default route
1894 * or a route modified by a redirect.
1895 */
1896 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1897 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1898 !in_nullhost(satosin(rt_key(rt))->sin_addr) &&
1899 ipsendredirects && !srcrt) {
1900 if (rt->rt_ifa &&
1901 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1902 ifatoia(rt->rt_ifa)->ia_subnet) {
1903 if (rt->rt_flags & RTF_GATEWAY)
1904 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1905 else
1906 dest = ip->ip_dst.s_addr;
1907 /*
1908 * Router requirements says to only send host
1909 * redirects.
1910 */
1911 type = ICMP_REDIRECT;
1912 code = ICMP_REDIRECT_HOST;
1913 #ifdef DIAGNOSTIC
1914 if (ipprintfs)
1915 printf("redirect (%d) to %x\n", code,
1916 (u_int32_t)dest);
1917 #endif
1918 }
1919 }
1920
1921 error = ip_output(m, NULL, &ipforward_rt,
1922 (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1923 (struct ip_moptions *)NULL, (struct socket *)NULL);
1924
1925 if (error)
1926 ipstat.ips_cantforward++;
1927 else {
1928 ipstat.ips_forward++;
1929 if (type)
1930 ipstat.ips_redirectsent++;
1931 else {
1932 if (mcopy) {
1933 #ifdef GATEWAY
1934 if (mcopy->m_flags & M_CANFASTFWD)
1935 ipflow_create(&ipforward_rt, mcopy);
1936 #endif
1937 m_freem(mcopy);
1938 }
1939 return;
1940 }
1941 }
1942 if (mcopy == NULL)
1943 return;
1944
1945 switch (error) {
1946
1947 case 0: /* forwarded, but need redirect */
1948 /* type, code set above */
1949 break;
1950
1951 case ENETUNREACH: /* shouldn't happen, checked above */
1952 case EHOSTUNREACH:
1953 case ENETDOWN:
1954 case EHOSTDOWN:
1955 default:
1956 type = ICMP_UNREACH;
1957 code = ICMP_UNREACH_HOST;
1958 break;
1959
1960 case EMSGSIZE:
1961 type = ICMP_UNREACH;
1962 code = ICMP_UNREACH_NEEDFRAG;
1963 #if !defined(IPSEC) && !defined(FAST_IPSEC)
1964 if (ipforward_rt.ro_rt != NULL)
1965 destmtu = ipforward_rt.ro_rt->rt_ifp->if_mtu;
1966 #else
1967 /*
1968 * If the packet is routed over IPsec tunnel, tell the
1969 * originator the tunnel MTU.
1970 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1971 * XXX quickhack!!!
1972 */
1973 if (ipforward_rt.ro_rt != NULL) {
1974 struct secpolicy *sp;
1975 int ipsecerror;
1976 size_t ipsechdr;
1977 struct route *ro;
1978
1979 sp = ipsec4_getpolicybyaddr(mcopy,
1980 IPSEC_DIR_OUTBOUND, IP_FORWARDING,
1981 &ipsecerror);
1982
1983 if (sp == NULL)
1984 destmtu = ipforward_rt.ro_rt->rt_ifp->if_mtu;
1985 else {
1986 /* count IPsec header size */
1987 ipsechdr = ipsec4_hdrsiz(mcopy,
1988 IPSEC_DIR_OUTBOUND, NULL);
1989
1990 /*
1991 * find the correct route for outer IPv4
1992 * header, compute tunnel MTU.
1993 */
1994
1995 if (sp->req != NULL
1996 && sp->req->sav != NULL
1997 && sp->req->sav->sah != NULL) {
1998 ro = &sp->req->sav->sah->sa_route;
1999 if (ro->ro_rt && ro->ro_rt->rt_ifp) {
2000 destmtu =
2001 ro->ro_rt->rt_rmx.rmx_mtu ?
2002 ro->ro_rt->rt_rmx.rmx_mtu :
2003 ro->ro_rt->rt_ifp->if_mtu;
2004 destmtu -= ipsechdr;
2005 }
2006 }
2007
2008 #ifdef IPSEC
2009 key_freesp(sp);
2010 #else
2011 KEY_FREESP(&sp);
2012 #endif
2013 }
2014 }
2015 #endif /*IPSEC*/
2016 ipstat.ips_cantfrag++;
2017 break;
2018
2019 case ENOBUFS:
2020 #if 1
2021 /*
2022 * a router should not generate ICMP_SOURCEQUENCH as
2023 * required in RFC1812 Requirements for IP Version 4 Routers.
2024 * source quench could be a big problem under DoS attacks,
2025 * or if the underlying interface is rate-limited.
2026 */
2027 if (mcopy)
2028 m_freem(mcopy);
2029 return;
2030 #else
2031 type = ICMP_SOURCEQUENCH;
2032 code = 0;
2033 break;
2034 #endif
2035 }
2036 icmp_error(mcopy, type, code, dest, destmtu);
2037 }
2038
2039 void
2040 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2041 struct mbuf *m)
2042 {
2043
2044 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2045 struct timeval tv;
2046
2047 microtime(&tv);
2048 *mp = sbcreatecontrol((void *) &tv, sizeof(tv),
2049 SCM_TIMESTAMP, SOL_SOCKET);
2050 if (*mp)
2051 mp = &(*mp)->m_next;
2052 }
2053 if (inp->inp_flags & INP_RECVDSTADDR) {
2054 *mp = sbcreatecontrol((void *) &ip->ip_dst,
2055 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2056 if (*mp)
2057 mp = &(*mp)->m_next;
2058 }
2059 #ifdef notyet
2060 /*
2061 * XXX
2062 * Moving these out of udp_input() made them even more broken
2063 * than they already were.
2064 * - fenner (at) parc.xerox.com
2065 */
2066 /* options were tossed already */
2067 if (inp->inp_flags & INP_RECVOPTS) {
2068 *mp = sbcreatecontrol((void *) opts_deleted_above,
2069 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2070 if (*mp)
2071 mp = &(*mp)->m_next;
2072 }
2073 /* ip_srcroute doesn't do what we want here, need to fix */
2074 if (inp->inp_flags & INP_RECVRETOPTS) {
2075 *mp = sbcreatecontrol((void *) ip_srcroute(),
2076 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2077 if (*mp)
2078 mp = &(*mp)->m_next;
2079 }
2080 #endif
2081 if (inp->inp_flags & INP_RECVIF) {
2082 struct sockaddr_dl sdl;
2083
2084 sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]);
2085 sdl.sdl_family = AF_LINK;
2086 sdl.sdl_index = m->m_pkthdr.rcvif ?
2087 m->m_pkthdr.rcvif->if_index : 0;
2088 sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0;
2089 *mp = sbcreatecontrol((void *) &sdl, sdl.sdl_len,
2090 IP_RECVIF, IPPROTO_IP);
2091 if (*mp)
2092 mp = &(*mp)->m_next;
2093 }
2094 }
2095
2096 /*
2097 * sysctl helper routine for net.inet.ip.forwsrcrt.
2098 */
2099 static int
2100 sysctl_net_inet_ip_forwsrcrt(SYSCTLFN_ARGS)
2101 {
2102 int error, tmp;
2103 struct sysctlnode node;
2104
2105 node = *rnode;
2106 tmp = ip_forwsrcrt;
2107 node.sysctl_data = &tmp;
2108 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2109 if (error || newp == NULL)
2110 return (error);
2111
2112 if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_FORWSRCRT,
2113 0, NULL, NULL, NULL))
2114 return (EPERM);
2115
2116 ip_forwsrcrt = tmp;
2117
2118 return (0);
2119 }
2120
2121 /*
2122 * sysctl helper routine for net.inet.ip.mtudisctimeout. checks the
2123 * range of the new value and tweaks timers if it changes.
2124 */
2125 static int
2126 sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
2127 {
2128 int error, tmp;
2129 struct sysctlnode node;
2130
2131 node = *rnode;
2132 tmp = ip_mtudisc_timeout;
2133 node.sysctl_data = &tmp;
2134 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2135 if (error || newp == NULL)
2136 return (error);
2137 if (tmp < 0)
2138 return (EINVAL);
2139
2140 ip_mtudisc_timeout = tmp;
2141 rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
2142
2143 return (0);
2144 }
2145
2146 #ifdef GATEWAY
2147 /*
2148 * sysctl helper routine for net.inet.ip.maxflows.
2149 */
2150 static int
2151 sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
2152 {
2153 int s;
2154
2155 s = sysctl_lookup(SYSCTLFN_CALL(rnode));
2156 if (s || newp == NULL)
2157 return (s);
2158
2159 s = splsoftnet();
2160 ipflow_reap(0);
2161 splx(s);
2162
2163 return (0);
2164 }
2165
2166 static int
2167 sysctl_net_inet_ip_hashsize(SYSCTLFN_ARGS)
2168 {
2169 int error, tmp;
2170 struct sysctlnode node;
2171
2172 node = *rnode;
2173 tmp = ip_hashsize;
2174 node.sysctl_data = &tmp;
2175 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2176 if (error || newp == NULL)
2177 return (error);
2178
2179 if ((tmp & (tmp - 1)) == 0 && tmp != 0) {
2180 /*
2181 * Can only fail due to malloc()
2182 */
2183 if (ipflow_invalidate_all(tmp))
2184 return ENOMEM;
2185 } else {
2186 /*
2187 * EINVAL if not a power of 2
2188 */
2189 return EINVAL;
2190 }
2191
2192 return (0);
2193 }
2194 #endif /* GATEWAY */
2195
2196
2197 SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
2198 {
2199 extern int subnetsarelocal, hostzeroisbroadcast;
2200
2201 sysctl_createv(clog, 0, NULL, NULL,
2202 CTLFLAG_PERMANENT,
2203 CTLTYPE_NODE, "net", NULL,
2204 NULL, 0, NULL, 0,
2205 CTL_NET, CTL_EOL);
2206 sysctl_createv(clog, 0, NULL, NULL,
2207 CTLFLAG_PERMANENT,
2208 CTLTYPE_NODE, "inet",
2209 SYSCTL_DESCR("PF_INET related settings"),
2210 NULL, 0, NULL, 0,
2211 CTL_NET, PF_INET, CTL_EOL);
2212 sysctl_createv(clog, 0, NULL, NULL,
2213 CTLFLAG_PERMANENT,
2214 CTLTYPE_NODE, "ip",
2215 SYSCTL_DESCR("IPv4 related settings"),
2216 NULL, 0, NULL, 0,
2217 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2218
2219 sysctl_createv(clog, 0, NULL, NULL,
2220 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2221 CTLTYPE_INT, "forwarding",
2222 SYSCTL_DESCR("Enable forwarding of INET datagrams"),
2223 NULL, 0, &ipforwarding, 0,
2224 CTL_NET, PF_INET, IPPROTO_IP,
2225 IPCTL_FORWARDING, CTL_EOL);
2226 sysctl_createv(clog, 0, NULL, NULL,
2227 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2228 CTLTYPE_INT, "redirect",
2229 SYSCTL_DESCR("Enable sending of ICMP redirect messages"),
2230 NULL, 0, &ipsendredirects, 0,
2231 CTL_NET, PF_INET, IPPROTO_IP,
2232 IPCTL_SENDREDIRECTS, CTL_EOL);
2233 sysctl_createv(clog, 0, NULL, NULL,
2234 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2235 CTLTYPE_INT, "ttl",
2236 SYSCTL_DESCR("Default TTL for an INET datagram"),
2237 NULL, 0, &ip_defttl, 0,
2238 CTL_NET, PF_INET, IPPROTO_IP,
2239 IPCTL_DEFTTL, CTL_EOL);
2240 #ifdef IPCTL_DEFMTU
2241 sysctl_createv(clog, 0, NULL, NULL,
2242 CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
2243 CTLTYPE_INT, "mtu",
2244 SYSCTL_DESCR("Default MTA for an INET route"),
2245 NULL, 0, &ip_mtu, 0,
2246 CTL_NET, PF_INET, IPPROTO_IP,
2247 IPCTL_DEFMTU, CTL_EOL);
2248 #endif /* IPCTL_DEFMTU */
2249 sysctl_createv(clog, 0, NULL, NULL,
2250 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2251 CTLTYPE_INT, "forwsrcrt",
2252 SYSCTL_DESCR("Enable forwarding of source-routed "
2253 "datagrams"),
2254 sysctl_net_inet_ip_forwsrcrt, 0, &ip_forwsrcrt, 0,
2255 CTL_NET, PF_INET, IPPROTO_IP,
2256 IPCTL_FORWSRCRT, CTL_EOL);
2257 sysctl_createv(clog, 0, NULL, NULL,
2258 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2259 CTLTYPE_INT, "directed-broadcast",
2260 SYSCTL_DESCR("Enable forwarding of broadcast datagrams"),
2261 NULL, 0, &ip_directedbcast, 0,
2262 CTL_NET, PF_INET, IPPROTO_IP,
2263 IPCTL_DIRECTEDBCAST, CTL_EOL);
2264 sysctl_createv(clog, 0, NULL, NULL,
2265 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2266 CTLTYPE_INT, "allowsrcrt",
2267 SYSCTL_DESCR("Accept source-routed datagrams"),
2268 NULL, 0, &ip_allowsrcrt, 0,
2269 CTL_NET, PF_INET, IPPROTO_IP,
2270 IPCTL_ALLOWSRCRT, CTL_EOL);
2271 sysctl_createv(clog, 0, NULL, NULL,
2272 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2273 CTLTYPE_INT, "subnetsarelocal",
2274 SYSCTL_DESCR("Whether logical subnets are considered "
2275 "local"),
2276 NULL, 0, &subnetsarelocal, 0,
2277 CTL_NET, PF_INET, IPPROTO_IP,
2278 IPCTL_SUBNETSARELOCAL, CTL_EOL);
2279 sysctl_createv(clog, 0, NULL, NULL,
2280 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2281 CTLTYPE_INT, "mtudisc",
2282 SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"),
2283 NULL, 0, &ip_mtudisc, 0,
2284 CTL_NET, PF_INET, IPPROTO_IP,
2285 IPCTL_MTUDISC, CTL_EOL);
2286 sysctl_createv(clog, 0, NULL, NULL,
2287 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2288 CTLTYPE_INT, "anonportmin",
2289 SYSCTL_DESCR("Lowest ephemeral port number to assign"),
2290 sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
2291 CTL_NET, PF_INET, IPPROTO_IP,
2292 IPCTL_ANONPORTMIN, CTL_EOL);
2293 sysctl_createv(clog, 0, NULL, NULL,
2294 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2295 CTLTYPE_INT, "anonportmax",
2296 SYSCTL_DESCR("Highest ephemeral port number to assign"),
2297 sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
2298 CTL_NET, PF_INET, IPPROTO_IP,
2299 IPCTL_ANONPORTMAX, CTL_EOL);
2300 sysctl_createv(clog, 0, NULL, NULL,
2301 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2302 CTLTYPE_INT, "mtudisctimeout",
2303 SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"),
2304 sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
2305 CTL_NET, PF_INET, IPPROTO_IP,
2306 IPCTL_MTUDISCTIMEOUT, CTL_EOL);
2307 #ifdef GATEWAY
2308 sysctl_createv(clog, 0, NULL, NULL,
2309 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2310 CTLTYPE_INT, "maxflows",
2311 SYSCTL_DESCR("Number of flows for fast forwarding"),
2312 sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
2313 CTL_NET, PF_INET, IPPROTO_IP,
2314 IPCTL_MAXFLOWS, CTL_EOL);
2315 sysctl_createv(clog, 0, NULL, NULL,
2316 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2317 CTLTYPE_INT, "hashsize",
2318 SYSCTL_DESCR("Size of hash table for fast forwarding (IPv4)"),
2319 sysctl_net_inet_ip_hashsize, 0, &ip_hashsize, 0,
2320 CTL_NET, PF_INET, IPPROTO_IP,
2321 CTL_CREATE, CTL_EOL);
2322 #endif /* GATEWAY */
2323 sysctl_createv(clog, 0, NULL, NULL,
2324 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2325 CTLTYPE_INT, "hostzerobroadcast",
2326 SYSCTL_DESCR("All zeroes address is broadcast address"),
2327 NULL, 0, &hostzeroisbroadcast, 0,
2328 CTL_NET, PF_INET, IPPROTO_IP,
2329 IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2330 #if NGIF > 0
2331 sysctl_createv(clog, 0, NULL, NULL,
2332 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2333 CTLTYPE_INT, "gifttl",
2334 SYSCTL_DESCR("Default TTL for a gif tunnel datagram"),
2335 NULL, 0, &ip_gif_ttl, 0,
2336 CTL_NET, PF_INET, IPPROTO_IP,
2337 IPCTL_GIF_TTL, CTL_EOL);
2338 #endif /* NGIF */
2339 #ifndef IPNOPRIVPORTS
2340 sysctl_createv(clog, 0, NULL, NULL,
2341 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2342 CTLTYPE_INT, "lowportmin",
2343 SYSCTL_DESCR("Lowest privileged ephemeral port number "
2344 "to assign"),
2345 sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
2346 CTL_NET, PF_INET, IPPROTO_IP,
2347 IPCTL_LOWPORTMIN, CTL_EOL);
2348 sysctl_createv(clog, 0, NULL, NULL,
2349 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2350 CTLTYPE_INT, "lowportmax",
2351 SYSCTL_DESCR("Highest privileged ephemeral port number "
2352 "to assign"),
2353 sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
2354 CTL_NET, PF_INET, IPPROTO_IP,
2355 IPCTL_LOWPORTMAX, CTL_EOL);
2356 #endif /* IPNOPRIVPORTS */
2357 sysctl_createv(clog, 0, NULL, NULL,
2358 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2359 CTLTYPE_INT, "maxfragpackets",
2360 SYSCTL_DESCR("Maximum number of fragments to retain for "
2361 "possible reassembly"),
2362 NULL, 0, &ip_maxfragpackets, 0,
2363 CTL_NET, PF_INET, IPPROTO_IP,
2364 IPCTL_MAXFRAGPACKETS, CTL_EOL);
2365 #if NGRE > 0
2366 sysctl_createv(clog, 0, NULL, NULL,
2367 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2368 CTLTYPE_INT, "grettl",
2369 SYSCTL_DESCR("Default TTL for a gre tunnel datagram"),
2370 NULL, 0, &ip_gre_ttl, 0,
2371 CTL_NET, PF_INET, IPPROTO_IP,
2372 IPCTL_GRE_TTL, CTL_EOL);
2373 #endif /* NGRE */
2374 sysctl_createv(clog, 0, NULL, NULL,
2375 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2376 CTLTYPE_INT, "checkinterface",
2377 SYSCTL_DESCR("Enable receive side of Strong ES model "
2378 "from RFC1122"),
2379 NULL, 0, &ip_checkinterface, 0,
2380 CTL_NET, PF_INET, IPPROTO_IP,
2381 IPCTL_CHECKINTERFACE, CTL_EOL);
2382 sysctl_createv(clog, 0, NULL, NULL,
2383 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2384 CTLTYPE_INT, "random_id",
2385 SYSCTL_DESCR("Assign random ip_id values"),
2386 NULL, 0, &ip_do_randomid, 0,
2387 CTL_NET, PF_INET, IPPROTO_IP,
2388 IPCTL_RANDOMID, CTL_EOL);
2389 sysctl_createv(clog, 0, NULL, NULL,
2390 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2391 CTLTYPE_INT, "do_loopback_cksum",
2392 SYSCTL_DESCR("Perform IP checksum on loopback"),
2393 NULL, 0, &ip_do_loopback_cksum, 0,
2394 CTL_NET, PF_INET, IPPROTO_IP,
2395 IPCTL_LOOPBACKCKSUM, CTL_EOL);
2396 sysctl_createv(clog, 0, NULL, NULL,
2397 CTLFLAG_PERMANENT,
2398 CTLTYPE_STRUCT, "stats",
2399 SYSCTL_DESCR("IP statistics"),
2400 NULL, 0, &ipstat, sizeof(ipstat),
2401 CTL_NET, PF_INET, IPPROTO_IP, IPCTL_STATS,
2402 CTL_EOL);
2403 }
2404