ip_input.c revision 1.251 1 /* $NetBSD: ip_input.c,v 1.251 2007/08/10 22:46:16 dyoung Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.251 2007/08/10 22:46:16 dyoung Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_gateway.h"
105 #include "opt_pfil_hooks.h"
106 #include "opt_ipsec.h"
107 #include "opt_mrouting.h"
108 #include "opt_mbuftrace.h"
109 #include "opt_inet_csum.h"
110
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/domain.h>
116 #include <sys/protosw.h>
117 #include <sys/socket.h>
118 #include <sys/socketvar.h>
119 #include <sys/errno.h>
120 #include <sys/time.h>
121 #include <sys/kernel.h>
122 #include <sys/pool.h>
123 #include <sys/sysctl.h>
124 #include <sys/kauth.h>
125
126 #include <net/if.h>
127 #include <net/if_dl.h>
128 #include <net/route.h>
129 #include <net/pfil.h>
130
131 #include <netinet/in.h>
132 #include <netinet/in_systm.h>
133 #include <netinet/ip.h>
134 #include <netinet/in_pcb.h>
135 #include <netinet/in_proto.h>
136 #include <netinet/in_var.h>
137 #include <netinet/ip_var.h>
138 #include <netinet/ip_icmp.h>
139 /* just for gif_ttl */
140 #include <netinet/in_gif.h>
141 #include "gif.h"
142 #include <net/if_gre.h>
143 #include "gre.h"
144
145 #ifdef MROUTING
146 #include <netinet/ip_mroute.h>
147 #endif
148
149 #ifdef IPSEC
150 #include <netinet6/ipsec.h>
151 #include <netkey/key.h>
152 #endif
153 #ifdef FAST_IPSEC
154 #include <netipsec/ipsec.h>
155 #include <netipsec/key.h>
156 #endif /* FAST_IPSEC*/
157
158 #ifndef IPFORWARDING
159 #ifdef GATEWAY
160 #define IPFORWARDING 1 /* forward IP packets not for us */
161 #else /* GATEWAY */
162 #define IPFORWARDING 0 /* don't forward IP packets not for us */
163 #endif /* GATEWAY */
164 #endif /* IPFORWARDING */
165 #ifndef IPSENDREDIRECTS
166 #define IPSENDREDIRECTS 1
167 #endif
168 #ifndef IPFORWSRCRT
169 #define IPFORWSRCRT 1 /* forward source-routed packets */
170 #endif
171 #ifndef IPALLOWSRCRT
172 #define IPALLOWSRCRT 1 /* allow source-routed packets */
173 #endif
174 #ifndef IPMTUDISC
175 #define IPMTUDISC 1
176 #endif
177 #ifndef IPMTUDISCTIMEOUT
178 #define IPMTUDISCTIMEOUT (10 * 60) /* as per RFC 1191 */
179 #endif
180
181 /*
182 * Note: DIRECTED_BROADCAST is handled this way so that previous
183 * configuration using this option will Just Work.
184 */
185 #ifndef IPDIRECTEDBCAST
186 #ifdef DIRECTED_BROADCAST
187 #define IPDIRECTEDBCAST 1
188 #else
189 #define IPDIRECTEDBCAST 0
190 #endif /* DIRECTED_BROADCAST */
191 #endif /* IPDIRECTEDBCAST */
192 int ipforwarding = IPFORWARDING;
193 int ipsendredirects = IPSENDREDIRECTS;
194 int ip_defttl = IPDEFTTL;
195 int ip_forwsrcrt = IPFORWSRCRT;
196 int ip_directedbcast = IPDIRECTEDBCAST;
197 int ip_allowsrcrt = IPALLOWSRCRT;
198 int ip_mtudisc = IPMTUDISC;
199 int ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
200 #ifdef DIAGNOSTIC
201 int ipprintfs = 0;
202 #endif
203
204 int ip_do_randomid = 0;
205
206 /*
207 * XXX - Setting ip_checkinterface mostly implements the receive side of
208 * the Strong ES model described in RFC 1122, but since the routing table
209 * and transmit implementation do not implement the Strong ES model,
210 * setting this to 1 results in an odd hybrid.
211 *
212 * XXX - ip_checkinterface currently must be disabled if you use ipnat
213 * to translate the destination address to another local interface.
214 *
215 * XXX - ip_checkinterface must be disabled if you add IP aliases
216 * to the loopback interface instead of the interface where the
217 * packets for those addresses are received.
218 */
219 int ip_checkinterface = 0;
220
221
222 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
223
224 int ipqmaxlen = IFQ_MAXLEN;
225 u_long in_ifaddrhash; /* size of hash table - 1 */
226 int in_ifaddrentries; /* total number of addrs */
227 struct in_ifaddrhead in_ifaddrhead;
228 struct in_ifaddrhashhead *in_ifaddrhashtbl;
229 u_long in_multihash; /* size of hash table - 1 */
230 int in_multientries; /* total number of addrs */
231 struct in_multihashhead *in_multihashtbl;
232 struct ifqueue ipintrq;
233 struct ipstat ipstat;
234 uint16_t ip_id;
235
236 #ifdef PFIL_HOOKS
237 struct pfil_head inet_pfil_hook;
238 #endif
239
240 /*
241 * Cached copy of nmbclusters. If nbclusters is different,
242 * recalculate IP parameters derived from nmbclusters.
243 */
244 static int ip_nmbclusters; /* copy of nmbclusters */
245 static void ip_nmbclusters_changed(void); /* recalc limits */
246
247 #define CHECK_NMBCLUSTER_PARAMS() \
248 do { \
249 if (__predict_false(ip_nmbclusters != nmbclusters)) \
250 ip_nmbclusters_changed(); \
251 } while (/*CONSTCOND*/0)
252
253 /* IP datagram reassembly queues (hashed) */
254 #define IPREASS_NHASH_LOG2 6
255 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
256 #define IPREASS_HMASK (IPREASS_NHASH - 1)
257 #define IPREASS_HASH(x,y) \
258 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
259 struct ipqhead ipq[IPREASS_NHASH];
260 int ipq_locked;
261 static int ip_nfragpackets; /* packets in reass queue */
262 static int ip_nfrags; /* total fragments in reass queues */
263
264 int ip_maxfragpackets = 200; /* limit on packets. XXX sysctl */
265 int ip_maxfrags; /* limit on fragments. XXX sysctl */
266
267
268 /*
269 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
270 * IP reassembly queue buffer managment.
271 *
272 * We keep a count of total IP fragments (NB: not fragmented packets!)
273 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
274 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
275 * total fragments in reassembly queues.This AIMD policy avoids
276 * repeatedly deleting single packets under heavy fragmentation load
277 * (e.g., from lossy NFS peers).
278 */
279 static u_int ip_reass_ttl_decr(u_int ticks);
280 static void ip_reass_drophalf(void);
281
282
283 static inline int ipq_lock_try(void);
284 static inline void ipq_unlock(void);
285
286 static inline int
287 ipq_lock_try(void)
288 {
289 int s;
290
291 /*
292 * Use splvm() -- we're blocking things that would cause
293 * mbuf allocation.
294 */
295 s = splvm();
296 if (ipq_locked) {
297 splx(s);
298 return (0);
299 }
300 ipq_locked = 1;
301 splx(s);
302 return (1);
303 }
304
305 static inline void
306 ipq_unlock(void)
307 {
308 int s;
309
310 s = splvm();
311 ipq_locked = 0;
312 splx(s);
313 }
314
315 #ifdef DIAGNOSTIC
316 #define IPQ_LOCK() \
317 do { \
318 if (ipq_lock_try() == 0) { \
319 printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
320 panic("ipq_lock"); \
321 } \
322 } while (/*CONSTCOND*/ 0)
323 #define IPQ_LOCK_CHECK() \
324 do { \
325 if (ipq_locked == 0) { \
326 printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
327 panic("ipq lock check"); \
328 } \
329 } while (/*CONSTCOND*/ 0)
330 #else
331 #define IPQ_LOCK() (void) ipq_lock_try()
332 #define IPQ_LOCK_CHECK() /* nothing */
333 #endif
334
335 #define IPQ_UNLOCK() ipq_unlock()
336
337 POOL_INIT(inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", NULL,
338 IPL_SOFTNET);
339 POOL_INIT(ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl", NULL,
340 IPL_VM);
341
342 #ifdef INET_CSUM_COUNTERS
343 #include <sys/device.h>
344
345 struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
346 NULL, "inet", "hwcsum bad");
347 struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
348 NULL, "inet", "hwcsum ok");
349 struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
350 NULL, "inet", "swcsum");
351
352 #define INET_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
353
354 EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
355 EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
356 EVCNT_ATTACH_STATIC(ip_swcsum);
357
358 #else
359
360 #define INET_CSUM_COUNTER_INCR(ev) /* nothing */
361
362 #endif /* INET_CSUM_COUNTERS */
363
364 /*
365 * We need to save the IP options in case a protocol wants to respond
366 * to an incoming packet over the same route if the packet got here
367 * using IP source routing. This allows connection establishment and
368 * maintenance when the remote end is on a network that is not known
369 * to us.
370 */
371 int ip_nhops = 0;
372 static struct ip_srcrt {
373 struct in_addr dst; /* final destination */
374 char nop; /* one NOP to align */
375 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
376 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
377 } ip_srcrt;
378
379 static void save_rte(u_char *, struct in_addr);
380
381 #ifdef MBUFTRACE
382 struct mowner ip_rx_mowner = MOWNER_INIT("internet", "rx");
383 struct mowner ip_tx_mowner = MOWNER_INIT("internet", "tx");
384 #endif
385
386 /*
387 * Compute IP limits derived from the value of nmbclusters.
388 */
389 static void
390 ip_nmbclusters_changed(void)
391 {
392 ip_maxfrags = nmbclusters / 4;
393 ip_nmbclusters = nmbclusters;
394 }
395
396 /*
397 * IP initialization: fill in IP protocol switch table.
398 * All protocols not implemented in kernel go to raw IP protocol handler.
399 */
400 void
401 ip_init(void)
402 {
403 const struct protosw *pr;
404 int i;
405
406 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
407 if (pr == 0)
408 panic("ip_init");
409 for (i = 0; i < IPPROTO_MAX; i++)
410 ip_protox[i] = pr - inetsw;
411 for (pr = inetdomain.dom_protosw;
412 pr < inetdomain.dom_protoswNPROTOSW; pr++)
413 if (pr->pr_domain->dom_family == PF_INET &&
414 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
415 ip_protox[pr->pr_protocol] = pr - inetsw;
416
417 for (i = 0; i < IPREASS_NHASH; i++)
418 LIST_INIT(&ipq[i]);
419
420 ip_id = time_second & 0xfffff;
421
422 ipintrq.ifq_maxlen = ipqmaxlen;
423 ip_nmbclusters_changed();
424
425 TAILQ_INIT(&in_ifaddrhead);
426 in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IFADDR,
427 M_WAITOK, &in_ifaddrhash);
428 in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IPMADDR,
429 M_WAITOK, &in_multihash);
430 ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
431 #ifdef GATEWAY
432 ipflow_init(ip_hashsize);
433 #endif
434
435 #ifdef PFIL_HOOKS
436 /* Register our Packet Filter hook. */
437 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
438 inet_pfil_hook.ph_af = AF_INET;
439 i = pfil_head_register(&inet_pfil_hook);
440 if (i != 0)
441 printf("ip_init: WARNING: unable to register pfil hook, "
442 "error %d\n", i);
443 #endif /* PFIL_HOOKS */
444
445 #ifdef MBUFTRACE
446 MOWNER_ATTACH(&ip_tx_mowner);
447 MOWNER_ATTACH(&ip_rx_mowner);
448 #endif /* MBUFTRACE */
449 }
450
451 struct sockaddr_in ipaddr = {
452 .sin_len = sizeof(ipaddr),
453 .sin_family = AF_INET,
454 };
455 struct route ipforward_rt;
456
457 /*
458 * IP software interrupt routine
459 */
460 void
461 ipintr(void)
462 {
463 int s;
464 struct mbuf *m;
465
466 while (!IF_IS_EMPTY(&ipintrq)) {
467 s = splnet();
468 IF_DEQUEUE(&ipintrq, m);
469 splx(s);
470 if (m == 0)
471 return;
472 MCLAIM(m, &ip_rx_mowner);
473 ip_input(m);
474 }
475 }
476
477 /*
478 * Ip input routine. Checksum and byte swap header. If fragmented
479 * try to reassemble. Process options. Pass to next level.
480 */
481 void
482 ip_input(struct mbuf *m)
483 {
484 struct ip *ip = NULL;
485 struct ipq *fp;
486 struct in_ifaddr *ia;
487 struct ifaddr *ifa;
488 struct ipqent *ipqe;
489 int hlen = 0, mff, len;
490 int downmatch;
491 int checkif;
492 int srcrt = 0;
493 int s;
494 u_int hash;
495 #ifdef FAST_IPSEC
496 struct m_tag *mtag;
497 struct tdb_ident *tdbi;
498 struct secpolicy *sp;
499 int error;
500 #endif /* FAST_IPSEC */
501
502 MCLAIM(m, &ip_rx_mowner);
503 #ifdef DIAGNOSTIC
504 if ((m->m_flags & M_PKTHDR) == 0)
505 panic("ipintr no HDR");
506 #endif
507
508 /*
509 * If no IP addresses have been set yet but the interfaces
510 * are receiving, can't do anything with incoming packets yet.
511 */
512 if (TAILQ_FIRST(&in_ifaddrhead) == 0)
513 goto bad;
514 ipstat.ips_total++;
515 /*
516 * If the IP header is not aligned, slurp it up into a new
517 * mbuf with space for link headers, in the event we forward
518 * it. Otherwise, if it is aligned, make sure the entire
519 * base IP header is in the first mbuf of the chain.
520 */
521 if (IP_HDR_ALIGNED_P(mtod(m, void *)) == 0) {
522 if ((m = m_copyup(m, sizeof(struct ip),
523 (max_linkhdr + 3) & ~3)) == NULL) {
524 /* XXXJRT new stat, please */
525 ipstat.ips_toosmall++;
526 return;
527 }
528 } else if (__predict_false(m->m_len < sizeof (struct ip))) {
529 if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
530 ipstat.ips_toosmall++;
531 return;
532 }
533 }
534 ip = mtod(m, struct ip *);
535 if (ip->ip_v != IPVERSION) {
536 ipstat.ips_badvers++;
537 goto bad;
538 }
539 hlen = ip->ip_hl << 2;
540 if (hlen < sizeof(struct ip)) { /* minimum header length */
541 ipstat.ips_badhlen++;
542 goto bad;
543 }
544 if (hlen > m->m_len) {
545 if ((m = m_pullup(m, hlen)) == 0) {
546 ipstat.ips_badhlen++;
547 return;
548 }
549 ip = mtod(m, struct ip *);
550 }
551
552 /*
553 * RFC1122: packets with a multicast source address are
554 * not allowed.
555 */
556 if (IN_MULTICAST(ip->ip_src.s_addr)) {
557 ipstat.ips_badaddr++;
558 goto bad;
559 }
560
561 /* 127/8 must not appear on wire - RFC1122 */
562 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
563 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
564 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
565 ipstat.ips_badaddr++;
566 goto bad;
567 }
568 }
569
570 switch (m->m_pkthdr.csum_flags &
571 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
572 M_CSUM_IPv4_BAD)) {
573 case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
574 INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
575 goto badcsum;
576
577 case M_CSUM_IPv4:
578 /* Checksum was okay. */
579 INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
580 break;
581
582 default:
583 /*
584 * Must compute it ourselves. Maybe skip checksum on
585 * loopback interfaces.
586 */
587 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
588 IFF_LOOPBACK) || ip_do_loopback_cksum)) {
589 INET_CSUM_COUNTER_INCR(&ip_swcsum);
590 if (in_cksum(m, hlen) != 0)
591 goto badcsum;
592 }
593 break;
594 }
595
596 /* Retrieve the packet length. */
597 len = ntohs(ip->ip_len);
598
599 /*
600 * Check for additional length bogosity
601 */
602 if (len < hlen) {
603 ipstat.ips_badlen++;
604 goto bad;
605 }
606
607 /*
608 * Check that the amount of data in the buffers
609 * is as at least much as the IP header would have us expect.
610 * Trim mbufs if longer than we expect.
611 * Drop packet if shorter than we expect.
612 */
613 if (m->m_pkthdr.len < len) {
614 ipstat.ips_tooshort++;
615 goto bad;
616 }
617 if (m->m_pkthdr.len > len) {
618 if (m->m_len == m->m_pkthdr.len) {
619 m->m_len = len;
620 m->m_pkthdr.len = len;
621 } else
622 m_adj(m, len - m->m_pkthdr.len);
623 }
624
625 #if defined(IPSEC)
626 /* ipflow (IP fast forwarding) is not compatible with IPsec. */
627 m->m_flags &= ~M_CANFASTFWD;
628 #else
629 /*
630 * Assume that we can create a fast-forward IP flow entry
631 * based on this packet.
632 */
633 m->m_flags |= M_CANFASTFWD;
634 #endif
635
636 #ifdef PFIL_HOOKS
637 /*
638 * Run through list of hooks for input packets. If there are any
639 * filters which require that additional packets in the flow are
640 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
641 * Note that filters must _never_ set this flag, as another filter
642 * in the list may have previously cleared it.
643 */
644 /*
645 * let ipfilter look at packet on the wire,
646 * not the decapsulated packet.
647 */
648 #ifdef IPSEC
649 if (!ipsec_getnhist(m))
650 #elif defined(FAST_IPSEC)
651 if (!ipsec_indone(m))
652 #else
653 if (1)
654 #endif
655 {
656 struct in_addr odst;
657
658 odst = ip->ip_dst;
659 if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
660 PFIL_IN) != 0)
661 return;
662 if (m == NULL)
663 return;
664 ip = mtod(m, struct ip *);
665 hlen = ip->ip_hl << 2;
666 /*
667 * XXX The setting of "srcrt" here is to prevent ip_forward()
668 * from generating ICMP redirects for packets that have
669 * been redirected by a hook back out on to the same LAN that
670 * they came from and is not an indication that the packet
671 * is being inffluenced by source routing options. This
672 * allows things like
673 * "rdr tlp0 0/0 port 80 -> 1.1.1.200 3128 tcp"
674 * where tlp0 is both on the 1.1.1.0/24 network and is the
675 * default route for hosts on 1.1.1.0/24. Of course this
676 * also requires a "map tlp0 ..." to complete the story.
677 * One might argue whether or not this kind of network config.
678 * should be supported in this manner...
679 */
680 srcrt = (odst.s_addr != ip->ip_dst.s_addr);
681 }
682 #endif /* PFIL_HOOKS */
683
684 #ifdef ALTQ
685 /* XXX Temporary until ALTQ is changed to use a pfil hook */
686 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
687 /* packet dropped by traffic conditioner */
688 return;
689 }
690 #endif
691
692 /*
693 * Process options and, if not destined for us,
694 * ship it on. ip_dooptions returns 1 when an
695 * error was detected (causing an icmp message
696 * to be sent and the original packet to be freed).
697 */
698 ip_nhops = 0; /* for source routed packets */
699 if (hlen > sizeof (struct ip) && ip_dooptions(m))
700 return;
701
702 /*
703 * Enable a consistency check between the destination address
704 * and the arrival interface for a unicast packet (the RFC 1122
705 * strong ES model) if IP forwarding is disabled and the packet
706 * is not locally generated.
707 *
708 * XXX - Checking also should be disabled if the destination
709 * address is ipnat'ed to a different interface.
710 *
711 * XXX - Checking is incompatible with IP aliases added
712 * to the loopback interface instead of the interface where
713 * the packets are received.
714 *
715 * XXX - We need to add a per ifaddr flag for this so that
716 * we get finer grain control.
717 */
718 checkif = ip_checkinterface && (ipforwarding == 0) &&
719 (m->m_pkthdr.rcvif != NULL) &&
720 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
721
722 /*
723 * Check our list of addresses, to see if the packet is for us.
724 *
725 * Traditional 4.4BSD did not consult IFF_UP at all.
726 * The behavior here is to treat addresses on !IFF_UP interface
727 * as not mine.
728 */
729 downmatch = 0;
730 LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
731 if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
732 if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
733 continue;
734 if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
735 break;
736 else
737 downmatch++;
738 }
739 }
740 if (ia != NULL)
741 goto ours;
742 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
743 IFADDR_FOREACH(ifa, m->m_pkthdr.rcvif) {
744 if (ifa->ifa_addr->sa_family != AF_INET)
745 continue;
746 ia = ifatoia(ifa);
747 if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
748 in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
749 /*
750 * Look for all-0's host part (old broadcast addr),
751 * either for subnet or net.
752 */
753 ip->ip_dst.s_addr == ia->ia_subnet ||
754 ip->ip_dst.s_addr == ia->ia_net)
755 goto ours;
756 /*
757 * An interface with IP address zero accepts
758 * all packets that arrive on that interface.
759 */
760 if (in_nullhost(ia->ia_addr.sin_addr))
761 goto ours;
762 }
763 }
764 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
765 struct in_multi *inm;
766 #ifdef MROUTING
767 extern struct socket *ip_mrouter;
768
769 if (ip_mrouter) {
770 /*
771 * If we are acting as a multicast router, all
772 * incoming multicast packets are passed to the
773 * kernel-level multicast forwarding function.
774 * The packet is returned (relatively) intact; if
775 * ip_mforward() returns a non-zero value, the packet
776 * must be discarded, else it may be accepted below.
777 *
778 * (The IP ident field is put in the same byte order
779 * as expected when ip_mforward() is called from
780 * ip_output().)
781 */
782 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
783 ipstat.ips_cantforward++;
784 m_freem(m);
785 return;
786 }
787
788 /*
789 * The process-level routing demon needs to receive
790 * all multicast IGMP packets, whether or not this
791 * host belongs to their destination groups.
792 */
793 if (ip->ip_p == IPPROTO_IGMP)
794 goto ours;
795 ipstat.ips_forward++;
796 }
797 #endif
798 /*
799 * See if we belong to the destination multicast group on the
800 * arrival interface.
801 */
802 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
803 if (inm == NULL) {
804 ipstat.ips_cantforward++;
805 m_freem(m);
806 return;
807 }
808 goto ours;
809 }
810 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
811 in_nullhost(ip->ip_dst))
812 goto ours;
813
814 /*
815 * Not for us; forward if possible and desirable.
816 */
817 if (ipforwarding == 0) {
818 ipstat.ips_cantforward++;
819 m_freem(m);
820 } else {
821 /*
822 * If ip_dst matched any of my address on !IFF_UP interface,
823 * and there's no IFF_UP interface that matches ip_dst,
824 * send icmp unreach. Forwarding it will result in in-kernel
825 * forwarding loop till TTL goes to 0.
826 */
827 if (downmatch) {
828 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
829 ipstat.ips_cantforward++;
830 return;
831 }
832 #ifdef IPSEC
833 if (ipsec4_in_reject(m, NULL)) {
834 ipsecstat.in_polvio++;
835 goto bad;
836 }
837 #endif
838 #ifdef FAST_IPSEC
839 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
840 s = splsoftnet();
841 if (mtag != NULL) {
842 tdbi = (struct tdb_ident *)(mtag + 1);
843 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
844 } else {
845 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
846 IP_FORWARDING, &error);
847 }
848 if (sp == NULL) { /* NB: can happen if error */
849 splx(s);
850 /*XXX error stat???*/
851 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
852 goto bad;
853 }
854
855 /*
856 * Check security policy against packet attributes.
857 */
858 error = ipsec_in_reject(sp, m);
859 KEY_FREESP(&sp);
860 splx(s);
861 if (error) {
862 ipstat.ips_cantforward++;
863 goto bad;
864 }
865
866 /*
867 * Peek at the outbound SP for this packet to determine if
868 * it's a Fast Forward candidate.
869 */
870 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
871 if (mtag != NULL)
872 m->m_flags &= ~M_CANFASTFWD;
873 else {
874 s = splsoftnet();
875 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
876 (IP_FORWARDING |
877 (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
878 &error, NULL);
879 if (sp != NULL) {
880 m->m_flags &= ~M_CANFASTFWD;
881 KEY_FREESP(&sp);
882 }
883 splx(s);
884 }
885 #endif /* FAST_IPSEC */
886
887 ip_forward(m, srcrt);
888 }
889 return;
890
891 ours:
892 /*
893 * If offset or IP_MF are set, must reassemble.
894 * Otherwise, nothing need be done.
895 * (We could look in the reassembly queue to see
896 * if the packet was previously fragmented,
897 * but it's not worth the time; just let them time out.)
898 */
899 if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
900
901 /*
902 * Look for queue of fragments
903 * of this datagram.
904 */
905 IPQ_LOCK();
906 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
907 LIST_FOREACH(fp, &ipq[hash], ipq_q) {
908 if (ip->ip_id == fp->ipq_id &&
909 in_hosteq(ip->ip_src, fp->ipq_src) &&
910 in_hosteq(ip->ip_dst, fp->ipq_dst) &&
911 ip->ip_p == fp->ipq_p)
912 goto found;
913
914 }
915 fp = 0;
916 found:
917
918 /*
919 * Adjust ip_len to not reflect header,
920 * set ipqe_mff if more fragments are expected,
921 * convert offset of this to bytes.
922 */
923 ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
924 mff = (ip->ip_off & htons(IP_MF)) != 0;
925 if (mff) {
926 /*
927 * Make sure that fragments have a data length
928 * that's a non-zero multiple of 8 bytes.
929 */
930 if (ntohs(ip->ip_len) == 0 ||
931 (ntohs(ip->ip_len) & 0x7) != 0) {
932 ipstat.ips_badfrags++;
933 IPQ_UNLOCK();
934 goto bad;
935 }
936 }
937 ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
938
939 /*
940 * If datagram marked as having more fragments
941 * or if this is not the first fragment,
942 * attempt reassembly; if it succeeds, proceed.
943 */
944 if (mff || ip->ip_off != htons(0)) {
945 ipstat.ips_fragments++;
946 s = splvm();
947 ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
948 splx(s);
949 if (ipqe == NULL) {
950 ipstat.ips_rcvmemdrop++;
951 IPQ_UNLOCK();
952 goto bad;
953 }
954 ipqe->ipqe_mff = mff;
955 ipqe->ipqe_m = m;
956 ipqe->ipqe_ip = ip;
957 m = ip_reass(ipqe, fp, &ipq[hash]);
958 if (m == 0) {
959 IPQ_UNLOCK();
960 return;
961 }
962 ipstat.ips_reassembled++;
963 ip = mtod(m, struct ip *);
964 hlen = ip->ip_hl << 2;
965 ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
966 } else
967 if (fp)
968 ip_freef(fp);
969 IPQ_UNLOCK();
970 }
971
972 #if defined(IPSEC)
973 /*
974 * enforce IPsec policy checking if we are seeing last header.
975 * note that we do not visit this with protocols with pcb layer
976 * code - like udp/tcp/raw ip.
977 */
978 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
979 ipsec4_in_reject(m, NULL)) {
980 ipsecstat.in_polvio++;
981 goto bad;
982 }
983 #endif
984 #ifdef FAST_IPSEC
985 /*
986 * enforce IPsec policy checking if we are seeing last header.
987 * note that we do not visit this with protocols with pcb layer
988 * code - like udp/tcp/raw ip.
989 */
990 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
991 /*
992 * Check if the packet has already had IPsec processing
993 * done. If so, then just pass it along. This tag gets
994 * set during AH, ESP, etc. input handling, before the
995 * packet is returned to the ip input queue for delivery.
996 */
997 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
998 s = splsoftnet();
999 if (mtag != NULL) {
1000 tdbi = (struct tdb_ident *)(mtag + 1);
1001 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1002 } else {
1003 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1004 IP_FORWARDING, &error);
1005 }
1006 if (sp != NULL) {
1007 /*
1008 * Check security policy against packet attributes.
1009 */
1010 error = ipsec_in_reject(sp, m);
1011 KEY_FREESP(&sp);
1012 } else {
1013 /* XXX error stat??? */
1014 error = EINVAL;
1015 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1016 goto bad;
1017 }
1018 splx(s);
1019 if (error)
1020 goto bad;
1021 }
1022 #endif /* FAST_IPSEC */
1023
1024 /*
1025 * Switch out to protocol's input routine.
1026 */
1027 #if IFA_STATS
1028 if (ia && ip)
1029 ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
1030 #endif
1031 ipstat.ips_delivered++;
1032 {
1033 int off = hlen, nh = ip->ip_p;
1034
1035 (*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
1036 return;
1037 }
1038 bad:
1039 m_freem(m);
1040 return;
1041
1042 badcsum:
1043 ipstat.ips_badsum++;
1044 m_freem(m);
1045 }
1046
1047 /*
1048 * Take incoming datagram fragment and try to
1049 * reassemble it into whole datagram. If a chain for
1050 * reassembly of this datagram already exists, then it
1051 * is given as fp; otherwise have to make a chain.
1052 */
1053 struct mbuf *
1054 ip_reass(struct ipqent *ipqe, struct ipq *fp, struct ipqhead *ipqhead)
1055 {
1056 struct mbuf *m = ipqe->ipqe_m;
1057 struct ipqent *nq, *p, *q;
1058 struct ip *ip;
1059 struct mbuf *t;
1060 int hlen = ipqe->ipqe_ip->ip_hl << 2;
1061 int i, next, s;
1062
1063 IPQ_LOCK_CHECK();
1064
1065 /*
1066 * Presence of header sizes in mbufs
1067 * would confuse code below.
1068 */
1069 m->m_data += hlen;
1070 m->m_len -= hlen;
1071
1072 #ifdef notyet
1073 /* make sure fragment limit is up-to-date */
1074 CHECK_NMBCLUSTER_PARAMS();
1075
1076 /* If we have too many fragments, drop the older half. */
1077 if (ip_nfrags >= ip_maxfrags)
1078 ip_reass_drophalf(void);
1079 #endif
1080
1081 /*
1082 * We are about to add a fragment; increment frag count.
1083 */
1084 ip_nfrags++;
1085
1086 /*
1087 * If first fragment to arrive, create a reassembly queue.
1088 */
1089 if (fp == 0) {
1090 /*
1091 * Enforce upper bound on number of fragmented packets
1092 * for which we attempt reassembly;
1093 * If maxfrag is 0, never accept fragments.
1094 * If maxfrag is -1, accept all fragments without limitation.
1095 */
1096 if (ip_maxfragpackets < 0)
1097 ;
1098 else if (ip_nfragpackets >= ip_maxfragpackets)
1099 goto dropfrag;
1100 ip_nfragpackets++;
1101 MALLOC(fp, struct ipq *, sizeof (struct ipq),
1102 M_FTABLE, M_NOWAIT);
1103 if (fp == NULL)
1104 goto dropfrag;
1105 LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
1106 fp->ipq_nfrags = 1;
1107 fp->ipq_ttl = IPFRAGTTL;
1108 fp->ipq_p = ipqe->ipqe_ip->ip_p;
1109 fp->ipq_id = ipqe->ipqe_ip->ip_id;
1110 TAILQ_INIT(&fp->ipq_fragq);
1111 fp->ipq_src = ipqe->ipqe_ip->ip_src;
1112 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
1113 p = NULL;
1114 goto insert;
1115 } else {
1116 fp->ipq_nfrags++;
1117 }
1118
1119 /*
1120 * Find a segment which begins after this one does.
1121 */
1122 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1123 p = q, q = TAILQ_NEXT(q, ipqe_q))
1124 if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
1125 break;
1126
1127 /*
1128 * If there is a preceding segment, it may provide some of
1129 * our data already. If so, drop the data from the incoming
1130 * segment. If it provides all of our data, drop us.
1131 */
1132 if (p != NULL) {
1133 i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
1134 ntohs(ipqe->ipqe_ip->ip_off);
1135 if (i > 0) {
1136 if (i >= ntohs(ipqe->ipqe_ip->ip_len))
1137 goto dropfrag;
1138 m_adj(ipqe->ipqe_m, i);
1139 ipqe->ipqe_ip->ip_off =
1140 htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
1141 ipqe->ipqe_ip->ip_len =
1142 htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
1143 }
1144 }
1145
1146 /*
1147 * While we overlap succeeding segments trim them or,
1148 * if they are completely covered, dequeue them.
1149 */
1150 for (; q != NULL &&
1151 ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
1152 ntohs(q->ipqe_ip->ip_off); q = nq) {
1153 i = (ntohs(ipqe->ipqe_ip->ip_off) +
1154 ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
1155 if (i < ntohs(q->ipqe_ip->ip_len)) {
1156 q->ipqe_ip->ip_len =
1157 htons(ntohs(q->ipqe_ip->ip_len) - i);
1158 q->ipqe_ip->ip_off =
1159 htons(ntohs(q->ipqe_ip->ip_off) + i);
1160 m_adj(q->ipqe_m, i);
1161 break;
1162 }
1163 nq = TAILQ_NEXT(q, ipqe_q);
1164 m_freem(q->ipqe_m);
1165 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1166 s = splvm();
1167 pool_put(&ipqent_pool, q);
1168 splx(s);
1169 fp->ipq_nfrags--;
1170 ip_nfrags--;
1171 }
1172
1173 insert:
1174 /*
1175 * Stick new segment in its place;
1176 * check for complete reassembly.
1177 */
1178 if (p == NULL) {
1179 TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
1180 } else {
1181 TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
1182 }
1183 next = 0;
1184 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1185 p = q, q = TAILQ_NEXT(q, ipqe_q)) {
1186 if (ntohs(q->ipqe_ip->ip_off) != next)
1187 return (0);
1188 next += ntohs(q->ipqe_ip->ip_len);
1189 }
1190 if (p->ipqe_mff)
1191 return (0);
1192
1193 /*
1194 * Reassembly is complete. Check for a bogus message size and
1195 * concatenate fragments.
1196 */
1197 q = TAILQ_FIRST(&fp->ipq_fragq);
1198 ip = q->ipqe_ip;
1199 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
1200 ipstat.ips_toolong++;
1201 ip_freef(fp);
1202 return (0);
1203 }
1204 m = q->ipqe_m;
1205 t = m->m_next;
1206 m->m_next = 0;
1207 m_cat(m, t);
1208 nq = TAILQ_NEXT(q, ipqe_q);
1209 s = splvm();
1210 pool_put(&ipqent_pool, q);
1211 splx(s);
1212 for (q = nq; q != NULL; q = nq) {
1213 t = q->ipqe_m;
1214 nq = TAILQ_NEXT(q, ipqe_q);
1215 s = splvm();
1216 pool_put(&ipqent_pool, q);
1217 splx(s);
1218 m_cat(m, t);
1219 }
1220 ip_nfrags -= fp->ipq_nfrags;
1221
1222 /*
1223 * Create header for new ip packet by
1224 * modifying header of first packet;
1225 * dequeue and discard fragment reassembly header.
1226 * Make header visible.
1227 */
1228 ip->ip_len = htons(next);
1229 ip->ip_src = fp->ipq_src;
1230 ip->ip_dst = fp->ipq_dst;
1231 LIST_REMOVE(fp, ipq_q);
1232 FREE(fp, M_FTABLE);
1233 ip_nfragpackets--;
1234 m->m_len += (ip->ip_hl << 2);
1235 m->m_data -= (ip->ip_hl << 2);
1236 /* some debugging cruft by sklower, below, will go away soon */
1237 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1238 int plen = 0;
1239 for (t = m; t; t = t->m_next)
1240 plen += t->m_len;
1241 m->m_pkthdr.len = plen;
1242 m->m_pkthdr.csum_flags = 0;
1243 }
1244 return (m);
1245
1246 dropfrag:
1247 if (fp != 0)
1248 fp->ipq_nfrags--;
1249 ip_nfrags--;
1250 ipstat.ips_fragdropped++;
1251 m_freem(m);
1252 s = splvm();
1253 pool_put(&ipqent_pool, ipqe);
1254 splx(s);
1255 return (0);
1256 }
1257
1258 /*
1259 * Free a fragment reassembly header and all
1260 * associated datagrams.
1261 */
1262 void
1263 ip_freef(struct ipq *fp)
1264 {
1265 struct ipqent *q, *p;
1266 u_int nfrags = 0;
1267 int s;
1268
1269 IPQ_LOCK_CHECK();
1270
1271 for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
1272 p = TAILQ_NEXT(q, ipqe_q);
1273 m_freem(q->ipqe_m);
1274 nfrags++;
1275 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1276 s = splvm();
1277 pool_put(&ipqent_pool, q);
1278 splx(s);
1279 }
1280
1281 if (nfrags != fp->ipq_nfrags)
1282 printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
1283 ip_nfrags -= nfrags;
1284 LIST_REMOVE(fp, ipq_q);
1285 FREE(fp, M_FTABLE);
1286 ip_nfragpackets--;
1287 }
1288
1289 /*
1290 * IP reassembly TTL machinery for multiplicative drop.
1291 */
1292 static u_int fragttl_histo[(IPFRAGTTL+1)];
1293
1294
1295 /*
1296 * Decrement TTL of all reasembly queue entries by `ticks'.
1297 * Count number of distinct fragments (as opposed to partial, fragmented
1298 * datagrams) in the reassembly queue. While we traverse the entire
1299 * reassembly queue, compute and return the median TTL over all fragments.
1300 */
1301 static u_int
1302 ip_reass_ttl_decr(u_int ticks)
1303 {
1304 u_int nfrags, median, dropfraction, keepfraction;
1305 struct ipq *fp, *nfp;
1306 int i;
1307
1308 nfrags = 0;
1309 memset(fragttl_histo, 0, sizeof fragttl_histo);
1310
1311 for (i = 0; i < IPREASS_NHASH; i++) {
1312 for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
1313 fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
1314 0 : fp->ipq_ttl - ticks);
1315 nfp = LIST_NEXT(fp, ipq_q);
1316 if (fp->ipq_ttl == 0) {
1317 ipstat.ips_fragtimeout++;
1318 ip_freef(fp);
1319 } else {
1320 nfrags += fp->ipq_nfrags;
1321 fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
1322 }
1323 }
1324 }
1325
1326 KASSERT(ip_nfrags == nfrags);
1327
1328 /* Find median (or other drop fraction) in histogram. */
1329 dropfraction = (ip_nfrags / 2);
1330 keepfraction = ip_nfrags - dropfraction;
1331 for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
1332 median += fragttl_histo[i];
1333 if (median >= keepfraction)
1334 break;
1335 }
1336
1337 /* Return TTL of median (or other fraction). */
1338 return (u_int)i;
1339 }
1340
1341 void
1342 ip_reass_drophalf(void)
1343 {
1344
1345 u_int median_ticks;
1346 /*
1347 * Compute median TTL of all fragments, and count frags
1348 * with that TTL or lower (roughly half of all fragments).
1349 */
1350 median_ticks = ip_reass_ttl_decr(0);
1351
1352 /* Drop half. */
1353 median_ticks = ip_reass_ttl_decr(median_ticks);
1354
1355 }
1356
1357 /*
1358 * IP timer processing;
1359 * if a timer expires on a reassembly
1360 * queue, discard it.
1361 */
1362 void
1363 ip_slowtimo(void)
1364 {
1365 static u_int dropscanidx = 0;
1366 u_int i;
1367 u_int median_ttl;
1368 int s = splsoftnet();
1369
1370 IPQ_LOCK();
1371
1372 /* Age TTL of all fragments by 1 tick .*/
1373 median_ttl = ip_reass_ttl_decr(1);
1374
1375 /* make sure fragment limit is up-to-date */
1376 CHECK_NMBCLUSTER_PARAMS();
1377
1378 /* If we have too many fragments, drop the older half. */
1379 if (ip_nfrags > ip_maxfrags)
1380 ip_reass_ttl_decr(median_ttl);
1381
1382 /*
1383 * If we are over the maximum number of fragmented packets
1384 * (due to the limit being lowered), drain off
1385 * enough to get down to the new limit. Start draining
1386 * from the reassembly hashqueue most recently drained.
1387 */
1388 if (ip_maxfragpackets < 0)
1389 ;
1390 else {
1391 int wrapped = 0;
1392
1393 i = dropscanidx;
1394 while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
1395 while (LIST_FIRST(&ipq[i]) != NULL)
1396 ip_freef(LIST_FIRST(&ipq[i]));
1397 if (++i >= IPREASS_NHASH) {
1398 i = 0;
1399 }
1400 /*
1401 * Dont scan forever even if fragment counters are
1402 * wrong: stop after scanning entire reassembly queue.
1403 */
1404 if (i == dropscanidx)
1405 wrapped = 1;
1406 }
1407 dropscanidx = i;
1408 }
1409 IPQ_UNLOCK();
1410 splx(s);
1411 }
1412
1413 /*
1414 * Drain off all datagram fragments.
1415 */
1416 void
1417 ip_drain(void)
1418 {
1419
1420 /*
1421 * We may be called from a device's interrupt context. If
1422 * the ipq is already busy, just bail out now.
1423 */
1424 if (ipq_lock_try() == 0)
1425 return;
1426
1427 /*
1428 * Drop half the total fragments now. If more mbufs are needed,
1429 * we will be called again soon.
1430 */
1431 ip_reass_drophalf();
1432
1433 IPQ_UNLOCK();
1434 }
1435
1436 /*
1437 * Do option processing on a datagram,
1438 * possibly discarding it if bad options are encountered,
1439 * or forwarding it if source-routed.
1440 * Returns 1 if packet has been forwarded/freed,
1441 * 0 if the packet should be processed further.
1442 */
1443 int
1444 ip_dooptions(struct mbuf *m)
1445 {
1446 struct ip *ip = mtod(m, struct ip *);
1447 u_char *cp, *cp0;
1448 struct ip_timestamp *ipt;
1449 struct in_ifaddr *ia;
1450 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1451 struct in_addr dst;
1452 n_time ntime;
1453
1454 dst = ip->ip_dst;
1455 cp = (u_char *)(ip + 1);
1456 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1457 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1458 opt = cp[IPOPT_OPTVAL];
1459 if (opt == IPOPT_EOL)
1460 break;
1461 if (opt == IPOPT_NOP)
1462 optlen = 1;
1463 else {
1464 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1465 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1466 goto bad;
1467 }
1468 optlen = cp[IPOPT_OLEN];
1469 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1470 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1471 goto bad;
1472 }
1473 }
1474 switch (opt) {
1475
1476 default:
1477 break;
1478
1479 /*
1480 * Source routing with record.
1481 * Find interface with current destination address.
1482 * If none on this machine then drop if strictly routed,
1483 * or do nothing if loosely routed.
1484 * Record interface address and bring up next address
1485 * component. If strictly routed make sure next
1486 * address is on directly accessible net.
1487 */
1488 case IPOPT_LSRR:
1489 case IPOPT_SSRR:
1490 if (ip_allowsrcrt == 0) {
1491 type = ICMP_UNREACH;
1492 code = ICMP_UNREACH_NET_PROHIB;
1493 goto bad;
1494 }
1495 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1496 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1497 goto bad;
1498 }
1499 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1500 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1501 goto bad;
1502 }
1503 ipaddr.sin_addr = ip->ip_dst;
1504 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
1505 if (ia == 0) {
1506 if (opt == IPOPT_SSRR) {
1507 type = ICMP_UNREACH;
1508 code = ICMP_UNREACH_SRCFAIL;
1509 goto bad;
1510 }
1511 /*
1512 * Loose routing, and not at next destination
1513 * yet; nothing to do except forward.
1514 */
1515 break;
1516 }
1517 off--; /* 0 origin */
1518 if ((off + sizeof(struct in_addr)) > optlen) {
1519 /*
1520 * End of source route. Should be for us.
1521 */
1522 save_rte(cp, ip->ip_src);
1523 break;
1524 }
1525 /*
1526 * locate outgoing interface
1527 */
1528 bcopy((void *)(cp + off), (void *)&ipaddr.sin_addr,
1529 sizeof(ipaddr.sin_addr));
1530 if (opt == IPOPT_SSRR)
1531 ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
1532 else
1533 ia = ip_rtaddr(ipaddr.sin_addr);
1534 if (ia == 0) {
1535 type = ICMP_UNREACH;
1536 code = ICMP_UNREACH_SRCFAIL;
1537 goto bad;
1538 }
1539 ip->ip_dst = ipaddr.sin_addr;
1540 bcopy((void *)&ia->ia_addr.sin_addr,
1541 (void *)(cp + off), sizeof(struct in_addr));
1542 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1543 /*
1544 * Let ip_intr's mcast routing check handle mcast pkts
1545 */
1546 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1547 break;
1548
1549 case IPOPT_RR:
1550 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1551 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1552 goto bad;
1553 }
1554 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1555 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1556 goto bad;
1557 }
1558 /*
1559 * If no space remains, ignore.
1560 */
1561 off--; /* 0 origin */
1562 if ((off + sizeof(struct in_addr)) > optlen)
1563 break;
1564 bcopy((void *)(&ip->ip_dst), (void *)&ipaddr.sin_addr,
1565 sizeof(ipaddr.sin_addr));
1566 /*
1567 * locate outgoing interface; if we're the destination,
1568 * use the incoming interface (should be same).
1569 */
1570 if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
1571 == NULL &&
1572 (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1573 type = ICMP_UNREACH;
1574 code = ICMP_UNREACH_HOST;
1575 goto bad;
1576 }
1577 bcopy((void *)&ia->ia_addr.sin_addr,
1578 (void *)(cp + off), sizeof(struct in_addr));
1579 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1580 break;
1581
1582 case IPOPT_TS:
1583 code = cp - (u_char *)ip;
1584 ipt = (struct ip_timestamp *)cp;
1585 if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1586 code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1587 goto bad;
1588 }
1589 if (ipt->ipt_ptr < 5) {
1590 code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1591 goto bad;
1592 }
1593 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
1594 if (++ipt->ipt_oflw == 0) {
1595 code = (u_char *)&ipt->ipt_ptr -
1596 (u_char *)ip;
1597 goto bad;
1598 }
1599 break;
1600 }
1601 cp0 = (cp + ipt->ipt_ptr - 1);
1602 switch (ipt->ipt_flg) {
1603
1604 case IPOPT_TS_TSONLY:
1605 break;
1606
1607 case IPOPT_TS_TSANDADDR:
1608 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1609 sizeof(struct in_addr) > ipt->ipt_len) {
1610 code = (u_char *)&ipt->ipt_ptr -
1611 (u_char *)ip;
1612 goto bad;
1613 }
1614 ipaddr.sin_addr = dst;
1615 ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1616 m->m_pkthdr.rcvif));
1617 if (ia == 0)
1618 continue;
1619 bcopy(&ia->ia_addr.sin_addr,
1620 cp0, sizeof(struct in_addr));
1621 ipt->ipt_ptr += sizeof(struct in_addr);
1622 break;
1623
1624 case IPOPT_TS_PRESPEC:
1625 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1626 sizeof(struct in_addr) > ipt->ipt_len) {
1627 code = (u_char *)&ipt->ipt_ptr -
1628 (u_char *)ip;
1629 goto bad;
1630 }
1631 bcopy(cp0, &ipaddr.sin_addr,
1632 sizeof(struct in_addr));
1633 if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
1634 == NULL)
1635 continue;
1636 ipt->ipt_ptr += sizeof(struct in_addr);
1637 break;
1638
1639 default:
1640 /* XXX can't take &ipt->ipt_flg */
1641 code = (u_char *)&ipt->ipt_ptr -
1642 (u_char *)ip + 1;
1643 goto bad;
1644 }
1645 ntime = iptime();
1646 cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
1647 memmove((char *)cp + ipt->ipt_ptr - 1, cp0,
1648 sizeof(n_time));
1649 ipt->ipt_ptr += sizeof(n_time);
1650 }
1651 }
1652 if (forward) {
1653 if (ip_forwsrcrt == 0) {
1654 type = ICMP_UNREACH;
1655 code = ICMP_UNREACH_SRCFAIL;
1656 goto bad;
1657 }
1658 ip_forward(m, 1);
1659 return (1);
1660 }
1661 return (0);
1662 bad:
1663 icmp_error(m, type, code, 0, 0);
1664 ipstat.ips_badoptions++;
1665 return (1);
1666 }
1667
1668 /*
1669 * Given address of next destination (final or next hop),
1670 * return internet address info of interface to be used to get there.
1671 */
1672 struct in_ifaddr *
1673 ip_rtaddr(struct in_addr dst)
1674 {
1675 struct rtentry *rt;
1676 union {
1677 struct sockaddr dst;
1678 struct sockaddr_in dst4;
1679 } u;
1680
1681 sockaddr_in_init(&u.dst4, &dst, 0);
1682
1683 if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL)
1684 return NULL;
1685
1686 return ifatoia(rt->rt_ifa);
1687 }
1688
1689 /*
1690 * Save incoming source route for use in replies,
1691 * to be picked up later by ip_srcroute if the receiver is interested.
1692 */
1693 void
1694 save_rte(u_char *option, struct in_addr dst)
1695 {
1696 unsigned olen;
1697
1698 olen = option[IPOPT_OLEN];
1699 #ifdef DIAGNOSTIC
1700 if (ipprintfs)
1701 printf("save_rte: olen %d\n", olen);
1702 #endif /* 0 */
1703 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1704 return;
1705 bcopy((void *)option, (void *)ip_srcrt.srcopt, olen);
1706 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1707 ip_srcrt.dst = dst;
1708 }
1709
1710 /*
1711 * Retrieve incoming source route for use in replies,
1712 * in the same form used by setsockopt.
1713 * The first hop is placed before the options, will be removed later.
1714 */
1715 struct mbuf *
1716 ip_srcroute(void)
1717 {
1718 struct in_addr *p, *q;
1719 struct mbuf *m;
1720
1721 if (ip_nhops == 0)
1722 return NULL;
1723 m = m_get(M_DONTWAIT, MT_SOOPTS);
1724 if (m == 0)
1725 return NULL;
1726
1727 MCLAIM(m, &inetdomain.dom_mowner);
1728 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1729
1730 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1731 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1732 OPTSIZ;
1733 #ifdef DIAGNOSTIC
1734 if (ipprintfs)
1735 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1736 #endif
1737
1738 /*
1739 * First save first hop for return route
1740 */
1741 p = &ip_srcrt.route[ip_nhops - 1];
1742 *(mtod(m, struct in_addr *)) = *p--;
1743 #ifdef DIAGNOSTIC
1744 if (ipprintfs)
1745 printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1746 #endif
1747
1748 /*
1749 * Copy option fields and padding (nop) to mbuf.
1750 */
1751 ip_srcrt.nop = IPOPT_NOP;
1752 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1753 memmove(mtod(m, char *) + sizeof(struct in_addr), &ip_srcrt.nop,
1754 OPTSIZ);
1755 q = (struct in_addr *)(mtod(m, char *) +
1756 sizeof(struct in_addr) + OPTSIZ);
1757 #undef OPTSIZ
1758 /*
1759 * Record return path as an IP source route,
1760 * reversing the path (pointers are now aligned).
1761 */
1762 while (p >= ip_srcrt.route) {
1763 #ifdef DIAGNOSTIC
1764 if (ipprintfs)
1765 printf(" %x", ntohl(q->s_addr));
1766 #endif
1767 *q++ = *p--;
1768 }
1769 /*
1770 * Last hop goes to final destination.
1771 */
1772 *q = ip_srcrt.dst;
1773 #ifdef DIAGNOSTIC
1774 if (ipprintfs)
1775 printf(" %x\n", ntohl(q->s_addr));
1776 #endif
1777 return (m);
1778 }
1779
1780 /*
1781 * Strip out IP options, at higher
1782 * level protocol in the kernel.
1783 * Second argument is buffer to which options
1784 * will be moved, and return value is their length.
1785 * XXX should be deleted; last arg currently ignored.
1786 */
1787 void
1788 ip_stripoptions(struct mbuf *m, struct mbuf *mopt)
1789 {
1790 int i;
1791 struct ip *ip = mtod(m, struct ip *);
1792 void *opts;
1793 int olen;
1794
1795 olen = (ip->ip_hl << 2) - sizeof (struct ip);
1796 opts = (void *)(ip + 1);
1797 i = m->m_len - (sizeof (struct ip) + olen);
1798 memmove(opts, (char *)opts + olen, (unsigned)i);
1799 m->m_len -= olen;
1800 if (m->m_flags & M_PKTHDR)
1801 m->m_pkthdr.len -= olen;
1802 ip->ip_len = htons(ntohs(ip->ip_len) - olen);
1803 ip->ip_hl = sizeof (struct ip) >> 2;
1804 }
1805
1806 const int inetctlerrmap[PRC_NCMDS] = {
1807 0, 0, 0, 0,
1808 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1809 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1810 EMSGSIZE, EHOSTUNREACH, 0, 0,
1811 0, 0, 0, 0,
1812 ENOPROTOOPT
1813 };
1814
1815 /*
1816 * Forward a packet. If some error occurs return the sender
1817 * an icmp packet. Note we can't always generate a meaningful
1818 * icmp message because icmp doesn't have a large enough repertoire
1819 * of codes and types.
1820 *
1821 * If not forwarding, just drop the packet. This could be confusing
1822 * if ipforwarding was zero but some routing protocol was advancing
1823 * us as a gateway to somewhere. However, we must let the routing
1824 * protocol deal with that.
1825 *
1826 * The srcrt parameter indicates whether the packet is being forwarded
1827 * via a source route.
1828 */
1829 void
1830 ip_forward(struct mbuf *m, int srcrt)
1831 {
1832 struct ip *ip = mtod(m, struct ip *);
1833 struct rtentry *rt;
1834 int error, type = 0, code = 0, destmtu = 0;
1835 struct mbuf *mcopy;
1836 n_long dest;
1837 union {
1838 struct sockaddr dst;
1839 struct sockaddr_in dst4;
1840 } u;
1841
1842 /*
1843 * We are now in the output path.
1844 */
1845 MCLAIM(m, &ip_tx_mowner);
1846
1847 /*
1848 * Clear any in-bound checksum flags for this packet.
1849 */
1850 m->m_pkthdr.csum_flags = 0;
1851
1852 dest = 0;
1853 #ifdef DIAGNOSTIC
1854 if (ipprintfs) {
1855 printf("forward: src %s ", inet_ntoa(ip->ip_src));
1856 printf("dst %s ttl %x\n", inet_ntoa(ip->ip_dst), ip->ip_ttl);
1857 }
1858 #endif
1859 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1860 ipstat.ips_cantforward++;
1861 m_freem(m);
1862 return;
1863 }
1864 if (ip->ip_ttl <= IPTTLDEC) {
1865 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1866 return;
1867 }
1868
1869 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
1870 if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL) {
1871 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_NET, dest, 0);
1872 return;
1873 }
1874
1875 /*
1876 * Save at most 68 bytes of the packet in case
1877 * we need to generate an ICMP message to the src.
1878 * Pullup to avoid sharing mbuf cluster between m and mcopy.
1879 */
1880 mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
1881 if (mcopy)
1882 mcopy = m_pullup(mcopy, ip->ip_hl << 2);
1883
1884 ip->ip_ttl -= IPTTLDEC;
1885
1886 /*
1887 * If forwarding packet using same interface that it came in on,
1888 * perhaps should send a redirect to sender to shortcut a hop.
1889 * Only send redirect if source is sending directly to us,
1890 * and if packet was not source routed (or has any options).
1891 * Also, don't send redirect if forwarding using a default route
1892 * or a route modified by a redirect.
1893 */
1894 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1895 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1896 !in_nullhost(satocsin(rt_getkey(rt))->sin_addr) &&
1897 ipsendredirects && !srcrt) {
1898 if (rt->rt_ifa &&
1899 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1900 ifatoia(rt->rt_ifa)->ia_subnet) {
1901 if (rt->rt_flags & RTF_GATEWAY)
1902 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1903 else
1904 dest = ip->ip_dst.s_addr;
1905 /*
1906 * Router requirements says to only send host
1907 * redirects.
1908 */
1909 type = ICMP_REDIRECT;
1910 code = ICMP_REDIRECT_HOST;
1911 #ifdef DIAGNOSTIC
1912 if (ipprintfs)
1913 printf("redirect (%d) to %x\n", code,
1914 (u_int32_t)dest);
1915 #endif
1916 }
1917 }
1918
1919 error = ip_output(m, NULL, &ipforward_rt,
1920 (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1921 (struct ip_moptions *)NULL, (struct socket *)NULL);
1922
1923 if (error)
1924 ipstat.ips_cantforward++;
1925 else {
1926 ipstat.ips_forward++;
1927 if (type)
1928 ipstat.ips_redirectsent++;
1929 else {
1930 if (mcopy) {
1931 #ifdef GATEWAY
1932 if (mcopy->m_flags & M_CANFASTFWD)
1933 ipflow_create(&ipforward_rt, mcopy);
1934 #endif
1935 m_freem(mcopy);
1936 }
1937 return;
1938 }
1939 }
1940 if (mcopy == NULL)
1941 return;
1942
1943 switch (error) {
1944
1945 case 0: /* forwarded, but need redirect */
1946 /* type, code set above */
1947 break;
1948
1949 case ENETUNREACH: /* shouldn't happen, checked above */
1950 case EHOSTUNREACH:
1951 case ENETDOWN:
1952 case EHOSTDOWN:
1953 default:
1954 type = ICMP_UNREACH;
1955 code = ICMP_UNREACH_HOST;
1956 break;
1957
1958 case EMSGSIZE:
1959 type = ICMP_UNREACH;
1960 code = ICMP_UNREACH_NEEDFRAG;
1961 #if !defined(IPSEC) && !defined(FAST_IPSEC)
1962 if (ipforward_rt.ro_rt != NULL)
1963 destmtu = ipforward_rt.ro_rt->rt_ifp->if_mtu;
1964 #else
1965 /*
1966 * If the packet is routed over IPsec tunnel, tell the
1967 * originator the tunnel MTU.
1968 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1969 * XXX quickhack!!!
1970 */
1971 if (ipforward_rt.ro_rt != NULL) {
1972 struct secpolicy *sp;
1973 int ipsecerror;
1974 size_t ipsechdr;
1975 struct route *ro;
1976
1977 sp = ipsec4_getpolicybyaddr(mcopy,
1978 IPSEC_DIR_OUTBOUND, IP_FORWARDING,
1979 &ipsecerror);
1980
1981 if (sp == NULL)
1982 destmtu = ipforward_rt.ro_rt->rt_ifp->if_mtu;
1983 else {
1984 /* count IPsec header size */
1985 ipsechdr = ipsec4_hdrsiz(mcopy,
1986 IPSEC_DIR_OUTBOUND, NULL);
1987
1988 /*
1989 * find the correct route for outer IPv4
1990 * header, compute tunnel MTU.
1991 */
1992
1993 if (sp->req != NULL
1994 && sp->req->sav != NULL
1995 && sp->req->sav->sah != NULL) {
1996 ro = &sp->req->sav->sah->sa_route;
1997 if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1998 destmtu =
1999 ro->ro_rt->rt_rmx.rmx_mtu ?
2000 ro->ro_rt->rt_rmx.rmx_mtu :
2001 ro->ro_rt->rt_ifp->if_mtu;
2002 destmtu -= ipsechdr;
2003 }
2004 }
2005
2006 #ifdef IPSEC
2007 key_freesp(sp);
2008 #else
2009 KEY_FREESP(&sp);
2010 #endif
2011 }
2012 }
2013 #endif /*IPSEC*/
2014 ipstat.ips_cantfrag++;
2015 break;
2016
2017 case ENOBUFS:
2018 #if 1
2019 /*
2020 * a router should not generate ICMP_SOURCEQUENCH as
2021 * required in RFC1812 Requirements for IP Version 4 Routers.
2022 * source quench could be a big problem under DoS attacks,
2023 * or if the underlying interface is rate-limited.
2024 */
2025 if (mcopy)
2026 m_freem(mcopy);
2027 return;
2028 #else
2029 type = ICMP_SOURCEQUENCH;
2030 code = 0;
2031 break;
2032 #endif
2033 }
2034 icmp_error(mcopy, type, code, dest, destmtu);
2035 }
2036
2037 void
2038 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2039 struct mbuf *m)
2040 {
2041
2042 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2043 struct timeval tv;
2044
2045 microtime(&tv);
2046 *mp = sbcreatecontrol((void *) &tv, sizeof(tv),
2047 SCM_TIMESTAMP, SOL_SOCKET);
2048 if (*mp)
2049 mp = &(*mp)->m_next;
2050 }
2051 if (inp->inp_flags & INP_RECVDSTADDR) {
2052 *mp = sbcreatecontrol((void *) &ip->ip_dst,
2053 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2054 if (*mp)
2055 mp = &(*mp)->m_next;
2056 }
2057 #ifdef notyet
2058 /*
2059 * XXX
2060 * Moving these out of udp_input() made them even more broken
2061 * than they already were.
2062 * - fenner (at) parc.xerox.com
2063 */
2064 /* options were tossed already */
2065 if (inp->inp_flags & INP_RECVOPTS) {
2066 *mp = sbcreatecontrol((void *) opts_deleted_above,
2067 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2068 if (*mp)
2069 mp = &(*mp)->m_next;
2070 }
2071 /* ip_srcroute doesn't do what we want here, need to fix */
2072 if (inp->inp_flags & INP_RECVRETOPTS) {
2073 *mp = sbcreatecontrol((void *) ip_srcroute(),
2074 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2075 if (*mp)
2076 mp = &(*mp)->m_next;
2077 }
2078 #endif
2079 if (inp->inp_flags & INP_RECVIF) {
2080 struct sockaddr_dl sdl;
2081
2082 sockaddr_dl_init(&sdl, (m->m_pkthdr.rcvif != NULL) ?
2083 m->m_pkthdr.rcvif->if_index : 0, 0, NULL, 0, NULL, 0);
2084 *mp = sbcreatecontrol(&sdl, sdl.sdl_len, IP_RECVIF, IPPROTO_IP);
2085 if (*mp)
2086 mp = &(*mp)->m_next;
2087 }
2088 }
2089
2090 /*
2091 * sysctl helper routine for net.inet.ip.forwsrcrt.
2092 */
2093 static int
2094 sysctl_net_inet_ip_forwsrcrt(SYSCTLFN_ARGS)
2095 {
2096 int error, tmp;
2097 struct sysctlnode node;
2098
2099 node = *rnode;
2100 tmp = ip_forwsrcrt;
2101 node.sysctl_data = &tmp;
2102 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2103 if (error || newp == NULL)
2104 return (error);
2105
2106 if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_FORWSRCRT,
2107 0, NULL, NULL, NULL))
2108 return (EPERM);
2109
2110 ip_forwsrcrt = tmp;
2111
2112 return (0);
2113 }
2114
2115 /*
2116 * sysctl helper routine for net.inet.ip.mtudisctimeout. checks the
2117 * range of the new value and tweaks timers if it changes.
2118 */
2119 static int
2120 sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
2121 {
2122 int error, tmp;
2123 struct sysctlnode node;
2124
2125 node = *rnode;
2126 tmp = ip_mtudisc_timeout;
2127 node.sysctl_data = &tmp;
2128 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2129 if (error || newp == NULL)
2130 return (error);
2131 if (tmp < 0)
2132 return (EINVAL);
2133
2134 ip_mtudisc_timeout = tmp;
2135 rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
2136
2137 return (0);
2138 }
2139
2140 #ifdef GATEWAY
2141 /*
2142 * sysctl helper routine for net.inet.ip.maxflows.
2143 */
2144 static int
2145 sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
2146 {
2147 int s;
2148
2149 s = sysctl_lookup(SYSCTLFN_CALL(rnode));
2150 if (s || newp == NULL)
2151 return (s);
2152
2153 s = splsoftnet();
2154 ipflow_reap(0);
2155 splx(s);
2156
2157 return (0);
2158 }
2159
2160 static int
2161 sysctl_net_inet_ip_hashsize(SYSCTLFN_ARGS)
2162 {
2163 int error, tmp;
2164 struct sysctlnode node;
2165
2166 node = *rnode;
2167 tmp = ip_hashsize;
2168 node.sysctl_data = &tmp;
2169 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2170 if (error || newp == NULL)
2171 return (error);
2172
2173 if ((tmp & (tmp - 1)) == 0 && tmp != 0) {
2174 /*
2175 * Can only fail due to malloc()
2176 */
2177 if (ipflow_invalidate_all(tmp))
2178 return ENOMEM;
2179 } else {
2180 /*
2181 * EINVAL if not a power of 2
2182 */
2183 return EINVAL;
2184 }
2185
2186 return (0);
2187 }
2188 #endif /* GATEWAY */
2189
2190
2191 SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
2192 {
2193 extern int subnetsarelocal, hostzeroisbroadcast;
2194
2195 sysctl_createv(clog, 0, NULL, NULL,
2196 CTLFLAG_PERMANENT,
2197 CTLTYPE_NODE, "net", NULL,
2198 NULL, 0, NULL, 0,
2199 CTL_NET, CTL_EOL);
2200 sysctl_createv(clog, 0, NULL, NULL,
2201 CTLFLAG_PERMANENT,
2202 CTLTYPE_NODE, "inet",
2203 SYSCTL_DESCR("PF_INET related settings"),
2204 NULL, 0, NULL, 0,
2205 CTL_NET, PF_INET, CTL_EOL);
2206 sysctl_createv(clog, 0, NULL, NULL,
2207 CTLFLAG_PERMANENT,
2208 CTLTYPE_NODE, "ip",
2209 SYSCTL_DESCR("IPv4 related settings"),
2210 NULL, 0, NULL, 0,
2211 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2212
2213 sysctl_createv(clog, 0, NULL, NULL,
2214 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2215 CTLTYPE_INT, "forwarding",
2216 SYSCTL_DESCR("Enable forwarding of INET datagrams"),
2217 NULL, 0, &ipforwarding, 0,
2218 CTL_NET, PF_INET, IPPROTO_IP,
2219 IPCTL_FORWARDING, CTL_EOL);
2220 sysctl_createv(clog, 0, NULL, NULL,
2221 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2222 CTLTYPE_INT, "redirect",
2223 SYSCTL_DESCR("Enable sending of ICMP redirect messages"),
2224 NULL, 0, &ipsendredirects, 0,
2225 CTL_NET, PF_INET, IPPROTO_IP,
2226 IPCTL_SENDREDIRECTS, CTL_EOL);
2227 sysctl_createv(clog, 0, NULL, NULL,
2228 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2229 CTLTYPE_INT, "ttl",
2230 SYSCTL_DESCR("Default TTL for an INET datagram"),
2231 NULL, 0, &ip_defttl, 0,
2232 CTL_NET, PF_INET, IPPROTO_IP,
2233 IPCTL_DEFTTL, CTL_EOL);
2234 #ifdef IPCTL_DEFMTU
2235 sysctl_createv(clog, 0, NULL, NULL,
2236 CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
2237 CTLTYPE_INT, "mtu",
2238 SYSCTL_DESCR("Default MTA for an INET route"),
2239 NULL, 0, &ip_mtu, 0,
2240 CTL_NET, PF_INET, IPPROTO_IP,
2241 IPCTL_DEFMTU, CTL_EOL);
2242 #endif /* IPCTL_DEFMTU */
2243 sysctl_createv(clog, 0, NULL, NULL,
2244 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2245 CTLTYPE_INT, "forwsrcrt",
2246 SYSCTL_DESCR("Enable forwarding of source-routed "
2247 "datagrams"),
2248 sysctl_net_inet_ip_forwsrcrt, 0, &ip_forwsrcrt, 0,
2249 CTL_NET, PF_INET, IPPROTO_IP,
2250 IPCTL_FORWSRCRT, CTL_EOL);
2251 sysctl_createv(clog, 0, NULL, NULL,
2252 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2253 CTLTYPE_INT, "directed-broadcast",
2254 SYSCTL_DESCR("Enable forwarding of broadcast datagrams"),
2255 NULL, 0, &ip_directedbcast, 0,
2256 CTL_NET, PF_INET, IPPROTO_IP,
2257 IPCTL_DIRECTEDBCAST, CTL_EOL);
2258 sysctl_createv(clog, 0, NULL, NULL,
2259 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2260 CTLTYPE_INT, "allowsrcrt",
2261 SYSCTL_DESCR("Accept source-routed datagrams"),
2262 NULL, 0, &ip_allowsrcrt, 0,
2263 CTL_NET, PF_INET, IPPROTO_IP,
2264 IPCTL_ALLOWSRCRT, CTL_EOL);
2265 sysctl_createv(clog, 0, NULL, NULL,
2266 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2267 CTLTYPE_INT, "subnetsarelocal",
2268 SYSCTL_DESCR("Whether logical subnets are considered "
2269 "local"),
2270 NULL, 0, &subnetsarelocal, 0,
2271 CTL_NET, PF_INET, IPPROTO_IP,
2272 IPCTL_SUBNETSARELOCAL, CTL_EOL);
2273 sysctl_createv(clog, 0, NULL, NULL,
2274 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2275 CTLTYPE_INT, "mtudisc",
2276 SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"),
2277 NULL, 0, &ip_mtudisc, 0,
2278 CTL_NET, PF_INET, IPPROTO_IP,
2279 IPCTL_MTUDISC, CTL_EOL);
2280 sysctl_createv(clog, 0, NULL, NULL,
2281 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2282 CTLTYPE_INT, "anonportmin",
2283 SYSCTL_DESCR("Lowest ephemeral port number to assign"),
2284 sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
2285 CTL_NET, PF_INET, IPPROTO_IP,
2286 IPCTL_ANONPORTMIN, CTL_EOL);
2287 sysctl_createv(clog, 0, NULL, NULL,
2288 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2289 CTLTYPE_INT, "anonportmax",
2290 SYSCTL_DESCR("Highest ephemeral port number to assign"),
2291 sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
2292 CTL_NET, PF_INET, IPPROTO_IP,
2293 IPCTL_ANONPORTMAX, CTL_EOL);
2294 sysctl_createv(clog, 0, NULL, NULL,
2295 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2296 CTLTYPE_INT, "mtudisctimeout",
2297 SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"),
2298 sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
2299 CTL_NET, PF_INET, IPPROTO_IP,
2300 IPCTL_MTUDISCTIMEOUT, CTL_EOL);
2301 #ifdef GATEWAY
2302 sysctl_createv(clog, 0, NULL, NULL,
2303 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2304 CTLTYPE_INT, "maxflows",
2305 SYSCTL_DESCR("Number of flows for fast forwarding"),
2306 sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
2307 CTL_NET, PF_INET, IPPROTO_IP,
2308 IPCTL_MAXFLOWS, CTL_EOL);
2309 sysctl_createv(clog, 0, NULL, NULL,
2310 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2311 CTLTYPE_INT, "hashsize",
2312 SYSCTL_DESCR("Size of hash table for fast forwarding (IPv4)"),
2313 sysctl_net_inet_ip_hashsize, 0, &ip_hashsize, 0,
2314 CTL_NET, PF_INET, IPPROTO_IP,
2315 CTL_CREATE, CTL_EOL);
2316 #endif /* GATEWAY */
2317 sysctl_createv(clog, 0, NULL, NULL,
2318 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2319 CTLTYPE_INT, "hostzerobroadcast",
2320 SYSCTL_DESCR("All zeroes address is broadcast address"),
2321 NULL, 0, &hostzeroisbroadcast, 0,
2322 CTL_NET, PF_INET, IPPROTO_IP,
2323 IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2324 #if NGIF > 0
2325 sysctl_createv(clog, 0, NULL, NULL,
2326 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2327 CTLTYPE_INT, "gifttl",
2328 SYSCTL_DESCR("Default TTL for a gif tunnel datagram"),
2329 NULL, 0, &ip_gif_ttl, 0,
2330 CTL_NET, PF_INET, IPPROTO_IP,
2331 IPCTL_GIF_TTL, CTL_EOL);
2332 #endif /* NGIF */
2333 #ifndef IPNOPRIVPORTS
2334 sysctl_createv(clog, 0, NULL, NULL,
2335 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2336 CTLTYPE_INT, "lowportmin",
2337 SYSCTL_DESCR("Lowest privileged ephemeral port number "
2338 "to assign"),
2339 sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
2340 CTL_NET, PF_INET, IPPROTO_IP,
2341 IPCTL_LOWPORTMIN, CTL_EOL);
2342 sysctl_createv(clog, 0, NULL, NULL,
2343 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2344 CTLTYPE_INT, "lowportmax",
2345 SYSCTL_DESCR("Highest privileged ephemeral port number "
2346 "to assign"),
2347 sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
2348 CTL_NET, PF_INET, IPPROTO_IP,
2349 IPCTL_LOWPORTMAX, CTL_EOL);
2350 #endif /* IPNOPRIVPORTS */
2351 sysctl_createv(clog, 0, NULL, NULL,
2352 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2353 CTLTYPE_INT, "maxfragpackets",
2354 SYSCTL_DESCR("Maximum number of fragments to retain for "
2355 "possible reassembly"),
2356 NULL, 0, &ip_maxfragpackets, 0,
2357 CTL_NET, PF_INET, IPPROTO_IP,
2358 IPCTL_MAXFRAGPACKETS, CTL_EOL);
2359 #if NGRE > 0
2360 sysctl_createv(clog, 0, NULL, NULL,
2361 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2362 CTLTYPE_INT, "grettl",
2363 SYSCTL_DESCR("Default TTL for a gre tunnel datagram"),
2364 NULL, 0, &ip_gre_ttl, 0,
2365 CTL_NET, PF_INET, IPPROTO_IP,
2366 IPCTL_GRE_TTL, CTL_EOL);
2367 #endif /* NGRE */
2368 sysctl_createv(clog, 0, NULL, NULL,
2369 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2370 CTLTYPE_INT, "checkinterface",
2371 SYSCTL_DESCR("Enable receive side of Strong ES model "
2372 "from RFC1122"),
2373 NULL, 0, &ip_checkinterface, 0,
2374 CTL_NET, PF_INET, IPPROTO_IP,
2375 IPCTL_CHECKINTERFACE, CTL_EOL);
2376 sysctl_createv(clog, 0, NULL, NULL,
2377 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2378 CTLTYPE_INT, "random_id",
2379 SYSCTL_DESCR("Assign random ip_id values"),
2380 NULL, 0, &ip_do_randomid, 0,
2381 CTL_NET, PF_INET, IPPROTO_IP,
2382 IPCTL_RANDOMID, CTL_EOL);
2383 sysctl_createv(clog, 0, NULL, NULL,
2384 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2385 CTLTYPE_INT, "do_loopback_cksum",
2386 SYSCTL_DESCR("Perform IP checksum on loopback"),
2387 NULL, 0, &ip_do_loopback_cksum, 0,
2388 CTL_NET, PF_INET, IPPROTO_IP,
2389 IPCTL_LOOPBACKCKSUM, CTL_EOL);
2390 sysctl_createv(clog, 0, NULL, NULL,
2391 CTLFLAG_PERMANENT,
2392 CTLTYPE_STRUCT, "stats",
2393 SYSCTL_DESCR("IP statistics"),
2394 NULL, 0, &ipstat, sizeof(ipstat),
2395 CTL_NET, PF_INET, IPPROTO_IP, IPCTL_STATS,
2396 CTL_EOL);
2397 }
2398