ip_input.c revision 1.261 1 /* $NetBSD: ip_input.c,v 1.261 2008/01/14 04:19:09 dyoung Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.261 2008/01/14 04:19:09 dyoung Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_gateway.h"
105 #include "opt_pfil_hooks.h"
106 #include "opt_ipsec.h"
107 #include "opt_mrouting.h"
108 #include "opt_mbuftrace.h"
109 #include "opt_inet_csum.h"
110
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/domain.h>
116 #include <sys/protosw.h>
117 #include <sys/socket.h>
118 #include <sys/socketvar.h>
119 #include <sys/errno.h>
120 #include <sys/time.h>
121 #include <sys/kernel.h>
122 #include <sys/pool.h>
123 #include <sys/sysctl.h>
124 #include <sys/kauth.h>
125
126 #include <net/if.h>
127 #include <net/if_dl.h>
128 #include <net/route.h>
129 #include <net/pfil.h>
130
131 #include <netinet/in.h>
132 #include <netinet/in_systm.h>
133 #include <netinet/ip.h>
134 #include <netinet/in_pcb.h>
135 #include <netinet/in_proto.h>
136 #include <netinet/in_var.h>
137 #include <netinet/ip_var.h>
138 #include <netinet/ip_icmp.h>
139 /* just for gif_ttl */
140 #include <netinet/in_gif.h>
141 #include "gif.h"
142 #include <net/if_gre.h>
143 #include "gre.h"
144
145 #ifdef MROUTING
146 #include <netinet/ip_mroute.h>
147 #endif
148
149 #ifdef IPSEC
150 #include <netinet6/ipsec.h>
151 #include <netkey/key.h>
152 #endif
153 #ifdef FAST_IPSEC
154 #include <netipsec/ipsec.h>
155 #include <netipsec/key.h>
156 #endif /* FAST_IPSEC*/
157
158 #ifndef IPFORWARDING
159 #ifdef GATEWAY
160 #define IPFORWARDING 1 /* forward IP packets not for us */
161 #else /* GATEWAY */
162 #define IPFORWARDING 0 /* don't forward IP packets not for us */
163 #endif /* GATEWAY */
164 #endif /* IPFORWARDING */
165 #ifndef IPSENDREDIRECTS
166 #define IPSENDREDIRECTS 1
167 #endif
168 #ifndef IPFORWSRCRT
169 #define IPFORWSRCRT 1 /* forward source-routed packets */
170 #endif
171 #ifndef IPALLOWSRCRT
172 #define IPALLOWSRCRT 1 /* allow source-routed packets */
173 #endif
174 #ifndef IPMTUDISC
175 #define IPMTUDISC 1
176 #endif
177 #ifndef IPMTUDISCTIMEOUT
178 #define IPMTUDISCTIMEOUT (10 * 60) /* as per RFC 1191 */
179 #endif
180
181 /*
182 * Note: DIRECTED_BROADCAST is handled this way so that previous
183 * configuration using this option will Just Work.
184 */
185 #ifndef IPDIRECTEDBCAST
186 #ifdef DIRECTED_BROADCAST
187 #define IPDIRECTEDBCAST 1
188 #else
189 #define IPDIRECTEDBCAST 0
190 #endif /* DIRECTED_BROADCAST */
191 #endif /* IPDIRECTEDBCAST */
192 int ipforwarding = IPFORWARDING;
193 int ipsendredirects = IPSENDREDIRECTS;
194 int ip_defttl = IPDEFTTL;
195 int ip_forwsrcrt = IPFORWSRCRT;
196 int ip_directedbcast = IPDIRECTEDBCAST;
197 int ip_allowsrcrt = IPALLOWSRCRT;
198 int ip_mtudisc = IPMTUDISC;
199 int ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
200 #ifdef DIAGNOSTIC
201 int ipprintfs = 0;
202 #endif
203
204 int ip_do_randomid = 0;
205
206 /*
207 * XXX - Setting ip_checkinterface mostly implements the receive side of
208 * the Strong ES model described in RFC 1122, but since the routing table
209 * and transmit implementation do not implement the Strong ES model,
210 * setting this to 1 results in an odd hybrid.
211 *
212 * XXX - ip_checkinterface currently must be disabled if you use ipnat
213 * to translate the destination address to another local interface.
214 *
215 * XXX - ip_checkinterface must be disabled if you add IP aliases
216 * to the loopback interface instead of the interface where the
217 * packets for those addresses are received.
218 */
219 int ip_checkinterface = 0;
220
221
222 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
223
224 int ipqmaxlen = IFQ_MAXLEN;
225 u_long in_ifaddrhash; /* size of hash table - 1 */
226 int in_ifaddrentries; /* total number of addrs */
227 struct in_ifaddrhead in_ifaddrhead;
228 struct in_ifaddrhashhead *in_ifaddrhashtbl;
229 u_long in_multihash; /* size of hash table - 1 */
230 int in_multientries; /* total number of addrs */
231 struct in_multihashhead *in_multihashtbl;
232 struct ifqueue ipintrq;
233 struct ipstat ipstat;
234 uint16_t ip_id;
235
236 #ifdef PFIL_HOOKS
237 struct pfil_head inet_pfil_hook;
238 #endif
239
240 /*
241 * Cached copy of nmbclusters. If nbclusters is different,
242 * recalculate IP parameters derived from nmbclusters.
243 */
244 static int ip_nmbclusters; /* copy of nmbclusters */
245 static void ip_nmbclusters_changed(void); /* recalc limits */
246
247 #define CHECK_NMBCLUSTER_PARAMS() \
248 do { \
249 if (__predict_false(ip_nmbclusters != nmbclusters)) \
250 ip_nmbclusters_changed(); \
251 } while (/*CONSTCOND*/0)
252
253 /* IP datagram reassembly queues (hashed) */
254 #define IPREASS_NHASH_LOG2 6
255 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
256 #define IPREASS_HMASK (IPREASS_NHASH - 1)
257 #define IPREASS_HASH(x,y) \
258 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
259 struct ipqhead ipq[IPREASS_NHASH];
260 int ipq_locked;
261 static int ip_nfragpackets; /* packets in reass queue */
262 static int ip_nfrags; /* total fragments in reass queues */
263
264 int ip_maxfragpackets = 200; /* limit on packets. XXX sysctl */
265 int ip_maxfrags; /* limit on fragments. XXX sysctl */
266
267
268 /*
269 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
270 * IP reassembly queue buffer managment.
271 *
272 * We keep a count of total IP fragments (NB: not fragmented packets!)
273 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
274 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
275 * total fragments in reassembly queues.This AIMD policy avoids
276 * repeatedly deleting single packets under heavy fragmentation load
277 * (e.g., from lossy NFS peers).
278 */
279 static u_int ip_reass_ttl_decr(u_int ticks);
280 static void ip_reass_drophalf(void);
281
282
283 static inline int ipq_lock_try(void);
284 static inline void ipq_unlock(void);
285
286 static inline int
287 ipq_lock_try(void)
288 {
289 int s;
290
291 /*
292 * Use splvm() -- we're blocking things that would cause
293 * mbuf allocation.
294 */
295 s = splvm();
296 if (ipq_locked) {
297 splx(s);
298 return (0);
299 }
300 ipq_locked = 1;
301 splx(s);
302 return (1);
303 }
304
305 static inline void
306 ipq_unlock(void)
307 {
308 int s;
309
310 s = splvm();
311 ipq_locked = 0;
312 splx(s);
313 }
314
315 #ifdef DIAGNOSTIC
316 #define IPQ_LOCK() \
317 do { \
318 if (ipq_lock_try() == 0) { \
319 printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
320 panic("ipq_lock"); \
321 } \
322 } while (/*CONSTCOND*/ 0)
323 #define IPQ_LOCK_CHECK() \
324 do { \
325 if (ipq_locked == 0) { \
326 printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
327 panic("ipq lock check"); \
328 } \
329 } while (/*CONSTCOND*/ 0)
330 #else
331 #define IPQ_LOCK() (void) ipq_lock_try()
332 #define IPQ_LOCK_CHECK() /* nothing */
333 #endif
334
335 #define IPQ_UNLOCK() ipq_unlock()
336
337 POOL_INIT(inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", NULL,
338 IPL_SOFTNET);
339 POOL_INIT(ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl", NULL,
340 IPL_VM);
341
342 #ifdef INET_CSUM_COUNTERS
343 #include <sys/device.h>
344
345 struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
346 NULL, "inet", "hwcsum bad");
347 struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
348 NULL, "inet", "hwcsum ok");
349 struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
350 NULL, "inet", "swcsum");
351
352 #define INET_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
353
354 EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
355 EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
356 EVCNT_ATTACH_STATIC(ip_swcsum);
357
358 #else
359
360 #define INET_CSUM_COUNTER_INCR(ev) /* nothing */
361
362 #endif /* INET_CSUM_COUNTERS */
363
364 /*
365 * We need to save the IP options in case a protocol wants to respond
366 * to an incoming packet over the same route if the packet got here
367 * using IP source routing. This allows connection establishment and
368 * maintenance when the remote end is on a network that is not known
369 * to us.
370 */
371 int ip_nhops = 0;
372 static struct ip_srcrt {
373 struct in_addr dst; /* final destination */
374 char nop; /* one NOP to align */
375 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
376 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
377 } ip_srcrt;
378
379 static void save_rte(u_char *, struct in_addr);
380
381 #ifdef MBUFTRACE
382 struct mowner ip_rx_mowner = MOWNER_INIT("internet", "rx");
383 struct mowner ip_tx_mowner = MOWNER_INIT("internet", "tx");
384 #endif
385
386 /*
387 * Compute IP limits derived from the value of nmbclusters.
388 */
389 static void
390 ip_nmbclusters_changed(void)
391 {
392 ip_maxfrags = nmbclusters / 4;
393 ip_nmbclusters = nmbclusters;
394 }
395
396 /*
397 * IP initialization: fill in IP protocol switch table.
398 * All protocols not implemented in kernel go to raw IP protocol handler.
399 */
400 void
401 ip_init(void)
402 {
403 const struct protosw *pr;
404 int i;
405
406 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
407 if (pr == 0)
408 panic("ip_init");
409 for (i = 0; i < IPPROTO_MAX; i++)
410 ip_protox[i] = pr - inetsw;
411 for (pr = inetdomain.dom_protosw;
412 pr < inetdomain.dom_protoswNPROTOSW; pr++)
413 if (pr->pr_domain->dom_family == PF_INET &&
414 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
415 ip_protox[pr->pr_protocol] = pr - inetsw;
416
417 for (i = 0; i < IPREASS_NHASH; i++)
418 LIST_INIT(&ipq[i]);
419
420 ip_id = time_second & 0xfffff;
421
422 ipintrq.ifq_maxlen = ipqmaxlen;
423 ip_nmbclusters_changed();
424
425 TAILQ_INIT(&in_ifaddrhead);
426 in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IFADDR,
427 M_WAITOK, &in_ifaddrhash);
428 in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IPMADDR,
429 M_WAITOK, &in_multihash);
430 ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
431 #ifdef GATEWAY
432 ipflow_init(ip_hashsize);
433 #endif
434
435 #ifdef PFIL_HOOKS
436 /* Register our Packet Filter hook. */
437 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
438 inet_pfil_hook.ph_af = AF_INET;
439 i = pfil_head_register(&inet_pfil_hook);
440 if (i != 0)
441 printf("ip_init: WARNING: unable to register pfil hook, "
442 "error %d\n", i);
443 #endif /* PFIL_HOOKS */
444
445 #ifdef MBUFTRACE
446 MOWNER_ATTACH(&ip_tx_mowner);
447 MOWNER_ATTACH(&ip_rx_mowner);
448 #endif /* MBUFTRACE */
449 }
450
451 struct sockaddr_in ipaddr = {
452 .sin_len = sizeof(ipaddr),
453 .sin_family = AF_INET,
454 };
455 struct route ipforward_rt;
456
457 /*
458 * IP software interrupt routine
459 */
460 void
461 ipintr(void)
462 {
463 int s;
464 struct mbuf *m;
465
466 while (!IF_IS_EMPTY(&ipintrq)) {
467 s = splnet();
468 IF_DEQUEUE(&ipintrq, m);
469 splx(s);
470 if (m == 0)
471 return;
472 ip_input(m);
473 }
474 }
475
476 /*
477 * Ip input routine. Checksum and byte swap header. If fragmented
478 * try to reassemble. Process options. Pass to next level.
479 */
480 void
481 ip_input(struct mbuf *m)
482 {
483 struct ip *ip = NULL;
484 struct ipq *fp;
485 struct in_ifaddr *ia;
486 struct ifaddr *ifa;
487 struct ipqent *ipqe;
488 int hlen = 0, mff, len;
489 int downmatch;
490 int checkif;
491 int srcrt = 0;
492 int s;
493 u_int hash;
494 #ifdef FAST_IPSEC
495 struct m_tag *mtag;
496 struct tdb_ident *tdbi;
497 struct secpolicy *sp;
498 int error;
499 #endif /* FAST_IPSEC */
500
501 MCLAIM(m, &ip_rx_mowner);
502 #ifdef DIAGNOSTIC
503 if ((m->m_flags & M_PKTHDR) == 0)
504 panic("ipintr no HDR");
505 #endif
506
507 /*
508 * If no IP addresses have been set yet but the interfaces
509 * are receiving, can't do anything with incoming packets yet.
510 */
511 if (TAILQ_FIRST(&in_ifaddrhead) == 0)
512 goto bad;
513 ipstat.ips_total++;
514 /*
515 * If the IP header is not aligned, slurp it up into a new
516 * mbuf with space for link headers, in the event we forward
517 * it. Otherwise, if it is aligned, make sure the entire
518 * base IP header is in the first mbuf of the chain.
519 */
520 if (IP_HDR_ALIGNED_P(mtod(m, void *)) == 0) {
521 if ((m = m_copyup(m, sizeof(struct ip),
522 (max_linkhdr + 3) & ~3)) == NULL) {
523 /* XXXJRT new stat, please */
524 ipstat.ips_toosmall++;
525 return;
526 }
527 } else if (__predict_false(m->m_len < sizeof (struct ip))) {
528 if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
529 ipstat.ips_toosmall++;
530 return;
531 }
532 }
533 ip = mtod(m, struct ip *);
534 if (ip->ip_v != IPVERSION) {
535 ipstat.ips_badvers++;
536 goto bad;
537 }
538 hlen = ip->ip_hl << 2;
539 if (hlen < sizeof(struct ip)) { /* minimum header length */
540 ipstat.ips_badhlen++;
541 goto bad;
542 }
543 if (hlen > m->m_len) {
544 if ((m = m_pullup(m, hlen)) == 0) {
545 ipstat.ips_badhlen++;
546 return;
547 }
548 ip = mtod(m, struct ip *);
549 }
550
551 /*
552 * RFC1122: packets with a multicast source address are
553 * not allowed.
554 */
555 if (IN_MULTICAST(ip->ip_src.s_addr)) {
556 ipstat.ips_badaddr++;
557 goto bad;
558 }
559
560 /* 127/8 must not appear on wire - RFC1122 */
561 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
562 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
563 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
564 ipstat.ips_badaddr++;
565 goto bad;
566 }
567 }
568
569 switch (m->m_pkthdr.csum_flags &
570 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
571 M_CSUM_IPv4_BAD)) {
572 case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
573 INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
574 goto badcsum;
575
576 case M_CSUM_IPv4:
577 /* Checksum was okay. */
578 INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
579 break;
580
581 default:
582 /*
583 * Must compute it ourselves. Maybe skip checksum on
584 * loopback interfaces.
585 */
586 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
587 IFF_LOOPBACK) || ip_do_loopback_cksum)) {
588 INET_CSUM_COUNTER_INCR(&ip_swcsum);
589 if (in_cksum(m, hlen) != 0)
590 goto badcsum;
591 }
592 break;
593 }
594
595 /* Retrieve the packet length. */
596 len = ntohs(ip->ip_len);
597
598 /*
599 * Check for additional length bogosity
600 */
601 if (len < hlen) {
602 ipstat.ips_badlen++;
603 goto bad;
604 }
605
606 /*
607 * Check that the amount of data in the buffers
608 * is as at least much as the IP header would have us expect.
609 * Trim mbufs if longer than we expect.
610 * Drop packet if shorter than we expect.
611 */
612 if (m->m_pkthdr.len < len) {
613 ipstat.ips_tooshort++;
614 goto bad;
615 }
616 if (m->m_pkthdr.len > len) {
617 if (m->m_len == m->m_pkthdr.len) {
618 m->m_len = len;
619 m->m_pkthdr.len = len;
620 } else
621 m_adj(m, len - m->m_pkthdr.len);
622 }
623
624 #if defined(IPSEC)
625 /* ipflow (IP fast forwarding) is not compatible with IPsec. */
626 m->m_flags &= ~M_CANFASTFWD;
627 #else
628 /*
629 * Assume that we can create a fast-forward IP flow entry
630 * based on this packet.
631 */
632 m->m_flags |= M_CANFASTFWD;
633 #endif
634
635 #ifdef PFIL_HOOKS
636 /*
637 * Run through list of hooks for input packets. If there are any
638 * filters which require that additional packets in the flow are
639 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
640 * Note that filters must _never_ set this flag, as another filter
641 * in the list may have previously cleared it.
642 */
643 /*
644 * let ipfilter look at packet on the wire,
645 * not the decapsulated packet.
646 */
647 #ifdef IPSEC
648 if (!ipsec_getnhist(m))
649 #elif defined(FAST_IPSEC)
650 if (!ipsec_indone(m))
651 #else
652 if (1)
653 #endif
654 {
655 struct in_addr odst;
656
657 odst = ip->ip_dst;
658 if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
659 PFIL_IN) != 0)
660 return;
661 if (m == NULL)
662 return;
663 ip = mtod(m, struct ip *);
664 hlen = ip->ip_hl << 2;
665 /*
666 * XXX The setting of "srcrt" here is to prevent ip_forward()
667 * from generating ICMP redirects for packets that have
668 * been redirected by a hook back out on to the same LAN that
669 * they came from and is not an indication that the packet
670 * is being inffluenced by source routing options. This
671 * allows things like
672 * "rdr tlp0 0/0 port 80 -> 1.1.1.200 3128 tcp"
673 * where tlp0 is both on the 1.1.1.0/24 network and is the
674 * default route for hosts on 1.1.1.0/24. Of course this
675 * also requires a "map tlp0 ..." to complete the story.
676 * One might argue whether or not this kind of network config.
677 * should be supported in this manner...
678 */
679 srcrt = (odst.s_addr != ip->ip_dst.s_addr);
680 }
681 #endif /* PFIL_HOOKS */
682
683 #ifdef ALTQ
684 /* XXX Temporary until ALTQ is changed to use a pfil hook */
685 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
686 /* packet dropped by traffic conditioner */
687 return;
688 }
689 #endif
690
691 /*
692 * Process options and, if not destined for us,
693 * ship it on. ip_dooptions returns 1 when an
694 * error was detected (causing an icmp message
695 * to be sent and the original packet to be freed).
696 */
697 ip_nhops = 0; /* for source routed packets */
698 if (hlen > sizeof (struct ip) && ip_dooptions(m))
699 return;
700
701 /*
702 * Enable a consistency check between the destination address
703 * and the arrival interface for a unicast packet (the RFC 1122
704 * strong ES model) if IP forwarding is disabled and the packet
705 * is not locally generated.
706 *
707 * XXX - Checking also should be disabled if the destination
708 * address is ipnat'ed to a different interface.
709 *
710 * XXX - Checking is incompatible with IP aliases added
711 * to the loopback interface instead of the interface where
712 * the packets are received.
713 *
714 * XXX - We need to add a per ifaddr flag for this so that
715 * we get finer grain control.
716 */
717 checkif = ip_checkinterface && (ipforwarding == 0) &&
718 (m->m_pkthdr.rcvif != NULL) &&
719 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
720
721 /*
722 * Check our list of addresses, to see if the packet is for us.
723 *
724 * Traditional 4.4BSD did not consult IFF_UP at all.
725 * The behavior here is to treat addresses on !IFF_UP interface
726 * as not mine.
727 */
728 downmatch = 0;
729 LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
730 if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
731 if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
732 continue;
733 if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
734 break;
735 else
736 downmatch++;
737 }
738 }
739 if (ia != NULL)
740 goto ours;
741 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
742 IFADDR_FOREACH(ifa, m->m_pkthdr.rcvif) {
743 if (ifa->ifa_addr->sa_family != AF_INET)
744 continue;
745 ia = ifatoia(ifa);
746 if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
747 in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
748 /*
749 * Look for all-0's host part (old broadcast addr),
750 * either for subnet or net.
751 */
752 ip->ip_dst.s_addr == ia->ia_subnet ||
753 ip->ip_dst.s_addr == ia->ia_net)
754 goto ours;
755 /*
756 * An interface with IP address zero accepts
757 * all packets that arrive on that interface.
758 */
759 if (in_nullhost(ia->ia_addr.sin_addr))
760 goto ours;
761 }
762 }
763 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
764 struct in_multi *inm;
765 #ifdef MROUTING
766 extern struct socket *ip_mrouter;
767
768 if (ip_mrouter) {
769 /*
770 * If we are acting as a multicast router, all
771 * incoming multicast packets are passed to the
772 * kernel-level multicast forwarding function.
773 * The packet is returned (relatively) intact; if
774 * ip_mforward() returns a non-zero value, the packet
775 * must be discarded, else it may be accepted below.
776 *
777 * (The IP ident field is put in the same byte order
778 * as expected when ip_mforward() is called from
779 * ip_output().)
780 */
781 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
782 ipstat.ips_cantforward++;
783 m_freem(m);
784 return;
785 }
786
787 /*
788 * The process-level routing demon needs to receive
789 * all multicast IGMP packets, whether or not this
790 * host belongs to their destination groups.
791 */
792 if (ip->ip_p == IPPROTO_IGMP)
793 goto ours;
794 ipstat.ips_forward++;
795 }
796 #endif
797 /*
798 * See if we belong to the destination multicast group on the
799 * arrival interface.
800 */
801 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
802 if (inm == NULL) {
803 ipstat.ips_cantforward++;
804 m_freem(m);
805 return;
806 }
807 goto ours;
808 }
809 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
810 in_nullhost(ip->ip_dst))
811 goto ours;
812
813 /*
814 * Not for us; forward if possible and desirable.
815 */
816 if (ipforwarding == 0) {
817 ipstat.ips_cantforward++;
818 m_freem(m);
819 } else {
820 /*
821 * If ip_dst matched any of my address on !IFF_UP interface,
822 * and there's no IFF_UP interface that matches ip_dst,
823 * send icmp unreach. Forwarding it will result in in-kernel
824 * forwarding loop till TTL goes to 0.
825 */
826 if (downmatch) {
827 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
828 ipstat.ips_cantforward++;
829 return;
830 }
831 #ifdef IPSEC
832 if (ipsec4_in_reject(m, NULL)) {
833 ipsecstat.in_polvio++;
834 goto bad;
835 }
836 #endif
837 #ifdef FAST_IPSEC
838 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
839 s = splsoftnet();
840 if (mtag != NULL) {
841 tdbi = (struct tdb_ident *)(mtag + 1);
842 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
843 } else {
844 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
845 IP_FORWARDING, &error);
846 }
847 if (sp == NULL) { /* NB: can happen if error */
848 splx(s);
849 /*XXX error stat???*/
850 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
851 goto bad;
852 }
853
854 /*
855 * Check security policy against packet attributes.
856 */
857 error = ipsec_in_reject(sp, m);
858 KEY_FREESP(&sp);
859 splx(s);
860 if (error) {
861 ipstat.ips_cantforward++;
862 goto bad;
863 }
864
865 /*
866 * Peek at the outbound SP for this packet to determine if
867 * it's a Fast Forward candidate.
868 */
869 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
870 if (mtag != NULL)
871 m->m_flags &= ~M_CANFASTFWD;
872 else {
873 s = splsoftnet();
874 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
875 (IP_FORWARDING |
876 (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
877 &error, NULL);
878 if (sp != NULL) {
879 m->m_flags &= ~M_CANFASTFWD;
880 KEY_FREESP(&sp);
881 }
882 splx(s);
883 }
884 #endif /* FAST_IPSEC */
885
886 ip_forward(m, srcrt);
887 }
888 return;
889
890 ours:
891 /*
892 * If offset or IP_MF are set, must reassemble.
893 * Otherwise, nothing need be done.
894 * (We could look in the reassembly queue to see
895 * if the packet was previously fragmented,
896 * but it's not worth the time; just let them time out.)
897 */
898 if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
899 uint16_t off;
900 /*
901 * Prevent TCP blind data attacks by not allowing non-initial
902 * fragments to start at less than 68 bytes (minimal fragment
903 * size) and making sure the first fragment is at least 68
904 * bytes.
905 */
906 off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
907 if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
908 ipstat.ips_badfrags++;
909 goto bad;
910 }
911 /*
912 * Look for queue of fragments
913 * of this datagram.
914 */
915 IPQ_LOCK();
916 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
917 LIST_FOREACH(fp, &ipq[hash], ipq_q) {
918 if (ip->ip_id == fp->ipq_id &&
919 in_hosteq(ip->ip_src, fp->ipq_src) &&
920 in_hosteq(ip->ip_dst, fp->ipq_dst) &&
921 ip->ip_p == fp->ipq_p) {
922 /*
923 * Make sure the TOS is matches previous
924 * fragments.
925 */
926 if (ip->ip_tos != fp->ipq_tos) {
927 ipstat.ips_badfrags++;
928 goto bad;
929 }
930 goto found;
931 }
932 }
933 fp = 0;
934 found:
935
936 /*
937 * Adjust ip_len to not reflect header,
938 * set ipqe_mff if more fragments are expected,
939 * convert offset of this to bytes.
940 */
941 ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
942 mff = (ip->ip_off & htons(IP_MF)) != 0;
943 if (mff) {
944 /*
945 * Make sure that fragments have a data length
946 * that's a non-zero multiple of 8 bytes.
947 */
948 if (ntohs(ip->ip_len) == 0 ||
949 (ntohs(ip->ip_len) & 0x7) != 0) {
950 ipstat.ips_badfrags++;
951 IPQ_UNLOCK();
952 goto bad;
953 }
954 }
955 ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
956
957 /*
958 * If datagram marked as having more fragments
959 * or if this is not the first fragment,
960 * attempt reassembly; if it succeeds, proceed.
961 */
962 if (mff || ip->ip_off != htons(0)) {
963 ipstat.ips_fragments++;
964 s = splvm();
965 ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
966 splx(s);
967 if (ipqe == NULL) {
968 ipstat.ips_rcvmemdrop++;
969 IPQ_UNLOCK();
970 goto bad;
971 }
972 ipqe->ipqe_mff = mff;
973 ipqe->ipqe_m = m;
974 ipqe->ipqe_ip = ip;
975 m = ip_reass(ipqe, fp, &ipq[hash]);
976 if (m == 0) {
977 IPQ_UNLOCK();
978 return;
979 }
980 ipstat.ips_reassembled++;
981 ip = mtod(m, struct ip *);
982 hlen = ip->ip_hl << 2;
983 ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
984 } else
985 if (fp)
986 ip_freef(fp);
987 IPQ_UNLOCK();
988 }
989
990 #if defined(IPSEC)
991 /*
992 * enforce IPsec policy checking if we are seeing last header.
993 * note that we do not visit this with protocols with pcb layer
994 * code - like udp/tcp/raw ip.
995 */
996 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
997 ipsec4_in_reject(m, NULL)) {
998 ipsecstat.in_polvio++;
999 goto bad;
1000 }
1001 #endif
1002 #ifdef FAST_IPSEC
1003 /*
1004 * enforce IPsec policy checking if we are seeing last header.
1005 * note that we do not visit this with protocols with pcb layer
1006 * code - like udp/tcp/raw ip.
1007 */
1008 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
1009 /*
1010 * Check if the packet has already had IPsec processing
1011 * done. If so, then just pass it along. This tag gets
1012 * set during AH, ESP, etc. input handling, before the
1013 * packet is returned to the ip input queue for delivery.
1014 */
1015 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1016 s = splsoftnet();
1017 if (mtag != NULL) {
1018 tdbi = (struct tdb_ident *)(mtag + 1);
1019 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1020 } else {
1021 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1022 IP_FORWARDING, &error);
1023 }
1024 if (sp != NULL) {
1025 /*
1026 * Check security policy against packet attributes.
1027 */
1028 error = ipsec_in_reject(sp, m);
1029 KEY_FREESP(&sp);
1030 } else {
1031 /* XXX error stat??? */
1032 error = EINVAL;
1033 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1034 }
1035 splx(s);
1036 if (error)
1037 goto bad;
1038 }
1039 #endif /* FAST_IPSEC */
1040
1041 /*
1042 * Switch out to protocol's input routine.
1043 */
1044 #if IFA_STATS
1045 if (ia && ip)
1046 ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
1047 #endif
1048 ipstat.ips_delivered++;
1049 {
1050 int off = hlen, nh = ip->ip_p;
1051
1052 (*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
1053 return;
1054 }
1055 bad:
1056 m_freem(m);
1057 return;
1058
1059 badcsum:
1060 ipstat.ips_badsum++;
1061 m_freem(m);
1062 }
1063
1064 /*
1065 * Take incoming datagram fragment and try to
1066 * reassemble it into whole datagram. If a chain for
1067 * reassembly of this datagram already exists, then it
1068 * is given as fp; otherwise have to make a chain.
1069 */
1070 struct mbuf *
1071 ip_reass(struct ipqent *ipqe, struct ipq *fp, struct ipqhead *ipqhead)
1072 {
1073 struct mbuf *m = ipqe->ipqe_m;
1074 struct ipqent *nq, *p, *q;
1075 struct ip *ip;
1076 struct mbuf *t;
1077 int hlen = ipqe->ipqe_ip->ip_hl << 2;
1078 int i, next, s;
1079
1080 IPQ_LOCK_CHECK();
1081
1082 /*
1083 * Presence of header sizes in mbufs
1084 * would confuse code below.
1085 */
1086 m->m_data += hlen;
1087 m->m_len -= hlen;
1088
1089 #ifdef notyet
1090 /* make sure fragment limit is up-to-date */
1091 CHECK_NMBCLUSTER_PARAMS();
1092
1093 /* If we have too many fragments, drop the older half. */
1094 if (ip_nfrags >= ip_maxfrags)
1095 ip_reass_drophalf(void);
1096 #endif
1097
1098 /*
1099 * We are about to add a fragment; increment frag count.
1100 */
1101 ip_nfrags++;
1102
1103 /*
1104 * If first fragment to arrive, create a reassembly queue.
1105 */
1106 if (fp == 0) {
1107 /*
1108 * Enforce upper bound on number of fragmented packets
1109 * for which we attempt reassembly;
1110 * If maxfrag is 0, never accept fragments.
1111 * If maxfrag is -1, accept all fragments without limitation.
1112 */
1113 if (ip_maxfragpackets < 0)
1114 ;
1115 else if (ip_nfragpackets >= ip_maxfragpackets)
1116 goto dropfrag;
1117 ip_nfragpackets++;
1118 MALLOC(fp, struct ipq *, sizeof (struct ipq),
1119 M_FTABLE, M_NOWAIT);
1120 if (fp == NULL)
1121 goto dropfrag;
1122 LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
1123 fp->ipq_nfrags = 1;
1124 fp->ipq_ttl = IPFRAGTTL;
1125 fp->ipq_p = ipqe->ipqe_ip->ip_p;
1126 fp->ipq_id = ipqe->ipqe_ip->ip_id;
1127 fp->ipq_tos = ipqe->ipqe_ip->ip_tos;
1128 TAILQ_INIT(&fp->ipq_fragq);
1129 fp->ipq_src = ipqe->ipqe_ip->ip_src;
1130 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
1131 p = NULL;
1132 goto insert;
1133 } else {
1134 fp->ipq_nfrags++;
1135 }
1136
1137 /*
1138 * Find a segment which begins after this one does.
1139 */
1140 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1141 p = q, q = TAILQ_NEXT(q, ipqe_q))
1142 if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
1143 break;
1144
1145 /*
1146 * If there is a preceding segment, it may provide some of
1147 * our data already. If so, drop the data from the incoming
1148 * segment. If it provides all of our data, drop us.
1149 */
1150 if (p != NULL) {
1151 i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
1152 ntohs(ipqe->ipqe_ip->ip_off);
1153 if (i > 0) {
1154 if (i >= ntohs(ipqe->ipqe_ip->ip_len))
1155 goto dropfrag;
1156 m_adj(ipqe->ipqe_m, i);
1157 ipqe->ipqe_ip->ip_off =
1158 htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
1159 ipqe->ipqe_ip->ip_len =
1160 htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
1161 }
1162 }
1163
1164 /*
1165 * While we overlap succeeding segments trim them or,
1166 * if they are completely covered, dequeue them.
1167 */
1168 for (; q != NULL &&
1169 ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
1170 ntohs(q->ipqe_ip->ip_off); q = nq) {
1171 i = (ntohs(ipqe->ipqe_ip->ip_off) +
1172 ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
1173 if (i < ntohs(q->ipqe_ip->ip_len)) {
1174 q->ipqe_ip->ip_len =
1175 htons(ntohs(q->ipqe_ip->ip_len) - i);
1176 q->ipqe_ip->ip_off =
1177 htons(ntohs(q->ipqe_ip->ip_off) + i);
1178 m_adj(q->ipqe_m, i);
1179 break;
1180 }
1181 nq = TAILQ_NEXT(q, ipqe_q);
1182 m_freem(q->ipqe_m);
1183 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1184 s = splvm();
1185 pool_put(&ipqent_pool, q);
1186 splx(s);
1187 fp->ipq_nfrags--;
1188 ip_nfrags--;
1189 }
1190
1191 insert:
1192 /*
1193 * Stick new segment in its place;
1194 * check for complete reassembly.
1195 */
1196 if (p == NULL) {
1197 TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
1198 } else {
1199 TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
1200 }
1201 next = 0;
1202 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1203 p = q, q = TAILQ_NEXT(q, ipqe_q)) {
1204 if (ntohs(q->ipqe_ip->ip_off) != next)
1205 return (0);
1206 next += ntohs(q->ipqe_ip->ip_len);
1207 }
1208 if (p->ipqe_mff)
1209 return (0);
1210
1211 /*
1212 * Reassembly is complete. Check for a bogus message size and
1213 * concatenate fragments.
1214 */
1215 q = TAILQ_FIRST(&fp->ipq_fragq);
1216 ip = q->ipqe_ip;
1217 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
1218 ipstat.ips_toolong++;
1219 ip_freef(fp);
1220 return (0);
1221 }
1222 m = q->ipqe_m;
1223 t = m->m_next;
1224 m->m_next = 0;
1225 m_cat(m, t);
1226 nq = TAILQ_NEXT(q, ipqe_q);
1227 s = splvm();
1228 pool_put(&ipqent_pool, q);
1229 splx(s);
1230 for (q = nq; q != NULL; q = nq) {
1231 t = q->ipqe_m;
1232 nq = TAILQ_NEXT(q, ipqe_q);
1233 s = splvm();
1234 pool_put(&ipqent_pool, q);
1235 splx(s);
1236 m_cat(m, t);
1237 }
1238 ip_nfrags -= fp->ipq_nfrags;
1239
1240 /*
1241 * Create header for new ip packet by
1242 * modifying header of first packet;
1243 * dequeue and discard fragment reassembly header.
1244 * Make header visible.
1245 */
1246 ip->ip_len = htons(next);
1247 ip->ip_src = fp->ipq_src;
1248 ip->ip_dst = fp->ipq_dst;
1249 LIST_REMOVE(fp, ipq_q);
1250 FREE(fp, M_FTABLE);
1251 ip_nfragpackets--;
1252 m->m_len += (ip->ip_hl << 2);
1253 m->m_data -= (ip->ip_hl << 2);
1254 /* some debugging cruft by sklower, below, will go away soon */
1255 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1256 int plen = 0;
1257 for (t = m; t; t = t->m_next)
1258 plen += t->m_len;
1259 m->m_pkthdr.len = plen;
1260 m->m_pkthdr.csum_flags = 0;
1261 }
1262 return (m);
1263
1264 dropfrag:
1265 if (fp != 0)
1266 fp->ipq_nfrags--;
1267 ip_nfrags--;
1268 ipstat.ips_fragdropped++;
1269 m_freem(m);
1270 s = splvm();
1271 pool_put(&ipqent_pool, ipqe);
1272 splx(s);
1273 return (0);
1274 }
1275
1276 /*
1277 * Free a fragment reassembly header and all
1278 * associated datagrams.
1279 */
1280 void
1281 ip_freef(struct ipq *fp)
1282 {
1283 struct ipqent *q, *p;
1284 u_int nfrags = 0;
1285 int s;
1286
1287 IPQ_LOCK_CHECK();
1288
1289 for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
1290 p = TAILQ_NEXT(q, ipqe_q);
1291 m_freem(q->ipqe_m);
1292 nfrags++;
1293 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1294 s = splvm();
1295 pool_put(&ipqent_pool, q);
1296 splx(s);
1297 }
1298
1299 if (nfrags != fp->ipq_nfrags)
1300 printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
1301 ip_nfrags -= nfrags;
1302 LIST_REMOVE(fp, ipq_q);
1303 FREE(fp, M_FTABLE);
1304 ip_nfragpackets--;
1305 }
1306
1307 /*
1308 * IP reassembly TTL machinery for multiplicative drop.
1309 */
1310 static u_int fragttl_histo[(IPFRAGTTL+1)];
1311
1312
1313 /*
1314 * Decrement TTL of all reasembly queue entries by `ticks'.
1315 * Count number of distinct fragments (as opposed to partial, fragmented
1316 * datagrams) in the reassembly queue. While we traverse the entire
1317 * reassembly queue, compute and return the median TTL over all fragments.
1318 */
1319 static u_int
1320 ip_reass_ttl_decr(u_int ticks)
1321 {
1322 u_int nfrags, median, dropfraction, keepfraction;
1323 struct ipq *fp, *nfp;
1324 int i;
1325
1326 nfrags = 0;
1327 memset(fragttl_histo, 0, sizeof fragttl_histo);
1328
1329 for (i = 0; i < IPREASS_NHASH; i++) {
1330 for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
1331 fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
1332 0 : fp->ipq_ttl - ticks);
1333 nfp = LIST_NEXT(fp, ipq_q);
1334 if (fp->ipq_ttl == 0) {
1335 ipstat.ips_fragtimeout++;
1336 ip_freef(fp);
1337 } else {
1338 nfrags += fp->ipq_nfrags;
1339 fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
1340 }
1341 }
1342 }
1343
1344 KASSERT(ip_nfrags == nfrags);
1345
1346 /* Find median (or other drop fraction) in histogram. */
1347 dropfraction = (ip_nfrags / 2);
1348 keepfraction = ip_nfrags - dropfraction;
1349 for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
1350 median += fragttl_histo[i];
1351 if (median >= keepfraction)
1352 break;
1353 }
1354
1355 /* Return TTL of median (or other fraction). */
1356 return (u_int)i;
1357 }
1358
1359 void
1360 ip_reass_drophalf(void)
1361 {
1362
1363 u_int median_ticks;
1364 /*
1365 * Compute median TTL of all fragments, and count frags
1366 * with that TTL or lower (roughly half of all fragments).
1367 */
1368 median_ticks = ip_reass_ttl_decr(0);
1369
1370 /* Drop half. */
1371 median_ticks = ip_reass_ttl_decr(median_ticks);
1372
1373 }
1374
1375 /*
1376 * IP timer processing;
1377 * if a timer expires on a reassembly
1378 * queue, discard it.
1379 */
1380 void
1381 ip_slowtimo(void)
1382 {
1383 static u_int dropscanidx = 0;
1384 u_int i;
1385 u_int median_ttl;
1386 int s = splsoftnet();
1387
1388 IPQ_LOCK();
1389
1390 /* Age TTL of all fragments by 1 tick .*/
1391 median_ttl = ip_reass_ttl_decr(1);
1392
1393 /* make sure fragment limit is up-to-date */
1394 CHECK_NMBCLUSTER_PARAMS();
1395
1396 /* If we have too many fragments, drop the older half. */
1397 if (ip_nfrags > ip_maxfrags)
1398 ip_reass_ttl_decr(median_ttl);
1399
1400 /*
1401 * If we are over the maximum number of fragmented packets
1402 * (due to the limit being lowered), drain off
1403 * enough to get down to the new limit. Start draining
1404 * from the reassembly hashqueue most recently drained.
1405 */
1406 if (ip_maxfragpackets < 0)
1407 ;
1408 else {
1409 int wrapped = 0;
1410
1411 i = dropscanidx;
1412 while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
1413 while (LIST_FIRST(&ipq[i]) != NULL)
1414 ip_freef(LIST_FIRST(&ipq[i]));
1415 if (++i >= IPREASS_NHASH) {
1416 i = 0;
1417 }
1418 /*
1419 * Dont scan forever even if fragment counters are
1420 * wrong: stop after scanning entire reassembly queue.
1421 */
1422 if (i == dropscanidx)
1423 wrapped = 1;
1424 }
1425 dropscanidx = i;
1426 }
1427 IPQ_UNLOCK();
1428 splx(s);
1429 }
1430
1431 /*
1432 * Drain off all datagram fragments.
1433 */
1434 void
1435 ip_drain(void)
1436 {
1437
1438 /*
1439 * We may be called from a device's interrupt context. If
1440 * the ipq is already busy, just bail out now.
1441 */
1442 if (ipq_lock_try() == 0)
1443 return;
1444
1445 /*
1446 * Drop half the total fragments now. If more mbufs are needed,
1447 * we will be called again soon.
1448 */
1449 ip_reass_drophalf();
1450
1451 IPQ_UNLOCK();
1452 }
1453
1454 /*
1455 * Do option processing on a datagram,
1456 * possibly discarding it if bad options are encountered,
1457 * or forwarding it if source-routed.
1458 * Returns 1 if packet has been forwarded/freed,
1459 * 0 if the packet should be processed further.
1460 */
1461 int
1462 ip_dooptions(struct mbuf *m)
1463 {
1464 struct ip *ip = mtod(m, struct ip *);
1465 u_char *cp, *cp0;
1466 struct ip_timestamp *ipt;
1467 struct in_ifaddr *ia;
1468 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1469 struct in_addr dst;
1470 n_time ntime;
1471
1472 dst = ip->ip_dst;
1473 cp = (u_char *)(ip + 1);
1474 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1475 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1476 opt = cp[IPOPT_OPTVAL];
1477 if (opt == IPOPT_EOL)
1478 break;
1479 if (opt == IPOPT_NOP)
1480 optlen = 1;
1481 else {
1482 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1483 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1484 goto bad;
1485 }
1486 optlen = cp[IPOPT_OLEN];
1487 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1488 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1489 goto bad;
1490 }
1491 }
1492 switch (opt) {
1493
1494 default:
1495 break;
1496
1497 /*
1498 * Source routing with record.
1499 * Find interface with current destination address.
1500 * If none on this machine then drop if strictly routed,
1501 * or do nothing if loosely routed.
1502 * Record interface address and bring up next address
1503 * component. If strictly routed make sure next
1504 * address is on directly accessible net.
1505 */
1506 case IPOPT_LSRR:
1507 case IPOPT_SSRR:
1508 if (ip_allowsrcrt == 0) {
1509 type = ICMP_UNREACH;
1510 code = ICMP_UNREACH_NET_PROHIB;
1511 goto bad;
1512 }
1513 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1514 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1515 goto bad;
1516 }
1517 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1518 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1519 goto bad;
1520 }
1521 ipaddr.sin_addr = ip->ip_dst;
1522 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
1523 if (ia == 0) {
1524 if (opt == IPOPT_SSRR) {
1525 type = ICMP_UNREACH;
1526 code = ICMP_UNREACH_SRCFAIL;
1527 goto bad;
1528 }
1529 /*
1530 * Loose routing, and not at next destination
1531 * yet; nothing to do except forward.
1532 */
1533 break;
1534 }
1535 off--; /* 0 origin */
1536 if ((off + sizeof(struct in_addr)) > optlen) {
1537 /*
1538 * End of source route. Should be for us.
1539 */
1540 save_rte(cp, ip->ip_src);
1541 break;
1542 }
1543 /*
1544 * locate outgoing interface
1545 */
1546 bcopy((void *)(cp + off), (void *)&ipaddr.sin_addr,
1547 sizeof(ipaddr.sin_addr));
1548 if (opt == IPOPT_SSRR)
1549 ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
1550 else
1551 ia = ip_rtaddr(ipaddr.sin_addr);
1552 if (ia == 0) {
1553 type = ICMP_UNREACH;
1554 code = ICMP_UNREACH_SRCFAIL;
1555 goto bad;
1556 }
1557 ip->ip_dst = ipaddr.sin_addr;
1558 bcopy((void *)&ia->ia_addr.sin_addr,
1559 (void *)(cp + off), sizeof(struct in_addr));
1560 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1561 /*
1562 * Let ip_intr's mcast routing check handle mcast pkts
1563 */
1564 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1565 break;
1566
1567 case IPOPT_RR:
1568 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1569 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1570 goto bad;
1571 }
1572 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1573 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1574 goto bad;
1575 }
1576 /*
1577 * If no space remains, ignore.
1578 */
1579 off--; /* 0 origin */
1580 if ((off + sizeof(struct in_addr)) > optlen)
1581 break;
1582 bcopy((void *)(&ip->ip_dst), (void *)&ipaddr.sin_addr,
1583 sizeof(ipaddr.sin_addr));
1584 /*
1585 * locate outgoing interface; if we're the destination,
1586 * use the incoming interface (should be same).
1587 */
1588 if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
1589 == NULL &&
1590 (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1591 type = ICMP_UNREACH;
1592 code = ICMP_UNREACH_HOST;
1593 goto bad;
1594 }
1595 bcopy((void *)&ia->ia_addr.sin_addr,
1596 (void *)(cp + off), sizeof(struct in_addr));
1597 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1598 break;
1599
1600 case IPOPT_TS:
1601 code = cp - (u_char *)ip;
1602 ipt = (struct ip_timestamp *)cp;
1603 if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1604 code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1605 goto bad;
1606 }
1607 if (ipt->ipt_ptr < 5) {
1608 code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1609 goto bad;
1610 }
1611 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
1612 if (++ipt->ipt_oflw == 0) {
1613 code = (u_char *)&ipt->ipt_ptr -
1614 (u_char *)ip;
1615 goto bad;
1616 }
1617 break;
1618 }
1619 cp0 = (cp + ipt->ipt_ptr - 1);
1620 switch (ipt->ipt_flg) {
1621
1622 case IPOPT_TS_TSONLY:
1623 break;
1624
1625 case IPOPT_TS_TSANDADDR:
1626 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1627 sizeof(struct in_addr) > ipt->ipt_len) {
1628 code = (u_char *)&ipt->ipt_ptr -
1629 (u_char *)ip;
1630 goto bad;
1631 }
1632 ipaddr.sin_addr = dst;
1633 ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1634 m->m_pkthdr.rcvif));
1635 if (ia == 0)
1636 continue;
1637 bcopy(&ia->ia_addr.sin_addr,
1638 cp0, sizeof(struct in_addr));
1639 ipt->ipt_ptr += sizeof(struct in_addr);
1640 break;
1641
1642 case IPOPT_TS_PRESPEC:
1643 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1644 sizeof(struct in_addr) > ipt->ipt_len) {
1645 code = (u_char *)&ipt->ipt_ptr -
1646 (u_char *)ip;
1647 goto bad;
1648 }
1649 bcopy(cp0, &ipaddr.sin_addr,
1650 sizeof(struct in_addr));
1651 if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
1652 == NULL)
1653 continue;
1654 ipt->ipt_ptr += sizeof(struct in_addr);
1655 break;
1656
1657 default:
1658 /* XXX can't take &ipt->ipt_flg */
1659 code = (u_char *)&ipt->ipt_ptr -
1660 (u_char *)ip + 1;
1661 goto bad;
1662 }
1663 ntime = iptime();
1664 cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
1665 memmove((char *)cp + ipt->ipt_ptr - 1, cp0,
1666 sizeof(n_time));
1667 ipt->ipt_ptr += sizeof(n_time);
1668 }
1669 }
1670 if (forward) {
1671 if (ip_forwsrcrt == 0) {
1672 type = ICMP_UNREACH;
1673 code = ICMP_UNREACH_SRCFAIL;
1674 goto bad;
1675 }
1676 ip_forward(m, 1);
1677 return (1);
1678 }
1679 return (0);
1680 bad:
1681 icmp_error(m, type, code, 0, 0);
1682 ipstat.ips_badoptions++;
1683 return (1);
1684 }
1685
1686 /*
1687 * Given address of next destination (final or next hop),
1688 * return internet address info of interface to be used to get there.
1689 */
1690 struct in_ifaddr *
1691 ip_rtaddr(struct in_addr dst)
1692 {
1693 struct rtentry *rt;
1694 union {
1695 struct sockaddr dst;
1696 struct sockaddr_in dst4;
1697 } u;
1698
1699 sockaddr_in_init(&u.dst4, &dst, 0);
1700
1701 if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL)
1702 return NULL;
1703
1704 return ifatoia(rt->rt_ifa);
1705 }
1706
1707 /*
1708 * Save incoming source route for use in replies,
1709 * to be picked up later by ip_srcroute if the receiver is interested.
1710 */
1711 void
1712 save_rte(u_char *option, struct in_addr dst)
1713 {
1714 unsigned olen;
1715
1716 olen = option[IPOPT_OLEN];
1717 #ifdef DIAGNOSTIC
1718 if (ipprintfs)
1719 printf("save_rte: olen %d\n", olen);
1720 #endif /* 0 */
1721 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1722 return;
1723 bcopy((void *)option, (void *)ip_srcrt.srcopt, olen);
1724 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1725 ip_srcrt.dst = dst;
1726 }
1727
1728 /*
1729 * Retrieve incoming source route for use in replies,
1730 * in the same form used by setsockopt.
1731 * The first hop is placed before the options, will be removed later.
1732 */
1733 struct mbuf *
1734 ip_srcroute(void)
1735 {
1736 struct in_addr *p, *q;
1737 struct mbuf *m;
1738
1739 if (ip_nhops == 0)
1740 return NULL;
1741 m = m_get(M_DONTWAIT, MT_SOOPTS);
1742 if (m == 0)
1743 return NULL;
1744
1745 MCLAIM(m, &inetdomain.dom_mowner);
1746 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1747
1748 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1749 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1750 OPTSIZ;
1751 #ifdef DIAGNOSTIC
1752 if (ipprintfs)
1753 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1754 #endif
1755
1756 /*
1757 * First save first hop for return route
1758 */
1759 p = &ip_srcrt.route[ip_nhops - 1];
1760 *(mtod(m, struct in_addr *)) = *p--;
1761 #ifdef DIAGNOSTIC
1762 if (ipprintfs)
1763 printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1764 #endif
1765
1766 /*
1767 * Copy option fields and padding (nop) to mbuf.
1768 */
1769 ip_srcrt.nop = IPOPT_NOP;
1770 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1771 memmove(mtod(m, char *) + sizeof(struct in_addr), &ip_srcrt.nop,
1772 OPTSIZ);
1773 q = (struct in_addr *)(mtod(m, char *) +
1774 sizeof(struct in_addr) + OPTSIZ);
1775 #undef OPTSIZ
1776 /*
1777 * Record return path as an IP source route,
1778 * reversing the path (pointers are now aligned).
1779 */
1780 while (p >= ip_srcrt.route) {
1781 #ifdef DIAGNOSTIC
1782 if (ipprintfs)
1783 printf(" %x", ntohl(q->s_addr));
1784 #endif
1785 *q++ = *p--;
1786 }
1787 /*
1788 * Last hop goes to final destination.
1789 */
1790 *q = ip_srcrt.dst;
1791 #ifdef DIAGNOSTIC
1792 if (ipprintfs)
1793 printf(" %x\n", ntohl(q->s_addr));
1794 #endif
1795 return (m);
1796 }
1797
1798 const int inetctlerrmap[PRC_NCMDS] = {
1799 [PRC_MSGSIZE] = EMSGSIZE,
1800 [PRC_HOSTDEAD] = EHOSTDOWN,
1801 [PRC_HOSTUNREACH] = EHOSTUNREACH,
1802 [PRC_UNREACH_NET] = EHOSTUNREACH,
1803 [PRC_UNREACH_HOST] = EHOSTUNREACH,
1804 [PRC_UNREACH_PROTOCOL] = ECONNREFUSED,
1805 [PRC_UNREACH_PORT] = ECONNREFUSED,
1806 [PRC_UNREACH_SRCFAIL] = EHOSTUNREACH,
1807 [PRC_PARAMPROB] = ENOPROTOOPT,
1808 };
1809
1810 /*
1811 * Forward a packet. If some error occurs return the sender
1812 * an icmp packet. Note we can't always generate a meaningful
1813 * icmp message because icmp doesn't have a large enough repertoire
1814 * of codes and types.
1815 *
1816 * If not forwarding, just drop the packet. This could be confusing
1817 * if ipforwarding was zero but some routing protocol was advancing
1818 * us as a gateway to somewhere. However, we must let the routing
1819 * protocol deal with that.
1820 *
1821 * The srcrt parameter indicates whether the packet is being forwarded
1822 * via a source route.
1823 */
1824 void
1825 ip_forward(struct mbuf *m, int srcrt)
1826 {
1827 struct ip *ip = mtod(m, struct ip *);
1828 struct rtentry *rt;
1829 int error, type = 0, code = 0, destmtu = 0;
1830 struct mbuf *mcopy;
1831 n_long dest;
1832 union {
1833 struct sockaddr dst;
1834 struct sockaddr_in dst4;
1835 } u;
1836
1837 /*
1838 * We are now in the output path.
1839 */
1840 MCLAIM(m, &ip_tx_mowner);
1841
1842 /*
1843 * Clear any in-bound checksum flags for this packet.
1844 */
1845 m->m_pkthdr.csum_flags = 0;
1846
1847 dest = 0;
1848 #ifdef DIAGNOSTIC
1849 if (ipprintfs) {
1850 printf("forward: src %s ", inet_ntoa(ip->ip_src));
1851 printf("dst %s ttl %x\n", inet_ntoa(ip->ip_dst), ip->ip_ttl);
1852 }
1853 #endif
1854 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1855 ipstat.ips_cantforward++;
1856 m_freem(m);
1857 return;
1858 }
1859 if (ip->ip_ttl <= IPTTLDEC) {
1860 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1861 return;
1862 }
1863
1864 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
1865 if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL) {
1866 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_NET, dest, 0);
1867 return;
1868 }
1869
1870 /*
1871 * Save at most 68 bytes of the packet in case
1872 * we need to generate an ICMP message to the src.
1873 * Pullup to avoid sharing mbuf cluster between m and mcopy.
1874 */
1875 mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
1876 if (mcopy)
1877 mcopy = m_pullup(mcopy, ip->ip_hl << 2);
1878
1879 ip->ip_ttl -= IPTTLDEC;
1880
1881 /*
1882 * If forwarding packet using same interface that it came in on,
1883 * perhaps should send a redirect to sender to shortcut a hop.
1884 * Only send redirect if source is sending directly to us,
1885 * and if packet was not source routed (or has any options).
1886 * Also, don't send redirect if forwarding using a default route
1887 * or a route modified by a redirect.
1888 */
1889 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1890 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1891 !in_nullhost(satocsin(rt_getkey(rt))->sin_addr) &&
1892 ipsendredirects && !srcrt) {
1893 if (rt->rt_ifa &&
1894 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1895 ifatoia(rt->rt_ifa)->ia_subnet) {
1896 if (rt->rt_flags & RTF_GATEWAY)
1897 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1898 else
1899 dest = ip->ip_dst.s_addr;
1900 /*
1901 * Router requirements says to only send host
1902 * redirects.
1903 */
1904 type = ICMP_REDIRECT;
1905 code = ICMP_REDIRECT_HOST;
1906 #ifdef DIAGNOSTIC
1907 if (ipprintfs)
1908 printf("redirect (%d) to %x\n", code,
1909 (u_int32_t)dest);
1910 #endif
1911 }
1912 }
1913
1914 error = ip_output(m, NULL, &ipforward_rt,
1915 (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1916 (struct ip_moptions *)NULL, (struct socket *)NULL);
1917
1918 if (error)
1919 ipstat.ips_cantforward++;
1920 else {
1921 ipstat.ips_forward++;
1922 if (type)
1923 ipstat.ips_redirectsent++;
1924 else {
1925 if (mcopy) {
1926 #ifdef GATEWAY
1927 if (mcopy->m_flags & M_CANFASTFWD)
1928 ipflow_create(&ipforward_rt, mcopy);
1929 #endif
1930 m_freem(mcopy);
1931 }
1932 return;
1933 }
1934 }
1935 if (mcopy == NULL)
1936 return;
1937
1938 switch (error) {
1939
1940 case 0: /* forwarded, but need redirect */
1941 /* type, code set above */
1942 break;
1943
1944 case ENETUNREACH: /* shouldn't happen, checked above */
1945 case EHOSTUNREACH:
1946 case ENETDOWN:
1947 case EHOSTDOWN:
1948 default:
1949 type = ICMP_UNREACH;
1950 code = ICMP_UNREACH_HOST;
1951 break;
1952
1953 case EMSGSIZE:
1954 type = ICMP_UNREACH;
1955 code = ICMP_UNREACH_NEEDFRAG;
1956 #if !defined(IPSEC) && !defined(FAST_IPSEC)
1957 if ((rt = rtcache_validate(&ipforward_rt)) != NULL)
1958 destmtu = rt->rt_ifp->if_mtu;
1959 #else
1960 /*
1961 * If the packet is routed over IPsec tunnel, tell the
1962 * originator the tunnel MTU.
1963 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1964 * XXX quickhack!!!
1965 */
1966 if ((rt = rtcache_validate(&ipforward_rt)) != NULL) {
1967 struct secpolicy *sp;
1968 int ipsecerror;
1969 size_t ipsechdr;
1970 struct route *ro;
1971
1972 sp = ipsec4_getpolicybyaddr(mcopy,
1973 IPSEC_DIR_OUTBOUND, IP_FORWARDING,
1974 &ipsecerror);
1975
1976 if (sp == NULL)
1977 destmtu = rt->rt_ifp->if_mtu;
1978 else {
1979 /* count IPsec header size */
1980 ipsechdr = ipsec4_hdrsiz(mcopy,
1981 IPSEC_DIR_OUTBOUND, NULL);
1982
1983 /*
1984 * find the correct route for outer IPv4
1985 * header, compute tunnel MTU.
1986 */
1987
1988 if (sp->req != NULL
1989 && sp->req->sav != NULL
1990 && sp->req->sav->sah != NULL) {
1991 ro = &sp->req->sav->sah->sa_route;
1992 if (rt && rt->rt_ifp) {
1993 destmtu =
1994 rt->rt_rmx.rmx_mtu ?
1995 rt->rt_rmx.rmx_mtu :
1996 rt->rt_ifp->if_mtu;
1997 destmtu -= ipsechdr;
1998 }
1999 }
2000
2001 #ifdef IPSEC
2002 key_freesp(sp);
2003 #else
2004 KEY_FREESP(&sp);
2005 #endif
2006 }
2007 }
2008 #endif /*IPSEC*/
2009 ipstat.ips_cantfrag++;
2010 break;
2011
2012 case ENOBUFS:
2013 #if 1
2014 /*
2015 * a router should not generate ICMP_SOURCEQUENCH as
2016 * required in RFC1812 Requirements for IP Version 4 Routers.
2017 * source quench could be a big problem under DoS attacks,
2018 * or if the underlying interface is rate-limited.
2019 */
2020 if (mcopy)
2021 m_freem(mcopy);
2022 return;
2023 #else
2024 type = ICMP_SOURCEQUENCH;
2025 code = 0;
2026 break;
2027 #endif
2028 }
2029 icmp_error(mcopy, type, code, dest, destmtu);
2030 }
2031
2032 void
2033 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2034 struct mbuf *m)
2035 {
2036
2037 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2038 struct timeval tv;
2039
2040 microtime(&tv);
2041 *mp = sbcreatecontrol((void *) &tv, sizeof(tv),
2042 SCM_TIMESTAMP, SOL_SOCKET);
2043 if (*mp)
2044 mp = &(*mp)->m_next;
2045 }
2046 if (inp->inp_flags & INP_RECVDSTADDR) {
2047 *mp = sbcreatecontrol((void *) &ip->ip_dst,
2048 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2049 if (*mp)
2050 mp = &(*mp)->m_next;
2051 }
2052 #ifdef notyet
2053 /*
2054 * XXX
2055 * Moving these out of udp_input() made them even more broken
2056 * than they already were.
2057 * - fenner (at) parc.xerox.com
2058 */
2059 /* options were tossed already */
2060 if (inp->inp_flags & INP_RECVOPTS) {
2061 *mp = sbcreatecontrol((void *) opts_deleted_above,
2062 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2063 if (*mp)
2064 mp = &(*mp)->m_next;
2065 }
2066 /* ip_srcroute doesn't do what we want here, need to fix */
2067 if (inp->inp_flags & INP_RECVRETOPTS) {
2068 *mp = sbcreatecontrol((void *) ip_srcroute(),
2069 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2070 if (*mp)
2071 mp = &(*mp)->m_next;
2072 }
2073 #endif
2074 if (inp->inp_flags & INP_RECVIF) {
2075 struct sockaddr_dl sdl;
2076
2077 sockaddr_dl_init(&sdl, sizeof(sdl),
2078 (m->m_pkthdr.rcvif != NULL)
2079 ? m->m_pkthdr.rcvif->if_index
2080 : 0,
2081 0, NULL, 0, NULL, 0);
2082 *mp = sbcreatecontrol(&sdl, sdl.sdl_len, IP_RECVIF, IPPROTO_IP);
2083 if (*mp)
2084 mp = &(*mp)->m_next;
2085 }
2086 }
2087
2088 /*
2089 * sysctl helper routine for net.inet.ip.forwsrcrt.
2090 */
2091 static int
2092 sysctl_net_inet_ip_forwsrcrt(SYSCTLFN_ARGS)
2093 {
2094 int error, tmp;
2095 struct sysctlnode node;
2096
2097 node = *rnode;
2098 tmp = ip_forwsrcrt;
2099 node.sysctl_data = &tmp;
2100 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2101 if (error || newp == NULL)
2102 return (error);
2103
2104 if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_FORWSRCRT,
2105 0, NULL, NULL, NULL))
2106 return (EPERM);
2107
2108 ip_forwsrcrt = tmp;
2109
2110 return (0);
2111 }
2112
2113 /*
2114 * sysctl helper routine for net.inet.ip.mtudisctimeout. checks the
2115 * range of the new value and tweaks timers if it changes.
2116 */
2117 static int
2118 sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
2119 {
2120 int error, tmp;
2121 struct sysctlnode node;
2122
2123 node = *rnode;
2124 tmp = ip_mtudisc_timeout;
2125 node.sysctl_data = &tmp;
2126 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2127 if (error || newp == NULL)
2128 return (error);
2129 if (tmp < 0)
2130 return (EINVAL);
2131
2132 ip_mtudisc_timeout = tmp;
2133 rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
2134
2135 return (0);
2136 }
2137
2138 #ifdef GATEWAY
2139 /*
2140 * sysctl helper routine for net.inet.ip.maxflows.
2141 */
2142 static int
2143 sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
2144 {
2145 int s;
2146
2147 s = sysctl_lookup(SYSCTLFN_CALL(rnode));
2148 if (s || newp == NULL)
2149 return (s);
2150
2151 s = splsoftnet();
2152 ipflow_reap(0);
2153 splx(s);
2154
2155 return (0);
2156 }
2157
2158 static int
2159 sysctl_net_inet_ip_hashsize(SYSCTLFN_ARGS)
2160 {
2161 int error, tmp;
2162 struct sysctlnode node;
2163
2164 node = *rnode;
2165 tmp = ip_hashsize;
2166 node.sysctl_data = &tmp;
2167 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2168 if (error || newp == NULL)
2169 return (error);
2170
2171 if ((tmp & (tmp - 1)) == 0 && tmp != 0) {
2172 /*
2173 * Can only fail due to malloc()
2174 */
2175 if (ipflow_invalidate_all(tmp))
2176 return ENOMEM;
2177 } else {
2178 /*
2179 * EINVAL if not a power of 2
2180 */
2181 return EINVAL;
2182 }
2183
2184 return (0);
2185 }
2186 #endif /* GATEWAY */
2187
2188
2189 SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
2190 {
2191 extern int subnetsarelocal, hostzeroisbroadcast;
2192
2193 sysctl_createv(clog, 0, NULL, NULL,
2194 CTLFLAG_PERMANENT,
2195 CTLTYPE_NODE, "net", NULL,
2196 NULL, 0, NULL, 0,
2197 CTL_NET, CTL_EOL);
2198 sysctl_createv(clog, 0, NULL, NULL,
2199 CTLFLAG_PERMANENT,
2200 CTLTYPE_NODE, "inet",
2201 SYSCTL_DESCR("PF_INET related settings"),
2202 NULL, 0, NULL, 0,
2203 CTL_NET, PF_INET, CTL_EOL);
2204 sysctl_createv(clog, 0, NULL, NULL,
2205 CTLFLAG_PERMANENT,
2206 CTLTYPE_NODE, "ip",
2207 SYSCTL_DESCR("IPv4 related settings"),
2208 NULL, 0, NULL, 0,
2209 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2210
2211 sysctl_createv(clog, 0, NULL, NULL,
2212 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2213 CTLTYPE_INT, "forwarding",
2214 SYSCTL_DESCR("Enable forwarding of INET datagrams"),
2215 NULL, 0, &ipforwarding, 0,
2216 CTL_NET, PF_INET, IPPROTO_IP,
2217 IPCTL_FORWARDING, CTL_EOL);
2218 sysctl_createv(clog, 0, NULL, NULL,
2219 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2220 CTLTYPE_INT, "redirect",
2221 SYSCTL_DESCR("Enable sending of ICMP redirect messages"),
2222 NULL, 0, &ipsendredirects, 0,
2223 CTL_NET, PF_INET, IPPROTO_IP,
2224 IPCTL_SENDREDIRECTS, CTL_EOL);
2225 sysctl_createv(clog, 0, NULL, NULL,
2226 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2227 CTLTYPE_INT, "ttl",
2228 SYSCTL_DESCR("Default TTL for an INET datagram"),
2229 NULL, 0, &ip_defttl, 0,
2230 CTL_NET, PF_INET, IPPROTO_IP,
2231 IPCTL_DEFTTL, CTL_EOL);
2232 #ifdef IPCTL_DEFMTU
2233 sysctl_createv(clog, 0, NULL, NULL,
2234 CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
2235 CTLTYPE_INT, "mtu",
2236 SYSCTL_DESCR("Default MTA for an INET route"),
2237 NULL, 0, &ip_mtu, 0,
2238 CTL_NET, PF_INET, IPPROTO_IP,
2239 IPCTL_DEFMTU, CTL_EOL);
2240 #endif /* IPCTL_DEFMTU */
2241 sysctl_createv(clog, 0, NULL, NULL,
2242 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2243 CTLTYPE_INT, "forwsrcrt",
2244 SYSCTL_DESCR("Enable forwarding of source-routed "
2245 "datagrams"),
2246 sysctl_net_inet_ip_forwsrcrt, 0, &ip_forwsrcrt, 0,
2247 CTL_NET, PF_INET, IPPROTO_IP,
2248 IPCTL_FORWSRCRT, CTL_EOL);
2249 sysctl_createv(clog, 0, NULL, NULL,
2250 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2251 CTLTYPE_INT, "directed-broadcast",
2252 SYSCTL_DESCR("Enable forwarding of broadcast datagrams"),
2253 NULL, 0, &ip_directedbcast, 0,
2254 CTL_NET, PF_INET, IPPROTO_IP,
2255 IPCTL_DIRECTEDBCAST, CTL_EOL);
2256 sysctl_createv(clog, 0, NULL, NULL,
2257 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2258 CTLTYPE_INT, "allowsrcrt",
2259 SYSCTL_DESCR("Accept source-routed datagrams"),
2260 NULL, 0, &ip_allowsrcrt, 0,
2261 CTL_NET, PF_INET, IPPROTO_IP,
2262 IPCTL_ALLOWSRCRT, CTL_EOL);
2263 sysctl_createv(clog, 0, NULL, NULL,
2264 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2265 CTLTYPE_INT, "subnetsarelocal",
2266 SYSCTL_DESCR("Whether logical subnets are considered "
2267 "local"),
2268 NULL, 0, &subnetsarelocal, 0,
2269 CTL_NET, PF_INET, IPPROTO_IP,
2270 IPCTL_SUBNETSARELOCAL, CTL_EOL);
2271 sysctl_createv(clog, 0, NULL, NULL,
2272 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2273 CTLTYPE_INT, "mtudisc",
2274 SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"),
2275 NULL, 0, &ip_mtudisc, 0,
2276 CTL_NET, PF_INET, IPPROTO_IP,
2277 IPCTL_MTUDISC, CTL_EOL);
2278 sysctl_createv(clog, 0, NULL, NULL,
2279 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2280 CTLTYPE_INT, "anonportmin",
2281 SYSCTL_DESCR("Lowest ephemeral port number to assign"),
2282 sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
2283 CTL_NET, PF_INET, IPPROTO_IP,
2284 IPCTL_ANONPORTMIN, CTL_EOL);
2285 sysctl_createv(clog, 0, NULL, NULL,
2286 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2287 CTLTYPE_INT, "anonportmax",
2288 SYSCTL_DESCR("Highest ephemeral port number to assign"),
2289 sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
2290 CTL_NET, PF_INET, IPPROTO_IP,
2291 IPCTL_ANONPORTMAX, CTL_EOL);
2292 sysctl_createv(clog, 0, NULL, NULL,
2293 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2294 CTLTYPE_INT, "mtudisctimeout",
2295 SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"),
2296 sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
2297 CTL_NET, PF_INET, IPPROTO_IP,
2298 IPCTL_MTUDISCTIMEOUT, CTL_EOL);
2299 #ifdef GATEWAY
2300 sysctl_createv(clog, 0, NULL, NULL,
2301 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2302 CTLTYPE_INT, "maxflows",
2303 SYSCTL_DESCR("Number of flows for fast forwarding"),
2304 sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
2305 CTL_NET, PF_INET, IPPROTO_IP,
2306 IPCTL_MAXFLOWS, CTL_EOL);
2307 sysctl_createv(clog, 0, NULL, NULL,
2308 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2309 CTLTYPE_INT, "hashsize",
2310 SYSCTL_DESCR("Size of hash table for fast forwarding (IPv4)"),
2311 sysctl_net_inet_ip_hashsize, 0, &ip_hashsize, 0,
2312 CTL_NET, PF_INET, IPPROTO_IP,
2313 CTL_CREATE, CTL_EOL);
2314 #endif /* GATEWAY */
2315 sysctl_createv(clog, 0, NULL, NULL,
2316 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2317 CTLTYPE_INT, "hostzerobroadcast",
2318 SYSCTL_DESCR("All zeroes address is broadcast address"),
2319 NULL, 0, &hostzeroisbroadcast, 0,
2320 CTL_NET, PF_INET, IPPROTO_IP,
2321 IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2322 #if NGIF > 0
2323 sysctl_createv(clog, 0, NULL, NULL,
2324 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2325 CTLTYPE_INT, "gifttl",
2326 SYSCTL_DESCR("Default TTL for a gif tunnel datagram"),
2327 NULL, 0, &ip_gif_ttl, 0,
2328 CTL_NET, PF_INET, IPPROTO_IP,
2329 IPCTL_GIF_TTL, CTL_EOL);
2330 #endif /* NGIF */
2331 #ifndef IPNOPRIVPORTS
2332 sysctl_createv(clog, 0, NULL, NULL,
2333 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2334 CTLTYPE_INT, "lowportmin",
2335 SYSCTL_DESCR("Lowest privileged ephemeral port number "
2336 "to assign"),
2337 sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
2338 CTL_NET, PF_INET, IPPROTO_IP,
2339 IPCTL_LOWPORTMIN, CTL_EOL);
2340 sysctl_createv(clog, 0, NULL, NULL,
2341 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2342 CTLTYPE_INT, "lowportmax",
2343 SYSCTL_DESCR("Highest privileged ephemeral port number "
2344 "to assign"),
2345 sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
2346 CTL_NET, PF_INET, IPPROTO_IP,
2347 IPCTL_LOWPORTMAX, CTL_EOL);
2348 #endif /* IPNOPRIVPORTS */
2349 sysctl_createv(clog, 0, NULL, NULL,
2350 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2351 CTLTYPE_INT, "maxfragpackets",
2352 SYSCTL_DESCR("Maximum number of fragments to retain for "
2353 "possible reassembly"),
2354 NULL, 0, &ip_maxfragpackets, 0,
2355 CTL_NET, PF_INET, IPPROTO_IP,
2356 IPCTL_MAXFRAGPACKETS, CTL_EOL);
2357 #if NGRE > 0
2358 sysctl_createv(clog, 0, NULL, NULL,
2359 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2360 CTLTYPE_INT, "grettl",
2361 SYSCTL_DESCR("Default TTL for a gre tunnel datagram"),
2362 NULL, 0, &ip_gre_ttl, 0,
2363 CTL_NET, PF_INET, IPPROTO_IP,
2364 IPCTL_GRE_TTL, CTL_EOL);
2365 #endif /* NGRE */
2366 sysctl_createv(clog, 0, NULL, NULL,
2367 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2368 CTLTYPE_INT, "checkinterface",
2369 SYSCTL_DESCR("Enable receive side of Strong ES model "
2370 "from RFC1122"),
2371 NULL, 0, &ip_checkinterface, 0,
2372 CTL_NET, PF_INET, IPPROTO_IP,
2373 IPCTL_CHECKINTERFACE, CTL_EOL);
2374 sysctl_createv(clog, 0, NULL, NULL,
2375 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2376 CTLTYPE_INT, "random_id",
2377 SYSCTL_DESCR("Assign random ip_id values"),
2378 NULL, 0, &ip_do_randomid, 0,
2379 CTL_NET, PF_INET, IPPROTO_IP,
2380 IPCTL_RANDOMID, CTL_EOL);
2381 sysctl_createv(clog, 0, NULL, NULL,
2382 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2383 CTLTYPE_INT, "do_loopback_cksum",
2384 SYSCTL_DESCR("Perform IP checksum on loopback"),
2385 NULL, 0, &ip_do_loopback_cksum, 0,
2386 CTL_NET, PF_INET, IPPROTO_IP,
2387 IPCTL_LOOPBACKCKSUM, CTL_EOL);
2388 sysctl_createv(clog, 0, NULL, NULL,
2389 CTLFLAG_PERMANENT,
2390 CTLTYPE_STRUCT, "stats",
2391 SYSCTL_DESCR("IP statistics"),
2392 NULL, 0, &ipstat, sizeof(ipstat),
2393 CTL_NET, PF_INET, IPPROTO_IP, IPCTL_STATS,
2394 CTL_EOL);
2395 }
2396