Home | History | Annotate | Line # | Download | only in netinet
ip_input.c revision 1.266
      1 /*	$NetBSD: ip_input.c,v 1.266 2008/04/12 05:58:22 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1993
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.266 2008/04/12 05:58:22 thorpej Exp $");
    102 
    103 #include "opt_inet.h"
    104 #include "opt_gateway.h"
    105 #include "opt_pfil_hooks.h"
    106 #include "opt_ipsec.h"
    107 #include "opt_mrouting.h"
    108 #include "opt_mbuftrace.h"
    109 #include "opt_inet_csum.h"
    110 
    111 #include <sys/param.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/domain.h>
    116 #include <sys/protosw.h>
    117 #include <sys/socket.h>
    118 #include <sys/socketvar.h>
    119 #include <sys/errno.h>
    120 #include <sys/time.h>
    121 #include <sys/kernel.h>
    122 #include <sys/pool.h>
    123 #include <sys/sysctl.h>
    124 #include <sys/kauth.h>
    125 
    126 #include <net/if.h>
    127 #include <net/if_dl.h>
    128 #include <net/route.h>
    129 #include <net/pfil.h>
    130 
    131 #include <netinet/in.h>
    132 #include <netinet/in_systm.h>
    133 #include <netinet/ip.h>
    134 #include <netinet/in_pcb.h>
    135 #include <netinet/in_proto.h>
    136 #include <netinet/in_var.h>
    137 #include <netinet/ip_var.h>
    138 #include <netinet/ip_private.h>
    139 #include <netinet/ip_icmp.h>
    140 /* just for gif_ttl */
    141 #include <netinet/in_gif.h>
    142 #include "gif.h"
    143 #include <net/if_gre.h>
    144 #include "gre.h"
    145 
    146 #ifdef MROUTING
    147 #include <netinet/ip_mroute.h>
    148 #endif
    149 
    150 #ifdef IPSEC
    151 #include <netinet6/ipsec.h>
    152 #include <netkey/key.h>
    153 #endif
    154 #ifdef FAST_IPSEC
    155 #include <netipsec/ipsec.h>
    156 #include <netipsec/key.h>
    157 #endif	/* FAST_IPSEC*/
    158 
    159 #ifndef	IPFORWARDING
    160 #ifdef GATEWAY
    161 #define	IPFORWARDING	1	/* forward IP packets not for us */
    162 #else /* GATEWAY */
    163 #define	IPFORWARDING	0	/* don't forward IP packets not for us */
    164 #endif /* GATEWAY */
    165 #endif /* IPFORWARDING */
    166 #ifndef	IPSENDREDIRECTS
    167 #define	IPSENDREDIRECTS	1
    168 #endif
    169 #ifndef IPFORWSRCRT
    170 #define	IPFORWSRCRT	1	/* forward source-routed packets */
    171 #endif
    172 #ifndef IPALLOWSRCRT
    173 #define	IPALLOWSRCRT	1	/* allow source-routed packets */
    174 #endif
    175 #ifndef IPMTUDISC
    176 #define IPMTUDISC	1
    177 #endif
    178 #ifndef IPMTUDISCTIMEOUT
    179 #define IPMTUDISCTIMEOUT (10 * 60)	/* as per RFC 1191 */
    180 #endif
    181 
    182 /*
    183  * Note: DIRECTED_BROADCAST is handled this way so that previous
    184  * configuration using this option will Just Work.
    185  */
    186 #ifndef IPDIRECTEDBCAST
    187 #ifdef DIRECTED_BROADCAST
    188 #define IPDIRECTEDBCAST	1
    189 #else
    190 #define	IPDIRECTEDBCAST	0
    191 #endif /* DIRECTED_BROADCAST */
    192 #endif /* IPDIRECTEDBCAST */
    193 int	ipforwarding = IPFORWARDING;
    194 int	ipsendredirects = IPSENDREDIRECTS;
    195 int	ip_defttl = IPDEFTTL;
    196 int	ip_forwsrcrt = IPFORWSRCRT;
    197 int	ip_directedbcast = IPDIRECTEDBCAST;
    198 int	ip_allowsrcrt = IPALLOWSRCRT;
    199 int	ip_mtudisc = IPMTUDISC;
    200 int	ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
    201 #ifdef DIAGNOSTIC
    202 int	ipprintfs = 0;
    203 #endif
    204 
    205 int	ip_do_randomid = 0;
    206 
    207 /*
    208  * XXX - Setting ip_checkinterface mostly implements the receive side of
    209  * the Strong ES model described in RFC 1122, but since the routing table
    210  * and transmit implementation do not implement the Strong ES model,
    211  * setting this to 1 results in an odd hybrid.
    212  *
    213  * XXX - ip_checkinterface currently must be disabled if you use ipnat
    214  * to translate the destination address to another local interface.
    215  *
    216  * XXX - ip_checkinterface must be disabled if you add IP aliases
    217  * to the loopback interface instead of the interface where the
    218  * packets for those addresses are received.
    219  */
    220 int	ip_checkinterface = 0;
    221 
    222 
    223 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
    224 
    225 int	ipqmaxlen = IFQ_MAXLEN;
    226 u_long	in_ifaddrhash;				/* size of hash table - 1 */
    227 int	in_ifaddrentries;			/* total number of addrs */
    228 struct in_ifaddrhead in_ifaddrhead;
    229 struct	in_ifaddrhashhead *in_ifaddrhashtbl;
    230 u_long	in_multihash;				/* size of hash table - 1 */
    231 int	in_multientries;			/* total number of addrs */
    232 struct	in_multihashhead *in_multihashtbl;
    233 struct	ifqueue ipintrq;
    234 uint16_t ip_id;
    235 
    236 percpu_t *ipstat_percpu;
    237 
    238 #ifdef PFIL_HOOKS
    239 struct pfil_head inet_pfil_hook;
    240 #endif
    241 
    242 /*
    243  * Cached copy of nmbclusters. If nbclusters is different,
    244  * recalculate IP parameters derived from nmbclusters.
    245  */
    246 static int	ip_nmbclusters;			/* copy of nmbclusters */
    247 static void	ip_nmbclusters_changed(void);	/* recalc limits */
    248 
    249 #define CHECK_NMBCLUSTER_PARAMS()				\
    250 do {								\
    251 	if (__predict_false(ip_nmbclusters != nmbclusters))	\
    252 		ip_nmbclusters_changed();			\
    253 } while (/*CONSTCOND*/0)
    254 
    255 /* IP datagram reassembly queues (hashed) */
    256 #define IPREASS_NHASH_LOG2      6
    257 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
    258 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
    259 #define IPREASS_HASH(x,y) \
    260 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
    261 struct ipqhead ipq[IPREASS_NHASH];
    262 int	ipq_locked;
    263 static int	ip_nfragpackets;	/* packets in reass queue */
    264 static int	ip_nfrags;		/* total fragments in reass queues */
    265 
    266 int	ip_maxfragpackets = 200;	/* limit on packets. XXX sysctl */
    267 int	ip_maxfrags;		        /* limit on fragments. XXX sysctl */
    268 
    269 
    270 /*
    271  * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
    272  * IP reassembly queue buffer managment.
    273  *
    274  * We keep a count of total IP fragments (NB: not fragmented packets!)
    275  * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
    276  * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
    277  * total fragments in  reassembly queues.This AIMD policy avoids
    278  * repeatedly deleting single packets under heavy fragmentation load
    279  * (e.g., from lossy NFS peers).
    280  */
    281 static u_int	ip_reass_ttl_decr(u_int ticks);
    282 static void	ip_reass_drophalf(void);
    283 
    284 
    285 static inline int ipq_lock_try(void);
    286 static inline void ipq_unlock(void);
    287 
    288 static inline int
    289 ipq_lock_try(void)
    290 {
    291 	int s;
    292 
    293 	/*
    294 	 * Use splvm() -- we're blocking things that would cause
    295 	 * mbuf allocation.
    296 	 */
    297 	s = splvm();
    298 	if (ipq_locked) {
    299 		splx(s);
    300 		return (0);
    301 	}
    302 	ipq_locked = 1;
    303 	splx(s);
    304 	return (1);
    305 }
    306 
    307 static inline void
    308 ipq_unlock(void)
    309 {
    310 	int s;
    311 
    312 	s = splvm();
    313 	ipq_locked = 0;
    314 	splx(s);
    315 }
    316 
    317 #ifdef DIAGNOSTIC
    318 #define	IPQ_LOCK()							\
    319 do {									\
    320 	if (ipq_lock_try() == 0) {					\
    321 		printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
    322 		panic("ipq_lock");					\
    323 	}								\
    324 } while (/*CONSTCOND*/ 0)
    325 #define	IPQ_LOCK_CHECK()						\
    326 do {									\
    327 	if (ipq_locked == 0) {						\
    328 		printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
    329 		panic("ipq lock check");				\
    330 	}								\
    331 } while (/*CONSTCOND*/ 0)
    332 #else
    333 #define	IPQ_LOCK()		(void) ipq_lock_try()
    334 #define	IPQ_LOCK_CHECK()	/* nothing */
    335 #endif
    336 
    337 #define	IPQ_UNLOCK()		ipq_unlock()
    338 
    339 POOL_INIT(inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", NULL,
    340     IPL_SOFTNET);
    341 POOL_INIT(ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl", NULL,
    342     IPL_VM);
    343 
    344 #ifdef INET_CSUM_COUNTERS
    345 #include <sys/device.h>
    346 
    347 struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    348     NULL, "inet", "hwcsum bad");
    349 struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    350     NULL, "inet", "hwcsum ok");
    351 struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    352     NULL, "inet", "swcsum");
    353 
    354 #define	INET_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    355 
    356 EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
    357 EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
    358 EVCNT_ATTACH_STATIC(ip_swcsum);
    359 
    360 #else
    361 
    362 #define	INET_CSUM_COUNTER_INCR(ev)	/* nothing */
    363 
    364 #endif /* INET_CSUM_COUNTERS */
    365 
    366 /*
    367  * We need to save the IP options in case a protocol wants to respond
    368  * to an incoming packet over the same route if the packet got here
    369  * using IP source routing.  This allows connection establishment and
    370  * maintenance when the remote end is on a network that is not known
    371  * to us.
    372  */
    373 int	ip_nhops = 0;
    374 static	struct ip_srcrt {
    375 	struct	in_addr dst;			/* final destination */
    376 	char	nop;				/* one NOP to align */
    377 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
    378 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
    379 } ip_srcrt;
    380 
    381 static void save_rte(u_char *, struct in_addr);
    382 
    383 #ifdef MBUFTRACE
    384 struct mowner ip_rx_mowner = MOWNER_INIT("internet", "rx");
    385 struct mowner ip_tx_mowner = MOWNER_INIT("internet", "tx");
    386 #endif
    387 
    388 /*
    389  * Compute IP limits derived from the value of nmbclusters.
    390  */
    391 static void
    392 ip_nmbclusters_changed(void)
    393 {
    394 	ip_maxfrags = nmbclusters / 4;
    395 	ip_nmbclusters =  nmbclusters;
    396 }
    397 
    398 /*
    399  * IP initialization: fill in IP protocol switch table.
    400  * All protocols not implemented in kernel go to raw IP protocol handler.
    401  */
    402 void
    403 ip_init(void)
    404 {
    405 	const struct protosw *pr;
    406 	int i;
    407 
    408 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
    409 	if (pr == 0)
    410 		panic("ip_init");
    411 	for (i = 0; i < IPPROTO_MAX; i++)
    412 		ip_protox[i] = pr - inetsw;
    413 	for (pr = inetdomain.dom_protosw;
    414 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
    415 		if (pr->pr_domain->dom_family == PF_INET &&
    416 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
    417 			ip_protox[pr->pr_protocol] = pr - inetsw;
    418 
    419 	for (i = 0; i < IPREASS_NHASH; i++)
    420 	    	LIST_INIT(&ipq[i]);
    421 
    422 	ip_initid();
    423 	ip_id = time_second & 0xfffff;
    424 
    425 	ipintrq.ifq_maxlen = ipqmaxlen;
    426 	ip_nmbclusters_changed();
    427 
    428 	TAILQ_INIT(&in_ifaddrhead);
    429 	in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IFADDR,
    430 	    M_WAITOK, &in_ifaddrhash);
    431 	in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IPMADDR,
    432 	    M_WAITOK, &in_multihash);
    433 	ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
    434 #ifdef GATEWAY
    435 	ipflow_init(ip_hashsize);
    436 #endif
    437 
    438 #ifdef PFIL_HOOKS
    439 	/* Register our Packet Filter hook. */
    440 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
    441 	inet_pfil_hook.ph_af   = AF_INET;
    442 	i = pfil_head_register(&inet_pfil_hook);
    443 	if (i != 0)
    444 		printf("ip_init: WARNING: unable to register pfil hook, "
    445 		    "error %d\n", i);
    446 #endif /* PFIL_HOOKS */
    447 
    448 #ifdef MBUFTRACE
    449 	MOWNER_ATTACH(&ip_tx_mowner);
    450 	MOWNER_ATTACH(&ip_rx_mowner);
    451 #endif /* MBUFTRACE */
    452 
    453 	ipstat_percpu = percpu_alloc(sizeof(uint64_t) * IP_NSTATS);
    454 }
    455 
    456 struct	sockaddr_in ipaddr = {
    457 	.sin_len = sizeof(ipaddr),
    458 	.sin_family = AF_INET,
    459 };
    460 struct	route ipforward_rt;
    461 
    462 /*
    463  * IP software interrupt routine
    464  */
    465 void
    466 ipintr(void)
    467 {
    468 	int s;
    469 	struct mbuf *m;
    470 
    471 	while (!IF_IS_EMPTY(&ipintrq)) {
    472 		s = splnet();
    473 		IF_DEQUEUE(&ipintrq, m);
    474 		splx(s);
    475 		if (m == 0)
    476 			return;
    477 		ip_input(m);
    478 	}
    479 }
    480 
    481 /*
    482  * Ip input routine.  Checksum and byte swap header.  If fragmented
    483  * try to reassemble.  Process options.  Pass to next level.
    484  */
    485 void
    486 ip_input(struct mbuf *m)
    487 {
    488 	struct ip *ip = NULL;
    489 	struct ipq *fp;
    490 	struct in_ifaddr *ia;
    491 	struct ifaddr *ifa;
    492 	struct ipqent *ipqe;
    493 	int hlen = 0, mff, len;
    494 	int downmatch;
    495 	int checkif;
    496 	int srcrt = 0;
    497 	int s;
    498 	u_int hash;
    499 #ifdef FAST_IPSEC
    500 	struct m_tag *mtag;
    501 	struct tdb_ident *tdbi;
    502 	struct secpolicy *sp;
    503 	int error;
    504 #endif /* FAST_IPSEC */
    505 
    506 	MCLAIM(m, &ip_rx_mowner);
    507 #ifdef	DIAGNOSTIC
    508 	if ((m->m_flags & M_PKTHDR) == 0)
    509 		panic("ipintr no HDR");
    510 #endif
    511 
    512 	/*
    513 	 * If no IP addresses have been set yet but the interfaces
    514 	 * are receiving, can't do anything with incoming packets yet.
    515 	 */
    516 	if (TAILQ_FIRST(&in_ifaddrhead) == 0)
    517 		goto bad;
    518 	IP_STATINC(IP_STAT_TOTAL);
    519 	/*
    520 	 * If the IP header is not aligned, slurp it up into a new
    521 	 * mbuf with space for link headers, in the event we forward
    522 	 * it.  Otherwise, if it is aligned, make sure the entire
    523 	 * base IP header is in the first mbuf of the chain.
    524 	 */
    525 	if (IP_HDR_ALIGNED_P(mtod(m, void *)) == 0) {
    526 		if ((m = m_copyup(m, sizeof(struct ip),
    527 				  (max_linkhdr + 3) & ~3)) == NULL) {
    528 			/* XXXJRT new stat, please */
    529 			IP_STATINC(IP_STAT_TOOSMALL);
    530 			return;
    531 		}
    532 	} else if (__predict_false(m->m_len < sizeof (struct ip))) {
    533 		if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
    534 			IP_STATINC(IP_STAT_TOOSMALL);
    535 			return;
    536 		}
    537 	}
    538 	ip = mtod(m, struct ip *);
    539 	if (ip->ip_v != IPVERSION) {
    540 		IP_STATINC(IP_STAT_BADVERS);
    541 		goto bad;
    542 	}
    543 	hlen = ip->ip_hl << 2;
    544 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
    545 		IP_STATINC(IP_STAT_BADHLEN);
    546 		goto bad;
    547 	}
    548 	if (hlen > m->m_len) {
    549 		if ((m = m_pullup(m, hlen)) == 0) {
    550 			IP_STATINC(IP_STAT_BADHLEN);
    551 			return;
    552 		}
    553 		ip = mtod(m, struct ip *);
    554 	}
    555 
    556 	/*
    557 	 * RFC1122: packets with a multicast source address are
    558 	 * not allowed.
    559 	 */
    560 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    561 		IP_STATINC(IP_STAT_BADADDR);
    562 		goto bad;
    563 	}
    564 
    565 	/* 127/8 must not appear on wire - RFC1122 */
    566 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
    567 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
    568 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
    569 			IP_STATINC(IP_STAT_BADADDR);
    570 			goto bad;
    571 		}
    572 	}
    573 
    574 	switch (m->m_pkthdr.csum_flags &
    575 		((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
    576 		 M_CSUM_IPv4_BAD)) {
    577 	case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
    578 		INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
    579 		goto badcsum;
    580 
    581 	case M_CSUM_IPv4:
    582 		/* Checksum was okay. */
    583 		INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
    584 		break;
    585 
    586 	default:
    587 		/*
    588 		 * Must compute it ourselves.  Maybe skip checksum on
    589 		 * loopback interfaces.
    590 		 */
    591 		if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
    592 				     IFF_LOOPBACK) || ip_do_loopback_cksum)) {
    593 			INET_CSUM_COUNTER_INCR(&ip_swcsum);
    594 			if (in_cksum(m, hlen) != 0)
    595 				goto badcsum;
    596 		}
    597 		break;
    598 	}
    599 
    600 	/* Retrieve the packet length. */
    601 	len = ntohs(ip->ip_len);
    602 
    603 	/*
    604 	 * Check for additional length bogosity
    605 	 */
    606 	if (len < hlen) {
    607 		IP_STATINC(IP_STAT_BADLEN);
    608 		goto bad;
    609 	}
    610 
    611 	/*
    612 	 * Check that the amount of data in the buffers
    613 	 * is as at least much as the IP header would have us expect.
    614 	 * Trim mbufs if longer than we expect.
    615 	 * Drop packet if shorter than we expect.
    616 	 */
    617 	if (m->m_pkthdr.len < len) {
    618 		IP_STATINC(IP_STAT_TOOSHORT);
    619 		goto bad;
    620 	}
    621 	if (m->m_pkthdr.len > len) {
    622 		if (m->m_len == m->m_pkthdr.len) {
    623 			m->m_len = len;
    624 			m->m_pkthdr.len = len;
    625 		} else
    626 			m_adj(m, len - m->m_pkthdr.len);
    627 	}
    628 
    629 #if defined(IPSEC)
    630 	/* ipflow (IP fast forwarding) is not compatible with IPsec. */
    631 	m->m_flags &= ~M_CANFASTFWD;
    632 #else
    633 	/*
    634 	 * Assume that we can create a fast-forward IP flow entry
    635 	 * based on this packet.
    636 	 */
    637 	m->m_flags |= M_CANFASTFWD;
    638 #endif
    639 
    640 #ifdef PFIL_HOOKS
    641 	/*
    642 	 * Run through list of hooks for input packets.  If there are any
    643 	 * filters which require that additional packets in the flow are
    644 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
    645 	 * Note that filters must _never_ set this flag, as another filter
    646 	 * in the list may have previously cleared it.
    647 	 */
    648 	/*
    649 	 * let ipfilter look at packet on the wire,
    650 	 * not the decapsulated packet.
    651 	 */
    652 #ifdef IPSEC
    653 	if (!ipsec_getnhist(m))
    654 #elif defined(FAST_IPSEC)
    655 	if (!ipsec_indone(m))
    656 #else
    657 	if (1)
    658 #endif
    659 	{
    660 		struct in_addr odst;
    661 
    662 		odst = ip->ip_dst;
    663 		if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
    664 		    PFIL_IN) != 0)
    665 			return;
    666 		if (m == NULL)
    667 			return;
    668 		ip = mtod(m, struct ip *);
    669 		hlen = ip->ip_hl << 2;
    670 		/*
    671 		 * XXX The setting of "srcrt" here is to prevent ip_forward()
    672 		 * from generating ICMP redirects for packets that have
    673 		 * been redirected by a hook back out on to the same LAN that
    674 		 * they came from and is not an indication that the packet
    675 		 * is being inffluenced by source routing options.  This
    676 		 * allows things like
    677 		 * "rdr tlp0 0/0 port 80 -> 1.1.1.200 3128 tcp"
    678 		 * where tlp0 is both on the 1.1.1.0/24 network and is the
    679 		 * default route for hosts on 1.1.1.0/24.  Of course this
    680 		 * also requires a "map tlp0 ..." to complete the story.
    681 		 * One might argue whether or not this kind of network config.
    682 		 * should be supported in this manner...
    683 		 */
    684 		srcrt = (odst.s_addr != ip->ip_dst.s_addr);
    685 	}
    686 #endif /* PFIL_HOOKS */
    687 
    688 #ifdef ALTQ
    689 	/* XXX Temporary until ALTQ is changed to use a pfil hook */
    690 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
    691 		/* packet dropped by traffic conditioner */
    692 		return;
    693 	}
    694 #endif
    695 
    696 	/*
    697 	 * Process options and, if not destined for us,
    698 	 * ship it on.  ip_dooptions returns 1 when an
    699 	 * error was detected (causing an icmp message
    700 	 * to be sent and the original packet to be freed).
    701 	 */
    702 	ip_nhops = 0;		/* for source routed packets */
    703 	if (hlen > sizeof (struct ip) && ip_dooptions(m))
    704 		return;
    705 
    706 	/*
    707 	 * Enable a consistency check between the destination address
    708 	 * and the arrival interface for a unicast packet (the RFC 1122
    709 	 * strong ES model) if IP forwarding is disabled and the packet
    710 	 * is not locally generated.
    711 	 *
    712 	 * XXX - Checking also should be disabled if the destination
    713 	 * address is ipnat'ed to a different interface.
    714 	 *
    715 	 * XXX - Checking is incompatible with IP aliases added
    716 	 * to the loopback interface instead of the interface where
    717 	 * the packets are received.
    718 	 *
    719 	 * XXX - We need to add a per ifaddr flag for this so that
    720 	 * we get finer grain control.
    721 	 */
    722 	checkif = ip_checkinterface && (ipforwarding == 0) &&
    723 	    (m->m_pkthdr.rcvif != NULL) &&
    724 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
    725 
    726 	/*
    727 	 * Check our list of addresses, to see if the packet is for us.
    728 	 *
    729 	 * Traditional 4.4BSD did not consult IFF_UP at all.
    730 	 * The behavior here is to treat addresses on !IFF_UP interface
    731 	 * as not mine.
    732 	 */
    733 	downmatch = 0;
    734 	LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
    735 		if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
    736 			if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
    737 				continue;
    738 			if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
    739 				break;
    740 			else
    741 				downmatch++;
    742 		}
    743 	}
    744 	if (ia != NULL)
    745 		goto ours;
    746 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
    747 		IFADDR_FOREACH(ifa, m->m_pkthdr.rcvif) {
    748 			if (ifa->ifa_addr->sa_family != AF_INET)
    749 				continue;
    750 			ia = ifatoia(ifa);
    751 			if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
    752 			    in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
    753 			    /*
    754 			     * Look for all-0's host part (old broadcast addr),
    755 			     * either for subnet or net.
    756 			     */
    757 			    ip->ip_dst.s_addr == ia->ia_subnet ||
    758 			    ip->ip_dst.s_addr == ia->ia_net)
    759 				goto ours;
    760 			/*
    761 			 * An interface with IP address zero accepts
    762 			 * all packets that arrive on that interface.
    763 			 */
    764 			if (in_nullhost(ia->ia_addr.sin_addr))
    765 				goto ours;
    766 		}
    767 	}
    768 	if (IN_MULTICAST(ip->ip_dst.s_addr)) {
    769 		struct in_multi *inm;
    770 #ifdef MROUTING
    771 		extern struct socket *ip_mrouter;
    772 
    773 		if (ip_mrouter) {
    774 			/*
    775 			 * If we are acting as a multicast router, all
    776 			 * incoming multicast packets are passed to the
    777 			 * kernel-level multicast forwarding function.
    778 			 * The packet is returned (relatively) intact; if
    779 			 * ip_mforward() returns a non-zero value, the packet
    780 			 * must be discarded, else it may be accepted below.
    781 			 *
    782 			 * (The IP ident field is put in the same byte order
    783 			 * as expected when ip_mforward() is called from
    784 			 * ip_output().)
    785 			 */
    786 			if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
    787 				IP_STATINC(IP_STAT_CANTFORWARD);
    788 				m_freem(m);
    789 				return;
    790 			}
    791 
    792 			/*
    793 			 * The process-level routing demon needs to receive
    794 			 * all multicast IGMP packets, whether or not this
    795 			 * host belongs to their destination groups.
    796 			 */
    797 			if (ip->ip_p == IPPROTO_IGMP)
    798 				goto ours;
    799 			IP_STATINC(IP_STAT_CANTFORWARD);
    800 		}
    801 #endif
    802 		/*
    803 		 * See if we belong to the destination multicast group on the
    804 		 * arrival interface.
    805 		 */
    806 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
    807 		if (inm == NULL) {
    808 			IP_STATINC(IP_STAT_CANTFORWARD);
    809 			m_freem(m);
    810 			return;
    811 		}
    812 		goto ours;
    813 	}
    814 	if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
    815 	    in_nullhost(ip->ip_dst))
    816 		goto ours;
    817 
    818 	/*
    819 	 * Not for us; forward if possible and desirable.
    820 	 */
    821 	if (ipforwarding == 0) {
    822 		IP_STATINC(IP_STAT_CANTFORWARD);
    823 		m_freem(m);
    824 	} else {
    825 		/*
    826 		 * If ip_dst matched any of my address on !IFF_UP interface,
    827 		 * and there's no IFF_UP interface that matches ip_dst,
    828 		 * send icmp unreach.  Forwarding it will result in in-kernel
    829 		 * forwarding loop till TTL goes to 0.
    830 		 */
    831 		if (downmatch) {
    832 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
    833 			IP_STATINC(IP_STAT_CANTFORWARD);
    834 			return;
    835 		}
    836 #ifdef IPSEC
    837 		if (ipsec4_in_reject(m, NULL)) {
    838 			ipsecstat.in_polvio++;
    839 			goto bad;
    840 		}
    841 #endif
    842 #ifdef FAST_IPSEC
    843 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
    844 		s = splsoftnet();
    845 		if (mtag != NULL) {
    846 			tdbi = (struct tdb_ident *)(mtag + 1);
    847 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
    848 		} else {
    849 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
    850 						   IP_FORWARDING, &error);
    851 		}
    852 		if (sp == NULL) {	/* NB: can happen if error */
    853 			splx(s);
    854 			/*XXX error stat???*/
    855 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
    856 			goto bad;
    857 		}
    858 
    859 		/*
    860 		 * Check security policy against packet attributes.
    861 		 */
    862 		error = ipsec_in_reject(sp, m);
    863 		KEY_FREESP(&sp);
    864 		splx(s);
    865 		if (error) {
    866 			IP_STATINC(IP_STAT_CANTFORWARD);
    867 			goto bad;
    868 		}
    869 
    870 		/*
    871 		 * Peek at the outbound SP for this packet to determine if
    872 		 * it's a Fast Forward candidate.
    873 		 */
    874 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
    875 		if (mtag != NULL)
    876 			m->m_flags &= ~M_CANFASTFWD;
    877 		else {
    878 			s = splsoftnet();
    879 			sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
    880 			    (IP_FORWARDING |
    881 			     (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
    882 			    &error, NULL);
    883 			if (sp != NULL) {
    884 				m->m_flags &= ~M_CANFASTFWD;
    885 				KEY_FREESP(&sp);
    886 			}
    887 			splx(s);
    888 		}
    889 #endif	/* FAST_IPSEC */
    890 
    891 		ip_forward(m, srcrt);
    892 	}
    893 	return;
    894 
    895 ours:
    896 	/*
    897 	 * If offset or IP_MF are set, must reassemble.
    898 	 * Otherwise, nothing need be done.
    899 	 * (We could look in the reassembly queue to see
    900 	 * if the packet was previously fragmented,
    901 	 * but it's not worth the time; just let them time out.)
    902 	 */
    903 	if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
    904 		uint16_t off;
    905 		/*
    906 		 * Prevent TCP blind data attacks by not allowing non-initial
    907 		 * fragments to start at less than 68 bytes (minimal fragment
    908 		 * size) and making sure the first fragment is at least 68
    909 		 * bytes.
    910 		 */
    911 		off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
    912 		if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
    913 			IP_STATINC(IP_STAT_BADFRAGS);
    914 			goto bad;
    915 		}
    916 		/*
    917 		 * Look for queue of fragments
    918 		 * of this datagram.
    919 		 */
    920 		IPQ_LOCK();
    921 		hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
    922 		LIST_FOREACH(fp, &ipq[hash], ipq_q) {
    923 			if (ip->ip_id == fp->ipq_id &&
    924 			    in_hosteq(ip->ip_src, fp->ipq_src) &&
    925 			    in_hosteq(ip->ip_dst, fp->ipq_dst) &&
    926 			    ip->ip_p == fp->ipq_p) {
    927 				/*
    928 				 * Make sure the TOS is matches previous
    929 				 * fragments.
    930 				 */
    931 				if (ip->ip_tos != fp->ipq_tos) {
    932 					IP_STATINC(IP_STAT_BADFRAGS);
    933 					goto bad;
    934 				}
    935 				goto found;
    936 			}
    937 		}
    938 		fp = 0;
    939 found:
    940 
    941 		/*
    942 		 * Adjust ip_len to not reflect header,
    943 		 * set ipqe_mff if more fragments are expected,
    944 		 * convert offset of this to bytes.
    945 		 */
    946 		ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
    947 		mff = (ip->ip_off & htons(IP_MF)) != 0;
    948 		if (mff) {
    949 		        /*
    950 		         * Make sure that fragments have a data length
    951 			 * that's a non-zero multiple of 8 bytes.
    952 		         */
    953 			if (ntohs(ip->ip_len) == 0 ||
    954 			    (ntohs(ip->ip_len) & 0x7) != 0) {
    955 				IP_STATINC(IP_STAT_BADFRAGS);
    956 				IPQ_UNLOCK();
    957 				goto bad;
    958 			}
    959 		}
    960 		ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
    961 
    962 		/*
    963 		 * If datagram marked as having more fragments
    964 		 * or if this is not the first fragment,
    965 		 * attempt reassembly; if it succeeds, proceed.
    966 		 */
    967 		if (mff || ip->ip_off != htons(0)) {
    968 			IP_STATINC(IP_STAT_FRAGMENTS);
    969 			s = splvm();
    970 			ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
    971 			splx(s);
    972 			if (ipqe == NULL) {
    973 				IP_STATINC(IP_STAT_RCVMEMDROP);
    974 				IPQ_UNLOCK();
    975 				goto bad;
    976 			}
    977 			ipqe->ipqe_mff = mff;
    978 			ipqe->ipqe_m = m;
    979 			ipqe->ipqe_ip = ip;
    980 			m = ip_reass(ipqe, fp, &ipq[hash]);
    981 			if (m == 0) {
    982 				IPQ_UNLOCK();
    983 				return;
    984 			}
    985 			IP_STATINC(IP_STAT_REASSEMBLED);
    986 			ip = mtod(m, struct ip *);
    987 			hlen = ip->ip_hl << 2;
    988 			ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
    989 		} else
    990 			if (fp)
    991 				ip_freef(fp);
    992 		IPQ_UNLOCK();
    993 	}
    994 
    995 #if defined(IPSEC)
    996 	/*
    997 	 * enforce IPsec policy checking if we are seeing last header.
    998 	 * note that we do not visit this with protocols with pcb layer
    999 	 * code - like udp/tcp/raw ip.
   1000 	 */
   1001 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
   1002 	    ipsec4_in_reject(m, NULL)) {
   1003 		ipsecstat.in_polvio++;
   1004 		goto bad;
   1005 	}
   1006 #endif
   1007 #ifdef FAST_IPSEC
   1008 	/*
   1009 	 * enforce IPsec policy checking if we are seeing last header.
   1010 	 * note that we do not visit this with protocols with pcb layer
   1011 	 * code - like udp/tcp/raw ip.
   1012 	 */
   1013 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
   1014 		/*
   1015 		 * Check if the packet has already had IPsec processing
   1016 		 * done.  If so, then just pass it along.  This tag gets
   1017 		 * set during AH, ESP, etc. input handling, before the
   1018 		 * packet is returned to the ip input queue for delivery.
   1019 		 */
   1020 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
   1021 		s = splsoftnet();
   1022 		if (mtag != NULL) {
   1023 			tdbi = (struct tdb_ident *)(mtag + 1);
   1024 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
   1025 		} else {
   1026 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
   1027 						   IP_FORWARDING, &error);
   1028 		}
   1029 		if (sp != NULL) {
   1030 			/*
   1031 			 * Check security policy against packet attributes.
   1032 			 */
   1033 			error = ipsec_in_reject(sp, m);
   1034 			KEY_FREESP(&sp);
   1035 		} else {
   1036 			/* XXX error stat??? */
   1037 			error = EINVAL;
   1038 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
   1039 		}
   1040 		splx(s);
   1041 		if (error)
   1042 			goto bad;
   1043 	}
   1044 #endif /* FAST_IPSEC */
   1045 
   1046 	/*
   1047 	 * Switch out to protocol's input routine.
   1048 	 */
   1049 #if IFA_STATS
   1050 	if (ia && ip)
   1051 		ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
   1052 #endif
   1053 	IP_STATINC(IP_STAT_DELIVERED);
   1054     {
   1055 	int off = hlen, nh = ip->ip_p;
   1056 
   1057 	(*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
   1058 	return;
   1059     }
   1060 bad:
   1061 	m_freem(m);
   1062 	return;
   1063 
   1064 badcsum:
   1065 	IP_STATINC(IP_STAT_BADSUM);
   1066 	m_freem(m);
   1067 }
   1068 
   1069 /*
   1070  * Take incoming datagram fragment and try to
   1071  * reassemble it into whole datagram.  If a chain for
   1072  * reassembly of this datagram already exists, then it
   1073  * is given as fp; otherwise have to make a chain.
   1074  */
   1075 struct mbuf *
   1076 ip_reass(struct ipqent *ipqe, struct ipq *fp, struct ipqhead *ipqhead)
   1077 {
   1078 	struct mbuf *m = ipqe->ipqe_m;
   1079 	struct ipqent *nq, *p, *q;
   1080 	struct ip *ip;
   1081 	struct mbuf *t;
   1082 	int hlen = ipqe->ipqe_ip->ip_hl << 2;
   1083 	int i, next, s;
   1084 
   1085 	IPQ_LOCK_CHECK();
   1086 
   1087 	/*
   1088 	 * Presence of header sizes in mbufs
   1089 	 * would confuse code below.
   1090 	 */
   1091 	m->m_data += hlen;
   1092 	m->m_len -= hlen;
   1093 
   1094 #ifdef	notyet
   1095 	/* make sure fragment limit is up-to-date */
   1096 	CHECK_NMBCLUSTER_PARAMS();
   1097 
   1098 	/* If we have too many fragments, drop the older half. */
   1099 	if (ip_nfrags >= ip_maxfrags)
   1100 		ip_reass_drophalf(void);
   1101 #endif
   1102 
   1103 	/*
   1104 	 * We are about to add a fragment; increment frag count.
   1105 	 */
   1106 	ip_nfrags++;
   1107 
   1108 	/*
   1109 	 * If first fragment to arrive, create a reassembly queue.
   1110 	 */
   1111 	if (fp == 0) {
   1112 		/*
   1113 		 * Enforce upper bound on number of fragmented packets
   1114 		 * for which we attempt reassembly;
   1115 		 * If maxfrag is 0, never accept fragments.
   1116 		 * If maxfrag is -1, accept all fragments without limitation.
   1117 		 */
   1118 		if (ip_maxfragpackets < 0)
   1119 			;
   1120 		else if (ip_nfragpackets >= ip_maxfragpackets)
   1121 			goto dropfrag;
   1122 		ip_nfragpackets++;
   1123 		MALLOC(fp, struct ipq *, sizeof (struct ipq),
   1124 		    M_FTABLE, M_NOWAIT);
   1125 		if (fp == NULL)
   1126 			goto dropfrag;
   1127 		LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
   1128 		fp->ipq_nfrags = 1;
   1129 		fp->ipq_ttl = IPFRAGTTL;
   1130 		fp->ipq_p = ipqe->ipqe_ip->ip_p;
   1131 		fp->ipq_id = ipqe->ipqe_ip->ip_id;
   1132 		fp->ipq_tos = ipqe->ipqe_ip->ip_tos;
   1133 		TAILQ_INIT(&fp->ipq_fragq);
   1134 		fp->ipq_src = ipqe->ipqe_ip->ip_src;
   1135 		fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
   1136 		p = NULL;
   1137 		goto insert;
   1138 	} else {
   1139 		fp->ipq_nfrags++;
   1140 	}
   1141 
   1142 	/*
   1143 	 * Find a segment which begins after this one does.
   1144 	 */
   1145 	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
   1146 	    p = q, q = TAILQ_NEXT(q, ipqe_q))
   1147 		if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
   1148 			break;
   1149 
   1150 	/*
   1151 	 * If there is a preceding segment, it may provide some of
   1152 	 * our data already.  If so, drop the data from the incoming
   1153 	 * segment.  If it provides all of our data, drop us.
   1154 	 */
   1155 	if (p != NULL) {
   1156 		i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
   1157 		    ntohs(ipqe->ipqe_ip->ip_off);
   1158 		if (i > 0) {
   1159 			if (i >= ntohs(ipqe->ipqe_ip->ip_len))
   1160 				goto dropfrag;
   1161 			m_adj(ipqe->ipqe_m, i);
   1162 			ipqe->ipqe_ip->ip_off =
   1163 			    htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
   1164 			ipqe->ipqe_ip->ip_len =
   1165 			    htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
   1166 		}
   1167 	}
   1168 
   1169 	/*
   1170 	 * While we overlap succeeding segments trim them or,
   1171 	 * if they are completely covered, dequeue them.
   1172 	 */
   1173 	for (; q != NULL &&
   1174 	    ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
   1175 	    ntohs(q->ipqe_ip->ip_off); q = nq) {
   1176 		i = (ntohs(ipqe->ipqe_ip->ip_off) +
   1177 		    ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
   1178 		if (i < ntohs(q->ipqe_ip->ip_len)) {
   1179 			q->ipqe_ip->ip_len =
   1180 			    htons(ntohs(q->ipqe_ip->ip_len) - i);
   1181 			q->ipqe_ip->ip_off =
   1182 			    htons(ntohs(q->ipqe_ip->ip_off) + i);
   1183 			m_adj(q->ipqe_m, i);
   1184 			break;
   1185 		}
   1186 		nq = TAILQ_NEXT(q, ipqe_q);
   1187 		m_freem(q->ipqe_m);
   1188 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
   1189 		s = splvm();
   1190 		pool_put(&ipqent_pool, q);
   1191 		splx(s);
   1192 		fp->ipq_nfrags--;
   1193 		ip_nfrags--;
   1194 	}
   1195 
   1196 insert:
   1197 	/*
   1198 	 * Stick new segment in its place;
   1199 	 * check for complete reassembly.
   1200 	 */
   1201 	if (p == NULL) {
   1202 		TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
   1203 	} else {
   1204 		TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
   1205 	}
   1206 	next = 0;
   1207 	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
   1208 	    p = q, q = TAILQ_NEXT(q, ipqe_q)) {
   1209 		if (ntohs(q->ipqe_ip->ip_off) != next)
   1210 			return (0);
   1211 		next += ntohs(q->ipqe_ip->ip_len);
   1212 	}
   1213 	if (p->ipqe_mff)
   1214 		return (0);
   1215 
   1216 	/*
   1217 	 * Reassembly is complete.  Check for a bogus message size and
   1218 	 * concatenate fragments.
   1219 	 */
   1220 	q = TAILQ_FIRST(&fp->ipq_fragq);
   1221 	ip = q->ipqe_ip;
   1222 	if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
   1223 		IP_STATINC(IP_STAT_TOOLONG);
   1224 		ip_freef(fp);
   1225 		return (0);
   1226 	}
   1227 	m = q->ipqe_m;
   1228 	t = m->m_next;
   1229 	m->m_next = 0;
   1230 	m_cat(m, t);
   1231 	nq = TAILQ_NEXT(q, ipqe_q);
   1232 	s = splvm();
   1233 	pool_put(&ipqent_pool, q);
   1234 	splx(s);
   1235 	for (q = nq; q != NULL; q = nq) {
   1236 		t = q->ipqe_m;
   1237 		nq = TAILQ_NEXT(q, ipqe_q);
   1238 		s = splvm();
   1239 		pool_put(&ipqent_pool, q);
   1240 		splx(s);
   1241 		m_cat(m, t);
   1242 	}
   1243 	ip_nfrags -= fp->ipq_nfrags;
   1244 
   1245 	/*
   1246 	 * Create header for new ip packet by
   1247 	 * modifying header of first packet;
   1248 	 * dequeue and discard fragment reassembly header.
   1249 	 * Make header visible.
   1250 	 */
   1251 	ip->ip_len = htons(next);
   1252 	ip->ip_src = fp->ipq_src;
   1253 	ip->ip_dst = fp->ipq_dst;
   1254 	LIST_REMOVE(fp, ipq_q);
   1255 	FREE(fp, M_FTABLE);
   1256 	ip_nfragpackets--;
   1257 	m->m_len += (ip->ip_hl << 2);
   1258 	m->m_data -= (ip->ip_hl << 2);
   1259 	/* some debugging cruft by sklower, below, will go away soon */
   1260 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
   1261 		int plen = 0;
   1262 		for (t = m; t; t = t->m_next)
   1263 			plen += t->m_len;
   1264 		m->m_pkthdr.len = plen;
   1265 		m->m_pkthdr.csum_flags = 0;
   1266 	}
   1267 	return (m);
   1268 
   1269 dropfrag:
   1270 	if (fp != 0)
   1271 		fp->ipq_nfrags--;
   1272 	ip_nfrags--;
   1273 	IP_STATINC(IP_STAT_FRAGDROPPED);
   1274 	m_freem(m);
   1275 	s = splvm();
   1276 	pool_put(&ipqent_pool, ipqe);
   1277 	splx(s);
   1278 	return (0);
   1279 }
   1280 
   1281 /*
   1282  * Free a fragment reassembly header and all
   1283  * associated datagrams.
   1284  */
   1285 void
   1286 ip_freef(struct ipq *fp)
   1287 {
   1288 	struct ipqent *q, *p;
   1289 	u_int nfrags = 0;
   1290 	int s;
   1291 
   1292 	IPQ_LOCK_CHECK();
   1293 
   1294 	for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
   1295 		p = TAILQ_NEXT(q, ipqe_q);
   1296 		m_freem(q->ipqe_m);
   1297 		nfrags++;
   1298 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
   1299 		s = splvm();
   1300 		pool_put(&ipqent_pool, q);
   1301 		splx(s);
   1302 	}
   1303 
   1304 	if (nfrags != fp->ipq_nfrags)
   1305 	    printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
   1306 	ip_nfrags -= nfrags;
   1307 	LIST_REMOVE(fp, ipq_q);
   1308 	FREE(fp, M_FTABLE);
   1309 	ip_nfragpackets--;
   1310 }
   1311 
   1312 /*
   1313  * IP reassembly TTL machinery for  multiplicative drop.
   1314  */
   1315 static u_int	fragttl_histo[(IPFRAGTTL+1)];
   1316 
   1317 
   1318 /*
   1319  * Decrement TTL of all reasembly queue entries by `ticks'.
   1320  * Count number of distinct fragments (as opposed to partial, fragmented
   1321  * datagrams) in the reassembly queue.  While we  traverse the entire
   1322  * reassembly queue, compute and return the median TTL over all fragments.
   1323  */
   1324 static u_int
   1325 ip_reass_ttl_decr(u_int ticks)
   1326 {
   1327 	u_int nfrags, median, dropfraction, keepfraction;
   1328 	struct ipq *fp, *nfp;
   1329 	int i;
   1330 
   1331 	nfrags = 0;
   1332 	memset(fragttl_histo, 0, sizeof fragttl_histo);
   1333 
   1334 	for (i = 0; i < IPREASS_NHASH; i++) {
   1335 		for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
   1336 			fp->ipq_ttl = ((fp->ipq_ttl  <= ticks) ?
   1337 				       0 : fp->ipq_ttl - ticks);
   1338 			nfp = LIST_NEXT(fp, ipq_q);
   1339 			if (fp->ipq_ttl == 0) {
   1340 				IP_STATINC(IP_STAT_FRAGTIMEOUT);
   1341 				ip_freef(fp);
   1342 			} else {
   1343 				nfrags += fp->ipq_nfrags;
   1344 				fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
   1345 			}
   1346 		}
   1347 	}
   1348 
   1349 	KASSERT(ip_nfrags == nfrags);
   1350 
   1351 	/* Find median (or other drop fraction) in histogram. */
   1352 	dropfraction = (ip_nfrags / 2);
   1353 	keepfraction = ip_nfrags - dropfraction;
   1354 	for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
   1355 		median +=  fragttl_histo[i];
   1356 		if (median >= keepfraction)
   1357 			break;
   1358 	}
   1359 
   1360 	/* Return TTL of median (or other fraction). */
   1361 	return (u_int)i;
   1362 }
   1363 
   1364 void
   1365 ip_reass_drophalf(void)
   1366 {
   1367 
   1368 	u_int median_ticks;
   1369 	/*
   1370 	 * Compute median TTL of all fragments, and count frags
   1371 	 * with that TTL or lower (roughly half of all fragments).
   1372 	 */
   1373 	median_ticks = ip_reass_ttl_decr(0);
   1374 
   1375 	/* Drop half. */
   1376 	median_ticks = ip_reass_ttl_decr(median_ticks);
   1377 
   1378 }
   1379 
   1380 /*
   1381  * IP timer processing;
   1382  * if a timer expires on a reassembly
   1383  * queue, discard it.
   1384  */
   1385 void
   1386 ip_slowtimo(void)
   1387 {
   1388 	static u_int dropscanidx = 0;
   1389 	u_int i;
   1390 	u_int median_ttl;
   1391 	int s = splsoftnet();
   1392 
   1393 	IPQ_LOCK();
   1394 
   1395 	/* Age TTL of all fragments by 1 tick .*/
   1396 	median_ttl = ip_reass_ttl_decr(1);
   1397 
   1398 	/* make sure fragment limit is up-to-date */
   1399 	CHECK_NMBCLUSTER_PARAMS();
   1400 
   1401 	/* If we have too many fragments, drop the older half. */
   1402 	if (ip_nfrags > ip_maxfrags)
   1403 		ip_reass_ttl_decr(median_ttl);
   1404 
   1405 	/*
   1406 	 * If we are over the maximum number of fragmented packets
   1407 	 * (due to the limit being lowered), drain off
   1408 	 * enough to get down to the new limit. Start draining
   1409 	 * from the reassembly hashqueue most recently drained.
   1410 	 */
   1411 	if (ip_maxfragpackets < 0)
   1412 		;
   1413 	else {
   1414 		int wrapped = 0;
   1415 
   1416 		i = dropscanidx;
   1417 		while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
   1418 			while (LIST_FIRST(&ipq[i]) != NULL)
   1419 				ip_freef(LIST_FIRST(&ipq[i]));
   1420 			if (++i >= IPREASS_NHASH) {
   1421 				i = 0;
   1422 			}
   1423 			/*
   1424 			 * Dont scan forever even if fragment counters are
   1425 			 * wrong: stop after scanning entire reassembly queue.
   1426 			 */
   1427 			if (i == dropscanidx)
   1428 			    wrapped = 1;
   1429 		}
   1430 		dropscanidx = i;
   1431 	}
   1432 	IPQ_UNLOCK();
   1433 	splx(s);
   1434 }
   1435 
   1436 /*
   1437  * Drain off all datagram fragments.
   1438  */
   1439 void
   1440 ip_drain(void)
   1441 {
   1442 
   1443 	/*
   1444 	 * We may be called from a device's interrupt context.  If
   1445 	 * the ipq is already busy, just bail out now.
   1446 	 */
   1447 	if (ipq_lock_try() == 0)
   1448 		return;
   1449 
   1450 	/*
   1451 	 * Drop half the total fragments now. If more mbufs are needed,
   1452 	 *  we will be called again soon.
   1453 	 */
   1454 	ip_reass_drophalf();
   1455 
   1456 	IPQ_UNLOCK();
   1457 }
   1458 
   1459 /*
   1460  * Do option processing on a datagram,
   1461  * possibly discarding it if bad options are encountered,
   1462  * or forwarding it if source-routed.
   1463  * Returns 1 if packet has been forwarded/freed,
   1464  * 0 if the packet should be processed further.
   1465  */
   1466 int
   1467 ip_dooptions(struct mbuf *m)
   1468 {
   1469 	struct ip *ip = mtod(m, struct ip *);
   1470 	u_char *cp, *cp0;
   1471 	struct ip_timestamp *ipt;
   1472 	struct in_ifaddr *ia;
   1473 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
   1474 	struct in_addr dst;
   1475 	n_time ntime;
   1476 
   1477 	dst = ip->ip_dst;
   1478 	cp = (u_char *)(ip + 1);
   1479 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
   1480 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1481 		opt = cp[IPOPT_OPTVAL];
   1482 		if (opt == IPOPT_EOL)
   1483 			break;
   1484 		if (opt == IPOPT_NOP)
   1485 			optlen = 1;
   1486 		else {
   1487 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
   1488 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
   1489 				goto bad;
   1490 			}
   1491 			optlen = cp[IPOPT_OLEN];
   1492 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
   1493 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
   1494 				goto bad;
   1495 			}
   1496 		}
   1497 		switch (opt) {
   1498 
   1499 		default:
   1500 			break;
   1501 
   1502 		/*
   1503 		 * Source routing with record.
   1504 		 * Find interface with current destination address.
   1505 		 * If none on this machine then drop if strictly routed,
   1506 		 * or do nothing if loosely routed.
   1507 		 * Record interface address and bring up next address
   1508 		 * component.  If strictly routed make sure next
   1509 		 * address is on directly accessible net.
   1510 		 */
   1511 		case IPOPT_LSRR:
   1512 		case IPOPT_SSRR:
   1513 			if (ip_allowsrcrt == 0) {
   1514 				type = ICMP_UNREACH;
   1515 				code = ICMP_UNREACH_NET_PROHIB;
   1516 				goto bad;
   1517 			}
   1518 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
   1519 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
   1520 				goto bad;
   1521 			}
   1522 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
   1523 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
   1524 				goto bad;
   1525 			}
   1526 			ipaddr.sin_addr = ip->ip_dst;
   1527 			ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
   1528 			if (ia == 0) {
   1529 				if (opt == IPOPT_SSRR) {
   1530 					type = ICMP_UNREACH;
   1531 					code = ICMP_UNREACH_SRCFAIL;
   1532 					goto bad;
   1533 				}
   1534 				/*
   1535 				 * Loose routing, and not at next destination
   1536 				 * yet; nothing to do except forward.
   1537 				 */
   1538 				break;
   1539 			}
   1540 			off--;			/* 0 origin */
   1541 			if ((off + sizeof(struct in_addr)) > optlen) {
   1542 				/*
   1543 				 * End of source route.  Should be for us.
   1544 				 */
   1545 				save_rte(cp, ip->ip_src);
   1546 				break;
   1547 			}
   1548 			/*
   1549 			 * locate outgoing interface
   1550 			 */
   1551 			bcopy((void *)(cp + off), (void *)&ipaddr.sin_addr,
   1552 			    sizeof(ipaddr.sin_addr));
   1553 			if (opt == IPOPT_SSRR)
   1554 				ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
   1555 			else
   1556 				ia = ip_rtaddr(ipaddr.sin_addr);
   1557 			if (ia == 0) {
   1558 				type = ICMP_UNREACH;
   1559 				code = ICMP_UNREACH_SRCFAIL;
   1560 				goto bad;
   1561 			}
   1562 			ip->ip_dst = ipaddr.sin_addr;
   1563 			bcopy((void *)&ia->ia_addr.sin_addr,
   1564 			    (void *)(cp + off), sizeof(struct in_addr));
   1565 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
   1566 			/*
   1567 			 * Let ip_intr's mcast routing check handle mcast pkts
   1568 			 */
   1569 			forward = !IN_MULTICAST(ip->ip_dst.s_addr);
   1570 			break;
   1571 
   1572 		case IPOPT_RR:
   1573 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
   1574 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
   1575 				goto bad;
   1576 			}
   1577 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
   1578 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
   1579 				goto bad;
   1580 			}
   1581 			/*
   1582 			 * If no space remains, ignore.
   1583 			 */
   1584 			off--;			/* 0 origin */
   1585 			if ((off + sizeof(struct in_addr)) > optlen)
   1586 				break;
   1587 			bcopy((void *)(&ip->ip_dst), (void *)&ipaddr.sin_addr,
   1588 			    sizeof(ipaddr.sin_addr));
   1589 			/*
   1590 			 * locate outgoing interface; if we're the destination,
   1591 			 * use the incoming interface (should be same).
   1592 			 */
   1593 			if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
   1594 			    == NULL &&
   1595 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
   1596 				type = ICMP_UNREACH;
   1597 				code = ICMP_UNREACH_HOST;
   1598 				goto bad;
   1599 			}
   1600 			bcopy((void *)&ia->ia_addr.sin_addr,
   1601 			    (void *)(cp + off), sizeof(struct in_addr));
   1602 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
   1603 			break;
   1604 
   1605 		case IPOPT_TS:
   1606 			code = cp - (u_char *)ip;
   1607 			ipt = (struct ip_timestamp *)cp;
   1608 			if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
   1609 				code = (u_char *)&ipt->ipt_len - (u_char *)ip;
   1610 				goto bad;
   1611 			}
   1612 			if (ipt->ipt_ptr < 5) {
   1613 				code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
   1614 				goto bad;
   1615 			}
   1616 			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
   1617 				if (++ipt->ipt_oflw == 0) {
   1618 					code = (u_char *)&ipt->ipt_ptr -
   1619 					    (u_char *)ip;
   1620 					goto bad;
   1621 				}
   1622 				break;
   1623 			}
   1624 			cp0 = (cp + ipt->ipt_ptr - 1);
   1625 			switch (ipt->ipt_flg) {
   1626 
   1627 			case IPOPT_TS_TSONLY:
   1628 				break;
   1629 
   1630 			case IPOPT_TS_TSANDADDR:
   1631 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
   1632 				    sizeof(struct in_addr) > ipt->ipt_len) {
   1633 					code = (u_char *)&ipt->ipt_ptr -
   1634 					    (u_char *)ip;
   1635 					goto bad;
   1636 				}
   1637 				ipaddr.sin_addr = dst;
   1638 				ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
   1639 				    m->m_pkthdr.rcvif));
   1640 				if (ia == 0)
   1641 					continue;
   1642 				bcopy(&ia->ia_addr.sin_addr,
   1643 				    cp0, sizeof(struct in_addr));
   1644 				ipt->ipt_ptr += sizeof(struct in_addr);
   1645 				break;
   1646 
   1647 			case IPOPT_TS_PRESPEC:
   1648 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
   1649 				    sizeof(struct in_addr) > ipt->ipt_len) {
   1650 					code = (u_char *)&ipt->ipt_ptr -
   1651 					    (u_char *)ip;
   1652 					goto bad;
   1653 				}
   1654 				bcopy(cp0, &ipaddr.sin_addr,
   1655 				    sizeof(struct in_addr));
   1656 				if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
   1657 				    == NULL)
   1658 					continue;
   1659 				ipt->ipt_ptr += sizeof(struct in_addr);
   1660 				break;
   1661 
   1662 			default:
   1663 				/* XXX can't take &ipt->ipt_flg */
   1664 				code = (u_char *)&ipt->ipt_ptr -
   1665 				    (u_char *)ip + 1;
   1666 				goto bad;
   1667 			}
   1668 			ntime = iptime();
   1669 			cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
   1670 			memmove((char *)cp + ipt->ipt_ptr - 1, cp0,
   1671 			    sizeof(n_time));
   1672 			ipt->ipt_ptr += sizeof(n_time);
   1673 		}
   1674 	}
   1675 	if (forward) {
   1676 		if (ip_forwsrcrt == 0) {
   1677 			type = ICMP_UNREACH;
   1678 			code = ICMP_UNREACH_SRCFAIL;
   1679 			goto bad;
   1680 		}
   1681 		ip_forward(m, 1);
   1682 		return (1);
   1683 	}
   1684 	return (0);
   1685 bad:
   1686 	icmp_error(m, type, code, 0, 0);
   1687 	IP_STATINC(IP_STAT_BADOPTIONS);
   1688 	return (1);
   1689 }
   1690 
   1691 /*
   1692  * Given address of next destination (final or next hop),
   1693  * return internet address info of interface to be used to get there.
   1694  */
   1695 struct in_ifaddr *
   1696 ip_rtaddr(struct in_addr dst)
   1697 {
   1698 	struct rtentry *rt;
   1699 	union {
   1700 		struct sockaddr		dst;
   1701 		struct sockaddr_in	dst4;
   1702 	} u;
   1703 
   1704 	sockaddr_in_init(&u.dst4, &dst, 0);
   1705 
   1706 	if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL)
   1707 		return NULL;
   1708 
   1709 	return ifatoia(rt->rt_ifa);
   1710 }
   1711 
   1712 /*
   1713  * Save incoming source route for use in replies,
   1714  * to be picked up later by ip_srcroute if the receiver is interested.
   1715  */
   1716 void
   1717 save_rte(u_char *option, struct in_addr dst)
   1718 {
   1719 	unsigned olen;
   1720 
   1721 	olen = option[IPOPT_OLEN];
   1722 #ifdef DIAGNOSTIC
   1723 	if (ipprintfs)
   1724 		printf("save_rte: olen %d\n", olen);
   1725 #endif /* 0 */
   1726 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
   1727 		return;
   1728 	bcopy((void *)option, (void *)ip_srcrt.srcopt, olen);
   1729 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
   1730 	ip_srcrt.dst = dst;
   1731 }
   1732 
   1733 /*
   1734  * Retrieve incoming source route for use in replies,
   1735  * in the same form used by setsockopt.
   1736  * The first hop is placed before the options, will be removed later.
   1737  */
   1738 struct mbuf *
   1739 ip_srcroute(void)
   1740 {
   1741 	struct in_addr *p, *q;
   1742 	struct mbuf *m;
   1743 
   1744 	if (ip_nhops == 0)
   1745 		return NULL;
   1746 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1747 	if (m == 0)
   1748 		return NULL;
   1749 
   1750 	MCLAIM(m, &inetdomain.dom_mowner);
   1751 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
   1752 
   1753 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
   1754 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
   1755 	    OPTSIZ;
   1756 #ifdef DIAGNOSTIC
   1757 	if (ipprintfs)
   1758 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
   1759 #endif
   1760 
   1761 	/*
   1762 	 * First save first hop for return route
   1763 	 */
   1764 	p = &ip_srcrt.route[ip_nhops - 1];
   1765 	*(mtod(m, struct in_addr *)) = *p--;
   1766 #ifdef DIAGNOSTIC
   1767 	if (ipprintfs)
   1768 		printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
   1769 #endif
   1770 
   1771 	/*
   1772 	 * Copy option fields and padding (nop) to mbuf.
   1773 	 */
   1774 	ip_srcrt.nop = IPOPT_NOP;
   1775 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
   1776 	memmove(mtod(m, char *) + sizeof(struct in_addr), &ip_srcrt.nop,
   1777 	    OPTSIZ);
   1778 	q = (struct in_addr *)(mtod(m, char *) +
   1779 	    sizeof(struct in_addr) + OPTSIZ);
   1780 #undef OPTSIZ
   1781 	/*
   1782 	 * Record return path as an IP source route,
   1783 	 * reversing the path (pointers are now aligned).
   1784 	 */
   1785 	while (p >= ip_srcrt.route) {
   1786 #ifdef DIAGNOSTIC
   1787 		if (ipprintfs)
   1788 			printf(" %x", ntohl(q->s_addr));
   1789 #endif
   1790 		*q++ = *p--;
   1791 	}
   1792 	/*
   1793 	 * Last hop goes to final destination.
   1794 	 */
   1795 	*q = ip_srcrt.dst;
   1796 #ifdef DIAGNOSTIC
   1797 	if (ipprintfs)
   1798 		printf(" %x\n", ntohl(q->s_addr));
   1799 #endif
   1800 	return (m);
   1801 }
   1802 
   1803 const int inetctlerrmap[PRC_NCMDS] = {
   1804 	[PRC_MSGSIZE] = EMSGSIZE,
   1805 	[PRC_HOSTDEAD] = EHOSTDOWN,
   1806 	[PRC_HOSTUNREACH] = EHOSTUNREACH,
   1807 	[PRC_UNREACH_NET] = EHOSTUNREACH,
   1808 	[PRC_UNREACH_HOST] = EHOSTUNREACH,
   1809 	[PRC_UNREACH_PROTOCOL] = ECONNREFUSED,
   1810 	[PRC_UNREACH_PORT] = ECONNREFUSED,
   1811 	[PRC_UNREACH_SRCFAIL] = EHOSTUNREACH,
   1812 	[PRC_PARAMPROB] = ENOPROTOOPT,
   1813 };
   1814 
   1815 /*
   1816  * Forward a packet.  If some error occurs return the sender
   1817  * an icmp packet.  Note we can't always generate a meaningful
   1818  * icmp message because icmp doesn't have a large enough repertoire
   1819  * of codes and types.
   1820  *
   1821  * If not forwarding, just drop the packet.  This could be confusing
   1822  * if ipforwarding was zero but some routing protocol was advancing
   1823  * us as a gateway to somewhere.  However, we must let the routing
   1824  * protocol deal with that.
   1825  *
   1826  * The srcrt parameter indicates whether the packet is being forwarded
   1827  * via a source route.
   1828  */
   1829 void
   1830 ip_forward(struct mbuf *m, int srcrt)
   1831 {
   1832 	struct ip *ip = mtod(m, struct ip *);
   1833 	struct rtentry *rt;
   1834 	int error, type = 0, code = 0, destmtu = 0;
   1835 	struct mbuf *mcopy;
   1836 	n_long dest;
   1837 	union {
   1838 		struct sockaddr		dst;
   1839 		struct sockaddr_in	dst4;
   1840 	} u;
   1841 
   1842 	/*
   1843 	 * We are now in the output path.
   1844 	 */
   1845 	MCLAIM(m, &ip_tx_mowner);
   1846 
   1847 	/*
   1848 	 * Clear any in-bound checksum flags for this packet.
   1849 	 */
   1850 	m->m_pkthdr.csum_flags = 0;
   1851 
   1852 	dest = 0;
   1853 #ifdef DIAGNOSTIC
   1854 	if (ipprintfs) {
   1855 		printf("forward: src %s ", inet_ntoa(ip->ip_src));
   1856 		printf("dst %s ttl %x\n", inet_ntoa(ip->ip_dst), ip->ip_ttl);
   1857 	}
   1858 #endif
   1859 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
   1860 		IP_STATINC(IP_STAT_CANTFORWARD);
   1861 		m_freem(m);
   1862 		return;
   1863 	}
   1864 	if (ip->ip_ttl <= IPTTLDEC) {
   1865 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
   1866 		return;
   1867 	}
   1868 
   1869 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
   1870 	if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL) {
   1871 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_NET, dest, 0);
   1872 		return;
   1873 	}
   1874 
   1875 	/*
   1876 	 * Save at most 68 bytes of the packet in case
   1877 	 * we need to generate an ICMP message to the src.
   1878 	 * Pullup to avoid sharing mbuf cluster between m and mcopy.
   1879 	 */
   1880 	mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
   1881 	if (mcopy)
   1882 		mcopy = m_pullup(mcopy, ip->ip_hl << 2);
   1883 
   1884 	ip->ip_ttl -= IPTTLDEC;
   1885 
   1886 	/*
   1887 	 * If forwarding packet using same interface that it came in on,
   1888 	 * perhaps should send a redirect to sender to shortcut a hop.
   1889 	 * Only send redirect if source is sending directly to us,
   1890 	 * and if packet was not source routed (or has any options).
   1891 	 * Also, don't send redirect if forwarding using a default route
   1892 	 * or a route modified by a redirect.
   1893 	 */
   1894 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
   1895 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
   1896 	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr) &&
   1897 	    ipsendredirects && !srcrt) {
   1898 		if (rt->rt_ifa &&
   1899 		    (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
   1900 		    ifatoia(rt->rt_ifa)->ia_subnet) {
   1901 			if (rt->rt_flags & RTF_GATEWAY)
   1902 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
   1903 			else
   1904 				dest = ip->ip_dst.s_addr;
   1905 			/*
   1906 			 * Router requirements says to only send host
   1907 			 * redirects.
   1908 			 */
   1909 			type = ICMP_REDIRECT;
   1910 			code = ICMP_REDIRECT_HOST;
   1911 #ifdef DIAGNOSTIC
   1912 			if (ipprintfs)
   1913 				printf("redirect (%d) to %x\n", code,
   1914 				    (u_int32_t)dest);
   1915 #endif
   1916 		}
   1917 	}
   1918 
   1919 	error = ip_output(m, NULL, &ipforward_rt,
   1920 	    (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
   1921 	    (struct ip_moptions *)NULL, (struct socket *)NULL);
   1922 
   1923 	if (error)
   1924 		IP_STATINC(IP_STAT_CANTFORWARD);
   1925 	else {
   1926 		uint64_t *ips = IP_STAT_GETREF();
   1927 		ips[IP_STAT_FORWARD]++;
   1928 		if (type) {
   1929 			ips[IP_STAT_REDIRECTSENT]++;
   1930 			IP_STAT_PUTREF();
   1931 		} else {
   1932 			IP_STAT_PUTREF();
   1933 			if (mcopy) {
   1934 #ifdef GATEWAY
   1935 				if (mcopy->m_flags & M_CANFASTFWD)
   1936 					ipflow_create(&ipforward_rt, mcopy);
   1937 #endif
   1938 				m_freem(mcopy);
   1939 			}
   1940 			return;
   1941 		}
   1942 	}
   1943 	if (mcopy == NULL)
   1944 		return;
   1945 
   1946 	switch (error) {
   1947 
   1948 	case 0:				/* forwarded, but need redirect */
   1949 		/* type, code set above */
   1950 		break;
   1951 
   1952 	case ENETUNREACH:		/* shouldn't happen, checked above */
   1953 	case EHOSTUNREACH:
   1954 	case ENETDOWN:
   1955 	case EHOSTDOWN:
   1956 	default:
   1957 		type = ICMP_UNREACH;
   1958 		code = ICMP_UNREACH_HOST;
   1959 		break;
   1960 
   1961 	case EMSGSIZE:
   1962 		type = ICMP_UNREACH;
   1963 		code = ICMP_UNREACH_NEEDFRAG;
   1964 
   1965 		if ((rt = rtcache_validate(&ipforward_rt)) != NULL) {
   1966 
   1967 #if defined(IPSEC) || defined(FAST_IPSEC)
   1968 			/*
   1969 			 * If the packet is routed over IPsec tunnel, tell the
   1970 			 * originator the tunnel MTU.
   1971 			 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
   1972 			 * XXX quickhack!!!
   1973 			 */
   1974 
   1975 			struct secpolicy *sp;
   1976 			int ipsecerror;
   1977 			size_t ipsechdr;
   1978 			struct route *ro;
   1979 
   1980 			sp = ipsec4_getpolicybyaddr(mcopy,
   1981 			    IPSEC_DIR_OUTBOUND, IP_FORWARDING,
   1982 			    &ipsecerror);
   1983 #endif
   1984 
   1985 			destmtu = rt->rt_ifp->if_mtu;
   1986 #if defined(IPSEC) || defined(FAST_IPSEC)
   1987 			if (sp != NULL) {
   1988 				/* count IPsec header size */
   1989 				ipsechdr = ipsec4_hdrsiz(mcopy,
   1990 				    IPSEC_DIR_OUTBOUND, NULL);
   1991 
   1992 				/*
   1993 				 * find the correct route for outer IPv4
   1994 				 * header, compute tunnel MTU.
   1995 				 */
   1996 
   1997 				if (sp->req != NULL
   1998 				 && sp->req->sav != NULL
   1999 				 && sp->req->sav->sah != NULL) {
   2000 					ro = &sp->req->sav->sah->sa_route;
   2001 					if (rt && rt->rt_ifp) {
   2002 						destmtu =
   2003 						    rt->rt_rmx.rmx_mtu ?
   2004 						    rt->rt_rmx.rmx_mtu :
   2005 						    rt->rt_ifp->if_mtu;
   2006 						destmtu -= ipsechdr;
   2007 					}
   2008 				}
   2009 
   2010 #ifdef	IPSEC
   2011 				key_freesp(sp);
   2012 #else
   2013 				KEY_FREESP(&sp);
   2014 #endif
   2015 			}
   2016 #endif /*defined(IPSEC) || defined(FAST_IPSEC)*/
   2017 		}
   2018 		IP_STATINC(IP_STAT_CANTFRAG);
   2019 		break;
   2020 
   2021 	case ENOBUFS:
   2022 #if 1
   2023 		/*
   2024 		 * a router should not generate ICMP_SOURCEQUENCH as
   2025 		 * required in RFC1812 Requirements for IP Version 4 Routers.
   2026 		 * source quench could be a big problem under DoS attacks,
   2027 		 * or if the underlying interface is rate-limited.
   2028 		 */
   2029 		if (mcopy)
   2030 			m_freem(mcopy);
   2031 		return;
   2032 #else
   2033 		type = ICMP_SOURCEQUENCH;
   2034 		code = 0;
   2035 		break;
   2036 #endif
   2037 	}
   2038 	icmp_error(mcopy, type, code, dest, destmtu);
   2039 }
   2040 
   2041 void
   2042 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
   2043     struct mbuf *m)
   2044 {
   2045 
   2046 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
   2047 		struct timeval tv;
   2048 
   2049 		microtime(&tv);
   2050 		*mp = sbcreatecontrol((void *) &tv, sizeof(tv),
   2051 		    SCM_TIMESTAMP, SOL_SOCKET);
   2052 		if (*mp)
   2053 			mp = &(*mp)->m_next;
   2054 	}
   2055 	if (inp->inp_flags & INP_RECVDSTADDR) {
   2056 		*mp = sbcreatecontrol((void *) &ip->ip_dst,
   2057 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
   2058 		if (*mp)
   2059 			mp = &(*mp)->m_next;
   2060 	}
   2061 #ifdef notyet
   2062 	/*
   2063 	 * XXX
   2064 	 * Moving these out of udp_input() made them even more broken
   2065 	 * than they already were.
   2066 	 *	- fenner (at) parc.xerox.com
   2067 	 */
   2068 	/* options were tossed already */
   2069 	if (inp->inp_flags & INP_RECVOPTS) {
   2070 		*mp = sbcreatecontrol((void *) opts_deleted_above,
   2071 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
   2072 		if (*mp)
   2073 			mp = &(*mp)->m_next;
   2074 	}
   2075 	/* ip_srcroute doesn't do what we want here, need to fix */
   2076 	if (inp->inp_flags & INP_RECVRETOPTS) {
   2077 		*mp = sbcreatecontrol((void *) ip_srcroute(),
   2078 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
   2079 		if (*mp)
   2080 			mp = &(*mp)->m_next;
   2081 	}
   2082 #endif
   2083 	if (inp->inp_flags & INP_RECVIF) {
   2084 		struct sockaddr_dl sdl;
   2085 
   2086 		sockaddr_dl_init(&sdl, sizeof(sdl),
   2087 		    (m->m_pkthdr.rcvif != NULL)
   2088 		        ?  m->m_pkthdr.rcvif->if_index
   2089 			: 0,
   2090 			0, NULL, 0, NULL, 0);
   2091 		*mp = sbcreatecontrol(&sdl, sdl.sdl_len, IP_RECVIF, IPPROTO_IP);
   2092 		if (*mp)
   2093 			mp = &(*mp)->m_next;
   2094 	}
   2095 }
   2096 
   2097 /*
   2098  * sysctl helper routine for net.inet.ip.forwsrcrt.
   2099  */
   2100 static int
   2101 sysctl_net_inet_ip_forwsrcrt(SYSCTLFN_ARGS)
   2102 {
   2103 	int error, tmp;
   2104 	struct sysctlnode node;
   2105 
   2106 	node = *rnode;
   2107 	tmp = ip_forwsrcrt;
   2108 	node.sysctl_data = &tmp;
   2109 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2110 	if (error || newp == NULL)
   2111 		return (error);
   2112 
   2113 	if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_FORWSRCRT,
   2114 	    0, NULL, NULL, NULL))
   2115 		return (EPERM);
   2116 
   2117 	ip_forwsrcrt = tmp;
   2118 
   2119 	return (0);
   2120 }
   2121 
   2122 /*
   2123  * sysctl helper routine for net.inet.ip.mtudisctimeout.  checks the
   2124  * range of the new value and tweaks timers if it changes.
   2125  */
   2126 static int
   2127 sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
   2128 {
   2129 	int error, tmp;
   2130 	struct sysctlnode node;
   2131 
   2132 	node = *rnode;
   2133 	tmp = ip_mtudisc_timeout;
   2134 	node.sysctl_data = &tmp;
   2135 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2136 	if (error || newp == NULL)
   2137 		return (error);
   2138 	if (tmp < 0)
   2139 		return (EINVAL);
   2140 
   2141 	ip_mtudisc_timeout = tmp;
   2142 	rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
   2143 
   2144 	return (0);
   2145 }
   2146 
   2147 #ifdef GATEWAY
   2148 /*
   2149  * sysctl helper routine for net.inet.ip.maxflows.
   2150  */
   2151 static int
   2152 sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
   2153 {
   2154 	int s;
   2155 
   2156 	s = sysctl_lookup(SYSCTLFN_CALL(rnode));
   2157 	if (s || newp == NULL)
   2158 		return (s);
   2159 
   2160 	s = splsoftnet();
   2161 	ipflow_prune();
   2162 	splx(s);
   2163 
   2164 	return (0);
   2165 }
   2166 
   2167 static int
   2168 sysctl_net_inet_ip_hashsize(SYSCTLFN_ARGS)
   2169 {
   2170 	int error, tmp;
   2171 	struct sysctlnode node;
   2172 
   2173 	node = *rnode;
   2174 	tmp = ip_hashsize;
   2175 	node.sysctl_data = &tmp;
   2176 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2177 	if (error || newp == NULL)
   2178 		return (error);
   2179 
   2180 	if ((tmp & (tmp - 1)) == 0 && tmp != 0) {
   2181 		/*
   2182 		 * Can only fail due to malloc()
   2183 		 */
   2184 		if (ipflow_invalidate_all(tmp))
   2185 			return ENOMEM;
   2186 	} else {
   2187 		/*
   2188 		 * EINVAL if not a power of 2
   2189 	         */
   2190 		return EINVAL;
   2191 	}
   2192 
   2193 	return (0);
   2194 }
   2195 #endif /* GATEWAY */
   2196 
   2197 static void
   2198 ipstat_convert_to_user_cb(void *v1, void *v2, struct cpu_info *ci)
   2199 {
   2200 	uint64_t *ipsc = v1;
   2201 	uint64_t *ips = v2;
   2202 	u_int i;
   2203 
   2204 	for (i = 0; i < IP_NSTATS; i++)
   2205 		ips[i] += ipsc[i];
   2206 }
   2207 
   2208 static void
   2209 ipstat_convert_to_user(uint64_t *ips)
   2210 {
   2211 
   2212 	memset(ips, 0, sizeof(uint64_t) * IP_NSTATS);
   2213 	percpu_foreach(ipstat_percpu, ipstat_convert_to_user_cb, ips);
   2214 }
   2215 
   2216 static int
   2217 sysctl_net_inet_ip_stats(SYSCTLFN_ARGS)
   2218 {
   2219 	struct sysctlnode node;
   2220 	uint64_t ips[IP_NSTATS];
   2221 
   2222 	ipstat_convert_to_user(ips);
   2223 	node = *rnode;
   2224 	node.sysctl_data = ips;
   2225 	node.sysctl_size = sizeof(ips);
   2226 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
   2227 }
   2228 
   2229 SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
   2230 {
   2231 	extern int subnetsarelocal, hostzeroisbroadcast;
   2232 
   2233 	sysctl_createv(clog, 0, NULL, NULL,
   2234 		       CTLFLAG_PERMANENT,
   2235 		       CTLTYPE_NODE, "net", NULL,
   2236 		       NULL, 0, NULL, 0,
   2237 		       CTL_NET, CTL_EOL);
   2238 	sysctl_createv(clog, 0, NULL, NULL,
   2239 		       CTLFLAG_PERMANENT,
   2240 		       CTLTYPE_NODE, "inet",
   2241 		       SYSCTL_DESCR("PF_INET related settings"),
   2242 		       NULL, 0, NULL, 0,
   2243 		       CTL_NET, PF_INET, CTL_EOL);
   2244 	sysctl_createv(clog, 0, NULL, NULL,
   2245 		       CTLFLAG_PERMANENT,
   2246 		       CTLTYPE_NODE, "ip",
   2247 		       SYSCTL_DESCR("IPv4 related settings"),
   2248 		       NULL, 0, NULL, 0,
   2249 		       CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
   2250 
   2251 	sysctl_createv(clog, 0, NULL, NULL,
   2252 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2253 		       CTLTYPE_INT, "forwarding",
   2254 		       SYSCTL_DESCR("Enable forwarding of INET datagrams"),
   2255 		       NULL, 0, &ipforwarding, 0,
   2256 		       CTL_NET, PF_INET, IPPROTO_IP,
   2257 		       IPCTL_FORWARDING, CTL_EOL);
   2258 	sysctl_createv(clog, 0, NULL, NULL,
   2259 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2260 		       CTLTYPE_INT, "redirect",
   2261 		       SYSCTL_DESCR("Enable sending of ICMP redirect messages"),
   2262 		       NULL, 0, &ipsendredirects, 0,
   2263 		       CTL_NET, PF_INET, IPPROTO_IP,
   2264 		       IPCTL_SENDREDIRECTS, CTL_EOL);
   2265 	sysctl_createv(clog, 0, NULL, NULL,
   2266 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2267 		       CTLTYPE_INT, "ttl",
   2268 		       SYSCTL_DESCR("Default TTL for an INET datagram"),
   2269 		       NULL, 0, &ip_defttl, 0,
   2270 		       CTL_NET, PF_INET, IPPROTO_IP,
   2271 		       IPCTL_DEFTTL, CTL_EOL);
   2272 #ifdef IPCTL_DEFMTU
   2273 	sysctl_createv(clog, 0, NULL, NULL,
   2274 		       CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
   2275 		       CTLTYPE_INT, "mtu",
   2276 		       SYSCTL_DESCR("Default MTA for an INET route"),
   2277 		       NULL, 0, &ip_mtu, 0,
   2278 		       CTL_NET, PF_INET, IPPROTO_IP,
   2279 		       IPCTL_DEFMTU, CTL_EOL);
   2280 #endif /* IPCTL_DEFMTU */
   2281 	sysctl_createv(clog, 0, NULL, NULL,
   2282 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2283 		       CTLTYPE_INT, "forwsrcrt",
   2284 		       SYSCTL_DESCR("Enable forwarding of source-routed "
   2285 				    "datagrams"),
   2286 		       sysctl_net_inet_ip_forwsrcrt, 0, &ip_forwsrcrt, 0,
   2287 		       CTL_NET, PF_INET, IPPROTO_IP,
   2288 		       IPCTL_FORWSRCRT, CTL_EOL);
   2289 	sysctl_createv(clog, 0, NULL, NULL,
   2290 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2291 		       CTLTYPE_INT, "directed-broadcast",
   2292 		       SYSCTL_DESCR("Enable forwarding of broadcast datagrams"),
   2293 		       NULL, 0, &ip_directedbcast, 0,
   2294 		       CTL_NET, PF_INET, IPPROTO_IP,
   2295 		       IPCTL_DIRECTEDBCAST, CTL_EOL);
   2296 	sysctl_createv(clog, 0, NULL, NULL,
   2297 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2298 		       CTLTYPE_INT, "allowsrcrt",
   2299 		       SYSCTL_DESCR("Accept source-routed datagrams"),
   2300 		       NULL, 0, &ip_allowsrcrt, 0,
   2301 		       CTL_NET, PF_INET, IPPROTO_IP,
   2302 		       IPCTL_ALLOWSRCRT, CTL_EOL);
   2303 	sysctl_createv(clog, 0, NULL, NULL,
   2304 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2305 		       CTLTYPE_INT, "subnetsarelocal",
   2306 		       SYSCTL_DESCR("Whether logical subnets are considered "
   2307 				    "local"),
   2308 		       NULL, 0, &subnetsarelocal, 0,
   2309 		       CTL_NET, PF_INET, IPPROTO_IP,
   2310 		       IPCTL_SUBNETSARELOCAL, CTL_EOL);
   2311 	sysctl_createv(clog, 0, NULL, NULL,
   2312 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2313 		       CTLTYPE_INT, "mtudisc",
   2314 		       SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"),
   2315 		       NULL, 0, &ip_mtudisc, 0,
   2316 		       CTL_NET, PF_INET, IPPROTO_IP,
   2317 		       IPCTL_MTUDISC, CTL_EOL);
   2318 	sysctl_createv(clog, 0, NULL, NULL,
   2319 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2320 		       CTLTYPE_INT, "anonportmin",
   2321 		       SYSCTL_DESCR("Lowest ephemeral port number to assign"),
   2322 		       sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
   2323 		       CTL_NET, PF_INET, IPPROTO_IP,
   2324 		       IPCTL_ANONPORTMIN, CTL_EOL);
   2325 	sysctl_createv(clog, 0, NULL, NULL,
   2326 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2327 		       CTLTYPE_INT, "anonportmax",
   2328 		       SYSCTL_DESCR("Highest ephemeral port number to assign"),
   2329 		       sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
   2330 		       CTL_NET, PF_INET, IPPROTO_IP,
   2331 		       IPCTL_ANONPORTMAX, CTL_EOL);
   2332 	sysctl_createv(clog, 0, NULL, NULL,
   2333 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2334 		       CTLTYPE_INT, "mtudisctimeout",
   2335 		       SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"),
   2336 		       sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
   2337 		       CTL_NET, PF_INET, IPPROTO_IP,
   2338 		       IPCTL_MTUDISCTIMEOUT, CTL_EOL);
   2339 #ifdef GATEWAY
   2340 	sysctl_createv(clog, 0, NULL, NULL,
   2341 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2342 		       CTLTYPE_INT, "maxflows",
   2343 		       SYSCTL_DESCR("Number of flows for fast forwarding"),
   2344 		       sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
   2345 		       CTL_NET, PF_INET, IPPROTO_IP,
   2346 		       IPCTL_MAXFLOWS, CTL_EOL);
   2347 	sysctl_createv(clog, 0, NULL, NULL,
   2348 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2349 			CTLTYPE_INT, "hashsize",
   2350 			SYSCTL_DESCR("Size of hash table for fast forwarding (IPv4)"),
   2351 			sysctl_net_inet_ip_hashsize, 0, &ip_hashsize, 0,
   2352 			CTL_NET, PF_INET, IPPROTO_IP,
   2353 			CTL_CREATE, CTL_EOL);
   2354 #endif /* GATEWAY */
   2355 	sysctl_createv(clog, 0, NULL, NULL,
   2356 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2357 		       CTLTYPE_INT, "hostzerobroadcast",
   2358 		       SYSCTL_DESCR("All zeroes address is broadcast address"),
   2359 		       NULL, 0, &hostzeroisbroadcast, 0,
   2360 		       CTL_NET, PF_INET, IPPROTO_IP,
   2361 		       IPCTL_HOSTZEROBROADCAST, CTL_EOL);
   2362 #if NGIF > 0
   2363 	sysctl_createv(clog, 0, NULL, NULL,
   2364 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2365 		       CTLTYPE_INT, "gifttl",
   2366 		       SYSCTL_DESCR("Default TTL for a gif tunnel datagram"),
   2367 		       NULL, 0, &ip_gif_ttl, 0,
   2368 		       CTL_NET, PF_INET, IPPROTO_IP,
   2369 		       IPCTL_GIF_TTL, CTL_EOL);
   2370 #endif /* NGIF */
   2371 #ifndef IPNOPRIVPORTS
   2372 	sysctl_createv(clog, 0, NULL, NULL,
   2373 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2374 		       CTLTYPE_INT, "lowportmin",
   2375 		       SYSCTL_DESCR("Lowest privileged ephemeral port number "
   2376 				    "to assign"),
   2377 		       sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
   2378 		       CTL_NET, PF_INET, IPPROTO_IP,
   2379 		       IPCTL_LOWPORTMIN, CTL_EOL);
   2380 	sysctl_createv(clog, 0, NULL, NULL,
   2381 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2382 		       CTLTYPE_INT, "lowportmax",
   2383 		       SYSCTL_DESCR("Highest privileged ephemeral port number "
   2384 				    "to assign"),
   2385 		       sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
   2386 		       CTL_NET, PF_INET, IPPROTO_IP,
   2387 		       IPCTL_LOWPORTMAX, CTL_EOL);
   2388 #endif /* IPNOPRIVPORTS */
   2389 	sysctl_createv(clog, 0, NULL, NULL,
   2390 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2391 		       CTLTYPE_INT, "maxfragpackets",
   2392 		       SYSCTL_DESCR("Maximum number of fragments to retain for "
   2393 				    "possible reassembly"),
   2394 		       NULL, 0, &ip_maxfragpackets, 0,
   2395 		       CTL_NET, PF_INET, IPPROTO_IP,
   2396 		       IPCTL_MAXFRAGPACKETS, CTL_EOL);
   2397 #if NGRE > 0
   2398 	sysctl_createv(clog, 0, NULL, NULL,
   2399 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2400 		       CTLTYPE_INT, "grettl",
   2401 		       SYSCTL_DESCR("Default TTL for a gre tunnel datagram"),
   2402 		       NULL, 0, &ip_gre_ttl, 0,
   2403 		       CTL_NET, PF_INET, IPPROTO_IP,
   2404 		       IPCTL_GRE_TTL, CTL_EOL);
   2405 #endif /* NGRE */
   2406 	sysctl_createv(clog, 0, NULL, NULL,
   2407 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2408 		       CTLTYPE_INT, "checkinterface",
   2409 		       SYSCTL_DESCR("Enable receive side of Strong ES model "
   2410 				    "from RFC1122"),
   2411 		       NULL, 0, &ip_checkinterface, 0,
   2412 		       CTL_NET, PF_INET, IPPROTO_IP,
   2413 		       IPCTL_CHECKINTERFACE, CTL_EOL);
   2414 	sysctl_createv(clog, 0, NULL, NULL,
   2415 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2416 		       CTLTYPE_INT, "random_id",
   2417 		       SYSCTL_DESCR("Assign random ip_id values"),
   2418 		       NULL, 0, &ip_do_randomid, 0,
   2419 		       CTL_NET, PF_INET, IPPROTO_IP,
   2420 		       IPCTL_RANDOMID, CTL_EOL);
   2421 	sysctl_createv(clog, 0, NULL, NULL,
   2422 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2423 		       CTLTYPE_INT, "do_loopback_cksum",
   2424 		       SYSCTL_DESCR("Perform IP checksum on loopback"),
   2425 		       NULL, 0, &ip_do_loopback_cksum, 0,
   2426 		       CTL_NET, PF_INET, IPPROTO_IP,
   2427 		       IPCTL_LOOPBACKCKSUM, CTL_EOL);
   2428 	sysctl_createv(clog, 0, NULL, NULL,
   2429 		       CTLFLAG_PERMANENT,
   2430 		       CTLTYPE_STRUCT, "stats",
   2431 		       SYSCTL_DESCR("IP statistics"),
   2432 		       sysctl_net_inet_ip_stats, 0, NULL, 0,
   2433 		       CTL_NET, PF_INET, IPPROTO_IP, IPCTL_STATS,
   2434 		       CTL_EOL);
   2435 }
   2436 
   2437 void
   2438 ip_statinc(u_int stat)
   2439 {
   2440 
   2441 	KASSERT(stat < IP_NSTATS);
   2442 	IP_STATINC(stat);
   2443 }
   2444