ip_input.c revision 1.267 1 /* $NetBSD: ip_input.c,v 1.267 2008/04/23 06:09:04 thorpej Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.267 2008/04/23 06:09:04 thorpej Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_gateway.h"
105 #include "opt_pfil_hooks.h"
106 #include "opt_ipsec.h"
107 #include "opt_mrouting.h"
108 #include "opt_mbuftrace.h"
109 #include "opt_inet_csum.h"
110
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/domain.h>
116 #include <sys/protosw.h>
117 #include <sys/socket.h>
118 #include <sys/socketvar.h>
119 #include <sys/errno.h>
120 #include <sys/time.h>
121 #include <sys/kernel.h>
122 #include <sys/pool.h>
123 #include <sys/sysctl.h>
124 #include <sys/kauth.h>
125
126 #include <net/if.h>
127 #include <net/if_dl.h>
128 #include <net/route.h>
129 #include <net/pfil.h>
130
131 #include <netinet/in.h>
132 #include <netinet/in_systm.h>
133 #include <netinet/ip.h>
134 #include <netinet/in_pcb.h>
135 #include <netinet/in_proto.h>
136 #include <netinet/in_var.h>
137 #include <netinet/ip_var.h>
138 #include <netinet/ip_private.h>
139 #include <netinet/ip_icmp.h>
140 /* just for gif_ttl */
141 #include <netinet/in_gif.h>
142 #include "gif.h"
143 #include <net/if_gre.h>
144 #include "gre.h"
145
146 #ifdef MROUTING
147 #include <netinet/ip_mroute.h>
148 #endif
149
150 #ifdef IPSEC
151 #include <netinet6/ipsec.h>
152 #include <netinet6/ipsec_private.h>
153 #include <netkey/key.h>
154 #endif
155 #ifdef FAST_IPSEC
156 #include <netipsec/ipsec.h>
157 #include <netipsec/key.h>
158 #endif /* FAST_IPSEC*/
159
160 #ifndef IPFORWARDING
161 #ifdef GATEWAY
162 #define IPFORWARDING 1 /* forward IP packets not for us */
163 #else /* GATEWAY */
164 #define IPFORWARDING 0 /* don't forward IP packets not for us */
165 #endif /* GATEWAY */
166 #endif /* IPFORWARDING */
167 #ifndef IPSENDREDIRECTS
168 #define IPSENDREDIRECTS 1
169 #endif
170 #ifndef IPFORWSRCRT
171 #define IPFORWSRCRT 1 /* forward source-routed packets */
172 #endif
173 #ifndef IPALLOWSRCRT
174 #define IPALLOWSRCRT 1 /* allow source-routed packets */
175 #endif
176 #ifndef IPMTUDISC
177 #define IPMTUDISC 1
178 #endif
179 #ifndef IPMTUDISCTIMEOUT
180 #define IPMTUDISCTIMEOUT (10 * 60) /* as per RFC 1191 */
181 #endif
182
183 /*
184 * Note: DIRECTED_BROADCAST is handled this way so that previous
185 * configuration using this option will Just Work.
186 */
187 #ifndef IPDIRECTEDBCAST
188 #ifdef DIRECTED_BROADCAST
189 #define IPDIRECTEDBCAST 1
190 #else
191 #define IPDIRECTEDBCAST 0
192 #endif /* DIRECTED_BROADCAST */
193 #endif /* IPDIRECTEDBCAST */
194 int ipforwarding = IPFORWARDING;
195 int ipsendredirects = IPSENDREDIRECTS;
196 int ip_defttl = IPDEFTTL;
197 int ip_forwsrcrt = IPFORWSRCRT;
198 int ip_directedbcast = IPDIRECTEDBCAST;
199 int ip_allowsrcrt = IPALLOWSRCRT;
200 int ip_mtudisc = IPMTUDISC;
201 int ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
202 #ifdef DIAGNOSTIC
203 int ipprintfs = 0;
204 #endif
205
206 int ip_do_randomid = 0;
207
208 /*
209 * XXX - Setting ip_checkinterface mostly implements the receive side of
210 * the Strong ES model described in RFC 1122, but since the routing table
211 * and transmit implementation do not implement the Strong ES model,
212 * setting this to 1 results in an odd hybrid.
213 *
214 * XXX - ip_checkinterface currently must be disabled if you use ipnat
215 * to translate the destination address to another local interface.
216 *
217 * XXX - ip_checkinterface must be disabled if you add IP aliases
218 * to the loopback interface instead of the interface where the
219 * packets for those addresses are received.
220 */
221 int ip_checkinterface = 0;
222
223
224 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
225
226 int ipqmaxlen = IFQ_MAXLEN;
227 u_long in_ifaddrhash; /* size of hash table - 1 */
228 int in_ifaddrentries; /* total number of addrs */
229 struct in_ifaddrhead in_ifaddrhead;
230 struct in_ifaddrhashhead *in_ifaddrhashtbl;
231 u_long in_multihash; /* size of hash table - 1 */
232 int in_multientries; /* total number of addrs */
233 struct in_multihashhead *in_multihashtbl;
234 struct ifqueue ipintrq;
235 uint16_t ip_id;
236
237 percpu_t *ipstat_percpu;
238
239 #ifdef PFIL_HOOKS
240 struct pfil_head inet_pfil_hook;
241 #endif
242
243 /*
244 * Cached copy of nmbclusters. If nbclusters is different,
245 * recalculate IP parameters derived from nmbclusters.
246 */
247 static int ip_nmbclusters; /* copy of nmbclusters */
248 static void ip_nmbclusters_changed(void); /* recalc limits */
249
250 #define CHECK_NMBCLUSTER_PARAMS() \
251 do { \
252 if (__predict_false(ip_nmbclusters != nmbclusters)) \
253 ip_nmbclusters_changed(); \
254 } while (/*CONSTCOND*/0)
255
256 /* IP datagram reassembly queues (hashed) */
257 #define IPREASS_NHASH_LOG2 6
258 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
259 #define IPREASS_HMASK (IPREASS_NHASH - 1)
260 #define IPREASS_HASH(x,y) \
261 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
262 struct ipqhead ipq[IPREASS_NHASH];
263 int ipq_locked;
264 static int ip_nfragpackets; /* packets in reass queue */
265 static int ip_nfrags; /* total fragments in reass queues */
266
267 int ip_maxfragpackets = 200; /* limit on packets. XXX sysctl */
268 int ip_maxfrags; /* limit on fragments. XXX sysctl */
269
270
271 /*
272 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
273 * IP reassembly queue buffer managment.
274 *
275 * We keep a count of total IP fragments (NB: not fragmented packets!)
276 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
277 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
278 * total fragments in reassembly queues.This AIMD policy avoids
279 * repeatedly deleting single packets under heavy fragmentation load
280 * (e.g., from lossy NFS peers).
281 */
282 static u_int ip_reass_ttl_decr(u_int ticks);
283 static void ip_reass_drophalf(void);
284
285
286 static inline int ipq_lock_try(void);
287 static inline void ipq_unlock(void);
288
289 static inline int
290 ipq_lock_try(void)
291 {
292 int s;
293
294 /*
295 * Use splvm() -- we're blocking things that would cause
296 * mbuf allocation.
297 */
298 s = splvm();
299 if (ipq_locked) {
300 splx(s);
301 return (0);
302 }
303 ipq_locked = 1;
304 splx(s);
305 return (1);
306 }
307
308 static inline void
309 ipq_unlock(void)
310 {
311 int s;
312
313 s = splvm();
314 ipq_locked = 0;
315 splx(s);
316 }
317
318 #ifdef DIAGNOSTIC
319 #define IPQ_LOCK() \
320 do { \
321 if (ipq_lock_try() == 0) { \
322 printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
323 panic("ipq_lock"); \
324 } \
325 } while (/*CONSTCOND*/ 0)
326 #define IPQ_LOCK_CHECK() \
327 do { \
328 if (ipq_locked == 0) { \
329 printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
330 panic("ipq lock check"); \
331 } \
332 } while (/*CONSTCOND*/ 0)
333 #else
334 #define IPQ_LOCK() (void) ipq_lock_try()
335 #define IPQ_LOCK_CHECK() /* nothing */
336 #endif
337
338 #define IPQ_UNLOCK() ipq_unlock()
339
340 POOL_INIT(inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", NULL,
341 IPL_SOFTNET);
342 POOL_INIT(ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl", NULL,
343 IPL_VM);
344
345 #ifdef INET_CSUM_COUNTERS
346 #include <sys/device.h>
347
348 struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
349 NULL, "inet", "hwcsum bad");
350 struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
351 NULL, "inet", "hwcsum ok");
352 struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
353 NULL, "inet", "swcsum");
354
355 #define INET_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
356
357 EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
358 EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
359 EVCNT_ATTACH_STATIC(ip_swcsum);
360
361 #else
362
363 #define INET_CSUM_COUNTER_INCR(ev) /* nothing */
364
365 #endif /* INET_CSUM_COUNTERS */
366
367 /*
368 * We need to save the IP options in case a protocol wants to respond
369 * to an incoming packet over the same route if the packet got here
370 * using IP source routing. This allows connection establishment and
371 * maintenance when the remote end is on a network that is not known
372 * to us.
373 */
374 int ip_nhops = 0;
375 static struct ip_srcrt {
376 struct in_addr dst; /* final destination */
377 char nop; /* one NOP to align */
378 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
379 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
380 } ip_srcrt;
381
382 static void save_rte(u_char *, struct in_addr);
383
384 #ifdef MBUFTRACE
385 struct mowner ip_rx_mowner = MOWNER_INIT("internet", "rx");
386 struct mowner ip_tx_mowner = MOWNER_INIT("internet", "tx");
387 #endif
388
389 /*
390 * Compute IP limits derived from the value of nmbclusters.
391 */
392 static void
393 ip_nmbclusters_changed(void)
394 {
395 ip_maxfrags = nmbclusters / 4;
396 ip_nmbclusters = nmbclusters;
397 }
398
399 /*
400 * IP initialization: fill in IP protocol switch table.
401 * All protocols not implemented in kernel go to raw IP protocol handler.
402 */
403 void
404 ip_init(void)
405 {
406 const struct protosw *pr;
407 int i;
408
409 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
410 if (pr == 0)
411 panic("ip_init");
412 for (i = 0; i < IPPROTO_MAX; i++)
413 ip_protox[i] = pr - inetsw;
414 for (pr = inetdomain.dom_protosw;
415 pr < inetdomain.dom_protoswNPROTOSW; pr++)
416 if (pr->pr_domain->dom_family == PF_INET &&
417 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
418 ip_protox[pr->pr_protocol] = pr - inetsw;
419
420 for (i = 0; i < IPREASS_NHASH; i++)
421 LIST_INIT(&ipq[i]);
422
423 ip_initid();
424 ip_id = time_second & 0xfffff;
425
426 ipintrq.ifq_maxlen = ipqmaxlen;
427 ip_nmbclusters_changed();
428
429 TAILQ_INIT(&in_ifaddrhead);
430 in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IFADDR,
431 M_WAITOK, &in_ifaddrhash);
432 in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IPMADDR,
433 M_WAITOK, &in_multihash);
434 ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
435 #ifdef GATEWAY
436 ipflow_init(ip_hashsize);
437 #endif
438
439 #ifdef PFIL_HOOKS
440 /* Register our Packet Filter hook. */
441 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
442 inet_pfil_hook.ph_af = AF_INET;
443 i = pfil_head_register(&inet_pfil_hook);
444 if (i != 0)
445 printf("ip_init: WARNING: unable to register pfil hook, "
446 "error %d\n", i);
447 #endif /* PFIL_HOOKS */
448
449 #ifdef MBUFTRACE
450 MOWNER_ATTACH(&ip_tx_mowner);
451 MOWNER_ATTACH(&ip_rx_mowner);
452 #endif /* MBUFTRACE */
453
454 ipstat_percpu = percpu_alloc(sizeof(uint64_t) * IP_NSTATS);
455 }
456
457 struct sockaddr_in ipaddr = {
458 .sin_len = sizeof(ipaddr),
459 .sin_family = AF_INET,
460 };
461 struct route ipforward_rt;
462
463 /*
464 * IP software interrupt routine
465 */
466 void
467 ipintr(void)
468 {
469 int s;
470 struct mbuf *m;
471
472 while (!IF_IS_EMPTY(&ipintrq)) {
473 s = splnet();
474 IF_DEQUEUE(&ipintrq, m);
475 splx(s);
476 if (m == 0)
477 return;
478 ip_input(m);
479 }
480 }
481
482 /*
483 * Ip input routine. Checksum and byte swap header. If fragmented
484 * try to reassemble. Process options. Pass to next level.
485 */
486 void
487 ip_input(struct mbuf *m)
488 {
489 struct ip *ip = NULL;
490 struct ipq *fp;
491 struct in_ifaddr *ia;
492 struct ifaddr *ifa;
493 struct ipqent *ipqe;
494 int hlen = 0, mff, len;
495 int downmatch;
496 int checkif;
497 int srcrt = 0;
498 int s;
499 u_int hash;
500 #ifdef FAST_IPSEC
501 struct m_tag *mtag;
502 struct tdb_ident *tdbi;
503 struct secpolicy *sp;
504 int error;
505 #endif /* FAST_IPSEC */
506
507 MCLAIM(m, &ip_rx_mowner);
508 #ifdef DIAGNOSTIC
509 if ((m->m_flags & M_PKTHDR) == 0)
510 panic("ipintr no HDR");
511 #endif
512
513 /*
514 * If no IP addresses have been set yet but the interfaces
515 * are receiving, can't do anything with incoming packets yet.
516 */
517 if (TAILQ_FIRST(&in_ifaddrhead) == 0)
518 goto bad;
519 IP_STATINC(IP_STAT_TOTAL);
520 /*
521 * If the IP header is not aligned, slurp it up into a new
522 * mbuf with space for link headers, in the event we forward
523 * it. Otherwise, if it is aligned, make sure the entire
524 * base IP header is in the first mbuf of the chain.
525 */
526 if (IP_HDR_ALIGNED_P(mtod(m, void *)) == 0) {
527 if ((m = m_copyup(m, sizeof(struct ip),
528 (max_linkhdr + 3) & ~3)) == NULL) {
529 /* XXXJRT new stat, please */
530 IP_STATINC(IP_STAT_TOOSMALL);
531 return;
532 }
533 } else if (__predict_false(m->m_len < sizeof (struct ip))) {
534 if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
535 IP_STATINC(IP_STAT_TOOSMALL);
536 return;
537 }
538 }
539 ip = mtod(m, struct ip *);
540 if (ip->ip_v != IPVERSION) {
541 IP_STATINC(IP_STAT_BADVERS);
542 goto bad;
543 }
544 hlen = ip->ip_hl << 2;
545 if (hlen < sizeof(struct ip)) { /* minimum header length */
546 IP_STATINC(IP_STAT_BADHLEN);
547 goto bad;
548 }
549 if (hlen > m->m_len) {
550 if ((m = m_pullup(m, hlen)) == 0) {
551 IP_STATINC(IP_STAT_BADHLEN);
552 return;
553 }
554 ip = mtod(m, struct ip *);
555 }
556
557 /*
558 * RFC1122: packets with a multicast source address are
559 * not allowed.
560 */
561 if (IN_MULTICAST(ip->ip_src.s_addr)) {
562 IP_STATINC(IP_STAT_BADADDR);
563 goto bad;
564 }
565
566 /* 127/8 must not appear on wire - RFC1122 */
567 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
568 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
569 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
570 IP_STATINC(IP_STAT_BADADDR);
571 goto bad;
572 }
573 }
574
575 switch (m->m_pkthdr.csum_flags &
576 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
577 M_CSUM_IPv4_BAD)) {
578 case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
579 INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
580 goto badcsum;
581
582 case M_CSUM_IPv4:
583 /* Checksum was okay. */
584 INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
585 break;
586
587 default:
588 /*
589 * Must compute it ourselves. Maybe skip checksum on
590 * loopback interfaces.
591 */
592 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
593 IFF_LOOPBACK) || ip_do_loopback_cksum)) {
594 INET_CSUM_COUNTER_INCR(&ip_swcsum);
595 if (in_cksum(m, hlen) != 0)
596 goto badcsum;
597 }
598 break;
599 }
600
601 /* Retrieve the packet length. */
602 len = ntohs(ip->ip_len);
603
604 /*
605 * Check for additional length bogosity
606 */
607 if (len < hlen) {
608 IP_STATINC(IP_STAT_BADLEN);
609 goto bad;
610 }
611
612 /*
613 * Check that the amount of data in the buffers
614 * is as at least much as the IP header would have us expect.
615 * Trim mbufs if longer than we expect.
616 * Drop packet if shorter than we expect.
617 */
618 if (m->m_pkthdr.len < len) {
619 IP_STATINC(IP_STAT_TOOSHORT);
620 goto bad;
621 }
622 if (m->m_pkthdr.len > len) {
623 if (m->m_len == m->m_pkthdr.len) {
624 m->m_len = len;
625 m->m_pkthdr.len = len;
626 } else
627 m_adj(m, len - m->m_pkthdr.len);
628 }
629
630 #if defined(IPSEC)
631 /* ipflow (IP fast forwarding) is not compatible with IPsec. */
632 m->m_flags &= ~M_CANFASTFWD;
633 #else
634 /*
635 * Assume that we can create a fast-forward IP flow entry
636 * based on this packet.
637 */
638 m->m_flags |= M_CANFASTFWD;
639 #endif
640
641 #ifdef PFIL_HOOKS
642 /*
643 * Run through list of hooks for input packets. If there are any
644 * filters which require that additional packets in the flow are
645 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
646 * Note that filters must _never_ set this flag, as another filter
647 * in the list may have previously cleared it.
648 */
649 /*
650 * let ipfilter look at packet on the wire,
651 * not the decapsulated packet.
652 */
653 #ifdef IPSEC
654 if (!ipsec_getnhist(m))
655 #elif defined(FAST_IPSEC)
656 if (!ipsec_indone(m))
657 #else
658 if (1)
659 #endif
660 {
661 struct in_addr odst;
662
663 odst = ip->ip_dst;
664 if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
665 PFIL_IN) != 0)
666 return;
667 if (m == NULL)
668 return;
669 ip = mtod(m, struct ip *);
670 hlen = ip->ip_hl << 2;
671 /*
672 * XXX The setting of "srcrt" here is to prevent ip_forward()
673 * from generating ICMP redirects for packets that have
674 * been redirected by a hook back out on to the same LAN that
675 * they came from and is not an indication that the packet
676 * is being inffluenced by source routing options. This
677 * allows things like
678 * "rdr tlp0 0/0 port 80 -> 1.1.1.200 3128 tcp"
679 * where tlp0 is both on the 1.1.1.0/24 network and is the
680 * default route for hosts on 1.1.1.0/24. Of course this
681 * also requires a "map tlp0 ..." to complete the story.
682 * One might argue whether or not this kind of network config.
683 * should be supported in this manner...
684 */
685 srcrt = (odst.s_addr != ip->ip_dst.s_addr);
686 }
687 #endif /* PFIL_HOOKS */
688
689 #ifdef ALTQ
690 /* XXX Temporary until ALTQ is changed to use a pfil hook */
691 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
692 /* packet dropped by traffic conditioner */
693 return;
694 }
695 #endif
696
697 /*
698 * Process options and, if not destined for us,
699 * ship it on. ip_dooptions returns 1 when an
700 * error was detected (causing an icmp message
701 * to be sent and the original packet to be freed).
702 */
703 ip_nhops = 0; /* for source routed packets */
704 if (hlen > sizeof (struct ip) && ip_dooptions(m))
705 return;
706
707 /*
708 * Enable a consistency check between the destination address
709 * and the arrival interface for a unicast packet (the RFC 1122
710 * strong ES model) if IP forwarding is disabled and the packet
711 * is not locally generated.
712 *
713 * XXX - Checking also should be disabled if the destination
714 * address is ipnat'ed to a different interface.
715 *
716 * XXX - Checking is incompatible with IP aliases added
717 * to the loopback interface instead of the interface where
718 * the packets are received.
719 *
720 * XXX - We need to add a per ifaddr flag for this so that
721 * we get finer grain control.
722 */
723 checkif = ip_checkinterface && (ipforwarding == 0) &&
724 (m->m_pkthdr.rcvif != NULL) &&
725 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
726
727 /*
728 * Check our list of addresses, to see if the packet is for us.
729 *
730 * Traditional 4.4BSD did not consult IFF_UP at all.
731 * The behavior here is to treat addresses on !IFF_UP interface
732 * as not mine.
733 */
734 downmatch = 0;
735 LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
736 if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
737 if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
738 continue;
739 if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
740 break;
741 else
742 downmatch++;
743 }
744 }
745 if (ia != NULL)
746 goto ours;
747 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
748 IFADDR_FOREACH(ifa, m->m_pkthdr.rcvif) {
749 if (ifa->ifa_addr->sa_family != AF_INET)
750 continue;
751 ia = ifatoia(ifa);
752 if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
753 in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
754 /*
755 * Look for all-0's host part (old broadcast addr),
756 * either for subnet or net.
757 */
758 ip->ip_dst.s_addr == ia->ia_subnet ||
759 ip->ip_dst.s_addr == ia->ia_net)
760 goto ours;
761 /*
762 * An interface with IP address zero accepts
763 * all packets that arrive on that interface.
764 */
765 if (in_nullhost(ia->ia_addr.sin_addr))
766 goto ours;
767 }
768 }
769 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
770 struct in_multi *inm;
771 #ifdef MROUTING
772 extern struct socket *ip_mrouter;
773
774 if (ip_mrouter) {
775 /*
776 * If we are acting as a multicast router, all
777 * incoming multicast packets are passed to the
778 * kernel-level multicast forwarding function.
779 * The packet is returned (relatively) intact; if
780 * ip_mforward() returns a non-zero value, the packet
781 * must be discarded, else it may be accepted below.
782 *
783 * (The IP ident field is put in the same byte order
784 * as expected when ip_mforward() is called from
785 * ip_output().)
786 */
787 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
788 IP_STATINC(IP_STAT_CANTFORWARD);
789 m_freem(m);
790 return;
791 }
792
793 /*
794 * The process-level routing demon needs to receive
795 * all multicast IGMP packets, whether or not this
796 * host belongs to their destination groups.
797 */
798 if (ip->ip_p == IPPROTO_IGMP)
799 goto ours;
800 IP_STATINC(IP_STAT_CANTFORWARD);
801 }
802 #endif
803 /*
804 * See if we belong to the destination multicast group on the
805 * arrival interface.
806 */
807 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
808 if (inm == NULL) {
809 IP_STATINC(IP_STAT_CANTFORWARD);
810 m_freem(m);
811 return;
812 }
813 goto ours;
814 }
815 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
816 in_nullhost(ip->ip_dst))
817 goto ours;
818
819 /*
820 * Not for us; forward if possible and desirable.
821 */
822 if (ipforwarding == 0) {
823 IP_STATINC(IP_STAT_CANTFORWARD);
824 m_freem(m);
825 } else {
826 /*
827 * If ip_dst matched any of my address on !IFF_UP interface,
828 * and there's no IFF_UP interface that matches ip_dst,
829 * send icmp unreach. Forwarding it will result in in-kernel
830 * forwarding loop till TTL goes to 0.
831 */
832 if (downmatch) {
833 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
834 IP_STATINC(IP_STAT_CANTFORWARD);
835 return;
836 }
837 #ifdef IPSEC
838 if (ipsec4_in_reject(m, NULL)) {
839 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
840 goto bad;
841 }
842 #endif
843 #ifdef FAST_IPSEC
844 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
845 s = splsoftnet();
846 if (mtag != NULL) {
847 tdbi = (struct tdb_ident *)(mtag + 1);
848 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
849 } else {
850 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
851 IP_FORWARDING, &error);
852 }
853 if (sp == NULL) { /* NB: can happen if error */
854 splx(s);
855 /*XXX error stat???*/
856 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
857 goto bad;
858 }
859
860 /*
861 * Check security policy against packet attributes.
862 */
863 error = ipsec_in_reject(sp, m);
864 KEY_FREESP(&sp);
865 splx(s);
866 if (error) {
867 IP_STATINC(IP_STAT_CANTFORWARD);
868 goto bad;
869 }
870
871 /*
872 * Peek at the outbound SP for this packet to determine if
873 * it's a Fast Forward candidate.
874 */
875 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
876 if (mtag != NULL)
877 m->m_flags &= ~M_CANFASTFWD;
878 else {
879 s = splsoftnet();
880 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
881 (IP_FORWARDING |
882 (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
883 &error, NULL);
884 if (sp != NULL) {
885 m->m_flags &= ~M_CANFASTFWD;
886 KEY_FREESP(&sp);
887 }
888 splx(s);
889 }
890 #endif /* FAST_IPSEC */
891
892 ip_forward(m, srcrt);
893 }
894 return;
895
896 ours:
897 /*
898 * If offset or IP_MF are set, must reassemble.
899 * Otherwise, nothing need be done.
900 * (We could look in the reassembly queue to see
901 * if the packet was previously fragmented,
902 * but it's not worth the time; just let them time out.)
903 */
904 if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
905 uint16_t off;
906 /*
907 * Prevent TCP blind data attacks by not allowing non-initial
908 * fragments to start at less than 68 bytes (minimal fragment
909 * size) and making sure the first fragment is at least 68
910 * bytes.
911 */
912 off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
913 if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
914 IP_STATINC(IP_STAT_BADFRAGS);
915 goto bad;
916 }
917 /*
918 * Look for queue of fragments
919 * of this datagram.
920 */
921 IPQ_LOCK();
922 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
923 LIST_FOREACH(fp, &ipq[hash], ipq_q) {
924 if (ip->ip_id == fp->ipq_id &&
925 in_hosteq(ip->ip_src, fp->ipq_src) &&
926 in_hosteq(ip->ip_dst, fp->ipq_dst) &&
927 ip->ip_p == fp->ipq_p) {
928 /*
929 * Make sure the TOS is matches previous
930 * fragments.
931 */
932 if (ip->ip_tos != fp->ipq_tos) {
933 IP_STATINC(IP_STAT_BADFRAGS);
934 goto bad;
935 }
936 goto found;
937 }
938 }
939 fp = 0;
940 found:
941
942 /*
943 * Adjust ip_len to not reflect header,
944 * set ipqe_mff if more fragments are expected,
945 * convert offset of this to bytes.
946 */
947 ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
948 mff = (ip->ip_off & htons(IP_MF)) != 0;
949 if (mff) {
950 /*
951 * Make sure that fragments have a data length
952 * that's a non-zero multiple of 8 bytes.
953 */
954 if (ntohs(ip->ip_len) == 0 ||
955 (ntohs(ip->ip_len) & 0x7) != 0) {
956 IP_STATINC(IP_STAT_BADFRAGS);
957 IPQ_UNLOCK();
958 goto bad;
959 }
960 }
961 ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
962
963 /*
964 * If datagram marked as having more fragments
965 * or if this is not the first fragment,
966 * attempt reassembly; if it succeeds, proceed.
967 */
968 if (mff || ip->ip_off != htons(0)) {
969 IP_STATINC(IP_STAT_FRAGMENTS);
970 s = splvm();
971 ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
972 splx(s);
973 if (ipqe == NULL) {
974 IP_STATINC(IP_STAT_RCVMEMDROP);
975 IPQ_UNLOCK();
976 goto bad;
977 }
978 ipqe->ipqe_mff = mff;
979 ipqe->ipqe_m = m;
980 ipqe->ipqe_ip = ip;
981 m = ip_reass(ipqe, fp, &ipq[hash]);
982 if (m == 0) {
983 IPQ_UNLOCK();
984 return;
985 }
986 IP_STATINC(IP_STAT_REASSEMBLED);
987 ip = mtod(m, struct ip *);
988 hlen = ip->ip_hl << 2;
989 ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
990 } else
991 if (fp)
992 ip_freef(fp);
993 IPQ_UNLOCK();
994 }
995
996 #if defined(IPSEC)
997 /*
998 * enforce IPsec policy checking if we are seeing last header.
999 * note that we do not visit this with protocols with pcb layer
1000 * code - like udp/tcp/raw ip.
1001 */
1002 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
1003 ipsec4_in_reject(m, NULL)) {
1004 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1005 goto bad;
1006 }
1007 #endif
1008 #ifdef FAST_IPSEC
1009 /*
1010 * enforce IPsec policy checking if we are seeing last header.
1011 * note that we do not visit this with protocols with pcb layer
1012 * code - like udp/tcp/raw ip.
1013 */
1014 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
1015 /*
1016 * Check if the packet has already had IPsec processing
1017 * done. If so, then just pass it along. This tag gets
1018 * set during AH, ESP, etc. input handling, before the
1019 * packet is returned to the ip input queue for delivery.
1020 */
1021 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1022 s = splsoftnet();
1023 if (mtag != NULL) {
1024 tdbi = (struct tdb_ident *)(mtag + 1);
1025 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1026 } else {
1027 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1028 IP_FORWARDING, &error);
1029 }
1030 if (sp != NULL) {
1031 /*
1032 * Check security policy against packet attributes.
1033 */
1034 error = ipsec_in_reject(sp, m);
1035 KEY_FREESP(&sp);
1036 } else {
1037 /* XXX error stat??? */
1038 error = EINVAL;
1039 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1040 }
1041 splx(s);
1042 if (error)
1043 goto bad;
1044 }
1045 #endif /* FAST_IPSEC */
1046
1047 /*
1048 * Switch out to protocol's input routine.
1049 */
1050 #if IFA_STATS
1051 if (ia && ip)
1052 ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
1053 #endif
1054 IP_STATINC(IP_STAT_DELIVERED);
1055 {
1056 int off = hlen, nh = ip->ip_p;
1057
1058 (*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
1059 return;
1060 }
1061 bad:
1062 m_freem(m);
1063 return;
1064
1065 badcsum:
1066 IP_STATINC(IP_STAT_BADSUM);
1067 m_freem(m);
1068 }
1069
1070 /*
1071 * Take incoming datagram fragment and try to
1072 * reassemble it into whole datagram. If a chain for
1073 * reassembly of this datagram already exists, then it
1074 * is given as fp; otherwise have to make a chain.
1075 */
1076 struct mbuf *
1077 ip_reass(struct ipqent *ipqe, struct ipq *fp, struct ipqhead *ipqhead)
1078 {
1079 struct mbuf *m = ipqe->ipqe_m;
1080 struct ipqent *nq, *p, *q;
1081 struct ip *ip;
1082 struct mbuf *t;
1083 int hlen = ipqe->ipqe_ip->ip_hl << 2;
1084 int i, next, s;
1085
1086 IPQ_LOCK_CHECK();
1087
1088 /*
1089 * Presence of header sizes in mbufs
1090 * would confuse code below.
1091 */
1092 m->m_data += hlen;
1093 m->m_len -= hlen;
1094
1095 #ifdef notyet
1096 /* make sure fragment limit is up-to-date */
1097 CHECK_NMBCLUSTER_PARAMS();
1098
1099 /* If we have too many fragments, drop the older half. */
1100 if (ip_nfrags >= ip_maxfrags)
1101 ip_reass_drophalf(void);
1102 #endif
1103
1104 /*
1105 * We are about to add a fragment; increment frag count.
1106 */
1107 ip_nfrags++;
1108
1109 /*
1110 * If first fragment to arrive, create a reassembly queue.
1111 */
1112 if (fp == 0) {
1113 /*
1114 * Enforce upper bound on number of fragmented packets
1115 * for which we attempt reassembly;
1116 * If maxfrag is 0, never accept fragments.
1117 * If maxfrag is -1, accept all fragments without limitation.
1118 */
1119 if (ip_maxfragpackets < 0)
1120 ;
1121 else if (ip_nfragpackets >= ip_maxfragpackets)
1122 goto dropfrag;
1123 ip_nfragpackets++;
1124 MALLOC(fp, struct ipq *, sizeof (struct ipq),
1125 M_FTABLE, M_NOWAIT);
1126 if (fp == NULL)
1127 goto dropfrag;
1128 LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
1129 fp->ipq_nfrags = 1;
1130 fp->ipq_ttl = IPFRAGTTL;
1131 fp->ipq_p = ipqe->ipqe_ip->ip_p;
1132 fp->ipq_id = ipqe->ipqe_ip->ip_id;
1133 fp->ipq_tos = ipqe->ipqe_ip->ip_tos;
1134 TAILQ_INIT(&fp->ipq_fragq);
1135 fp->ipq_src = ipqe->ipqe_ip->ip_src;
1136 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
1137 p = NULL;
1138 goto insert;
1139 } else {
1140 fp->ipq_nfrags++;
1141 }
1142
1143 /*
1144 * Find a segment which begins after this one does.
1145 */
1146 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1147 p = q, q = TAILQ_NEXT(q, ipqe_q))
1148 if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
1149 break;
1150
1151 /*
1152 * If there is a preceding segment, it may provide some of
1153 * our data already. If so, drop the data from the incoming
1154 * segment. If it provides all of our data, drop us.
1155 */
1156 if (p != NULL) {
1157 i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
1158 ntohs(ipqe->ipqe_ip->ip_off);
1159 if (i > 0) {
1160 if (i >= ntohs(ipqe->ipqe_ip->ip_len))
1161 goto dropfrag;
1162 m_adj(ipqe->ipqe_m, i);
1163 ipqe->ipqe_ip->ip_off =
1164 htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
1165 ipqe->ipqe_ip->ip_len =
1166 htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
1167 }
1168 }
1169
1170 /*
1171 * While we overlap succeeding segments trim them or,
1172 * if they are completely covered, dequeue them.
1173 */
1174 for (; q != NULL &&
1175 ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
1176 ntohs(q->ipqe_ip->ip_off); q = nq) {
1177 i = (ntohs(ipqe->ipqe_ip->ip_off) +
1178 ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
1179 if (i < ntohs(q->ipqe_ip->ip_len)) {
1180 q->ipqe_ip->ip_len =
1181 htons(ntohs(q->ipqe_ip->ip_len) - i);
1182 q->ipqe_ip->ip_off =
1183 htons(ntohs(q->ipqe_ip->ip_off) + i);
1184 m_adj(q->ipqe_m, i);
1185 break;
1186 }
1187 nq = TAILQ_NEXT(q, ipqe_q);
1188 m_freem(q->ipqe_m);
1189 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1190 s = splvm();
1191 pool_put(&ipqent_pool, q);
1192 splx(s);
1193 fp->ipq_nfrags--;
1194 ip_nfrags--;
1195 }
1196
1197 insert:
1198 /*
1199 * Stick new segment in its place;
1200 * check for complete reassembly.
1201 */
1202 if (p == NULL) {
1203 TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
1204 } else {
1205 TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
1206 }
1207 next = 0;
1208 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1209 p = q, q = TAILQ_NEXT(q, ipqe_q)) {
1210 if (ntohs(q->ipqe_ip->ip_off) != next)
1211 return (0);
1212 next += ntohs(q->ipqe_ip->ip_len);
1213 }
1214 if (p->ipqe_mff)
1215 return (0);
1216
1217 /*
1218 * Reassembly is complete. Check for a bogus message size and
1219 * concatenate fragments.
1220 */
1221 q = TAILQ_FIRST(&fp->ipq_fragq);
1222 ip = q->ipqe_ip;
1223 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
1224 IP_STATINC(IP_STAT_TOOLONG);
1225 ip_freef(fp);
1226 return (0);
1227 }
1228 m = q->ipqe_m;
1229 t = m->m_next;
1230 m->m_next = 0;
1231 m_cat(m, t);
1232 nq = TAILQ_NEXT(q, ipqe_q);
1233 s = splvm();
1234 pool_put(&ipqent_pool, q);
1235 splx(s);
1236 for (q = nq; q != NULL; q = nq) {
1237 t = q->ipqe_m;
1238 nq = TAILQ_NEXT(q, ipqe_q);
1239 s = splvm();
1240 pool_put(&ipqent_pool, q);
1241 splx(s);
1242 m_cat(m, t);
1243 }
1244 ip_nfrags -= fp->ipq_nfrags;
1245
1246 /*
1247 * Create header for new ip packet by
1248 * modifying header of first packet;
1249 * dequeue and discard fragment reassembly header.
1250 * Make header visible.
1251 */
1252 ip->ip_len = htons(next);
1253 ip->ip_src = fp->ipq_src;
1254 ip->ip_dst = fp->ipq_dst;
1255 LIST_REMOVE(fp, ipq_q);
1256 FREE(fp, M_FTABLE);
1257 ip_nfragpackets--;
1258 m->m_len += (ip->ip_hl << 2);
1259 m->m_data -= (ip->ip_hl << 2);
1260 /* some debugging cruft by sklower, below, will go away soon */
1261 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1262 int plen = 0;
1263 for (t = m; t; t = t->m_next)
1264 plen += t->m_len;
1265 m->m_pkthdr.len = plen;
1266 m->m_pkthdr.csum_flags = 0;
1267 }
1268 return (m);
1269
1270 dropfrag:
1271 if (fp != 0)
1272 fp->ipq_nfrags--;
1273 ip_nfrags--;
1274 IP_STATINC(IP_STAT_FRAGDROPPED);
1275 m_freem(m);
1276 s = splvm();
1277 pool_put(&ipqent_pool, ipqe);
1278 splx(s);
1279 return (0);
1280 }
1281
1282 /*
1283 * Free a fragment reassembly header and all
1284 * associated datagrams.
1285 */
1286 void
1287 ip_freef(struct ipq *fp)
1288 {
1289 struct ipqent *q, *p;
1290 u_int nfrags = 0;
1291 int s;
1292
1293 IPQ_LOCK_CHECK();
1294
1295 for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
1296 p = TAILQ_NEXT(q, ipqe_q);
1297 m_freem(q->ipqe_m);
1298 nfrags++;
1299 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1300 s = splvm();
1301 pool_put(&ipqent_pool, q);
1302 splx(s);
1303 }
1304
1305 if (nfrags != fp->ipq_nfrags)
1306 printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
1307 ip_nfrags -= nfrags;
1308 LIST_REMOVE(fp, ipq_q);
1309 FREE(fp, M_FTABLE);
1310 ip_nfragpackets--;
1311 }
1312
1313 /*
1314 * IP reassembly TTL machinery for multiplicative drop.
1315 */
1316 static u_int fragttl_histo[(IPFRAGTTL+1)];
1317
1318
1319 /*
1320 * Decrement TTL of all reasembly queue entries by `ticks'.
1321 * Count number of distinct fragments (as opposed to partial, fragmented
1322 * datagrams) in the reassembly queue. While we traverse the entire
1323 * reassembly queue, compute and return the median TTL over all fragments.
1324 */
1325 static u_int
1326 ip_reass_ttl_decr(u_int ticks)
1327 {
1328 u_int nfrags, median, dropfraction, keepfraction;
1329 struct ipq *fp, *nfp;
1330 int i;
1331
1332 nfrags = 0;
1333 memset(fragttl_histo, 0, sizeof fragttl_histo);
1334
1335 for (i = 0; i < IPREASS_NHASH; i++) {
1336 for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
1337 fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
1338 0 : fp->ipq_ttl - ticks);
1339 nfp = LIST_NEXT(fp, ipq_q);
1340 if (fp->ipq_ttl == 0) {
1341 IP_STATINC(IP_STAT_FRAGTIMEOUT);
1342 ip_freef(fp);
1343 } else {
1344 nfrags += fp->ipq_nfrags;
1345 fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
1346 }
1347 }
1348 }
1349
1350 KASSERT(ip_nfrags == nfrags);
1351
1352 /* Find median (or other drop fraction) in histogram. */
1353 dropfraction = (ip_nfrags / 2);
1354 keepfraction = ip_nfrags - dropfraction;
1355 for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
1356 median += fragttl_histo[i];
1357 if (median >= keepfraction)
1358 break;
1359 }
1360
1361 /* Return TTL of median (or other fraction). */
1362 return (u_int)i;
1363 }
1364
1365 void
1366 ip_reass_drophalf(void)
1367 {
1368
1369 u_int median_ticks;
1370 /*
1371 * Compute median TTL of all fragments, and count frags
1372 * with that TTL or lower (roughly half of all fragments).
1373 */
1374 median_ticks = ip_reass_ttl_decr(0);
1375
1376 /* Drop half. */
1377 median_ticks = ip_reass_ttl_decr(median_ticks);
1378
1379 }
1380
1381 /*
1382 * IP timer processing;
1383 * if a timer expires on a reassembly
1384 * queue, discard it.
1385 */
1386 void
1387 ip_slowtimo(void)
1388 {
1389 static u_int dropscanidx = 0;
1390 u_int i;
1391 u_int median_ttl;
1392 int s = splsoftnet();
1393
1394 IPQ_LOCK();
1395
1396 /* Age TTL of all fragments by 1 tick .*/
1397 median_ttl = ip_reass_ttl_decr(1);
1398
1399 /* make sure fragment limit is up-to-date */
1400 CHECK_NMBCLUSTER_PARAMS();
1401
1402 /* If we have too many fragments, drop the older half. */
1403 if (ip_nfrags > ip_maxfrags)
1404 ip_reass_ttl_decr(median_ttl);
1405
1406 /*
1407 * If we are over the maximum number of fragmented packets
1408 * (due to the limit being lowered), drain off
1409 * enough to get down to the new limit. Start draining
1410 * from the reassembly hashqueue most recently drained.
1411 */
1412 if (ip_maxfragpackets < 0)
1413 ;
1414 else {
1415 int wrapped = 0;
1416
1417 i = dropscanidx;
1418 while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
1419 while (LIST_FIRST(&ipq[i]) != NULL)
1420 ip_freef(LIST_FIRST(&ipq[i]));
1421 if (++i >= IPREASS_NHASH) {
1422 i = 0;
1423 }
1424 /*
1425 * Dont scan forever even if fragment counters are
1426 * wrong: stop after scanning entire reassembly queue.
1427 */
1428 if (i == dropscanidx)
1429 wrapped = 1;
1430 }
1431 dropscanidx = i;
1432 }
1433 IPQ_UNLOCK();
1434 splx(s);
1435 }
1436
1437 /*
1438 * Drain off all datagram fragments.
1439 */
1440 void
1441 ip_drain(void)
1442 {
1443
1444 /*
1445 * We may be called from a device's interrupt context. If
1446 * the ipq is already busy, just bail out now.
1447 */
1448 if (ipq_lock_try() == 0)
1449 return;
1450
1451 /*
1452 * Drop half the total fragments now. If more mbufs are needed,
1453 * we will be called again soon.
1454 */
1455 ip_reass_drophalf();
1456
1457 IPQ_UNLOCK();
1458 }
1459
1460 /*
1461 * Do option processing on a datagram,
1462 * possibly discarding it if bad options are encountered,
1463 * or forwarding it if source-routed.
1464 * Returns 1 if packet has been forwarded/freed,
1465 * 0 if the packet should be processed further.
1466 */
1467 int
1468 ip_dooptions(struct mbuf *m)
1469 {
1470 struct ip *ip = mtod(m, struct ip *);
1471 u_char *cp, *cp0;
1472 struct ip_timestamp *ipt;
1473 struct in_ifaddr *ia;
1474 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1475 struct in_addr dst;
1476 n_time ntime;
1477
1478 dst = ip->ip_dst;
1479 cp = (u_char *)(ip + 1);
1480 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1481 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1482 opt = cp[IPOPT_OPTVAL];
1483 if (opt == IPOPT_EOL)
1484 break;
1485 if (opt == IPOPT_NOP)
1486 optlen = 1;
1487 else {
1488 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1489 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1490 goto bad;
1491 }
1492 optlen = cp[IPOPT_OLEN];
1493 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1494 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1495 goto bad;
1496 }
1497 }
1498 switch (opt) {
1499
1500 default:
1501 break;
1502
1503 /*
1504 * Source routing with record.
1505 * Find interface with current destination address.
1506 * If none on this machine then drop if strictly routed,
1507 * or do nothing if loosely routed.
1508 * Record interface address and bring up next address
1509 * component. If strictly routed make sure next
1510 * address is on directly accessible net.
1511 */
1512 case IPOPT_LSRR:
1513 case IPOPT_SSRR:
1514 if (ip_allowsrcrt == 0) {
1515 type = ICMP_UNREACH;
1516 code = ICMP_UNREACH_NET_PROHIB;
1517 goto bad;
1518 }
1519 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1520 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1521 goto bad;
1522 }
1523 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1524 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1525 goto bad;
1526 }
1527 ipaddr.sin_addr = ip->ip_dst;
1528 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
1529 if (ia == 0) {
1530 if (opt == IPOPT_SSRR) {
1531 type = ICMP_UNREACH;
1532 code = ICMP_UNREACH_SRCFAIL;
1533 goto bad;
1534 }
1535 /*
1536 * Loose routing, and not at next destination
1537 * yet; nothing to do except forward.
1538 */
1539 break;
1540 }
1541 off--; /* 0 origin */
1542 if ((off + sizeof(struct in_addr)) > optlen) {
1543 /*
1544 * End of source route. Should be for us.
1545 */
1546 save_rte(cp, ip->ip_src);
1547 break;
1548 }
1549 /*
1550 * locate outgoing interface
1551 */
1552 bcopy((void *)(cp + off), (void *)&ipaddr.sin_addr,
1553 sizeof(ipaddr.sin_addr));
1554 if (opt == IPOPT_SSRR)
1555 ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
1556 else
1557 ia = ip_rtaddr(ipaddr.sin_addr);
1558 if (ia == 0) {
1559 type = ICMP_UNREACH;
1560 code = ICMP_UNREACH_SRCFAIL;
1561 goto bad;
1562 }
1563 ip->ip_dst = ipaddr.sin_addr;
1564 bcopy((void *)&ia->ia_addr.sin_addr,
1565 (void *)(cp + off), sizeof(struct in_addr));
1566 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1567 /*
1568 * Let ip_intr's mcast routing check handle mcast pkts
1569 */
1570 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1571 break;
1572
1573 case IPOPT_RR:
1574 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1575 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1576 goto bad;
1577 }
1578 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1579 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1580 goto bad;
1581 }
1582 /*
1583 * If no space remains, ignore.
1584 */
1585 off--; /* 0 origin */
1586 if ((off + sizeof(struct in_addr)) > optlen)
1587 break;
1588 bcopy((void *)(&ip->ip_dst), (void *)&ipaddr.sin_addr,
1589 sizeof(ipaddr.sin_addr));
1590 /*
1591 * locate outgoing interface; if we're the destination,
1592 * use the incoming interface (should be same).
1593 */
1594 if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
1595 == NULL &&
1596 (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1597 type = ICMP_UNREACH;
1598 code = ICMP_UNREACH_HOST;
1599 goto bad;
1600 }
1601 bcopy((void *)&ia->ia_addr.sin_addr,
1602 (void *)(cp + off), sizeof(struct in_addr));
1603 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1604 break;
1605
1606 case IPOPT_TS:
1607 code = cp - (u_char *)ip;
1608 ipt = (struct ip_timestamp *)cp;
1609 if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1610 code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1611 goto bad;
1612 }
1613 if (ipt->ipt_ptr < 5) {
1614 code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1615 goto bad;
1616 }
1617 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
1618 if (++ipt->ipt_oflw == 0) {
1619 code = (u_char *)&ipt->ipt_ptr -
1620 (u_char *)ip;
1621 goto bad;
1622 }
1623 break;
1624 }
1625 cp0 = (cp + ipt->ipt_ptr - 1);
1626 switch (ipt->ipt_flg) {
1627
1628 case IPOPT_TS_TSONLY:
1629 break;
1630
1631 case IPOPT_TS_TSANDADDR:
1632 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1633 sizeof(struct in_addr) > ipt->ipt_len) {
1634 code = (u_char *)&ipt->ipt_ptr -
1635 (u_char *)ip;
1636 goto bad;
1637 }
1638 ipaddr.sin_addr = dst;
1639 ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1640 m->m_pkthdr.rcvif));
1641 if (ia == 0)
1642 continue;
1643 bcopy(&ia->ia_addr.sin_addr,
1644 cp0, sizeof(struct in_addr));
1645 ipt->ipt_ptr += sizeof(struct in_addr);
1646 break;
1647
1648 case IPOPT_TS_PRESPEC:
1649 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1650 sizeof(struct in_addr) > ipt->ipt_len) {
1651 code = (u_char *)&ipt->ipt_ptr -
1652 (u_char *)ip;
1653 goto bad;
1654 }
1655 bcopy(cp0, &ipaddr.sin_addr,
1656 sizeof(struct in_addr));
1657 if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
1658 == NULL)
1659 continue;
1660 ipt->ipt_ptr += sizeof(struct in_addr);
1661 break;
1662
1663 default:
1664 /* XXX can't take &ipt->ipt_flg */
1665 code = (u_char *)&ipt->ipt_ptr -
1666 (u_char *)ip + 1;
1667 goto bad;
1668 }
1669 ntime = iptime();
1670 cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
1671 memmove((char *)cp + ipt->ipt_ptr - 1, cp0,
1672 sizeof(n_time));
1673 ipt->ipt_ptr += sizeof(n_time);
1674 }
1675 }
1676 if (forward) {
1677 if (ip_forwsrcrt == 0) {
1678 type = ICMP_UNREACH;
1679 code = ICMP_UNREACH_SRCFAIL;
1680 goto bad;
1681 }
1682 ip_forward(m, 1);
1683 return (1);
1684 }
1685 return (0);
1686 bad:
1687 icmp_error(m, type, code, 0, 0);
1688 IP_STATINC(IP_STAT_BADOPTIONS);
1689 return (1);
1690 }
1691
1692 /*
1693 * Given address of next destination (final or next hop),
1694 * return internet address info of interface to be used to get there.
1695 */
1696 struct in_ifaddr *
1697 ip_rtaddr(struct in_addr dst)
1698 {
1699 struct rtentry *rt;
1700 union {
1701 struct sockaddr dst;
1702 struct sockaddr_in dst4;
1703 } u;
1704
1705 sockaddr_in_init(&u.dst4, &dst, 0);
1706
1707 if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL)
1708 return NULL;
1709
1710 return ifatoia(rt->rt_ifa);
1711 }
1712
1713 /*
1714 * Save incoming source route for use in replies,
1715 * to be picked up later by ip_srcroute if the receiver is interested.
1716 */
1717 void
1718 save_rte(u_char *option, struct in_addr dst)
1719 {
1720 unsigned olen;
1721
1722 olen = option[IPOPT_OLEN];
1723 #ifdef DIAGNOSTIC
1724 if (ipprintfs)
1725 printf("save_rte: olen %d\n", olen);
1726 #endif /* 0 */
1727 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1728 return;
1729 bcopy((void *)option, (void *)ip_srcrt.srcopt, olen);
1730 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1731 ip_srcrt.dst = dst;
1732 }
1733
1734 /*
1735 * Retrieve incoming source route for use in replies,
1736 * in the same form used by setsockopt.
1737 * The first hop is placed before the options, will be removed later.
1738 */
1739 struct mbuf *
1740 ip_srcroute(void)
1741 {
1742 struct in_addr *p, *q;
1743 struct mbuf *m;
1744
1745 if (ip_nhops == 0)
1746 return NULL;
1747 m = m_get(M_DONTWAIT, MT_SOOPTS);
1748 if (m == 0)
1749 return NULL;
1750
1751 MCLAIM(m, &inetdomain.dom_mowner);
1752 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1753
1754 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1755 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1756 OPTSIZ;
1757 #ifdef DIAGNOSTIC
1758 if (ipprintfs)
1759 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1760 #endif
1761
1762 /*
1763 * First save first hop for return route
1764 */
1765 p = &ip_srcrt.route[ip_nhops - 1];
1766 *(mtod(m, struct in_addr *)) = *p--;
1767 #ifdef DIAGNOSTIC
1768 if (ipprintfs)
1769 printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1770 #endif
1771
1772 /*
1773 * Copy option fields and padding (nop) to mbuf.
1774 */
1775 ip_srcrt.nop = IPOPT_NOP;
1776 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1777 memmove(mtod(m, char *) + sizeof(struct in_addr), &ip_srcrt.nop,
1778 OPTSIZ);
1779 q = (struct in_addr *)(mtod(m, char *) +
1780 sizeof(struct in_addr) + OPTSIZ);
1781 #undef OPTSIZ
1782 /*
1783 * Record return path as an IP source route,
1784 * reversing the path (pointers are now aligned).
1785 */
1786 while (p >= ip_srcrt.route) {
1787 #ifdef DIAGNOSTIC
1788 if (ipprintfs)
1789 printf(" %x", ntohl(q->s_addr));
1790 #endif
1791 *q++ = *p--;
1792 }
1793 /*
1794 * Last hop goes to final destination.
1795 */
1796 *q = ip_srcrt.dst;
1797 #ifdef DIAGNOSTIC
1798 if (ipprintfs)
1799 printf(" %x\n", ntohl(q->s_addr));
1800 #endif
1801 return (m);
1802 }
1803
1804 const int inetctlerrmap[PRC_NCMDS] = {
1805 [PRC_MSGSIZE] = EMSGSIZE,
1806 [PRC_HOSTDEAD] = EHOSTDOWN,
1807 [PRC_HOSTUNREACH] = EHOSTUNREACH,
1808 [PRC_UNREACH_NET] = EHOSTUNREACH,
1809 [PRC_UNREACH_HOST] = EHOSTUNREACH,
1810 [PRC_UNREACH_PROTOCOL] = ECONNREFUSED,
1811 [PRC_UNREACH_PORT] = ECONNREFUSED,
1812 [PRC_UNREACH_SRCFAIL] = EHOSTUNREACH,
1813 [PRC_PARAMPROB] = ENOPROTOOPT,
1814 };
1815
1816 /*
1817 * Forward a packet. If some error occurs return the sender
1818 * an icmp packet. Note we can't always generate a meaningful
1819 * icmp message because icmp doesn't have a large enough repertoire
1820 * of codes and types.
1821 *
1822 * If not forwarding, just drop the packet. This could be confusing
1823 * if ipforwarding was zero but some routing protocol was advancing
1824 * us as a gateway to somewhere. However, we must let the routing
1825 * protocol deal with that.
1826 *
1827 * The srcrt parameter indicates whether the packet is being forwarded
1828 * via a source route.
1829 */
1830 void
1831 ip_forward(struct mbuf *m, int srcrt)
1832 {
1833 struct ip *ip = mtod(m, struct ip *);
1834 struct rtentry *rt;
1835 int error, type = 0, code = 0, destmtu = 0;
1836 struct mbuf *mcopy;
1837 n_long dest;
1838 union {
1839 struct sockaddr dst;
1840 struct sockaddr_in dst4;
1841 } u;
1842
1843 /*
1844 * We are now in the output path.
1845 */
1846 MCLAIM(m, &ip_tx_mowner);
1847
1848 /*
1849 * Clear any in-bound checksum flags for this packet.
1850 */
1851 m->m_pkthdr.csum_flags = 0;
1852
1853 dest = 0;
1854 #ifdef DIAGNOSTIC
1855 if (ipprintfs) {
1856 printf("forward: src %s ", inet_ntoa(ip->ip_src));
1857 printf("dst %s ttl %x\n", inet_ntoa(ip->ip_dst), ip->ip_ttl);
1858 }
1859 #endif
1860 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1861 IP_STATINC(IP_STAT_CANTFORWARD);
1862 m_freem(m);
1863 return;
1864 }
1865 if (ip->ip_ttl <= IPTTLDEC) {
1866 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1867 return;
1868 }
1869
1870 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
1871 if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL) {
1872 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_NET, dest, 0);
1873 return;
1874 }
1875
1876 /*
1877 * Save at most 68 bytes of the packet in case
1878 * we need to generate an ICMP message to the src.
1879 * Pullup to avoid sharing mbuf cluster between m and mcopy.
1880 */
1881 mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
1882 if (mcopy)
1883 mcopy = m_pullup(mcopy, ip->ip_hl << 2);
1884
1885 ip->ip_ttl -= IPTTLDEC;
1886
1887 /*
1888 * If forwarding packet using same interface that it came in on,
1889 * perhaps should send a redirect to sender to shortcut a hop.
1890 * Only send redirect if source is sending directly to us,
1891 * and if packet was not source routed (or has any options).
1892 * Also, don't send redirect if forwarding using a default route
1893 * or a route modified by a redirect.
1894 */
1895 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1896 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1897 !in_nullhost(satocsin(rt_getkey(rt))->sin_addr) &&
1898 ipsendredirects && !srcrt) {
1899 if (rt->rt_ifa &&
1900 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1901 ifatoia(rt->rt_ifa)->ia_subnet) {
1902 if (rt->rt_flags & RTF_GATEWAY)
1903 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1904 else
1905 dest = ip->ip_dst.s_addr;
1906 /*
1907 * Router requirements says to only send host
1908 * redirects.
1909 */
1910 type = ICMP_REDIRECT;
1911 code = ICMP_REDIRECT_HOST;
1912 #ifdef DIAGNOSTIC
1913 if (ipprintfs)
1914 printf("redirect (%d) to %x\n", code,
1915 (u_int32_t)dest);
1916 #endif
1917 }
1918 }
1919
1920 error = ip_output(m, NULL, &ipforward_rt,
1921 (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1922 (struct ip_moptions *)NULL, (struct socket *)NULL);
1923
1924 if (error)
1925 IP_STATINC(IP_STAT_CANTFORWARD);
1926 else {
1927 uint64_t *ips = IP_STAT_GETREF();
1928 ips[IP_STAT_FORWARD]++;
1929 if (type) {
1930 ips[IP_STAT_REDIRECTSENT]++;
1931 IP_STAT_PUTREF();
1932 } else {
1933 IP_STAT_PUTREF();
1934 if (mcopy) {
1935 #ifdef GATEWAY
1936 if (mcopy->m_flags & M_CANFASTFWD)
1937 ipflow_create(&ipforward_rt, mcopy);
1938 #endif
1939 m_freem(mcopy);
1940 }
1941 return;
1942 }
1943 }
1944 if (mcopy == NULL)
1945 return;
1946
1947 switch (error) {
1948
1949 case 0: /* forwarded, but need redirect */
1950 /* type, code set above */
1951 break;
1952
1953 case ENETUNREACH: /* shouldn't happen, checked above */
1954 case EHOSTUNREACH:
1955 case ENETDOWN:
1956 case EHOSTDOWN:
1957 default:
1958 type = ICMP_UNREACH;
1959 code = ICMP_UNREACH_HOST;
1960 break;
1961
1962 case EMSGSIZE:
1963 type = ICMP_UNREACH;
1964 code = ICMP_UNREACH_NEEDFRAG;
1965
1966 if ((rt = rtcache_validate(&ipforward_rt)) != NULL) {
1967
1968 #if defined(IPSEC) || defined(FAST_IPSEC)
1969 /*
1970 * If the packet is routed over IPsec tunnel, tell the
1971 * originator the tunnel MTU.
1972 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1973 * XXX quickhack!!!
1974 */
1975
1976 struct secpolicy *sp;
1977 int ipsecerror;
1978 size_t ipsechdr;
1979 struct route *ro;
1980
1981 sp = ipsec4_getpolicybyaddr(mcopy,
1982 IPSEC_DIR_OUTBOUND, IP_FORWARDING,
1983 &ipsecerror);
1984 #endif
1985
1986 destmtu = rt->rt_ifp->if_mtu;
1987 #if defined(IPSEC) || defined(FAST_IPSEC)
1988 if (sp != NULL) {
1989 /* count IPsec header size */
1990 ipsechdr = ipsec4_hdrsiz(mcopy,
1991 IPSEC_DIR_OUTBOUND, NULL);
1992
1993 /*
1994 * find the correct route for outer IPv4
1995 * header, compute tunnel MTU.
1996 */
1997
1998 if (sp->req != NULL
1999 && sp->req->sav != NULL
2000 && sp->req->sav->sah != NULL) {
2001 ro = &sp->req->sav->sah->sa_route;
2002 if (rt && rt->rt_ifp) {
2003 destmtu =
2004 rt->rt_rmx.rmx_mtu ?
2005 rt->rt_rmx.rmx_mtu :
2006 rt->rt_ifp->if_mtu;
2007 destmtu -= ipsechdr;
2008 }
2009 }
2010
2011 #ifdef IPSEC
2012 key_freesp(sp);
2013 #else
2014 KEY_FREESP(&sp);
2015 #endif
2016 }
2017 #endif /*defined(IPSEC) || defined(FAST_IPSEC)*/
2018 }
2019 IP_STATINC(IP_STAT_CANTFRAG);
2020 break;
2021
2022 case ENOBUFS:
2023 #if 1
2024 /*
2025 * a router should not generate ICMP_SOURCEQUENCH as
2026 * required in RFC1812 Requirements for IP Version 4 Routers.
2027 * source quench could be a big problem under DoS attacks,
2028 * or if the underlying interface is rate-limited.
2029 */
2030 if (mcopy)
2031 m_freem(mcopy);
2032 return;
2033 #else
2034 type = ICMP_SOURCEQUENCH;
2035 code = 0;
2036 break;
2037 #endif
2038 }
2039 icmp_error(mcopy, type, code, dest, destmtu);
2040 }
2041
2042 void
2043 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2044 struct mbuf *m)
2045 {
2046
2047 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2048 struct timeval tv;
2049
2050 microtime(&tv);
2051 *mp = sbcreatecontrol((void *) &tv, sizeof(tv),
2052 SCM_TIMESTAMP, SOL_SOCKET);
2053 if (*mp)
2054 mp = &(*mp)->m_next;
2055 }
2056 if (inp->inp_flags & INP_RECVDSTADDR) {
2057 *mp = sbcreatecontrol((void *) &ip->ip_dst,
2058 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2059 if (*mp)
2060 mp = &(*mp)->m_next;
2061 }
2062 #ifdef notyet
2063 /*
2064 * XXX
2065 * Moving these out of udp_input() made them even more broken
2066 * than they already were.
2067 * - fenner (at) parc.xerox.com
2068 */
2069 /* options were tossed already */
2070 if (inp->inp_flags & INP_RECVOPTS) {
2071 *mp = sbcreatecontrol((void *) opts_deleted_above,
2072 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2073 if (*mp)
2074 mp = &(*mp)->m_next;
2075 }
2076 /* ip_srcroute doesn't do what we want here, need to fix */
2077 if (inp->inp_flags & INP_RECVRETOPTS) {
2078 *mp = sbcreatecontrol((void *) ip_srcroute(),
2079 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2080 if (*mp)
2081 mp = &(*mp)->m_next;
2082 }
2083 #endif
2084 if (inp->inp_flags & INP_RECVIF) {
2085 struct sockaddr_dl sdl;
2086
2087 sockaddr_dl_init(&sdl, sizeof(sdl),
2088 (m->m_pkthdr.rcvif != NULL)
2089 ? m->m_pkthdr.rcvif->if_index
2090 : 0,
2091 0, NULL, 0, NULL, 0);
2092 *mp = sbcreatecontrol(&sdl, sdl.sdl_len, IP_RECVIF, IPPROTO_IP);
2093 if (*mp)
2094 mp = &(*mp)->m_next;
2095 }
2096 }
2097
2098 /*
2099 * sysctl helper routine for net.inet.ip.forwsrcrt.
2100 */
2101 static int
2102 sysctl_net_inet_ip_forwsrcrt(SYSCTLFN_ARGS)
2103 {
2104 int error, tmp;
2105 struct sysctlnode node;
2106
2107 node = *rnode;
2108 tmp = ip_forwsrcrt;
2109 node.sysctl_data = &tmp;
2110 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2111 if (error || newp == NULL)
2112 return (error);
2113
2114 if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_FORWSRCRT,
2115 0, NULL, NULL, NULL))
2116 return (EPERM);
2117
2118 ip_forwsrcrt = tmp;
2119
2120 return (0);
2121 }
2122
2123 /*
2124 * sysctl helper routine for net.inet.ip.mtudisctimeout. checks the
2125 * range of the new value and tweaks timers if it changes.
2126 */
2127 static int
2128 sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
2129 {
2130 int error, tmp;
2131 struct sysctlnode node;
2132
2133 node = *rnode;
2134 tmp = ip_mtudisc_timeout;
2135 node.sysctl_data = &tmp;
2136 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2137 if (error || newp == NULL)
2138 return (error);
2139 if (tmp < 0)
2140 return (EINVAL);
2141
2142 ip_mtudisc_timeout = tmp;
2143 rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
2144
2145 return (0);
2146 }
2147
2148 #ifdef GATEWAY
2149 /*
2150 * sysctl helper routine for net.inet.ip.maxflows.
2151 */
2152 static int
2153 sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
2154 {
2155 int s;
2156
2157 s = sysctl_lookup(SYSCTLFN_CALL(rnode));
2158 if (s || newp == NULL)
2159 return (s);
2160
2161 s = splsoftnet();
2162 ipflow_prune();
2163 splx(s);
2164
2165 return (0);
2166 }
2167
2168 static int
2169 sysctl_net_inet_ip_hashsize(SYSCTLFN_ARGS)
2170 {
2171 int error, tmp;
2172 struct sysctlnode node;
2173
2174 node = *rnode;
2175 tmp = ip_hashsize;
2176 node.sysctl_data = &tmp;
2177 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2178 if (error || newp == NULL)
2179 return (error);
2180
2181 if ((tmp & (tmp - 1)) == 0 && tmp != 0) {
2182 /*
2183 * Can only fail due to malloc()
2184 */
2185 if (ipflow_invalidate_all(tmp))
2186 return ENOMEM;
2187 } else {
2188 /*
2189 * EINVAL if not a power of 2
2190 */
2191 return EINVAL;
2192 }
2193
2194 return (0);
2195 }
2196 #endif /* GATEWAY */
2197
2198 static int
2199 sysctl_net_inet_ip_stats(SYSCTLFN_ARGS)
2200 {
2201 netstat_sysctl_context ctx;
2202 uint64_t ips[IP_NSTATS];
2203
2204 ctx.ctx_stat = ipstat_percpu;
2205 ctx.ctx_counters = ips;
2206 ctx.ctx_ncounters = IP_NSTATS;
2207 return (NETSTAT_SYSCTL(&ctx));
2208 }
2209
2210 SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
2211 {
2212 extern int subnetsarelocal, hostzeroisbroadcast;
2213
2214 sysctl_createv(clog, 0, NULL, NULL,
2215 CTLFLAG_PERMANENT,
2216 CTLTYPE_NODE, "net", NULL,
2217 NULL, 0, NULL, 0,
2218 CTL_NET, CTL_EOL);
2219 sysctl_createv(clog, 0, NULL, NULL,
2220 CTLFLAG_PERMANENT,
2221 CTLTYPE_NODE, "inet",
2222 SYSCTL_DESCR("PF_INET related settings"),
2223 NULL, 0, NULL, 0,
2224 CTL_NET, PF_INET, CTL_EOL);
2225 sysctl_createv(clog, 0, NULL, NULL,
2226 CTLFLAG_PERMANENT,
2227 CTLTYPE_NODE, "ip",
2228 SYSCTL_DESCR("IPv4 related settings"),
2229 NULL, 0, NULL, 0,
2230 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2231
2232 sysctl_createv(clog, 0, NULL, NULL,
2233 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2234 CTLTYPE_INT, "forwarding",
2235 SYSCTL_DESCR("Enable forwarding of INET datagrams"),
2236 NULL, 0, &ipforwarding, 0,
2237 CTL_NET, PF_INET, IPPROTO_IP,
2238 IPCTL_FORWARDING, CTL_EOL);
2239 sysctl_createv(clog, 0, NULL, NULL,
2240 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2241 CTLTYPE_INT, "redirect",
2242 SYSCTL_DESCR("Enable sending of ICMP redirect messages"),
2243 NULL, 0, &ipsendredirects, 0,
2244 CTL_NET, PF_INET, IPPROTO_IP,
2245 IPCTL_SENDREDIRECTS, CTL_EOL);
2246 sysctl_createv(clog, 0, NULL, NULL,
2247 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2248 CTLTYPE_INT, "ttl",
2249 SYSCTL_DESCR("Default TTL for an INET datagram"),
2250 NULL, 0, &ip_defttl, 0,
2251 CTL_NET, PF_INET, IPPROTO_IP,
2252 IPCTL_DEFTTL, CTL_EOL);
2253 #ifdef IPCTL_DEFMTU
2254 sysctl_createv(clog, 0, NULL, NULL,
2255 CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
2256 CTLTYPE_INT, "mtu",
2257 SYSCTL_DESCR("Default MTA for an INET route"),
2258 NULL, 0, &ip_mtu, 0,
2259 CTL_NET, PF_INET, IPPROTO_IP,
2260 IPCTL_DEFMTU, CTL_EOL);
2261 #endif /* IPCTL_DEFMTU */
2262 sysctl_createv(clog, 0, NULL, NULL,
2263 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2264 CTLTYPE_INT, "forwsrcrt",
2265 SYSCTL_DESCR("Enable forwarding of source-routed "
2266 "datagrams"),
2267 sysctl_net_inet_ip_forwsrcrt, 0, &ip_forwsrcrt, 0,
2268 CTL_NET, PF_INET, IPPROTO_IP,
2269 IPCTL_FORWSRCRT, CTL_EOL);
2270 sysctl_createv(clog, 0, NULL, NULL,
2271 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2272 CTLTYPE_INT, "directed-broadcast",
2273 SYSCTL_DESCR("Enable forwarding of broadcast datagrams"),
2274 NULL, 0, &ip_directedbcast, 0,
2275 CTL_NET, PF_INET, IPPROTO_IP,
2276 IPCTL_DIRECTEDBCAST, CTL_EOL);
2277 sysctl_createv(clog, 0, NULL, NULL,
2278 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2279 CTLTYPE_INT, "allowsrcrt",
2280 SYSCTL_DESCR("Accept source-routed datagrams"),
2281 NULL, 0, &ip_allowsrcrt, 0,
2282 CTL_NET, PF_INET, IPPROTO_IP,
2283 IPCTL_ALLOWSRCRT, CTL_EOL);
2284 sysctl_createv(clog, 0, NULL, NULL,
2285 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2286 CTLTYPE_INT, "subnetsarelocal",
2287 SYSCTL_DESCR("Whether logical subnets are considered "
2288 "local"),
2289 NULL, 0, &subnetsarelocal, 0,
2290 CTL_NET, PF_INET, IPPROTO_IP,
2291 IPCTL_SUBNETSARELOCAL, CTL_EOL);
2292 sysctl_createv(clog, 0, NULL, NULL,
2293 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2294 CTLTYPE_INT, "mtudisc",
2295 SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"),
2296 NULL, 0, &ip_mtudisc, 0,
2297 CTL_NET, PF_INET, IPPROTO_IP,
2298 IPCTL_MTUDISC, CTL_EOL);
2299 sysctl_createv(clog, 0, NULL, NULL,
2300 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2301 CTLTYPE_INT, "anonportmin",
2302 SYSCTL_DESCR("Lowest ephemeral port number to assign"),
2303 sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
2304 CTL_NET, PF_INET, IPPROTO_IP,
2305 IPCTL_ANONPORTMIN, CTL_EOL);
2306 sysctl_createv(clog, 0, NULL, NULL,
2307 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2308 CTLTYPE_INT, "anonportmax",
2309 SYSCTL_DESCR("Highest ephemeral port number to assign"),
2310 sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
2311 CTL_NET, PF_INET, IPPROTO_IP,
2312 IPCTL_ANONPORTMAX, CTL_EOL);
2313 sysctl_createv(clog, 0, NULL, NULL,
2314 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2315 CTLTYPE_INT, "mtudisctimeout",
2316 SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"),
2317 sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
2318 CTL_NET, PF_INET, IPPROTO_IP,
2319 IPCTL_MTUDISCTIMEOUT, CTL_EOL);
2320 #ifdef GATEWAY
2321 sysctl_createv(clog, 0, NULL, NULL,
2322 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2323 CTLTYPE_INT, "maxflows",
2324 SYSCTL_DESCR("Number of flows for fast forwarding"),
2325 sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
2326 CTL_NET, PF_INET, IPPROTO_IP,
2327 IPCTL_MAXFLOWS, CTL_EOL);
2328 sysctl_createv(clog, 0, NULL, NULL,
2329 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2330 CTLTYPE_INT, "hashsize",
2331 SYSCTL_DESCR("Size of hash table for fast forwarding (IPv4)"),
2332 sysctl_net_inet_ip_hashsize, 0, &ip_hashsize, 0,
2333 CTL_NET, PF_INET, IPPROTO_IP,
2334 CTL_CREATE, CTL_EOL);
2335 #endif /* GATEWAY */
2336 sysctl_createv(clog, 0, NULL, NULL,
2337 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2338 CTLTYPE_INT, "hostzerobroadcast",
2339 SYSCTL_DESCR("All zeroes address is broadcast address"),
2340 NULL, 0, &hostzeroisbroadcast, 0,
2341 CTL_NET, PF_INET, IPPROTO_IP,
2342 IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2343 #if NGIF > 0
2344 sysctl_createv(clog, 0, NULL, NULL,
2345 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2346 CTLTYPE_INT, "gifttl",
2347 SYSCTL_DESCR("Default TTL for a gif tunnel datagram"),
2348 NULL, 0, &ip_gif_ttl, 0,
2349 CTL_NET, PF_INET, IPPROTO_IP,
2350 IPCTL_GIF_TTL, CTL_EOL);
2351 #endif /* NGIF */
2352 #ifndef IPNOPRIVPORTS
2353 sysctl_createv(clog, 0, NULL, NULL,
2354 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2355 CTLTYPE_INT, "lowportmin",
2356 SYSCTL_DESCR("Lowest privileged ephemeral port number "
2357 "to assign"),
2358 sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
2359 CTL_NET, PF_INET, IPPROTO_IP,
2360 IPCTL_LOWPORTMIN, CTL_EOL);
2361 sysctl_createv(clog, 0, NULL, NULL,
2362 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2363 CTLTYPE_INT, "lowportmax",
2364 SYSCTL_DESCR("Highest privileged ephemeral port number "
2365 "to assign"),
2366 sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
2367 CTL_NET, PF_INET, IPPROTO_IP,
2368 IPCTL_LOWPORTMAX, CTL_EOL);
2369 #endif /* IPNOPRIVPORTS */
2370 sysctl_createv(clog, 0, NULL, NULL,
2371 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2372 CTLTYPE_INT, "maxfragpackets",
2373 SYSCTL_DESCR("Maximum number of fragments to retain for "
2374 "possible reassembly"),
2375 NULL, 0, &ip_maxfragpackets, 0,
2376 CTL_NET, PF_INET, IPPROTO_IP,
2377 IPCTL_MAXFRAGPACKETS, CTL_EOL);
2378 #if NGRE > 0
2379 sysctl_createv(clog, 0, NULL, NULL,
2380 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2381 CTLTYPE_INT, "grettl",
2382 SYSCTL_DESCR("Default TTL for a gre tunnel datagram"),
2383 NULL, 0, &ip_gre_ttl, 0,
2384 CTL_NET, PF_INET, IPPROTO_IP,
2385 IPCTL_GRE_TTL, CTL_EOL);
2386 #endif /* NGRE */
2387 sysctl_createv(clog, 0, NULL, NULL,
2388 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2389 CTLTYPE_INT, "checkinterface",
2390 SYSCTL_DESCR("Enable receive side of Strong ES model "
2391 "from RFC1122"),
2392 NULL, 0, &ip_checkinterface, 0,
2393 CTL_NET, PF_INET, IPPROTO_IP,
2394 IPCTL_CHECKINTERFACE, CTL_EOL);
2395 sysctl_createv(clog, 0, NULL, NULL,
2396 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2397 CTLTYPE_INT, "random_id",
2398 SYSCTL_DESCR("Assign random ip_id values"),
2399 NULL, 0, &ip_do_randomid, 0,
2400 CTL_NET, PF_INET, IPPROTO_IP,
2401 IPCTL_RANDOMID, CTL_EOL);
2402 sysctl_createv(clog, 0, NULL, NULL,
2403 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2404 CTLTYPE_INT, "do_loopback_cksum",
2405 SYSCTL_DESCR("Perform IP checksum on loopback"),
2406 NULL, 0, &ip_do_loopback_cksum, 0,
2407 CTL_NET, PF_INET, IPPROTO_IP,
2408 IPCTL_LOOPBACKCKSUM, CTL_EOL);
2409 sysctl_createv(clog, 0, NULL, NULL,
2410 CTLFLAG_PERMANENT,
2411 CTLTYPE_STRUCT, "stats",
2412 SYSCTL_DESCR("IP statistics"),
2413 sysctl_net_inet_ip_stats, 0, NULL, 0,
2414 CTL_NET, PF_INET, IPPROTO_IP, IPCTL_STATS,
2415 CTL_EOL);
2416 }
2417
2418 void
2419 ip_statinc(u_int stat)
2420 {
2421
2422 KASSERT(stat < IP_NSTATS);
2423 IP_STATINC(stat);
2424 }
2425