ip_input.c revision 1.274 1 /* $NetBSD: ip_input.c,v 1.274 2008/09/05 13:39:12 seanb Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.274 2008/09/05 13:39:12 seanb Exp $");
95
96 #include "opt_inet.h"
97 #include "opt_gateway.h"
98 #include "opt_pfil_hooks.h"
99 #include "opt_ipsec.h"
100 #include "opt_mrouting.h"
101 #include "opt_mbuftrace.h"
102 #include "opt_inet_csum.h"
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/malloc.h>
107 #include <sys/mbuf.h>
108 #include <sys/domain.h>
109 #include <sys/protosw.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/errno.h>
113 #include <sys/time.h>
114 #include <sys/kernel.h>
115 #include <sys/pool.h>
116 #include <sys/sysctl.h>
117 #include <sys/kauth.h>
118
119 #include <net/if.h>
120 #include <net/if_dl.h>
121 #include <net/route.h>
122 #include <net/pfil.h>
123
124 #include <netinet/in.h>
125 #include <netinet/in_systm.h>
126 #include <netinet/ip.h>
127 #include <netinet/in_pcb.h>
128 #include <netinet/in_proto.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip_var.h>
131 #include <netinet/ip_private.h>
132 #include <netinet/ip_icmp.h>
133 /* just for gif_ttl */
134 #include <netinet/in_gif.h>
135 #include "gif.h"
136 #include <net/if_gre.h>
137 #include "gre.h"
138
139 #ifdef MROUTING
140 #include <netinet/ip_mroute.h>
141 #endif
142
143 #ifdef IPSEC
144 #include <netinet6/ipsec.h>
145 #include <netinet6/ipsec_private.h>
146 #include <netkey/key.h>
147 #endif
148 #ifdef FAST_IPSEC
149 #include <netipsec/ipsec.h>
150 #include <netipsec/key.h>
151 #endif /* FAST_IPSEC*/
152
153 #ifndef IPFORWARDING
154 #ifdef GATEWAY
155 #define IPFORWARDING 1 /* forward IP packets not for us */
156 #else /* GATEWAY */
157 #define IPFORWARDING 0 /* don't forward IP packets not for us */
158 #endif /* GATEWAY */
159 #endif /* IPFORWARDING */
160 #ifndef IPSENDREDIRECTS
161 #define IPSENDREDIRECTS 1
162 #endif
163 #ifndef IPFORWSRCRT
164 #define IPFORWSRCRT 1 /* forward source-routed packets */
165 #endif
166 #ifndef IPALLOWSRCRT
167 #define IPALLOWSRCRT 1 /* allow source-routed packets */
168 #endif
169 #ifndef IPMTUDISC
170 #define IPMTUDISC 1
171 #endif
172 #ifndef IPMTUDISCTIMEOUT
173 #define IPMTUDISCTIMEOUT (10 * 60) /* as per RFC 1191 */
174 #endif
175
176 /*
177 * Note: DIRECTED_BROADCAST is handled this way so that previous
178 * configuration using this option will Just Work.
179 */
180 #ifndef IPDIRECTEDBCAST
181 #ifdef DIRECTED_BROADCAST
182 #define IPDIRECTEDBCAST 1
183 #else
184 #define IPDIRECTEDBCAST 0
185 #endif /* DIRECTED_BROADCAST */
186 #endif /* IPDIRECTEDBCAST */
187 int ipforwarding = IPFORWARDING;
188 int ipsendredirects = IPSENDREDIRECTS;
189 int ip_defttl = IPDEFTTL;
190 int ip_forwsrcrt = IPFORWSRCRT;
191 int ip_directedbcast = IPDIRECTEDBCAST;
192 int ip_allowsrcrt = IPALLOWSRCRT;
193 int ip_mtudisc = IPMTUDISC;
194 int ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
195 #ifdef DIAGNOSTIC
196 int ipprintfs = 0;
197 #endif
198
199 int ip_do_randomid = 0;
200
201 /*
202 * XXX - Setting ip_checkinterface mostly implements the receive side of
203 * the Strong ES model described in RFC 1122, but since the routing table
204 * and transmit implementation do not implement the Strong ES model,
205 * setting this to 1 results in an odd hybrid.
206 *
207 * XXX - ip_checkinterface currently must be disabled if you use ipnat
208 * to translate the destination address to another local interface.
209 *
210 * XXX - ip_checkinterface must be disabled if you add IP aliases
211 * to the loopback interface instead of the interface where the
212 * packets for those addresses are received.
213 */
214 int ip_checkinterface = 0;
215
216
217 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
218
219 int ipqmaxlen = IFQ_MAXLEN;
220 u_long in_ifaddrhash; /* size of hash table - 1 */
221 int in_ifaddrentries; /* total number of addrs */
222 struct in_ifaddrhead in_ifaddrhead;
223 struct in_ifaddrhashhead *in_ifaddrhashtbl;
224 u_long in_multihash; /* size of hash table - 1 */
225 int in_multientries; /* total number of addrs */
226 struct in_multihashhead *in_multihashtbl;
227 struct ifqueue ipintrq;
228 uint16_t ip_id;
229
230 percpu_t *ipstat_percpu;
231
232 #ifdef PFIL_HOOKS
233 struct pfil_head inet_pfil_hook;
234 #endif
235
236 /*
237 * Cached copy of nmbclusters. If nbclusters is different,
238 * recalculate IP parameters derived from nmbclusters.
239 */
240 static int ip_nmbclusters; /* copy of nmbclusters */
241 static void ip_nmbclusters_changed(void); /* recalc limits */
242
243 #define CHECK_NMBCLUSTER_PARAMS() \
244 do { \
245 if (__predict_false(ip_nmbclusters != nmbclusters)) \
246 ip_nmbclusters_changed(); \
247 } while (/*CONSTCOND*/0)
248
249 /* IP datagram reassembly queues (hashed) */
250 #define IPREASS_NHASH_LOG2 6
251 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
252 #define IPREASS_HMASK (IPREASS_NHASH - 1)
253 #define IPREASS_HASH(x,y) \
254 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
255 struct ipqhead ipq[IPREASS_NHASH];
256 int ipq_locked;
257 static int ip_nfragpackets; /* packets in reass queue */
258 static int ip_nfrags; /* total fragments in reass queues */
259
260 int ip_maxfragpackets = 200; /* limit on packets. XXX sysctl */
261 int ip_maxfrags; /* limit on fragments. XXX sysctl */
262
263
264 /*
265 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
266 * IP reassembly queue buffer managment.
267 *
268 * We keep a count of total IP fragments (NB: not fragmented packets!)
269 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
270 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
271 * total fragments in reassembly queues.This AIMD policy avoids
272 * repeatedly deleting single packets under heavy fragmentation load
273 * (e.g., from lossy NFS peers).
274 */
275 static u_int ip_reass_ttl_decr(u_int ticks);
276 static void ip_reass_drophalf(void);
277
278
279 static inline int ipq_lock_try(void);
280 static inline void ipq_unlock(void);
281
282 static inline int
283 ipq_lock_try(void)
284 {
285 int s;
286
287 /*
288 * Use splvm() -- we're blocking things that would cause
289 * mbuf allocation.
290 */
291 s = splvm();
292 if (ipq_locked) {
293 splx(s);
294 return (0);
295 }
296 ipq_locked = 1;
297 splx(s);
298 return (1);
299 }
300
301 static inline void
302 ipq_unlock(void)
303 {
304 int s;
305
306 s = splvm();
307 ipq_locked = 0;
308 splx(s);
309 }
310
311 #ifdef DIAGNOSTIC
312 #define IPQ_LOCK() \
313 do { \
314 if (ipq_lock_try() == 0) { \
315 printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
316 panic("ipq_lock"); \
317 } \
318 } while (/*CONSTCOND*/ 0)
319 #define IPQ_LOCK_CHECK() \
320 do { \
321 if (ipq_locked == 0) { \
322 printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
323 panic("ipq lock check"); \
324 } \
325 } while (/*CONSTCOND*/ 0)
326 #else
327 #define IPQ_LOCK() (void) ipq_lock_try()
328 #define IPQ_LOCK_CHECK() /* nothing */
329 #endif
330
331 #define IPQ_UNLOCK() ipq_unlock()
332
333 POOL_INIT(inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", NULL,
334 IPL_SOFTNET);
335 POOL_INIT(ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl", NULL,
336 IPL_VM);
337
338 #ifdef INET_CSUM_COUNTERS
339 #include <sys/device.h>
340
341 struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
342 NULL, "inet", "hwcsum bad");
343 struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
344 NULL, "inet", "hwcsum ok");
345 struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
346 NULL, "inet", "swcsum");
347
348 #define INET_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
349
350 EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
351 EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
352 EVCNT_ATTACH_STATIC(ip_swcsum);
353
354 #else
355
356 #define INET_CSUM_COUNTER_INCR(ev) /* nothing */
357
358 #endif /* INET_CSUM_COUNTERS */
359
360 /*
361 * We need to save the IP options in case a protocol wants to respond
362 * to an incoming packet over the same route if the packet got here
363 * using IP source routing. This allows connection establishment and
364 * maintenance when the remote end is on a network that is not known
365 * to us.
366 */
367 int ip_nhops = 0;
368 static struct ip_srcrt {
369 struct in_addr dst; /* final destination */
370 char nop; /* one NOP to align */
371 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
372 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
373 } ip_srcrt;
374
375 static void save_rte(u_char *, struct in_addr);
376
377 #ifdef MBUFTRACE
378 struct mowner ip_rx_mowner = MOWNER_INIT("internet", "rx");
379 struct mowner ip_tx_mowner = MOWNER_INIT("internet", "tx");
380 #endif
381
382 /*
383 * Compute IP limits derived from the value of nmbclusters.
384 */
385 static void
386 ip_nmbclusters_changed(void)
387 {
388 ip_maxfrags = nmbclusters / 4;
389 ip_nmbclusters = nmbclusters;
390 }
391
392 /*
393 * IP initialization: fill in IP protocol switch table.
394 * All protocols not implemented in kernel go to raw IP protocol handler.
395 */
396 void
397 ip_init(void)
398 {
399 const struct protosw *pr;
400 int i;
401
402 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
403 if (pr == 0)
404 panic("ip_init");
405 for (i = 0; i < IPPROTO_MAX; i++)
406 ip_protox[i] = pr - inetsw;
407 for (pr = inetdomain.dom_protosw;
408 pr < inetdomain.dom_protoswNPROTOSW; pr++)
409 if (pr->pr_domain->dom_family == PF_INET &&
410 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
411 ip_protox[pr->pr_protocol] = pr - inetsw;
412
413 for (i = 0; i < IPREASS_NHASH; i++)
414 LIST_INIT(&ipq[i]);
415
416 ip_initid();
417 ip_id = time_second & 0xfffff;
418
419 ipintrq.ifq_maxlen = ipqmaxlen;
420 ip_nmbclusters_changed();
421
422 TAILQ_INIT(&in_ifaddrhead);
423 in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
424 &in_ifaddrhash);
425 in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
426 &in_multihash);
427 ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
428 #ifdef GATEWAY
429 ipflow_init(ip_hashsize);
430 #endif
431
432 #ifdef PFIL_HOOKS
433 /* Register our Packet Filter hook. */
434 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
435 inet_pfil_hook.ph_af = AF_INET;
436 i = pfil_head_register(&inet_pfil_hook);
437 if (i != 0)
438 printf("ip_init: WARNING: unable to register pfil hook, "
439 "error %d\n", i);
440 #endif /* PFIL_HOOKS */
441
442 #ifdef MBUFTRACE
443 MOWNER_ATTACH(&ip_tx_mowner);
444 MOWNER_ATTACH(&ip_rx_mowner);
445 #endif /* MBUFTRACE */
446
447 ipstat_percpu = percpu_alloc(sizeof(uint64_t) * IP_NSTATS);
448 }
449
450 struct sockaddr_in ipaddr = {
451 .sin_len = sizeof(ipaddr),
452 .sin_family = AF_INET,
453 };
454 struct route ipforward_rt;
455
456 /*
457 * IP software interrupt routine
458 */
459 void
460 ipintr(void)
461 {
462 int s;
463 struct mbuf *m;
464
465 mutex_enter(softnet_lock);
466 KERNEL_LOCK(1, NULL);
467 while (!IF_IS_EMPTY(&ipintrq)) {
468 s = splnet();
469 IF_DEQUEUE(&ipintrq, m);
470 splx(s);
471 if (m == NULL)
472 break;
473 ip_input(m);
474 }
475 KERNEL_UNLOCK_ONE(NULL);
476 mutex_exit(softnet_lock);
477 }
478
479 /*
480 * Ip input routine. Checksum and byte swap header. If fragmented
481 * try to reassemble. Process options. Pass to next level.
482 */
483 void
484 ip_input(struct mbuf *m)
485 {
486 struct ip *ip = NULL;
487 struct ipq *fp;
488 struct in_ifaddr *ia;
489 struct ifaddr *ifa;
490 struct ipqent *ipqe;
491 int hlen = 0, mff, len;
492 int downmatch;
493 int checkif;
494 int srcrt = 0;
495 int s;
496 u_int hash;
497 #ifdef FAST_IPSEC
498 struct m_tag *mtag;
499 struct tdb_ident *tdbi;
500 struct secpolicy *sp;
501 int error;
502 #endif /* FAST_IPSEC */
503
504 MCLAIM(m, &ip_rx_mowner);
505 #ifdef DIAGNOSTIC
506 if ((m->m_flags & M_PKTHDR) == 0)
507 panic("ipintr no HDR");
508 #endif
509
510 /*
511 * If no IP addresses have been set yet but the interfaces
512 * are receiving, can't do anything with incoming packets yet.
513 */
514 if (TAILQ_FIRST(&in_ifaddrhead) == 0)
515 goto bad;
516 IP_STATINC(IP_STAT_TOTAL);
517 /*
518 * If the IP header is not aligned, slurp it up into a new
519 * mbuf with space for link headers, in the event we forward
520 * it. Otherwise, if it is aligned, make sure the entire
521 * base IP header is in the first mbuf of the chain.
522 */
523 if (IP_HDR_ALIGNED_P(mtod(m, void *)) == 0) {
524 if ((m = m_copyup(m, sizeof(struct ip),
525 (max_linkhdr + 3) & ~3)) == NULL) {
526 /* XXXJRT new stat, please */
527 IP_STATINC(IP_STAT_TOOSMALL);
528 return;
529 }
530 } else if (__predict_false(m->m_len < sizeof (struct ip))) {
531 if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
532 IP_STATINC(IP_STAT_TOOSMALL);
533 return;
534 }
535 }
536 ip = mtod(m, struct ip *);
537 if (ip->ip_v != IPVERSION) {
538 IP_STATINC(IP_STAT_BADVERS);
539 goto bad;
540 }
541 hlen = ip->ip_hl << 2;
542 if (hlen < sizeof(struct ip)) { /* minimum header length */
543 IP_STATINC(IP_STAT_BADHLEN);
544 goto bad;
545 }
546 if (hlen > m->m_len) {
547 if ((m = m_pullup(m, hlen)) == 0) {
548 IP_STATINC(IP_STAT_BADHLEN);
549 return;
550 }
551 ip = mtod(m, struct ip *);
552 }
553
554 /*
555 * RFC1122: packets with a multicast source address are
556 * not allowed.
557 */
558 if (IN_MULTICAST(ip->ip_src.s_addr)) {
559 IP_STATINC(IP_STAT_BADADDR);
560 goto bad;
561 }
562
563 /* 127/8 must not appear on wire - RFC1122 */
564 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
565 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
566 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
567 IP_STATINC(IP_STAT_BADADDR);
568 goto bad;
569 }
570 }
571
572 switch (m->m_pkthdr.csum_flags &
573 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
574 M_CSUM_IPv4_BAD)) {
575 case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
576 INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
577 goto badcsum;
578
579 case M_CSUM_IPv4:
580 /* Checksum was okay. */
581 INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
582 break;
583
584 default:
585 /*
586 * Must compute it ourselves. Maybe skip checksum on
587 * loopback interfaces.
588 */
589 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
590 IFF_LOOPBACK) || ip_do_loopback_cksum)) {
591 INET_CSUM_COUNTER_INCR(&ip_swcsum);
592 if (in_cksum(m, hlen) != 0)
593 goto badcsum;
594 }
595 break;
596 }
597
598 /* Retrieve the packet length. */
599 len = ntohs(ip->ip_len);
600
601 /*
602 * Check for additional length bogosity
603 */
604 if (len < hlen) {
605 IP_STATINC(IP_STAT_BADLEN);
606 goto bad;
607 }
608
609 /*
610 * Check that the amount of data in the buffers
611 * is as at least much as the IP header would have us expect.
612 * Trim mbufs if longer than we expect.
613 * Drop packet if shorter than we expect.
614 */
615 if (m->m_pkthdr.len < len) {
616 IP_STATINC(IP_STAT_TOOSHORT);
617 goto bad;
618 }
619 if (m->m_pkthdr.len > len) {
620 if (m->m_len == m->m_pkthdr.len) {
621 m->m_len = len;
622 m->m_pkthdr.len = len;
623 } else
624 m_adj(m, len - m->m_pkthdr.len);
625 }
626
627 #if defined(IPSEC)
628 /* ipflow (IP fast forwarding) is not compatible with IPsec. */
629 m->m_flags &= ~M_CANFASTFWD;
630 #else
631 /*
632 * Assume that we can create a fast-forward IP flow entry
633 * based on this packet.
634 */
635 m->m_flags |= M_CANFASTFWD;
636 #endif
637
638 #ifdef PFIL_HOOKS
639 /*
640 * Run through list of hooks for input packets. If there are any
641 * filters which require that additional packets in the flow are
642 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
643 * Note that filters must _never_ set this flag, as another filter
644 * in the list may have previously cleared it.
645 */
646 /*
647 * let ipfilter look at packet on the wire,
648 * not the decapsulated packet.
649 */
650 #ifdef IPSEC
651 if (!ipsec_getnhist(m))
652 #elif defined(FAST_IPSEC)
653 if (!ipsec_indone(m))
654 #else
655 if (1)
656 #endif
657 {
658 struct in_addr odst;
659
660 odst = ip->ip_dst;
661 if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
662 PFIL_IN) != 0)
663 return;
664 if (m == NULL)
665 return;
666 ip = mtod(m, struct ip *);
667 hlen = ip->ip_hl << 2;
668 /*
669 * XXX The setting of "srcrt" here is to prevent ip_forward()
670 * from generating ICMP redirects for packets that have
671 * been redirected by a hook back out on to the same LAN that
672 * they came from and is not an indication that the packet
673 * is being inffluenced by source routing options. This
674 * allows things like
675 * "rdr tlp0 0/0 port 80 -> 1.1.1.200 3128 tcp"
676 * where tlp0 is both on the 1.1.1.0/24 network and is the
677 * default route for hosts on 1.1.1.0/24. Of course this
678 * also requires a "map tlp0 ..." to complete the story.
679 * One might argue whether or not this kind of network config.
680 * should be supported in this manner...
681 */
682 srcrt = (odst.s_addr != ip->ip_dst.s_addr);
683 }
684 #endif /* PFIL_HOOKS */
685
686 #ifdef ALTQ
687 /* XXX Temporary until ALTQ is changed to use a pfil hook */
688 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
689 /* packet dropped by traffic conditioner */
690 return;
691 }
692 #endif
693
694 /*
695 * Process options and, if not destined for us,
696 * ship it on. ip_dooptions returns 1 when an
697 * error was detected (causing an icmp message
698 * to be sent and the original packet to be freed).
699 */
700 ip_nhops = 0; /* for source routed packets */
701 if (hlen > sizeof (struct ip) && ip_dooptions(m))
702 return;
703
704 /*
705 * Enable a consistency check between the destination address
706 * and the arrival interface for a unicast packet (the RFC 1122
707 * strong ES model) if IP forwarding is disabled and the packet
708 * is not locally generated.
709 *
710 * XXX - Checking also should be disabled if the destination
711 * address is ipnat'ed to a different interface.
712 *
713 * XXX - Checking is incompatible with IP aliases added
714 * to the loopback interface instead of the interface where
715 * the packets are received.
716 *
717 * XXX - We need to add a per ifaddr flag for this so that
718 * we get finer grain control.
719 */
720 checkif = ip_checkinterface && (ipforwarding == 0) &&
721 (m->m_pkthdr.rcvif != NULL) &&
722 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
723
724 /*
725 * Check our list of addresses, to see if the packet is for us.
726 *
727 * Traditional 4.4BSD did not consult IFF_UP at all.
728 * The behavior here is to treat addresses on !IFF_UP interface
729 * as not mine.
730 */
731 downmatch = 0;
732 LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
733 if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
734 if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
735 continue;
736 if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
737 break;
738 else
739 downmatch++;
740 }
741 }
742 if (ia != NULL)
743 goto ours;
744 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
745 IFADDR_FOREACH(ifa, m->m_pkthdr.rcvif) {
746 if (ifa->ifa_addr->sa_family != AF_INET)
747 continue;
748 ia = ifatoia(ifa);
749 if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
750 in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
751 /*
752 * Look for all-0's host part (old broadcast addr),
753 * either for subnet or net.
754 */
755 ip->ip_dst.s_addr == ia->ia_subnet ||
756 ip->ip_dst.s_addr == ia->ia_net)
757 goto ours;
758 /*
759 * An interface with IP address zero accepts
760 * all packets that arrive on that interface.
761 */
762 if (in_nullhost(ia->ia_addr.sin_addr))
763 goto ours;
764 }
765 }
766 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
767 struct in_multi *inm;
768 #ifdef MROUTING
769 extern struct socket *ip_mrouter;
770
771 if (ip_mrouter) {
772 /*
773 * If we are acting as a multicast router, all
774 * incoming multicast packets are passed to the
775 * kernel-level multicast forwarding function.
776 * The packet is returned (relatively) intact; if
777 * ip_mforward() returns a non-zero value, the packet
778 * must be discarded, else it may be accepted below.
779 *
780 * (The IP ident field is put in the same byte order
781 * as expected when ip_mforward() is called from
782 * ip_output().)
783 */
784 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
785 IP_STATINC(IP_STAT_CANTFORWARD);
786 m_freem(m);
787 return;
788 }
789
790 /*
791 * The process-level routing demon needs to receive
792 * all multicast IGMP packets, whether or not this
793 * host belongs to their destination groups.
794 */
795 if (ip->ip_p == IPPROTO_IGMP)
796 goto ours;
797 IP_STATINC(IP_STAT_CANTFORWARD);
798 }
799 #endif
800 /*
801 * See if we belong to the destination multicast group on the
802 * arrival interface.
803 */
804 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
805 if (inm == NULL) {
806 IP_STATINC(IP_STAT_CANTFORWARD);
807 m_freem(m);
808 return;
809 }
810 goto ours;
811 }
812 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
813 in_nullhost(ip->ip_dst))
814 goto ours;
815
816 /*
817 * Not for us; forward if possible and desirable.
818 */
819 if (ipforwarding == 0) {
820 IP_STATINC(IP_STAT_CANTFORWARD);
821 m_freem(m);
822 } else {
823 /*
824 * If ip_dst matched any of my address on !IFF_UP interface,
825 * and there's no IFF_UP interface that matches ip_dst,
826 * send icmp unreach. Forwarding it will result in in-kernel
827 * forwarding loop till TTL goes to 0.
828 */
829 if (downmatch) {
830 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
831 IP_STATINC(IP_STAT_CANTFORWARD);
832 return;
833 }
834 #ifdef IPSEC
835 if (ipsec4_in_reject(m, NULL)) {
836 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
837 goto bad;
838 }
839 #endif
840 #ifdef FAST_IPSEC
841 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
842 s = splsoftnet();
843 if (mtag != NULL) {
844 tdbi = (struct tdb_ident *)(mtag + 1);
845 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
846 } else {
847 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
848 IP_FORWARDING, &error);
849 }
850 if (sp == NULL) { /* NB: can happen if error */
851 splx(s);
852 /*XXX error stat???*/
853 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
854 goto bad;
855 }
856
857 /*
858 * Check security policy against packet attributes.
859 */
860 error = ipsec_in_reject(sp, m);
861 KEY_FREESP(&sp);
862 splx(s);
863 if (error) {
864 IP_STATINC(IP_STAT_CANTFORWARD);
865 goto bad;
866 }
867
868 /*
869 * Peek at the outbound SP for this packet to determine if
870 * it's a Fast Forward candidate.
871 */
872 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
873 if (mtag != NULL)
874 m->m_flags &= ~M_CANFASTFWD;
875 else {
876 s = splsoftnet();
877 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
878 (IP_FORWARDING |
879 (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
880 &error, NULL);
881 if (sp != NULL) {
882 m->m_flags &= ~M_CANFASTFWD;
883 KEY_FREESP(&sp);
884 }
885 splx(s);
886 }
887 #endif /* FAST_IPSEC */
888
889 ip_forward(m, srcrt);
890 }
891 return;
892
893 ours:
894 /*
895 * If offset or IP_MF are set, must reassemble.
896 * Otherwise, nothing need be done.
897 * (We could look in the reassembly queue to see
898 * if the packet was previously fragmented,
899 * but it's not worth the time; just let them time out.)
900 */
901 if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
902 uint16_t off;
903 /*
904 * Prevent TCP blind data attacks by not allowing non-initial
905 * fragments to start at less than 68 bytes (minimal fragment
906 * size) and making sure the first fragment is at least 68
907 * bytes.
908 */
909 off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
910 if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
911 IP_STATINC(IP_STAT_BADFRAGS);
912 goto bad;
913 }
914 /*
915 * Look for queue of fragments
916 * of this datagram.
917 */
918 IPQ_LOCK();
919 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
920 LIST_FOREACH(fp, &ipq[hash], ipq_q) {
921 if (ip->ip_id == fp->ipq_id &&
922 in_hosteq(ip->ip_src, fp->ipq_src) &&
923 in_hosteq(ip->ip_dst, fp->ipq_dst) &&
924 ip->ip_p == fp->ipq_p) {
925 /*
926 * Make sure the TOS is matches previous
927 * fragments.
928 */
929 if (ip->ip_tos != fp->ipq_tos) {
930 IP_STATINC(IP_STAT_BADFRAGS);
931 goto bad;
932 }
933 goto found;
934 }
935 }
936 fp = 0;
937 found:
938
939 /*
940 * Adjust ip_len to not reflect header,
941 * set ipqe_mff if more fragments are expected,
942 * convert offset of this to bytes.
943 */
944 ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
945 mff = (ip->ip_off & htons(IP_MF)) != 0;
946 if (mff) {
947 /*
948 * Make sure that fragments have a data length
949 * that's a non-zero multiple of 8 bytes.
950 */
951 if (ntohs(ip->ip_len) == 0 ||
952 (ntohs(ip->ip_len) & 0x7) != 0) {
953 IP_STATINC(IP_STAT_BADFRAGS);
954 IPQ_UNLOCK();
955 goto bad;
956 }
957 }
958 ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
959
960 /*
961 * If datagram marked as having more fragments
962 * or if this is not the first fragment,
963 * attempt reassembly; if it succeeds, proceed.
964 */
965 if (mff || ip->ip_off != htons(0)) {
966 IP_STATINC(IP_STAT_FRAGMENTS);
967 s = splvm();
968 ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
969 splx(s);
970 if (ipqe == NULL) {
971 IP_STATINC(IP_STAT_RCVMEMDROP);
972 IPQ_UNLOCK();
973 goto bad;
974 }
975 ipqe->ipqe_mff = mff;
976 ipqe->ipqe_m = m;
977 ipqe->ipqe_ip = ip;
978 m = ip_reass(ipqe, fp, &ipq[hash]);
979 if (m == 0) {
980 IPQ_UNLOCK();
981 return;
982 }
983 IP_STATINC(IP_STAT_REASSEMBLED);
984 ip = mtod(m, struct ip *);
985 hlen = ip->ip_hl << 2;
986 ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
987 } else
988 if (fp)
989 ip_freef(fp);
990 IPQ_UNLOCK();
991 }
992
993 #if defined(IPSEC)
994 /*
995 * enforce IPsec policy checking if we are seeing last header.
996 * note that we do not visit this with protocols with pcb layer
997 * code - like udp/tcp/raw ip.
998 */
999 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
1000 ipsec4_in_reject(m, NULL)) {
1001 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1002 goto bad;
1003 }
1004 #endif
1005 #ifdef FAST_IPSEC
1006 /*
1007 * enforce IPsec policy checking if we are seeing last header.
1008 * note that we do not visit this with protocols with pcb layer
1009 * code - like udp/tcp/raw ip.
1010 */
1011 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
1012 /*
1013 * Check if the packet has already had IPsec processing
1014 * done. If so, then just pass it along. This tag gets
1015 * set during AH, ESP, etc. input handling, before the
1016 * packet is returned to the ip input queue for delivery.
1017 */
1018 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1019 s = splsoftnet();
1020 if (mtag != NULL) {
1021 tdbi = (struct tdb_ident *)(mtag + 1);
1022 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1023 } else {
1024 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1025 IP_FORWARDING, &error);
1026 }
1027 if (sp != NULL) {
1028 /*
1029 * Check security policy against packet attributes.
1030 */
1031 error = ipsec_in_reject(sp, m);
1032 KEY_FREESP(&sp);
1033 } else {
1034 /* XXX error stat??? */
1035 error = EINVAL;
1036 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1037 }
1038 splx(s);
1039 if (error)
1040 goto bad;
1041 }
1042 #endif /* FAST_IPSEC */
1043
1044 /*
1045 * Switch out to protocol's input routine.
1046 */
1047 #if IFA_STATS
1048 if (ia && ip)
1049 ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
1050 #endif
1051 IP_STATINC(IP_STAT_DELIVERED);
1052 {
1053 int off = hlen, nh = ip->ip_p;
1054
1055 (*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
1056 return;
1057 }
1058 bad:
1059 m_freem(m);
1060 return;
1061
1062 badcsum:
1063 IP_STATINC(IP_STAT_BADSUM);
1064 m_freem(m);
1065 }
1066
1067 /*
1068 * Take incoming datagram fragment and try to
1069 * reassemble it into whole datagram. If a chain for
1070 * reassembly of this datagram already exists, then it
1071 * is given as fp; otherwise have to make a chain.
1072 */
1073 struct mbuf *
1074 ip_reass(struct ipqent *ipqe, struct ipq *fp, struct ipqhead *ipqhead)
1075 {
1076 struct mbuf *m = ipqe->ipqe_m;
1077 struct ipqent *nq, *p, *q;
1078 struct ip *ip;
1079 struct mbuf *t;
1080 int hlen = ipqe->ipqe_ip->ip_hl << 2;
1081 int i, next, s;
1082
1083 IPQ_LOCK_CHECK();
1084
1085 /*
1086 * Presence of header sizes in mbufs
1087 * would confuse code below.
1088 */
1089 m->m_data += hlen;
1090 m->m_len -= hlen;
1091
1092 #ifdef notyet
1093 /* make sure fragment limit is up-to-date */
1094 CHECK_NMBCLUSTER_PARAMS();
1095
1096 /* If we have too many fragments, drop the older half. */
1097 if (ip_nfrags >= ip_maxfrags)
1098 ip_reass_drophalf(void);
1099 #endif
1100
1101 /*
1102 * We are about to add a fragment; increment frag count.
1103 */
1104 ip_nfrags++;
1105
1106 /*
1107 * If first fragment to arrive, create a reassembly queue.
1108 */
1109 if (fp == 0) {
1110 /*
1111 * Enforce upper bound on number of fragmented packets
1112 * for which we attempt reassembly;
1113 * If maxfrag is 0, never accept fragments.
1114 * If maxfrag is -1, accept all fragments without limitation.
1115 */
1116 if (ip_maxfragpackets < 0)
1117 ;
1118 else if (ip_nfragpackets >= ip_maxfragpackets)
1119 goto dropfrag;
1120 ip_nfragpackets++;
1121 MALLOC(fp, struct ipq *, sizeof (struct ipq),
1122 M_FTABLE, M_NOWAIT);
1123 if (fp == NULL)
1124 goto dropfrag;
1125 LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
1126 fp->ipq_nfrags = 1;
1127 fp->ipq_ttl = IPFRAGTTL;
1128 fp->ipq_p = ipqe->ipqe_ip->ip_p;
1129 fp->ipq_id = ipqe->ipqe_ip->ip_id;
1130 fp->ipq_tos = ipqe->ipqe_ip->ip_tos;
1131 TAILQ_INIT(&fp->ipq_fragq);
1132 fp->ipq_src = ipqe->ipqe_ip->ip_src;
1133 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
1134 p = NULL;
1135 goto insert;
1136 } else {
1137 fp->ipq_nfrags++;
1138 }
1139
1140 /*
1141 * Find a segment which begins after this one does.
1142 */
1143 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1144 p = q, q = TAILQ_NEXT(q, ipqe_q))
1145 if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
1146 break;
1147
1148 /*
1149 * If there is a preceding segment, it may provide some of
1150 * our data already. If so, drop the data from the incoming
1151 * segment. If it provides all of our data, drop us.
1152 */
1153 if (p != NULL) {
1154 i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
1155 ntohs(ipqe->ipqe_ip->ip_off);
1156 if (i > 0) {
1157 if (i >= ntohs(ipqe->ipqe_ip->ip_len))
1158 goto dropfrag;
1159 m_adj(ipqe->ipqe_m, i);
1160 ipqe->ipqe_ip->ip_off =
1161 htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
1162 ipqe->ipqe_ip->ip_len =
1163 htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
1164 }
1165 }
1166
1167 /*
1168 * While we overlap succeeding segments trim them or,
1169 * if they are completely covered, dequeue them.
1170 */
1171 for (; q != NULL &&
1172 ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
1173 ntohs(q->ipqe_ip->ip_off); q = nq) {
1174 i = (ntohs(ipqe->ipqe_ip->ip_off) +
1175 ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
1176 if (i < ntohs(q->ipqe_ip->ip_len)) {
1177 q->ipqe_ip->ip_len =
1178 htons(ntohs(q->ipqe_ip->ip_len) - i);
1179 q->ipqe_ip->ip_off =
1180 htons(ntohs(q->ipqe_ip->ip_off) + i);
1181 m_adj(q->ipqe_m, i);
1182 break;
1183 }
1184 nq = TAILQ_NEXT(q, ipqe_q);
1185 m_freem(q->ipqe_m);
1186 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1187 s = splvm();
1188 pool_put(&ipqent_pool, q);
1189 splx(s);
1190 fp->ipq_nfrags--;
1191 ip_nfrags--;
1192 }
1193
1194 insert:
1195 /*
1196 * Stick new segment in its place;
1197 * check for complete reassembly.
1198 */
1199 if (p == NULL) {
1200 TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
1201 } else {
1202 TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
1203 }
1204 next = 0;
1205 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1206 p = q, q = TAILQ_NEXT(q, ipqe_q)) {
1207 if (ntohs(q->ipqe_ip->ip_off) != next)
1208 return (0);
1209 next += ntohs(q->ipqe_ip->ip_len);
1210 }
1211 if (p->ipqe_mff)
1212 return (0);
1213
1214 /*
1215 * Reassembly is complete. Check for a bogus message size and
1216 * concatenate fragments.
1217 */
1218 q = TAILQ_FIRST(&fp->ipq_fragq);
1219 ip = q->ipqe_ip;
1220 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
1221 IP_STATINC(IP_STAT_TOOLONG);
1222 ip_freef(fp);
1223 return (0);
1224 }
1225 m = q->ipqe_m;
1226 t = m->m_next;
1227 m->m_next = 0;
1228 m_cat(m, t);
1229 nq = TAILQ_NEXT(q, ipqe_q);
1230 s = splvm();
1231 pool_put(&ipqent_pool, q);
1232 splx(s);
1233 for (q = nq; q != NULL; q = nq) {
1234 t = q->ipqe_m;
1235 nq = TAILQ_NEXT(q, ipqe_q);
1236 s = splvm();
1237 pool_put(&ipqent_pool, q);
1238 splx(s);
1239 m_cat(m, t);
1240 }
1241 ip_nfrags -= fp->ipq_nfrags;
1242
1243 /*
1244 * Create header for new ip packet by
1245 * modifying header of first packet;
1246 * dequeue and discard fragment reassembly header.
1247 * Make header visible.
1248 */
1249 ip->ip_len = htons(next);
1250 ip->ip_src = fp->ipq_src;
1251 ip->ip_dst = fp->ipq_dst;
1252 LIST_REMOVE(fp, ipq_q);
1253 FREE(fp, M_FTABLE);
1254 ip_nfragpackets--;
1255 m->m_len += (ip->ip_hl << 2);
1256 m->m_data -= (ip->ip_hl << 2);
1257 /* some debugging cruft by sklower, below, will go away soon */
1258 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1259 int plen = 0;
1260 for (t = m; t; t = t->m_next)
1261 plen += t->m_len;
1262 m->m_pkthdr.len = plen;
1263 m->m_pkthdr.csum_flags = 0;
1264 }
1265 return (m);
1266
1267 dropfrag:
1268 if (fp != 0)
1269 fp->ipq_nfrags--;
1270 ip_nfrags--;
1271 IP_STATINC(IP_STAT_FRAGDROPPED);
1272 m_freem(m);
1273 s = splvm();
1274 pool_put(&ipqent_pool, ipqe);
1275 splx(s);
1276 return (0);
1277 }
1278
1279 /*
1280 * Free a fragment reassembly header and all
1281 * associated datagrams.
1282 */
1283 void
1284 ip_freef(struct ipq *fp)
1285 {
1286 struct ipqent *q, *p;
1287 u_int nfrags = 0;
1288 int s;
1289
1290 IPQ_LOCK_CHECK();
1291
1292 for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
1293 p = TAILQ_NEXT(q, ipqe_q);
1294 m_freem(q->ipqe_m);
1295 nfrags++;
1296 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1297 s = splvm();
1298 pool_put(&ipqent_pool, q);
1299 splx(s);
1300 }
1301
1302 if (nfrags != fp->ipq_nfrags)
1303 printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
1304 ip_nfrags -= nfrags;
1305 LIST_REMOVE(fp, ipq_q);
1306 FREE(fp, M_FTABLE);
1307 ip_nfragpackets--;
1308 }
1309
1310 /*
1311 * IP reassembly TTL machinery for multiplicative drop.
1312 */
1313 static u_int fragttl_histo[(IPFRAGTTL+1)];
1314
1315
1316 /*
1317 * Decrement TTL of all reasembly queue entries by `ticks'.
1318 * Count number of distinct fragments (as opposed to partial, fragmented
1319 * datagrams) in the reassembly queue. While we traverse the entire
1320 * reassembly queue, compute and return the median TTL over all fragments.
1321 */
1322 static u_int
1323 ip_reass_ttl_decr(u_int ticks)
1324 {
1325 u_int nfrags, median, dropfraction, keepfraction;
1326 struct ipq *fp, *nfp;
1327 int i;
1328
1329 nfrags = 0;
1330 memset(fragttl_histo, 0, sizeof fragttl_histo);
1331
1332 for (i = 0; i < IPREASS_NHASH; i++) {
1333 for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
1334 fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
1335 0 : fp->ipq_ttl - ticks);
1336 nfp = LIST_NEXT(fp, ipq_q);
1337 if (fp->ipq_ttl == 0) {
1338 IP_STATINC(IP_STAT_FRAGTIMEOUT);
1339 ip_freef(fp);
1340 } else {
1341 nfrags += fp->ipq_nfrags;
1342 fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
1343 }
1344 }
1345 }
1346
1347 KASSERT(ip_nfrags == nfrags);
1348
1349 /* Find median (or other drop fraction) in histogram. */
1350 dropfraction = (ip_nfrags / 2);
1351 keepfraction = ip_nfrags - dropfraction;
1352 for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
1353 median += fragttl_histo[i];
1354 if (median >= keepfraction)
1355 break;
1356 }
1357
1358 /* Return TTL of median (or other fraction). */
1359 return (u_int)i;
1360 }
1361
1362 void
1363 ip_reass_drophalf(void)
1364 {
1365
1366 u_int median_ticks;
1367 /*
1368 * Compute median TTL of all fragments, and count frags
1369 * with that TTL or lower (roughly half of all fragments).
1370 */
1371 median_ticks = ip_reass_ttl_decr(0);
1372
1373 /* Drop half. */
1374 median_ticks = ip_reass_ttl_decr(median_ticks);
1375
1376 }
1377
1378 /*
1379 * IP timer processing;
1380 * if a timer expires on a reassembly
1381 * queue, discard it.
1382 */
1383 void
1384 ip_slowtimo(void)
1385 {
1386 static u_int dropscanidx = 0;
1387 u_int i;
1388 u_int median_ttl;
1389
1390 mutex_enter(softnet_lock);
1391 KERNEL_LOCK(1, NULL);
1392
1393 IPQ_LOCK();
1394
1395 /* Age TTL of all fragments by 1 tick .*/
1396 median_ttl = ip_reass_ttl_decr(1);
1397
1398 /* make sure fragment limit is up-to-date */
1399 CHECK_NMBCLUSTER_PARAMS();
1400
1401 /* If we have too many fragments, drop the older half. */
1402 if (ip_nfrags > ip_maxfrags)
1403 ip_reass_ttl_decr(median_ttl);
1404
1405 /*
1406 * If we are over the maximum number of fragmented packets
1407 * (due to the limit being lowered), drain off
1408 * enough to get down to the new limit. Start draining
1409 * from the reassembly hashqueue most recently drained.
1410 */
1411 if (ip_maxfragpackets < 0)
1412 ;
1413 else {
1414 int wrapped = 0;
1415
1416 i = dropscanidx;
1417 while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
1418 while (LIST_FIRST(&ipq[i]) != NULL)
1419 ip_freef(LIST_FIRST(&ipq[i]));
1420 if (++i >= IPREASS_NHASH) {
1421 i = 0;
1422 }
1423 /*
1424 * Dont scan forever even if fragment counters are
1425 * wrong: stop after scanning entire reassembly queue.
1426 */
1427 if (i == dropscanidx)
1428 wrapped = 1;
1429 }
1430 dropscanidx = i;
1431 }
1432 IPQ_UNLOCK();
1433
1434 KERNEL_UNLOCK_ONE(NULL);
1435 mutex_exit(softnet_lock);
1436 }
1437
1438 /*
1439 * Drain off all datagram fragments. Don't acquire softnet_lock as
1440 * can be called from hardware interrupt context.
1441 */
1442 void
1443 ip_drain(void)
1444 {
1445
1446 KERNEL_LOCK(1, NULL);
1447
1448 /*
1449 * We may be called from a device's interrupt context. If
1450 * the ipq is already busy, just bail out now.
1451 */
1452 if (ipq_lock_try() != 0) {
1453 /*
1454 * Drop half the total fragments now. If more mbufs are
1455 * needed, we will be called again soon.
1456 */
1457 ip_reass_drophalf();
1458 IPQ_UNLOCK();
1459 }
1460
1461 KERNEL_UNLOCK_ONE(NULL);
1462 }
1463
1464 /*
1465 * Do option processing on a datagram,
1466 * possibly discarding it if bad options are encountered,
1467 * or forwarding it if source-routed.
1468 * Returns 1 if packet has been forwarded/freed,
1469 * 0 if the packet should be processed further.
1470 */
1471 int
1472 ip_dooptions(struct mbuf *m)
1473 {
1474 struct ip *ip = mtod(m, struct ip *);
1475 u_char *cp, *cp0;
1476 struct ip_timestamp *ipt;
1477 struct in_ifaddr *ia;
1478 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1479 struct in_addr dst;
1480 n_time ntime;
1481
1482 dst = ip->ip_dst;
1483 cp = (u_char *)(ip + 1);
1484 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1485 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1486 opt = cp[IPOPT_OPTVAL];
1487 if (opt == IPOPT_EOL)
1488 break;
1489 if (opt == IPOPT_NOP)
1490 optlen = 1;
1491 else {
1492 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1493 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1494 goto bad;
1495 }
1496 optlen = cp[IPOPT_OLEN];
1497 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1498 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1499 goto bad;
1500 }
1501 }
1502 switch (opt) {
1503
1504 default:
1505 break;
1506
1507 /*
1508 * Source routing with record.
1509 * Find interface with current destination address.
1510 * If none on this machine then drop if strictly routed,
1511 * or do nothing if loosely routed.
1512 * Record interface address and bring up next address
1513 * component. If strictly routed make sure next
1514 * address is on directly accessible net.
1515 */
1516 case IPOPT_LSRR:
1517 case IPOPT_SSRR:
1518 if (ip_allowsrcrt == 0) {
1519 type = ICMP_UNREACH;
1520 code = ICMP_UNREACH_NET_PROHIB;
1521 goto bad;
1522 }
1523 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1524 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1525 goto bad;
1526 }
1527 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1528 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1529 goto bad;
1530 }
1531 ipaddr.sin_addr = ip->ip_dst;
1532 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
1533 if (ia == 0) {
1534 if (opt == IPOPT_SSRR) {
1535 type = ICMP_UNREACH;
1536 code = ICMP_UNREACH_SRCFAIL;
1537 goto bad;
1538 }
1539 /*
1540 * Loose routing, and not at next destination
1541 * yet; nothing to do except forward.
1542 */
1543 break;
1544 }
1545 off--; /* 0 origin */
1546 if ((off + sizeof(struct in_addr)) > optlen) {
1547 /*
1548 * End of source route. Should be for us.
1549 */
1550 save_rte(cp, ip->ip_src);
1551 break;
1552 }
1553 /*
1554 * locate outgoing interface
1555 */
1556 bcopy((void *)(cp + off), (void *)&ipaddr.sin_addr,
1557 sizeof(ipaddr.sin_addr));
1558 if (opt == IPOPT_SSRR)
1559 ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
1560 else
1561 ia = ip_rtaddr(ipaddr.sin_addr);
1562 if (ia == 0) {
1563 type = ICMP_UNREACH;
1564 code = ICMP_UNREACH_SRCFAIL;
1565 goto bad;
1566 }
1567 ip->ip_dst = ipaddr.sin_addr;
1568 bcopy((void *)&ia->ia_addr.sin_addr,
1569 (void *)(cp + off), sizeof(struct in_addr));
1570 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1571 /*
1572 * Let ip_intr's mcast routing check handle mcast pkts
1573 */
1574 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1575 break;
1576
1577 case IPOPT_RR:
1578 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1579 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1580 goto bad;
1581 }
1582 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1583 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1584 goto bad;
1585 }
1586 /*
1587 * If no space remains, ignore.
1588 */
1589 off--; /* 0 origin */
1590 if ((off + sizeof(struct in_addr)) > optlen)
1591 break;
1592 bcopy((void *)(&ip->ip_dst), (void *)&ipaddr.sin_addr,
1593 sizeof(ipaddr.sin_addr));
1594 /*
1595 * locate outgoing interface; if we're the destination,
1596 * use the incoming interface (should be same).
1597 */
1598 if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
1599 == NULL &&
1600 (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1601 type = ICMP_UNREACH;
1602 code = ICMP_UNREACH_HOST;
1603 goto bad;
1604 }
1605 bcopy((void *)&ia->ia_addr.sin_addr,
1606 (void *)(cp + off), sizeof(struct in_addr));
1607 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1608 break;
1609
1610 case IPOPT_TS:
1611 code = cp - (u_char *)ip;
1612 ipt = (struct ip_timestamp *)cp;
1613 if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1614 code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1615 goto bad;
1616 }
1617 if (ipt->ipt_ptr < 5) {
1618 code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1619 goto bad;
1620 }
1621 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
1622 if (++ipt->ipt_oflw == 0) {
1623 code = (u_char *)&ipt->ipt_ptr -
1624 (u_char *)ip;
1625 goto bad;
1626 }
1627 break;
1628 }
1629 cp0 = (cp + ipt->ipt_ptr - 1);
1630 switch (ipt->ipt_flg) {
1631
1632 case IPOPT_TS_TSONLY:
1633 break;
1634
1635 case IPOPT_TS_TSANDADDR:
1636 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1637 sizeof(struct in_addr) > ipt->ipt_len) {
1638 code = (u_char *)&ipt->ipt_ptr -
1639 (u_char *)ip;
1640 goto bad;
1641 }
1642 ipaddr.sin_addr = dst;
1643 ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1644 m->m_pkthdr.rcvif));
1645 if (ia == 0)
1646 continue;
1647 bcopy(&ia->ia_addr.sin_addr,
1648 cp0, sizeof(struct in_addr));
1649 ipt->ipt_ptr += sizeof(struct in_addr);
1650 break;
1651
1652 case IPOPT_TS_PRESPEC:
1653 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1654 sizeof(struct in_addr) > ipt->ipt_len) {
1655 code = (u_char *)&ipt->ipt_ptr -
1656 (u_char *)ip;
1657 goto bad;
1658 }
1659 bcopy(cp0, &ipaddr.sin_addr,
1660 sizeof(struct in_addr));
1661 if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
1662 == NULL)
1663 continue;
1664 ipt->ipt_ptr += sizeof(struct in_addr);
1665 break;
1666
1667 default:
1668 /* XXX can't take &ipt->ipt_flg */
1669 code = (u_char *)&ipt->ipt_ptr -
1670 (u_char *)ip + 1;
1671 goto bad;
1672 }
1673 ntime = iptime();
1674 cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
1675 memmove((char *)cp + ipt->ipt_ptr - 1, cp0,
1676 sizeof(n_time));
1677 ipt->ipt_ptr += sizeof(n_time);
1678 }
1679 }
1680 if (forward) {
1681 if (ip_forwsrcrt == 0) {
1682 type = ICMP_UNREACH;
1683 code = ICMP_UNREACH_SRCFAIL;
1684 goto bad;
1685 }
1686 ip_forward(m, 1);
1687 return (1);
1688 }
1689 return (0);
1690 bad:
1691 icmp_error(m, type, code, 0, 0);
1692 IP_STATINC(IP_STAT_BADOPTIONS);
1693 return (1);
1694 }
1695
1696 /*
1697 * Given address of next destination (final or next hop),
1698 * return internet address info of interface to be used to get there.
1699 */
1700 struct in_ifaddr *
1701 ip_rtaddr(struct in_addr dst)
1702 {
1703 struct rtentry *rt;
1704 union {
1705 struct sockaddr dst;
1706 struct sockaddr_in dst4;
1707 } u;
1708
1709 sockaddr_in_init(&u.dst4, &dst, 0);
1710
1711 if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL)
1712 return NULL;
1713
1714 return ifatoia(rt->rt_ifa);
1715 }
1716
1717 /*
1718 * Save incoming source route for use in replies,
1719 * to be picked up later by ip_srcroute if the receiver is interested.
1720 */
1721 void
1722 save_rte(u_char *option, struct in_addr dst)
1723 {
1724 unsigned olen;
1725
1726 olen = option[IPOPT_OLEN];
1727 #ifdef DIAGNOSTIC
1728 if (ipprintfs)
1729 printf("save_rte: olen %d\n", olen);
1730 #endif /* 0 */
1731 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1732 return;
1733 bcopy((void *)option, (void *)ip_srcrt.srcopt, olen);
1734 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1735 ip_srcrt.dst = dst;
1736 }
1737
1738 /*
1739 * Retrieve incoming source route for use in replies,
1740 * in the same form used by setsockopt.
1741 * The first hop is placed before the options, will be removed later.
1742 */
1743 struct mbuf *
1744 ip_srcroute(void)
1745 {
1746 struct in_addr *p, *q;
1747 struct mbuf *m;
1748
1749 if (ip_nhops == 0)
1750 return NULL;
1751 m = m_get(M_DONTWAIT, MT_SOOPTS);
1752 if (m == 0)
1753 return NULL;
1754
1755 MCLAIM(m, &inetdomain.dom_mowner);
1756 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1757
1758 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1759 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1760 OPTSIZ;
1761 #ifdef DIAGNOSTIC
1762 if (ipprintfs)
1763 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1764 #endif
1765
1766 /*
1767 * First save first hop for return route
1768 */
1769 p = &ip_srcrt.route[ip_nhops - 1];
1770 *(mtod(m, struct in_addr *)) = *p--;
1771 #ifdef DIAGNOSTIC
1772 if (ipprintfs)
1773 printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1774 #endif
1775
1776 /*
1777 * Copy option fields and padding (nop) to mbuf.
1778 */
1779 ip_srcrt.nop = IPOPT_NOP;
1780 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1781 memmove(mtod(m, char *) + sizeof(struct in_addr), &ip_srcrt.nop,
1782 OPTSIZ);
1783 q = (struct in_addr *)(mtod(m, char *) +
1784 sizeof(struct in_addr) + OPTSIZ);
1785 #undef OPTSIZ
1786 /*
1787 * Record return path as an IP source route,
1788 * reversing the path (pointers are now aligned).
1789 */
1790 while (p >= ip_srcrt.route) {
1791 #ifdef DIAGNOSTIC
1792 if (ipprintfs)
1793 printf(" %x", ntohl(q->s_addr));
1794 #endif
1795 *q++ = *p--;
1796 }
1797 /*
1798 * Last hop goes to final destination.
1799 */
1800 *q = ip_srcrt.dst;
1801 #ifdef DIAGNOSTIC
1802 if (ipprintfs)
1803 printf(" %x\n", ntohl(q->s_addr));
1804 #endif
1805 return (m);
1806 }
1807
1808 const int inetctlerrmap[PRC_NCMDS] = {
1809 [PRC_MSGSIZE] = EMSGSIZE,
1810 [PRC_HOSTDEAD] = EHOSTDOWN,
1811 [PRC_HOSTUNREACH] = EHOSTUNREACH,
1812 [PRC_UNREACH_NET] = EHOSTUNREACH,
1813 [PRC_UNREACH_HOST] = EHOSTUNREACH,
1814 [PRC_UNREACH_PROTOCOL] = ECONNREFUSED,
1815 [PRC_UNREACH_PORT] = ECONNREFUSED,
1816 [PRC_UNREACH_SRCFAIL] = EHOSTUNREACH,
1817 [PRC_PARAMPROB] = ENOPROTOOPT,
1818 };
1819
1820 /*
1821 * Forward a packet. If some error occurs return the sender
1822 * an icmp packet. Note we can't always generate a meaningful
1823 * icmp message because icmp doesn't have a large enough repertoire
1824 * of codes and types.
1825 *
1826 * If not forwarding, just drop the packet. This could be confusing
1827 * if ipforwarding was zero but some routing protocol was advancing
1828 * us as a gateway to somewhere. However, we must let the routing
1829 * protocol deal with that.
1830 *
1831 * The srcrt parameter indicates whether the packet is being forwarded
1832 * via a source route.
1833 */
1834 void
1835 ip_forward(struct mbuf *m, int srcrt)
1836 {
1837 struct ip *ip = mtod(m, struct ip *);
1838 struct rtentry *rt;
1839 int error, type = 0, code = 0, destmtu = 0;
1840 struct mbuf *mcopy;
1841 n_long dest;
1842 union {
1843 struct sockaddr dst;
1844 struct sockaddr_in dst4;
1845 } u;
1846
1847 /*
1848 * We are now in the output path.
1849 */
1850 MCLAIM(m, &ip_tx_mowner);
1851
1852 /*
1853 * Clear any in-bound checksum flags for this packet.
1854 */
1855 m->m_pkthdr.csum_flags = 0;
1856
1857 dest = 0;
1858 #ifdef DIAGNOSTIC
1859 if (ipprintfs) {
1860 printf("forward: src %s ", inet_ntoa(ip->ip_src));
1861 printf("dst %s ttl %x\n", inet_ntoa(ip->ip_dst), ip->ip_ttl);
1862 }
1863 #endif
1864 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1865 IP_STATINC(IP_STAT_CANTFORWARD);
1866 m_freem(m);
1867 return;
1868 }
1869 if (ip->ip_ttl <= IPTTLDEC) {
1870 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1871 return;
1872 }
1873
1874 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
1875 if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL) {
1876 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_NET, dest, 0);
1877 return;
1878 }
1879
1880 /*
1881 * Save at most 68 bytes of the packet in case
1882 * we need to generate an ICMP message to the src.
1883 * Pullup to avoid sharing mbuf cluster between m and mcopy.
1884 */
1885 mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
1886 if (mcopy)
1887 mcopy = m_pullup(mcopy, ip->ip_hl << 2);
1888
1889 ip->ip_ttl -= IPTTLDEC;
1890
1891 /*
1892 * If forwarding packet using same interface that it came in on,
1893 * perhaps should send a redirect to sender to shortcut a hop.
1894 * Only send redirect if source is sending directly to us,
1895 * and if packet was not source routed (or has any options).
1896 * Also, don't send redirect if forwarding using a default route
1897 * or a route modified by a redirect.
1898 */
1899 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1900 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1901 !in_nullhost(satocsin(rt_getkey(rt))->sin_addr) &&
1902 ipsendredirects && !srcrt) {
1903 if (rt->rt_ifa &&
1904 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1905 ifatoia(rt->rt_ifa)->ia_subnet) {
1906 if (rt->rt_flags & RTF_GATEWAY)
1907 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1908 else
1909 dest = ip->ip_dst.s_addr;
1910 /*
1911 * Router requirements says to only send host
1912 * redirects.
1913 */
1914 type = ICMP_REDIRECT;
1915 code = ICMP_REDIRECT_HOST;
1916 #ifdef DIAGNOSTIC
1917 if (ipprintfs)
1918 printf("redirect (%d) to %x\n", code,
1919 (u_int32_t)dest);
1920 #endif
1921 }
1922 }
1923
1924 error = ip_output(m, NULL, &ipforward_rt,
1925 (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1926 (struct ip_moptions *)NULL, (struct socket *)NULL);
1927
1928 if (error)
1929 IP_STATINC(IP_STAT_CANTFORWARD);
1930 else {
1931 uint64_t *ips = IP_STAT_GETREF();
1932 ips[IP_STAT_FORWARD]++;
1933 if (type) {
1934 ips[IP_STAT_REDIRECTSENT]++;
1935 IP_STAT_PUTREF();
1936 } else {
1937 IP_STAT_PUTREF();
1938 if (mcopy) {
1939 #ifdef GATEWAY
1940 if (mcopy->m_flags & M_CANFASTFWD)
1941 ipflow_create(&ipforward_rt, mcopy);
1942 #endif
1943 m_freem(mcopy);
1944 }
1945 return;
1946 }
1947 }
1948 if (mcopy == NULL)
1949 return;
1950
1951 switch (error) {
1952
1953 case 0: /* forwarded, but need redirect */
1954 /* type, code set above */
1955 break;
1956
1957 case ENETUNREACH: /* shouldn't happen, checked above */
1958 case EHOSTUNREACH:
1959 case ENETDOWN:
1960 case EHOSTDOWN:
1961 default:
1962 type = ICMP_UNREACH;
1963 code = ICMP_UNREACH_HOST;
1964 break;
1965
1966 case EMSGSIZE:
1967 type = ICMP_UNREACH;
1968 code = ICMP_UNREACH_NEEDFRAG;
1969
1970 if ((rt = rtcache_validate(&ipforward_rt)) != NULL)
1971 destmtu = rt->rt_ifp->if_mtu;
1972
1973 #if defined(IPSEC) || defined(FAST_IPSEC)
1974 {
1975 /*
1976 * If the packet is routed over IPsec tunnel, tell the
1977 * originator the tunnel MTU.
1978 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1979 * XXX quickhack!!!
1980 */
1981
1982 struct secpolicy *sp;
1983 int ipsecerror;
1984 size_t ipsechdr;
1985 struct route *ro;
1986
1987 sp = ipsec4_getpolicybyaddr(mcopy,
1988 IPSEC_DIR_OUTBOUND, IP_FORWARDING,
1989 &ipsecerror);
1990
1991 if (sp != NULL) {
1992 /* count IPsec header size */
1993 ipsechdr = ipsec4_hdrsiz(mcopy,
1994 IPSEC_DIR_OUTBOUND, NULL);
1995
1996 /*
1997 * find the correct route for outer IPv4
1998 * header, compute tunnel MTU.
1999 */
2000
2001 if (sp->req != NULL
2002 && sp->req->sav != NULL
2003 && sp->req->sav->sah != NULL) {
2004 ro = &sp->req->sav->sah->sa_route;
2005 rt = rtcache_validate(ro);
2006 if (rt && rt->rt_ifp) {
2007 destmtu =
2008 rt->rt_rmx.rmx_mtu ?
2009 rt->rt_rmx.rmx_mtu :
2010 rt->rt_ifp->if_mtu;
2011 destmtu -= ipsechdr;
2012 }
2013 }
2014
2015 #ifdef IPSEC
2016 key_freesp(sp);
2017 #else
2018 KEY_FREESP(&sp);
2019 #endif
2020 }
2021 }
2022 #endif /*defined(IPSEC) || defined(FAST_IPSEC)*/
2023 IP_STATINC(IP_STAT_CANTFRAG);
2024 break;
2025
2026 case ENOBUFS:
2027 #if 1
2028 /*
2029 * a router should not generate ICMP_SOURCEQUENCH as
2030 * required in RFC1812 Requirements for IP Version 4 Routers.
2031 * source quench could be a big problem under DoS attacks,
2032 * or if the underlying interface is rate-limited.
2033 */
2034 if (mcopy)
2035 m_freem(mcopy);
2036 return;
2037 #else
2038 type = ICMP_SOURCEQUENCH;
2039 code = 0;
2040 break;
2041 #endif
2042 }
2043 icmp_error(mcopy, type, code, dest, destmtu);
2044 }
2045
2046 void
2047 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2048 struct mbuf *m)
2049 {
2050
2051 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2052 struct timeval tv;
2053
2054 microtime(&tv);
2055 *mp = sbcreatecontrol((void *) &tv, sizeof(tv),
2056 SCM_TIMESTAMP, SOL_SOCKET);
2057 if (*mp)
2058 mp = &(*mp)->m_next;
2059 }
2060 if (inp->inp_flags & INP_RECVDSTADDR) {
2061 *mp = sbcreatecontrol((void *) &ip->ip_dst,
2062 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2063 if (*mp)
2064 mp = &(*mp)->m_next;
2065 }
2066 #ifdef notyet
2067 /*
2068 * XXX
2069 * Moving these out of udp_input() made them even more broken
2070 * than they already were.
2071 * - fenner (at) parc.xerox.com
2072 */
2073 /* options were tossed already */
2074 if (inp->inp_flags & INP_RECVOPTS) {
2075 *mp = sbcreatecontrol((void *) opts_deleted_above,
2076 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2077 if (*mp)
2078 mp = &(*mp)->m_next;
2079 }
2080 /* ip_srcroute doesn't do what we want here, need to fix */
2081 if (inp->inp_flags & INP_RECVRETOPTS) {
2082 *mp = sbcreatecontrol((void *) ip_srcroute(),
2083 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2084 if (*mp)
2085 mp = &(*mp)->m_next;
2086 }
2087 #endif
2088 if (inp->inp_flags & INP_RECVIF) {
2089 struct sockaddr_dl sdl;
2090
2091 sockaddr_dl_init(&sdl, sizeof(sdl),
2092 (m->m_pkthdr.rcvif != NULL)
2093 ? m->m_pkthdr.rcvif->if_index
2094 : 0,
2095 0, NULL, 0, NULL, 0);
2096 *mp = sbcreatecontrol(&sdl, sdl.sdl_len, IP_RECVIF, IPPROTO_IP);
2097 if (*mp)
2098 mp = &(*mp)->m_next;
2099 }
2100 }
2101
2102 /*
2103 * sysctl helper routine for net.inet.ip.forwsrcrt.
2104 */
2105 static int
2106 sysctl_net_inet_ip_forwsrcrt(SYSCTLFN_ARGS)
2107 {
2108 int error, tmp;
2109 struct sysctlnode node;
2110
2111 node = *rnode;
2112 tmp = ip_forwsrcrt;
2113 node.sysctl_data = &tmp;
2114 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2115 if (error || newp == NULL)
2116 return (error);
2117
2118 if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_FORWSRCRT,
2119 0, NULL, NULL, NULL))
2120 return (EPERM);
2121
2122 ip_forwsrcrt = tmp;
2123
2124 return (0);
2125 }
2126
2127 /*
2128 * sysctl helper routine for net.inet.ip.mtudisctimeout. checks the
2129 * range of the new value and tweaks timers if it changes.
2130 */
2131 static int
2132 sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
2133 {
2134 int error, tmp;
2135 struct sysctlnode node;
2136
2137 node = *rnode;
2138 tmp = ip_mtudisc_timeout;
2139 node.sysctl_data = &tmp;
2140 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2141 if (error || newp == NULL)
2142 return (error);
2143 if (tmp < 0)
2144 return (EINVAL);
2145
2146 mutex_enter(softnet_lock);
2147
2148 ip_mtudisc_timeout = tmp;
2149 rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
2150
2151 mutex_exit(softnet_lock);
2152
2153 return (0);
2154 }
2155
2156 #ifdef GATEWAY
2157 /*
2158 * sysctl helper routine for net.inet.ip.maxflows.
2159 */
2160 static int
2161 sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
2162 {
2163 int error;
2164
2165 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
2166 if (error || newp == NULL)
2167 return (error);
2168
2169 mutex_enter(softnet_lock);
2170 KERNEL_LOCK(1, NULL);
2171
2172 ipflow_prune();
2173
2174 KERNEL_UNLOCK_ONE(NULL);
2175 mutex_exit(softnet_lock);
2176
2177 return (0);
2178 }
2179
2180 static int
2181 sysctl_net_inet_ip_hashsize(SYSCTLFN_ARGS)
2182 {
2183 int error, tmp;
2184 struct sysctlnode node;
2185
2186 node = *rnode;
2187 tmp = ip_hashsize;
2188 node.sysctl_data = &tmp;
2189 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2190 if (error || newp == NULL)
2191 return (error);
2192
2193 if ((tmp & (tmp - 1)) == 0 && tmp != 0) {
2194 /*
2195 * Can only fail due to malloc()
2196 */
2197 mutex_enter(softnet_lock);
2198 KERNEL_LOCK(1, NULL);
2199
2200 error = ipflow_invalidate_all(tmp);
2201
2202 KERNEL_UNLOCK_ONE(NULL);
2203 mutex_exit(softnet_lock);
2204
2205 } else {
2206 /*
2207 * EINVAL if not a power of 2
2208 */
2209 error = EINVAL;
2210 }
2211
2212 return error;
2213 }
2214 #endif /* GATEWAY */
2215
2216 static int
2217 sysctl_net_inet_ip_stats(SYSCTLFN_ARGS)
2218 {
2219
2220 return (NETSTAT_SYSCTL(ipstat_percpu, IP_NSTATS));
2221 }
2222
2223 SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
2224 {
2225 extern int subnetsarelocal, hostzeroisbroadcast;
2226
2227 sysctl_createv(clog, 0, NULL, NULL,
2228 CTLFLAG_PERMANENT,
2229 CTLTYPE_NODE, "net", NULL,
2230 NULL, 0, NULL, 0,
2231 CTL_NET, CTL_EOL);
2232 sysctl_createv(clog, 0, NULL, NULL,
2233 CTLFLAG_PERMANENT,
2234 CTLTYPE_NODE, "inet",
2235 SYSCTL_DESCR("PF_INET related settings"),
2236 NULL, 0, NULL, 0,
2237 CTL_NET, PF_INET, CTL_EOL);
2238 sysctl_createv(clog, 0, NULL, NULL,
2239 CTLFLAG_PERMANENT,
2240 CTLTYPE_NODE, "ip",
2241 SYSCTL_DESCR("IPv4 related settings"),
2242 NULL, 0, NULL, 0,
2243 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2244
2245 sysctl_createv(clog, 0, NULL, NULL,
2246 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2247 CTLTYPE_INT, "forwarding",
2248 SYSCTL_DESCR("Enable forwarding of INET datagrams"),
2249 NULL, 0, &ipforwarding, 0,
2250 CTL_NET, PF_INET, IPPROTO_IP,
2251 IPCTL_FORWARDING, CTL_EOL);
2252 sysctl_createv(clog, 0, NULL, NULL,
2253 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2254 CTLTYPE_INT, "redirect",
2255 SYSCTL_DESCR("Enable sending of ICMP redirect messages"),
2256 NULL, 0, &ipsendredirects, 0,
2257 CTL_NET, PF_INET, IPPROTO_IP,
2258 IPCTL_SENDREDIRECTS, CTL_EOL);
2259 sysctl_createv(clog, 0, NULL, NULL,
2260 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2261 CTLTYPE_INT, "ttl",
2262 SYSCTL_DESCR("Default TTL for an INET datagram"),
2263 NULL, 0, &ip_defttl, 0,
2264 CTL_NET, PF_INET, IPPROTO_IP,
2265 IPCTL_DEFTTL, CTL_EOL);
2266 #ifdef IPCTL_DEFMTU
2267 sysctl_createv(clog, 0, NULL, NULL,
2268 CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
2269 CTLTYPE_INT, "mtu",
2270 SYSCTL_DESCR("Default MTA for an INET route"),
2271 NULL, 0, &ip_mtu, 0,
2272 CTL_NET, PF_INET, IPPROTO_IP,
2273 IPCTL_DEFMTU, CTL_EOL);
2274 #endif /* IPCTL_DEFMTU */
2275 sysctl_createv(clog, 0, NULL, NULL,
2276 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2277 CTLTYPE_INT, "forwsrcrt",
2278 SYSCTL_DESCR("Enable forwarding of source-routed "
2279 "datagrams"),
2280 sysctl_net_inet_ip_forwsrcrt, 0, &ip_forwsrcrt, 0,
2281 CTL_NET, PF_INET, IPPROTO_IP,
2282 IPCTL_FORWSRCRT, CTL_EOL);
2283 sysctl_createv(clog, 0, NULL, NULL,
2284 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2285 CTLTYPE_INT, "directed-broadcast",
2286 SYSCTL_DESCR("Enable forwarding of broadcast datagrams"),
2287 NULL, 0, &ip_directedbcast, 0,
2288 CTL_NET, PF_INET, IPPROTO_IP,
2289 IPCTL_DIRECTEDBCAST, CTL_EOL);
2290 sysctl_createv(clog, 0, NULL, NULL,
2291 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2292 CTLTYPE_INT, "allowsrcrt",
2293 SYSCTL_DESCR("Accept source-routed datagrams"),
2294 NULL, 0, &ip_allowsrcrt, 0,
2295 CTL_NET, PF_INET, IPPROTO_IP,
2296 IPCTL_ALLOWSRCRT, CTL_EOL);
2297 sysctl_createv(clog, 0, NULL, NULL,
2298 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2299 CTLTYPE_INT, "subnetsarelocal",
2300 SYSCTL_DESCR("Whether logical subnets are considered "
2301 "local"),
2302 NULL, 0, &subnetsarelocal, 0,
2303 CTL_NET, PF_INET, IPPROTO_IP,
2304 IPCTL_SUBNETSARELOCAL, CTL_EOL);
2305 sysctl_createv(clog, 0, NULL, NULL,
2306 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2307 CTLTYPE_INT, "mtudisc",
2308 SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"),
2309 NULL, 0, &ip_mtudisc, 0,
2310 CTL_NET, PF_INET, IPPROTO_IP,
2311 IPCTL_MTUDISC, CTL_EOL);
2312 sysctl_createv(clog, 0, NULL, NULL,
2313 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2314 CTLTYPE_INT, "anonportmin",
2315 SYSCTL_DESCR("Lowest ephemeral port number to assign"),
2316 sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
2317 CTL_NET, PF_INET, IPPROTO_IP,
2318 IPCTL_ANONPORTMIN, CTL_EOL);
2319 sysctl_createv(clog, 0, NULL, NULL,
2320 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2321 CTLTYPE_INT, "anonportmax",
2322 SYSCTL_DESCR("Highest ephemeral port number to assign"),
2323 sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
2324 CTL_NET, PF_INET, IPPROTO_IP,
2325 IPCTL_ANONPORTMAX, CTL_EOL);
2326 sysctl_createv(clog, 0, NULL, NULL,
2327 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2328 CTLTYPE_INT, "mtudisctimeout",
2329 SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"),
2330 sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
2331 CTL_NET, PF_INET, IPPROTO_IP,
2332 IPCTL_MTUDISCTIMEOUT, CTL_EOL);
2333 #ifdef GATEWAY
2334 sysctl_createv(clog, 0, NULL, NULL,
2335 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2336 CTLTYPE_INT, "maxflows",
2337 SYSCTL_DESCR("Number of flows for fast forwarding"),
2338 sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
2339 CTL_NET, PF_INET, IPPROTO_IP,
2340 IPCTL_MAXFLOWS, CTL_EOL);
2341 sysctl_createv(clog, 0, NULL, NULL,
2342 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2343 CTLTYPE_INT, "hashsize",
2344 SYSCTL_DESCR("Size of hash table for fast forwarding (IPv4)"),
2345 sysctl_net_inet_ip_hashsize, 0, &ip_hashsize, 0,
2346 CTL_NET, PF_INET, IPPROTO_IP,
2347 CTL_CREATE, CTL_EOL);
2348 #endif /* GATEWAY */
2349 sysctl_createv(clog, 0, NULL, NULL,
2350 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2351 CTLTYPE_INT, "hostzerobroadcast",
2352 SYSCTL_DESCR("All zeroes address is broadcast address"),
2353 NULL, 0, &hostzeroisbroadcast, 0,
2354 CTL_NET, PF_INET, IPPROTO_IP,
2355 IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2356 #if NGIF > 0
2357 sysctl_createv(clog, 0, NULL, NULL,
2358 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2359 CTLTYPE_INT, "gifttl",
2360 SYSCTL_DESCR("Default TTL for a gif tunnel datagram"),
2361 NULL, 0, &ip_gif_ttl, 0,
2362 CTL_NET, PF_INET, IPPROTO_IP,
2363 IPCTL_GIF_TTL, CTL_EOL);
2364 #endif /* NGIF */
2365 #ifndef IPNOPRIVPORTS
2366 sysctl_createv(clog, 0, NULL, NULL,
2367 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2368 CTLTYPE_INT, "lowportmin",
2369 SYSCTL_DESCR("Lowest privileged ephemeral port number "
2370 "to assign"),
2371 sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
2372 CTL_NET, PF_INET, IPPROTO_IP,
2373 IPCTL_LOWPORTMIN, CTL_EOL);
2374 sysctl_createv(clog, 0, NULL, NULL,
2375 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2376 CTLTYPE_INT, "lowportmax",
2377 SYSCTL_DESCR("Highest privileged ephemeral port number "
2378 "to assign"),
2379 sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
2380 CTL_NET, PF_INET, IPPROTO_IP,
2381 IPCTL_LOWPORTMAX, CTL_EOL);
2382 #endif /* IPNOPRIVPORTS */
2383 sysctl_createv(clog, 0, NULL, NULL,
2384 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2385 CTLTYPE_INT, "maxfragpackets",
2386 SYSCTL_DESCR("Maximum number of fragments to retain for "
2387 "possible reassembly"),
2388 NULL, 0, &ip_maxfragpackets, 0,
2389 CTL_NET, PF_INET, IPPROTO_IP,
2390 IPCTL_MAXFRAGPACKETS, CTL_EOL);
2391 #if NGRE > 0
2392 sysctl_createv(clog, 0, NULL, NULL,
2393 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2394 CTLTYPE_INT, "grettl",
2395 SYSCTL_DESCR("Default TTL for a gre tunnel datagram"),
2396 NULL, 0, &ip_gre_ttl, 0,
2397 CTL_NET, PF_INET, IPPROTO_IP,
2398 IPCTL_GRE_TTL, CTL_EOL);
2399 #endif /* NGRE */
2400 sysctl_createv(clog, 0, NULL, NULL,
2401 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2402 CTLTYPE_INT, "checkinterface",
2403 SYSCTL_DESCR("Enable receive side of Strong ES model "
2404 "from RFC1122"),
2405 NULL, 0, &ip_checkinterface, 0,
2406 CTL_NET, PF_INET, IPPROTO_IP,
2407 IPCTL_CHECKINTERFACE, CTL_EOL);
2408 sysctl_createv(clog, 0, NULL, NULL,
2409 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2410 CTLTYPE_INT, "random_id",
2411 SYSCTL_DESCR("Assign random ip_id values"),
2412 NULL, 0, &ip_do_randomid, 0,
2413 CTL_NET, PF_INET, IPPROTO_IP,
2414 IPCTL_RANDOMID, CTL_EOL);
2415 sysctl_createv(clog, 0, NULL, NULL,
2416 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2417 CTLTYPE_INT, "do_loopback_cksum",
2418 SYSCTL_DESCR("Perform IP checksum on loopback"),
2419 NULL, 0, &ip_do_loopback_cksum, 0,
2420 CTL_NET, PF_INET, IPPROTO_IP,
2421 IPCTL_LOOPBACKCKSUM, CTL_EOL);
2422 sysctl_createv(clog, 0, NULL, NULL,
2423 CTLFLAG_PERMANENT,
2424 CTLTYPE_STRUCT, "stats",
2425 SYSCTL_DESCR("IP statistics"),
2426 sysctl_net_inet_ip_stats, 0, NULL, 0,
2427 CTL_NET, PF_INET, IPPROTO_IP, IPCTL_STATS,
2428 CTL_EOL);
2429 }
2430
2431 void
2432 ip_statinc(u_int stat)
2433 {
2434
2435 KASSERT(stat < IP_NSTATS);
2436 IP_STATINC(stat);
2437 }
2438