ip_input.c revision 1.277 1 /* $NetBSD: ip_input.c,v 1.277 2008/12/17 20:51:37 cegger Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.277 2008/12/17 20:51:37 cegger Exp $");
95
96 #include "opt_inet.h"
97 #include "opt_gateway.h"
98 #include "opt_pfil_hooks.h"
99 #include "opt_ipsec.h"
100 #include "opt_mrouting.h"
101 #include "opt_mbuftrace.h"
102 #include "opt_inet_csum.h"
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/malloc.h>
107 #include <sys/mbuf.h>
108 #include <sys/domain.h>
109 #include <sys/protosw.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/errno.h>
113 #include <sys/time.h>
114 #include <sys/kernel.h>
115 #include <sys/pool.h>
116 #include <sys/sysctl.h>
117 #include <sys/kauth.h>
118
119 #include <net/if.h>
120 #include <net/if_dl.h>
121 #include <net/route.h>
122 #include <net/pfil.h>
123
124 #include <netinet/in.h>
125 #include <netinet/in_systm.h>
126 #include <netinet/ip.h>
127 #include <netinet/in_pcb.h>
128 #include <netinet/in_proto.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip_var.h>
131 #include <netinet/ip_private.h>
132 #include <netinet/ip_icmp.h>
133 /* just for gif_ttl */
134 #include <netinet/in_gif.h>
135 #include "gif.h"
136 #include <net/if_gre.h>
137 #include "gre.h"
138
139 #ifdef MROUTING
140 #include <netinet/ip_mroute.h>
141 #endif
142
143 #ifdef IPSEC
144 #include <netinet6/ipsec.h>
145 #include <netinet6/ipsec_private.h>
146 #include <netkey/key.h>
147 #endif
148 #ifdef FAST_IPSEC
149 #include <netipsec/ipsec.h>
150 #include <netipsec/key.h>
151 #endif /* FAST_IPSEC*/
152
153 #ifndef IPFORWARDING
154 #ifdef GATEWAY
155 #define IPFORWARDING 1 /* forward IP packets not for us */
156 #else /* GATEWAY */
157 #define IPFORWARDING 0 /* don't forward IP packets not for us */
158 #endif /* GATEWAY */
159 #endif /* IPFORWARDING */
160 #ifndef IPSENDREDIRECTS
161 #define IPSENDREDIRECTS 1
162 #endif
163 #ifndef IPFORWSRCRT
164 #define IPFORWSRCRT 1 /* forward source-routed packets */
165 #endif
166 #ifndef IPALLOWSRCRT
167 #define IPALLOWSRCRT 1 /* allow source-routed packets */
168 #endif
169 #ifndef IPMTUDISC
170 #define IPMTUDISC 1
171 #endif
172 #ifndef IPMTUDISCTIMEOUT
173 #define IPMTUDISCTIMEOUT (10 * 60) /* as per RFC 1191 */
174 #endif
175
176 /*
177 * Note: DIRECTED_BROADCAST is handled this way so that previous
178 * configuration using this option will Just Work.
179 */
180 #ifndef IPDIRECTEDBCAST
181 #ifdef DIRECTED_BROADCAST
182 #define IPDIRECTEDBCAST 1
183 #else
184 #define IPDIRECTEDBCAST 0
185 #endif /* DIRECTED_BROADCAST */
186 #endif /* IPDIRECTEDBCAST */
187 int ipforwarding = IPFORWARDING;
188 int ipsendredirects = IPSENDREDIRECTS;
189 int ip_defttl = IPDEFTTL;
190 int ip_forwsrcrt = IPFORWSRCRT;
191 int ip_directedbcast = IPDIRECTEDBCAST;
192 int ip_allowsrcrt = IPALLOWSRCRT;
193 int ip_mtudisc = IPMTUDISC;
194 int ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
195 #ifdef DIAGNOSTIC
196 int ipprintfs = 0;
197 #endif
198
199 int ip_do_randomid = 0;
200
201 /*
202 * XXX - Setting ip_checkinterface mostly implements the receive side of
203 * the Strong ES model described in RFC 1122, but since the routing table
204 * and transmit implementation do not implement the Strong ES model,
205 * setting this to 1 results in an odd hybrid.
206 *
207 * XXX - ip_checkinterface currently must be disabled if you use ipnat
208 * to translate the destination address to another local interface.
209 *
210 * XXX - ip_checkinterface must be disabled if you add IP aliases
211 * to the loopback interface instead of the interface where the
212 * packets for those addresses are received.
213 */
214 int ip_checkinterface = 0;
215
216
217 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
218
219 int ipqmaxlen = IFQ_MAXLEN;
220 u_long in_ifaddrhash; /* size of hash table - 1 */
221 int in_ifaddrentries; /* total number of addrs */
222 struct in_ifaddrhead in_ifaddrhead;
223 struct in_ifaddrhashhead *in_ifaddrhashtbl;
224 u_long in_multihash; /* size of hash table - 1 */
225 int in_multientries; /* total number of addrs */
226 struct in_multihashhead *in_multihashtbl;
227 struct ifqueue ipintrq;
228 uint16_t ip_id;
229
230 percpu_t *ipstat_percpu;
231
232 #ifdef PFIL_HOOKS
233 struct pfil_head inet_pfil_hook;
234 #endif
235
236 /*
237 * Cached copy of nmbclusters. If nbclusters is different,
238 * recalculate IP parameters derived from nmbclusters.
239 */
240 static int ip_nmbclusters; /* copy of nmbclusters */
241 static void ip_nmbclusters_changed(void); /* recalc limits */
242
243 #define CHECK_NMBCLUSTER_PARAMS() \
244 do { \
245 if (__predict_false(ip_nmbclusters != nmbclusters)) \
246 ip_nmbclusters_changed(); \
247 } while (/*CONSTCOND*/0)
248
249 /* IP datagram reassembly queues (hashed) */
250 #define IPREASS_NHASH_LOG2 6
251 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
252 #define IPREASS_HMASK (IPREASS_NHASH - 1)
253 #define IPREASS_HASH(x,y) \
254 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
255 struct ipqhead ipq[IPREASS_NHASH];
256 int ipq_locked;
257 static int ip_nfragpackets; /* packets in reass queue */
258 static int ip_nfrags; /* total fragments in reass queues */
259
260 int ip_maxfragpackets = 200; /* limit on packets. XXX sysctl */
261 int ip_maxfrags; /* limit on fragments. XXX sysctl */
262
263
264 /*
265 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
266 * IP reassembly queue buffer managment.
267 *
268 * We keep a count of total IP fragments (NB: not fragmented packets!)
269 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
270 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
271 * total fragments in reassembly queues.This AIMD policy avoids
272 * repeatedly deleting single packets under heavy fragmentation load
273 * (e.g., from lossy NFS peers).
274 */
275 static u_int ip_reass_ttl_decr(u_int ticks);
276 static void ip_reass_drophalf(void);
277
278
279 static inline int ipq_lock_try(void);
280 static inline void ipq_unlock(void);
281
282 static inline int
283 ipq_lock_try(void)
284 {
285 int s;
286
287 /*
288 * Use splvm() -- we're blocking things that would cause
289 * mbuf allocation.
290 */
291 s = splvm();
292 if (ipq_locked) {
293 splx(s);
294 return (0);
295 }
296 ipq_locked = 1;
297 splx(s);
298 return (1);
299 }
300
301 static inline void
302 ipq_unlock(void)
303 {
304 int s;
305
306 s = splvm();
307 ipq_locked = 0;
308 splx(s);
309 }
310
311 #ifdef DIAGNOSTIC
312 #define IPQ_LOCK() \
313 do { \
314 if (ipq_lock_try() == 0) { \
315 printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
316 panic("ipq_lock"); \
317 } \
318 } while (/*CONSTCOND*/ 0)
319 #define IPQ_LOCK_CHECK() \
320 do { \
321 if (ipq_locked == 0) { \
322 printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
323 panic("ipq lock check"); \
324 } \
325 } while (/*CONSTCOND*/ 0)
326 #else
327 #define IPQ_LOCK() (void) ipq_lock_try()
328 #define IPQ_LOCK_CHECK() /* nothing */
329 #endif
330
331 #define IPQ_UNLOCK() ipq_unlock()
332
333 struct pool inmulti_pool;
334 struct pool ipqent_pool;
335
336 #ifdef INET_CSUM_COUNTERS
337 #include <sys/device.h>
338
339 struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
340 NULL, "inet", "hwcsum bad");
341 struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
342 NULL, "inet", "hwcsum ok");
343 struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
344 NULL, "inet", "swcsum");
345
346 #define INET_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
347
348 EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
349 EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
350 EVCNT_ATTACH_STATIC(ip_swcsum);
351
352 #else
353
354 #define INET_CSUM_COUNTER_INCR(ev) /* nothing */
355
356 #endif /* INET_CSUM_COUNTERS */
357
358 /*
359 * We need to save the IP options in case a protocol wants to respond
360 * to an incoming packet over the same route if the packet got here
361 * using IP source routing. This allows connection establishment and
362 * maintenance when the remote end is on a network that is not known
363 * to us.
364 */
365 int ip_nhops = 0;
366 static struct ip_srcrt {
367 struct in_addr dst; /* final destination */
368 char nop; /* one NOP to align */
369 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
370 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
371 } ip_srcrt;
372
373 static void save_rte(u_char *, struct in_addr);
374
375 #ifdef MBUFTRACE
376 struct mowner ip_rx_mowner = MOWNER_INIT("internet", "rx");
377 struct mowner ip_tx_mowner = MOWNER_INIT("internet", "tx");
378 #endif
379
380 /*
381 * Compute IP limits derived from the value of nmbclusters.
382 */
383 static void
384 ip_nmbclusters_changed(void)
385 {
386 ip_maxfrags = nmbclusters / 4;
387 ip_nmbclusters = nmbclusters;
388 }
389
390 /*
391 * IP initialization: fill in IP protocol switch table.
392 * All protocols not implemented in kernel go to raw IP protocol handler.
393 */
394 void
395 ip_init(void)
396 {
397 const struct protosw *pr;
398 int i;
399
400 pool_init(&inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl",
401 NULL, IPL_SOFTNET);
402 pool_init(&ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl",
403 NULL, IPL_VM);
404
405 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
406 if (pr == 0)
407 panic("ip_init");
408 for (i = 0; i < IPPROTO_MAX; i++)
409 ip_protox[i] = pr - inetsw;
410 for (pr = inetdomain.dom_protosw;
411 pr < inetdomain.dom_protoswNPROTOSW; pr++)
412 if (pr->pr_domain->dom_family == PF_INET &&
413 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
414 ip_protox[pr->pr_protocol] = pr - inetsw;
415
416 for (i = 0; i < IPREASS_NHASH; i++)
417 LIST_INIT(&ipq[i]);
418
419 ip_initid();
420 ip_id = time_second & 0xfffff;
421
422 ipintrq.ifq_maxlen = ipqmaxlen;
423 ip_nmbclusters_changed();
424
425 TAILQ_INIT(&in_ifaddrhead);
426 in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
427 &in_ifaddrhash);
428 in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
429 &in_multihash);
430 ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
431 #ifdef GATEWAY
432 ipflow_init(ip_hashsize);
433 #endif
434
435 #ifdef PFIL_HOOKS
436 /* Register our Packet Filter hook. */
437 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
438 inet_pfil_hook.ph_af = AF_INET;
439 i = pfil_head_register(&inet_pfil_hook);
440 if (i != 0)
441 printf("ip_init: WARNING: unable to register pfil hook, "
442 "error %d\n", i);
443 #endif /* PFIL_HOOKS */
444
445 #ifdef MBUFTRACE
446 MOWNER_ATTACH(&ip_tx_mowner);
447 MOWNER_ATTACH(&ip_rx_mowner);
448 #endif /* MBUFTRACE */
449
450 ipstat_percpu = percpu_alloc(sizeof(uint64_t) * IP_NSTATS);
451 }
452
453 struct sockaddr_in ipaddr = {
454 .sin_len = sizeof(ipaddr),
455 .sin_family = AF_INET,
456 };
457 struct route ipforward_rt;
458
459 /*
460 * IP software interrupt routine
461 */
462 void
463 ipintr(void)
464 {
465 int s;
466 struct mbuf *m;
467
468 mutex_enter(softnet_lock);
469 KERNEL_LOCK(1, NULL);
470 while (!IF_IS_EMPTY(&ipintrq)) {
471 s = splnet();
472 IF_DEQUEUE(&ipintrq, m);
473 splx(s);
474 if (m == NULL)
475 break;
476 ip_input(m);
477 }
478 KERNEL_UNLOCK_ONE(NULL);
479 mutex_exit(softnet_lock);
480 }
481
482 /*
483 * Ip input routine. Checksum and byte swap header. If fragmented
484 * try to reassemble. Process options. Pass to next level.
485 */
486 void
487 ip_input(struct mbuf *m)
488 {
489 struct ip *ip = NULL;
490 struct ipq *fp;
491 struct in_ifaddr *ia;
492 struct ifaddr *ifa;
493 struct ipqent *ipqe;
494 int hlen = 0, mff, len;
495 int downmatch;
496 int checkif;
497 int srcrt = 0;
498 int s;
499 u_int hash;
500 #ifdef FAST_IPSEC
501 struct m_tag *mtag;
502 struct tdb_ident *tdbi;
503 struct secpolicy *sp;
504 int error;
505 #endif /* FAST_IPSEC */
506
507 MCLAIM(m, &ip_rx_mowner);
508 #ifdef DIAGNOSTIC
509 if ((m->m_flags & M_PKTHDR) == 0)
510 panic("ipintr no HDR");
511 #endif
512
513 /*
514 * If no IP addresses have been set yet but the interfaces
515 * are receiving, can't do anything with incoming packets yet.
516 */
517 if (TAILQ_FIRST(&in_ifaddrhead) == 0)
518 goto bad;
519 IP_STATINC(IP_STAT_TOTAL);
520 /*
521 * If the IP header is not aligned, slurp it up into a new
522 * mbuf with space for link headers, in the event we forward
523 * it. Otherwise, if it is aligned, make sure the entire
524 * base IP header is in the first mbuf of the chain.
525 */
526 if (IP_HDR_ALIGNED_P(mtod(m, void *)) == 0) {
527 if ((m = m_copyup(m, sizeof(struct ip),
528 (max_linkhdr + 3) & ~3)) == NULL) {
529 /* XXXJRT new stat, please */
530 IP_STATINC(IP_STAT_TOOSMALL);
531 return;
532 }
533 } else if (__predict_false(m->m_len < sizeof (struct ip))) {
534 if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
535 IP_STATINC(IP_STAT_TOOSMALL);
536 return;
537 }
538 }
539 ip = mtod(m, struct ip *);
540 if (ip->ip_v != IPVERSION) {
541 IP_STATINC(IP_STAT_BADVERS);
542 goto bad;
543 }
544 hlen = ip->ip_hl << 2;
545 if (hlen < sizeof(struct ip)) { /* minimum header length */
546 IP_STATINC(IP_STAT_BADHLEN);
547 goto bad;
548 }
549 if (hlen > m->m_len) {
550 if ((m = m_pullup(m, hlen)) == 0) {
551 IP_STATINC(IP_STAT_BADHLEN);
552 return;
553 }
554 ip = mtod(m, struct ip *);
555 }
556
557 /*
558 * RFC1122: packets with a multicast source address are
559 * not allowed.
560 */
561 if (IN_MULTICAST(ip->ip_src.s_addr)) {
562 IP_STATINC(IP_STAT_BADADDR);
563 goto bad;
564 }
565
566 /* 127/8 must not appear on wire - RFC1122 */
567 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
568 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
569 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
570 IP_STATINC(IP_STAT_BADADDR);
571 goto bad;
572 }
573 }
574
575 switch (m->m_pkthdr.csum_flags &
576 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
577 M_CSUM_IPv4_BAD)) {
578 case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
579 INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
580 goto badcsum;
581
582 case M_CSUM_IPv4:
583 /* Checksum was okay. */
584 INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
585 break;
586
587 default:
588 /*
589 * Must compute it ourselves. Maybe skip checksum on
590 * loopback interfaces.
591 */
592 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
593 IFF_LOOPBACK) || ip_do_loopback_cksum)) {
594 INET_CSUM_COUNTER_INCR(&ip_swcsum);
595 if (in_cksum(m, hlen) != 0)
596 goto badcsum;
597 }
598 break;
599 }
600
601 /* Retrieve the packet length. */
602 len = ntohs(ip->ip_len);
603
604 /*
605 * Check for additional length bogosity
606 */
607 if (len < hlen) {
608 IP_STATINC(IP_STAT_BADLEN);
609 goto bad;
610 }
611
612 /*
613 * Check that the amount of data in the buffers
614 * is as at least much as the IP header would have us expect.
615 * Trim mbufs if longer than we expect.
616 * Drop packet if shorter than we expect.
617 */
618 if (m->m_pkthdr.len < len) {
619 IP_STATINC(IP_STAT_TOOSHORT);
620 goto bad;
621 }
622 if (m->m_pkthdr.len > len) {
623 if (m->m_len == m->m_pkthdr.len) {
624 m->m_len = len;
625 m->m_pkthdr.len = len;
626 } else
627 m_adj(m, len - m->m_pkthdr.len);
628 }
629
630 #if defined(IPSEC)
631 /* ipflow (IP fast forwarding) is not compatible with IPsec. */
632 m->m_flags &= ~M_CANFASTFWD;
633 #else
634 /*
635 * Assume that we can create a fast-forward IP flow entry
636 * based on this packet.
637 */
638 m->m_flags |= M_CANFASTFWD;
639 #endif
640
641 #ifdef PFIL_HOOKS
642 /*
643 * Run through list of hooks for input packets. If there are any
644 * filters which require that additional packets in the flow are
645 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
646 * Note that filters must _never_ set this flag, as another filter
647 * in the list may have previously cleared it.
648 */
649 /*
650 * let ipfilter look at packet on the wire,
651 * not the decapsulated packet.
652 */
653 #ifdef IPSEC
654 if (!ipsec_getnhist(m))
655 #elif defined(FAST_IPSEC)
656 if (!ipsec_indone(m))
657 #else
658 if (1)
659 #endif
660 {
661 struct in_addr odst;
662
663 odst = ip->ip_dst;
664 if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
665 PFIL_IN) != 0)
666 return;
667 if (m == NULL)
668 return;
669 ip = mtod(m, struct ip *);
670 hlen = ip->ip_hl << 2;
671 /*
672 * XXX The setting of "srcrt" here is to prevent ip_forward()
673 * from generating ICMP redirects for packets that have
674 * been redirected by a hook back out on to the same LAN that
675 * they came from and is not an indication that the packet
676 * is being inffluenced by source routing options. This
677 * allows things like
678 * "rdr tlp0 0/0 port 80 -> 1.1.1.200 3128 tcp"
679 * where tlp0 is both on the 1.1.1.0/24 network and is the
680 * default route for hosts on 1.1.1.0/24. Of course this
681 * also requires a "map tlp0 ..." to complete the story.
682 * One might argue whether or not this kind of network config.
683 * should be supported in this manner...
684 */
685 srcrt = (odst.s_addr != ip->ip_dst.s_addr);
686 }
687 #endif /* PFIL_HOOKS */
688
689 #ifdef ALTQ
690 /* XXX Temporary until ALTQ is changed to use a pfil hook */
691 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
692 /* packet dropped by traffic conditioner */
693 return;
694 }
695 #endif
696
697 /*
698 * Process options and, if not destined for us,
699 * ship it on. ip_dooptions returns 1 when an
700 * error was detected (causing an icmp message
701 * to be sent and the original packet to be freed).
702 */
703 ip_nhops = 0; /* for source routed packets */
704 if (hlen > sizeof (struct ip) && ip_dooptions(m))
705 return;
706
707 /*
708 * Enable a consistency check between the destination address
709 * and the arrival interface for a unicast packet (the RFC 1122
710 * strong ES model) if IP forwarding is disabled and the packet
711 * is not locally generated.
712 *
713 * XXX - Checking also should be disabled if the destination
714 * address is ipnat'ed to a different interface.
715 *
716 * XXX - Checking is incompatible with IP aliases added
717 * to the loopback interface instead of the interface where
718 * the packets are received.
719 *
720 * XXX - We need to add a per ifaddr flag for this so that
721 * we get finer grain control.
722 */
723 checkif = ip_checkinterface && (ipforwarding == 0) &&
724 (m->m_pkthdr.rcvif != NULL) &&
725 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
726
727 /*
728 * Check our list of addresses, to see if the packet is for us.
729 *
730 * Traditional 4.4BSD did not consult IFF_UP at all.
731 * The behavior here is to treat addresses on !IFF_UP interface
732 * as not mine.
733 */
734 downmatch = 0;
735 LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
736 if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
737 if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
738 continue;
739 if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
740 break;
741 else
742 downmatch++;
743 }
744 }
745 if (ia != NULL)
746 goto ours;
747 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
748 IFADDR_FOREACH(ifa, m->m_pkthdr.rcvif) {
749 if (ifa->ifa_addr->sa_family != AF_INET)
750 continue;
751 ia = ifatoia(ifa);
752 if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
753 in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
754 /*
755 * Look for all-0's host part (old broadcast addr),
756 * either for subnet or net.
757 */
758 ip->ip_dst.s_addr == ia->ia_subnet ||
759 ip->ip_dst.s_addr == ia->ia_net)
760 goto ours;
761 /*
762 * An interface with IP address zero accepts
763 * all packets that arrive on that interface.
764 */
765 if (in_nullhost(ia->ia_addr.sin_addr))
766 goto ours;
767 }
768 }
769 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
770 struct in_multi *inm;
771 #ifdef MROUTING
772 extern struct socket *ip_mrouter;
773
774 if (ip_mrouter) {
775 /*
776 * If we are acting as a multicast router, all
777 * incoming multicast packets are passed to the
778 * kernel-level multicast forwarding function.
779 * The packet is returned (relatively) intact; if
780 * ip_mforward() returns a non-zero value, the packet
781 * must be discarded, else it may be accepted below.
782 *
783 * (The IP ident field is put in the same byte order
784 * as expected when ip_mforward() is called from
785 * ip_output().)
786 */
787 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
788 IP_STATINC(IP_STAT_CANTFORWARD);
789 m_freem(m);
790 return;
791 }
792
793 /*
794 * The process-level routing demon needs to receive
795 * all multicast IGMP packets, whether or not this
796 * host belongs to their destination groups.
797 */
798 if (ip->ip_p == IPPROTO_IGMP)
799 goto ours;
800 IP_STATINC(IP_STAT_CANTFORWARD);
801 }
802 #endif
803 /*
804 * See if we belong to the destination multicast group on the
805 * arrival interface.
806 */
807 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
808 if (inm == NULL) {
809 IP_STATINC(IP_STAT_CANTFORWARD);
810 m_freem(m);
811 return;
812 }
813 goto ours;
814 }
815 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
816 in_nullhost(ip->ip_dst))
817 goto ours;
818
819 /*
820 * Not for us; forward if possible and desirable.
821 */
822 if (ipforwarding == 0) {
823 IP_STATINC(IP_STAT_CANTFORWARD);
824 m_freem(m);
825 } else {
826 /*
827 * If ip_dst matched any of my address on !IFF_UP interface,
828 * and there's no IFF_UP interface that matches ip_dst,
829 * send icmp unreach. Forwarding it will result in in-kernel
830 * forwarding loop till TTL goes to 0.
831 */
832 if (downmatch) {
833 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
834 IP_STATINC(IP_STAT_CANTFORWARD);
835 return;
836 }
837 #ifdef IPSEC
838 if (ipsec4_in_reject(m, NULL)) {
839 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
840 goto bad;
841 }
842 #endif
843 #ifdef FAST_IPSEC
844 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
845 s = splsoftnet();
846 if (mtag != NULL) {
847 tdbi = (struct tdb_ident *)(mtag + 1);
848 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
849 } else {
850 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
851 IP_FORWARDING, &error);
852 }
853 if (sp == NULL) { /* NB: can happen if error */
854 splx(s);
855 /*XXX error stat???*/
856 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
857 goto bad;
858 }
859
860 /*
861 * Check security policy against packet attributes.
862 */
863 error = ipsec_in_reject(sp, m);
864 KEY_FREESP(&sp);
865 splx(s);
866 if (error) {
867 IP_STATINC(IP_STAT_CANTFORWARD);
868 goto bad;
869 }
870
871 /*
872 * Peek at the outbound SP for this packet to determine if
873 * it's a Fast Forward candidate.
874 */
875 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
876 if (mtag != NULL)
877 m->m_flags &= ~M_CANFASTFWD;
878 else {
879 s = splsoftnet();
880 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
881 (IP_FORWARDING |
882 (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
883 &error, NULL);
884 if (sp != NULL) {
885 m->m_flags &= ~M_CANFASTFWD;
886 KEY_FREESP(&sp);
887 }
888 splx(s);
889 }
890 #endif /* FAST_IPSEC */
891
892 ip_forward(m, srcrt);
893 }
894 return;
895
896 ours:
897 /*
898 * If offset or IP_MF are set, must reassemble.
899 * Otherwise, nothing need be done.
900 * (We could look in the reassembly queue to see
901 * if the packet was previously fragmented,
902 * but it's not worth the time; just let them time out.)
903 */
904 if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
905 uint16_t off;
906 /*
907 * Prevent TCP blind data attacks by not allowing non-initial
908 * fragments to start at less than 68 bytes (minimal fragment
909 * size) and making sure the first fragment is at least 68
910 * bytes.
911 */
912 off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
913 if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
914 IP_STATINC(IP_STAT_BADFRAGS);
915 goto bad;
916 }
917 /*
918 * Look for queue of fragments
919 * of this datagram.
920 */
921 IPQ_LOCK();
922 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
923 LIST_FOREACH(fp, &ipq[hash], ipq_q) {
924 if (ip->ip_id == fp->ipq_id &&
925 in_hosteq(ip->ip_src, fp->ipq_src) &&
926 in_hosteq(ip->ip_dst, fp->ipq_dst) &&
927 ip->ip_p == fp->ipq_p) {
928 /*
929 * Make sure the TOS is matches previous
930 * fragments.
931 */
932 if (ip->ip_tos != fp->ipq_tos) {
933 IP_STATINC(IP_STAT_BADFRAGS);
934 IPQ_UNLOCK();
935 goto bad;
936 }
937 goto found;
938 }
939 }
940 fp = 0;
941 found:
942
943 /*
944 * Adjust ip_len to not reflect header,
945 * set ipqe_mff if more fragments are expected,
946 * convert offset of this to bytes.
947 */
948 ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
949 mff = (ip->ip_off & htons(IP_MF)) != 0;
950 if (mff) {
951 /*
952 * Make sure that fragments have a data length
953 * that's a non-zero multiple of 8 bytes.
954 */
955 if (ntohs(ip->ip_len) == 0 ||
956 (ntohs(ip->ip_len) & 0x7) != 0) {
957 IP_STATINC(IP_STAT_BADFRAGS);
958 IPQ_UNLOCK();
959 goto bad;
960 }
961 }
962 ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
963
964 /*
965 * If datagram marked as having more fragments
966 * or if this is not the first fragment,
967 * attempt reassembly; if it succeeds, proceed.
968 */
969 if (mff || ip->ip_off != htons(0)) {
970 IP_STATINC(IP_STAT_FRAGMENTS);
971 s = splvm();
972 ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
973 splx(s);
974 if (ipqe == NULL) {
975 IP_STATINC(IP_STAT_RCVMEMDROP);
976 IPQ_UNLOCK();
977 goto bad;
978 }
979 ipqe->ipqe_mff = mff;
980 ipqe->ipqe_m = m;
981 ipqe->ipqe_ip = ip;
982 m = ip_reass(ipqe, fp, &ipq[hash]);
983 if (m == 0) {
984 IPQ_UNLOCK();
985 return;
986 }
987 IP_STATINC(IP_STAT_REASSEMBLED);
988 ip = mtod(m, struct ip *);
989 hlen = ip->ip_hl << 2;
990 ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
991 } else
992 if (fp)
993 ip_freef(fp);
994 IPQ_UNLOCK();
995 }
996
997 #if defined(IPSEC)
998 /*
999 * enforce IPsec policy checking if we are seeing last header.
1000 * note that we do not visit this with protocols with pcb layer
1001 * code - like udp/tcp/raw ip.
1002 */
1003 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
1004 ipsec4_in_reject(m, NULL)) {
1005 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1006 goto bad;
1007 }
1008 #endif
1009 #ifdef FAST_IPSEC
1010 /*
1011 * enforce IPsec policy checking if we are seeing last header.
1012 * note that we do not visit this with protocols with pcb layer
1013 * code - like udp/tcp/raw ip.
1014 */
1015 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
1016 /*
1017 * Check if the packet has already had IPsec processing
1018 * done. If so, then just pass it along. This tag gets
1019 * set during AH, ESP, etc. input handling, before the
1020 * packet is returned to the ip input queue for delivery.
1021 */
1022 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1023 s = splsoftnet();
1024 if (mtag != NULL) {
1025 tdbi = (struct tdb_ident *)(mtag + 1);
1026 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1027 } else {
1028 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1029 IP_FORWARDING, &error);
1030 }
1031 if (sp != NULL) {
1032 /*
1033 * Check security policy against packet attributes.
1034 */
1035 error = ipsec_in_reject(sp, m);
1036 KEY_FREESP(&sp);
1037 } else {
1038 /* XXX error stat??? */
1039 error = EINVAL;
1040 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1041 }
1042 splx(s);
1043 if (error)
1044 goto bad;
1045 }
1046 #endif /* FAST_IPSEC */
1047
1048 /*
1049 * Switch out to protocol's input routine.
1050 */
1051 #if IFA_STATS
1052 if (ia && ip)
1053 ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
1054 #endif
1055 IP_STATINC(IP_STAT_DELIVERED);
1056 {
1057 int off = hlen, nh = ip->ip_p;
1058
1059 (*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
1060 return;
1061 }
1062 bad:
1063 m_freem(m);
1064 return;
1065
1066 badcsum:
1067 IP_STATINC(IP_STAT_BADSUM);
1068 m_freem(m);
1069 }
1070
1071 /*
1072 * Take incoming datagram fragment and try to
1073 * reassemble it into whole datagram. If a chain for
1074 * reassembly of this datagram already exists, then it
1075 * is given as fp; otherwise have to make a chain.
1076 */
1077 struct mbuf *
1078 ip_reass(struct ipqent *ipqe, struct ipq *fp, struct ipqhead *ipqhead)
1079 {
1080 struct mbuf *m = ipqe->ipqe_m;
1081 struct ipqent *nq, *p, *q;
1082 struct ip *ip;
1083 struct mbuf *t;
1084 int hlen = ipqe->ipqe_ip->ip_hl << 2;
1085 int i, next, s;
1086
1087 IPQ_LOCK_CHECK();
1088
1089 /*
1090 * Presence of header sizes in mbufs
1091 * would confuse code below.
1092 */
1093 m->m_data += hlen;
1094 m->m_len -= hlen;
1095
1096 #ifdef notyet
1097 /* make sure fragment limit is up-to-date */
1098 CHECK_NMBCLUSTER_PARAMS();
1099
1100 /* If we have too many fragments, drop the older half. */
1101 if (ip_nfrags >= ip_maxfrags)
1102 ip_reass_drophalf(void);
1103 #endif
1104
1105 /*
1106 * We are about to add a fragment; increment frag count.
1107 */
1108 ip_nfrags++;
1109
1110 /*
1111 * If first fragment to arrive, create a reassembly queue.
1112 */
1113 if (fp == 0) {
1114 /*
1115 * Enforce upper bound on number of fragmented packets
1116 * for which we attempt reassembly;
1117 * If maxfrag is 0, never accept fragments.
1118 * If maxfrag is -1, accept all fragments without limitation.
1119 */
1120 if (ip_maxfragpackets < 0)
1121 ;
1122 else if (ip_nfragpackets >= ip_maxfragpackets)
1123 goto dropfrag;
1124 ip_nfragpackets++;
1125 fp = malloc(sizeof (struct ipq), M_FTABLE, M_NOWAIT);
1126 if (fp == NULL)
1127 goto dropfrag;
1128 LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
1129 fp->ipq_nfrags = 1;
1130 fp->ipq_ttl = IPFRAGTTL;
1131 fp->ipq_p = ipqe->ipqe_ip->ip_p;
1132 fp->ipq_id = ipqe->ipqe_ip->ip_id;
1133 fp->ipq_tos = ipqe->ipqe_ip->ip_tos;
1134 TAILQ_INIT(&fp->ipq_fragq);
1135 fp->ipq_src = ipqe->ipqe_ip->ip_src;
1136 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
1137 p = NULL;
1138 goto insert;
1139 } else {
1140 fp->ipq_nfrags++;
1141 }
1142
1143 /*
1144 * Find a segment which begins after this one does.
1145 */
1146 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1147 p = q, q = TAILQ_NEXT(q, ipqe_q))
1148 if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
1149 break;
1150
1151 /*
1152 * If there is a preceding segment, it may provide some of
1153 * our data already. If so, drop the data from the incoming
1154 * segment. If it provides all of our data, drop us.
1155 */
1156 if (p != NULL) {
1157 i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
1158 ntohs(ipqe->ipqe_ip->ip_off);
1159 if (i > 0) {
1160 if (i >= ntohs(ipqe->ipqe_ip->ip_len))
1161 goto dropfrag;
1162 m_adj(ipqe->ipqe_m, i);
1163 ipqe->ipqe_ip->ip_off =
1164 htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
1165 ipqe->ipqe_ip->ip_len =
1166 htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
1167 }
1168 }
1169
1170 /*
1171 * While we overlap succeeding segments trim them or,
1172 * if they are completely covered, dequeue them.
1173 */
1174 for (; q != NULL &&
1175 ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
1176 ntohs(q->ipqe_ip->ip_off); q = nq) {
1177 i = (ntohs(ipqe->ipqe_ip->ip_off) +
1178 ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
1179 if (i < ntohs(q->ipqe_ip->ip_len)) {
1180 q->ipqe_ip->ip_len =
1181 htons(ntohs(q->ipqe_ip->ip_len) - i);
1182 q->ipqe_ip->ip_off =
1183 htons(ntohs(q->ipqe_ip->ip_off) + i);
1184 m_adj(q->ipqe_m, i);
1185 break;
1186 }
1187 nq = TAILQ_NEXT(q, ipqe_q);
1188 m_freem(q->ipqe_m);
1189 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1190 s = splvm();
1191 pool_put(&ipqent_pool, q);
1192 splx(s);
1193 fp->ipq_nfrags--;
1194 ip_nfrags--;
1195 }
1196
1197 insert:
1198 /*
1199 * Stick new segment in its place;
1200 * check for complete reassembly.
1201 */
1202 if (p == NULL) {
1203 TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
1204 } else {
1205 TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
1206 }
1207 next = 0;
1208 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1209 p = q, q = TAILQ_NEXT(q, ipqe_q)) {
1210 if (ntohs(q->ipqe_ip->ip_off) != next)
1211 return (0);
1212 next += ntohs(q->ipqe_ip->ip_len);
1213 }
1214 if (p->ipqe_mff)
1215 return (0);
1216
1217 /*
1218 * Reassembly is complete. Check for a bogus message size and
1219 * concatenate fragments.
1220 */
1221 q = TAILQ_FIRST(&fp->ipq_fragq);
1222 ip = q->ipqe_ip;
1223 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
1224 IP_STATINC(IP_STAT_TOOLONG);
1225 ip_freef(fp);
1226 return (0);
1227 }
1228 m = q->ipqe_m;
1229 t = m->m_next;
1230 m->m_next = 0;
1231 m_cat(m, t);
1232 nq = TAILQ_NEXT(q, ipqe_q);
1233 s = splvm();
1234 pool_put(&ipqent_pool, q);
1235 splx(s);
1236 for (q = nq; q != NULL; q = nq) {
1237 t = q->ipqe_m;
1238 nq = TAILQ_NEXT(q, ipqe_q);
1239 s = splvm();
1240 pool_put(&ipqent_pool, q);
1241 splx(s);
1242 m_cat(m, t);
1243 }
1244 ip_nfrags -= fp->ipq_nfrags;
1245
1246 /*
1247 * Create header for new ip packet by
1248 * modifying header of first packet;
1249 * dequeue and discard fragment reassembly header.
1250 * Make header visible.
1251 */
1252 ip->ip_len = htons(next);
1253 ip->ip_src = fp->ipq_src;
1254 ip->ip_dst = fp->ipq_dst;
1255 LIST_REMOVE(fp, ipq_q);
1256 free(fp, M_FTABLE);
1257 ip_nfragpackets--;
1258 m->m_len += (ip->ip_hl << 2);
1259 m->m_data -= (ip->ip_hl << 2);
1260 /* some debugging cruft by sklower, below, will go away soon */
1261 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1262 int plen = 0;
1263 for (t = m; t; t = t->m_next)
1264 plen += t->m_len;
1265 m->m_pkthdr.len = plen;
1266 m->m_pkthdr.csum_flags = 0;
1267 }
1268 return (m);
1269
1270 dropfrag:
1271 if (fp != 0)
1272 fp->ipq_nfrags--;
1273 ip_nfrags--;
1274 IP_STATINC(IP_STAT_FRAGDROPPED);
1275 m_freem(m);
1276 s = splvm();
1277 pool_put(&ipqent_pool, ipqe);
1278 splx(s);
1279 return (0);
1280 }
1281
1282 /*
1283 * Free a fragment reassembly header and all
1284 * associated datagrams.
1285 */
1286 void
1287 ip_freef(struct ipq *fp)
1288 {
1289 struct ipqent *q, *p;
1290 u_int nfrags = 0;
1291 int s;
1292
1293 IPQ_LOCK_CHECK();
1294
1295 for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
1296 p = TAILQ_NEXT(q, ipqe_q);
1297 m_freem(q->ipqe_m);
1298 nfrags++;
1299 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1300 s = splvm();
1301 pool_put(&ipqent_pool, q);
1302 splx(s);
1303 }
1304
1305 if (nfrags != fp->ipq_nfrags)
1306 printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
1307 ip_nfrags -= nfrags;
1308 LIST_REMOVE(fp, ipq_q);
1309 free(fp, M_FTABLE);
1310 ip_nfragpackets--;
1311 }
1312
1313 /*
1314 * IP reassembly TTL machinery for multiplicative drop.
1315 */
1316 static u_int fragttl_histo[(IPFRAGTTL+1)];
1317
1318
1319 /*
1320 * Decrement TTL of all reasembly queue entries by `ticks'.
1321 * Count number of distinct fragments (as opposed to partial, fragmented
1322 * datagrams) in the reassembly queue. While we traverse the entire
1323 * reassembly queue, compute and return the median TTL over all fragments.
1324 */
1325 static u_int
1326 ip_reass_ttl_decr(u_int ticks)
1327 {
1328 u_int nfrags, median, dropfraction, keepfraction;
1329 struct ipq *fp, *nfp;
1330 int i;
1331
1332 nfrags = 0;
1333 memset(fragttl_histo, 0, sizeof fragttl_histo);
1334
1335 for (i = 0; i < IPREASS_NHASH; i++) {
1336 for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
1337 fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
1338 0 : fp->ipq_ttl - ticks);
1339 nfp = LIST_NEXT(fp, ipq_q);
1340 if (fp->ipq_ttl == 0) {
1341 IP_STATINC(IP_STAT_FRAGTIMEOUT);
1342 ip_freef(fp);
1343 } else {
1344 nfrags += fp->ipq_nfrags;
1345 fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
1346 }
1347 }
1348 }
1349
1350 KASSERT(ip_nfrags == nfrags);
1351
1352 /* Find median (or other drop fraction) in histogram. */
1353 dropfraction = (ip_nfrags / 2);
1354 keepfraction = ip_nfrags - dropfraction;
1355 for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
1356 median += fragttl_histo[i];
1357 if (median >= keepfraction)
1358 break;
1359 }
1360
1361 /* Return TTL of median (or other fraction). */
1362 return (u_int)i;
1363 }
1364
1365 void
1366 ip_reass_drophalf(void)
1367 {
1368
1369 u_int median_ticks;
1370 /*
1371 * Compute median TTL of all fragments, and count frags
1372 * with that TTL or lower (roughly half of all fragments).
1373 */
1374 median_ticks = ip_reass_ttl_decr(0);
1375
1376 /* Drop half. */
1377 median_ticks = ip_reass_ttl_decr(median_ticks);
1378
1379 }
1380
1381 /*
1382 * IP timer processing;
1383 * if a timer expires on a reassembly
1384 * queue, discard it.
1385 */
1386 void
1387 ip_slowtimo(void)
1388 {
1389 static u_int dropscanidx = 0;
1390 u_int i;
1391 u_int median_ttl;
1392
1393 mutex_enter(softnet_lock);
1394 KERNEL_LOCK(1, NULL);
1395
1396 IPQ_LOCK();
1397
1398 /* Age TTL of all fragments by 1 tick .*/
1399 median_ttl = ip_reass_ttl_decr(1);
1400
1401 /* make sure fragment limit is up-to-date */
1402 CHECK_NMBCLUSTER_PARAMS();
1403
1404 /* If we have too many fragments, drop the older half. */
1405 if (ip_nfrags > ip_maxfrags)
1406 ip_reass_ttl_decr(median_ttl);
1407
1408 /*
1409 * If we are over the maximum number of fragmented packets
1410 * (due to the limit being lowered), drain off
1411 * enough to get down to the new limit. Start draining
1412 * from the reassembly hashqueue most recently drained.
1413 */
1414 if (ip_maxfragpackets < 0)
1415 ;
1416 else {
1417 int wrapped = 0;
1418
1419 i = dropscanidx;
1420 while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
1421 while (LIST_FIRST(&ipq[i]) != NULL)
1422 ip_freef(LIST_FIRST(&ipq[i]));
1423 if (++i >= IPREASS_NHASH) {
1424 i = 0;
1425 }
1426 /*
1427 * Dont scan forever even if fragment counters are
1428 * wrong: stop after scanning entire reassembly queue.
1429 */
1430 if (i == dropscanidx)
1431 wrapped = 1;
1432 }
1433 dropscanidx = i;
1434 }
1435 IPQ_UNLOCK();
1436
1437 KERNEL_UNLOCK_ONE(NULL);
1438 mutex_exit(softnet_lock);
1439 }
1440
1441 /*
1442 * Drain off all datagram fragments. Don't acquire softnet_lock as
1443 * can be called from hardware interrupt context.
1444 */
1445 void
1446 ip_drain(void)
1447 {
1448
1449 KERNEL_LOCK(1, NULL);
1450
1451 /*
1452 * We may be called from a device's interrupt context. If
1453 * the ipq is already busy, just bail out now.
1454 */
1455 if (ipq_lock_try() != 0) {
1456 /*
1457 * Drop half the total fragments now. If more mbufs are
1458 * needed, we will be called again soon.
1459 */
1460 ip_reass_drophalf();
1461 IPQ_UNLOCK();
1462 }
1463
1464 KERNEL_UNLOCK_ONE(NULL);
1465 }
1466
1467 /*
1468 * Do option processing on a datagram,
1469 * possibly discarding it if bad options are encountered,
1470 * or forwarding it if source-routed.
1471 * Returns 1 if packet has been forwarded/freed,
1472 * 0 if the packet should be processed further.
1473 */
1474 int
1475 ip_dooptions(struct mbuf *m)
1476 {
1477 struct ip *ip = mtod(m, struct ip *);
1478 u_char *cp, *cp0;
1479 struct ip_timestamp *ipt;
1480 struct in_ifaddr *ia;
1481 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1482 struct in_addr dst;
1483 n_time ntime;
1484
1485 dst = ip->ip_dst;
1486 cp = (u_char *)(ip + 1);
1487 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1488 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1489 opt = cp[IPOPT_OPTVAL];
1490 if (opt == IPOPT_EOL)
1491 break;
1492 if (opt == IPOPT_NOP)
1493 optlen = 1;
1494 else {
1495 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1496 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1497 goto bad;
1498 }
1499 optlen = cp[IPOPT_OLEN];
1500 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1501 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1502 goto bad;
1503 }
1504 }
1505 switch (opt) {
1506
1507 default:
1508 break;
1509
1510 /*
1511 * Source routing with record.
1512 * Find interface with current destination address.
1513 * If none on this machine then drop if strictly routed,
1514 * or do nothing if loosely routed.
1515 * Record interface address and bring up next address
1516 * component. If strictly routed make sure next
1517 * address is on directly accessible net.
1518 */
1519 case IPOPT_LSRR:
1520 case IPOPT_SSRR:
1521 if (ip_allowsrcrt == 0) {
1522 type = ICMP_UNREACH;
1523 code = ICMP_UNREACH_NET_PROHIB;
1524 goto bad;
1525 }
1526 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1527 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1528 goto bad;
1529 }
1530 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1531 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1532 goto bad;
1533 }
1534 ipaddr.sin_addr = ip->ip_dst;
1535 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
1536 if (ia == 0) {
1537 if (opt == IPOPT_SSRR) {
1538 type = ICMP_UNREACH;
1539 code = ICMP_UNREACH_SRCFAIL;
1540 goto bad;
1541 }
1542 /*
1543 * Loose routing, and not at next destination
1544 * yet; nothing to do except forward.
1545 */
1546 break;
1547 }
1548 off--; /* 0 origin */
1549 if ((off + sizeof(struct in_addr)) > optlen) {
1550 /*
1551 * End of source route. Should be for us.
1552 */
1553 save_rte(cp, ip->ip_src);
1554 break;
1555 }
1556 /*
1557 * locate outgoing interface
1558 */
1559 bcopy((void *)(cp + off), (void *)&ipaddr.sin_addr,
1560 sizeof(ipaddr.sin_addr));
1561 if (opt == IPOPT_SSRR)
1562 ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
1563 else
1564 ia = ip_rtaddr(ipaddr.sin_addr);
1565 if (ia == 0) {
1566 type = ICMP_UNREACH;
1567 code = ICMP_UNREACH_SRCFAIL;
1568 goto bad;
1569 }
1570 ip->ip_dst = ipaddr.sin_addr;
1571 bcopy((void *)&ia->ia_addr.sin_addr,
1572 (void *)(cp + off), sizeof(struct in_addr));
1573 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1574 /*
1575 * Let ip_intr's mcast routing check handle mcast pkts
1576 */
1577 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1578 break;
1579
1580 case IPOPT_RR:
1581 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1582 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1583 goto bad;
1584 }
1585 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1586 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1587 goto bad;
1588 }
1589 /*
1590 * If no space remains, ignore.
1591 */
1592 off--; /* 0 origin */
1593 if ((off + sizeof(struct in_addr)) > optlen)
1594 break;
1595 bcopy((void *)(&ip->ip_dst), (void *)&ipaddr.sin_addr,
1596 sizeof(ipaddr.sin_addr));
1597 /*
1598 * locate outgoing interface; if we're the destination,
1599 * use the incoming interface (should be same).
1600 */
1601 if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
1602 == NULL &&
1603 (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1604 type = ICMP_UNREACH;
1605 code = ICMP_UNREACH_HOST;
1606 goto bad;
1607 }
1608 bcopy((void *)&ia->ia_addr.sin_addr,
1609 (void *)(cp + off), sizeof(struct in_addr));
1610 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1611 break;
1612
1613 case IPOPT_TS:
1614 code = cp - (u_char *)ip;
1615 ipt = (struct ip_timestamp *)cp;
1616 if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1617 code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1618 goto bad;
1619 }
1620 if (ipt->ipt_ptr < 5) {
1621 code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1622 goto bad;
1623 }
1624 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
1625 if (++ipt->ipt_oflw == 0) {
1626 code = (u_char *)&ipt->ipt_ptr -
1627 (u_char *)ip;
1628 goto bad;
1629 }
1630 break;
1631 }
1632 cp0 = (cp + ipt->ipt_ptr - 1);
1633 switch (ipt->ipt_flg) {
1634
1635 case IPOPT_TS_TSONLY:
1636 break;
1637
1638 case IPOPT_TS_TSANDADDR:
1639 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1640 sizeof(struct in_addr) > ipt->ipt_len) {
1641 code = (u_char *)&ipt->ipt_ptr -
1642 (u_char *)ip;
1643 goto bad;
1644 }
1645 ipaddr.sin_addr = dst;
1646 ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1647 m->m_pkthdr.rcvif));
1648 if (ia == 0)
1649 continue;
1650 bcopy(&ia->ia_addr.sin_addr,
1651 cp0, sizeof(struct in_addr));
1652 ipt->ipt_ptr += sizeof(struct in_addr);
1653 break;
1654
1655 case IPOPT_TS_PRESPEC:
1656 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1657 sizeof(struct in_addr) > ipt->ipt_len) {
1658 code = (u_char *)&ipt->ipt_ptr -
1659 (u_char *)ip;
1660 goto bad;
1661 }
1662 bcopy(cp0, &ipaddr.sin_addr,
1663 sizeof(struct in_addr));
1664 if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
1665 == NULL)
1666 continue;
1667 ipt->ipt_ptr += sizeof(struct in_addr);
1668 break;
1669
1670 default:
1671 /* XXX can't take &ipt->ipt_flg */
1672 code = (u_char *)&ipt->ipt_ptr -
1673 (u_char *)ip + 1;
1674 goto bad;
1675 }
1676 ntime = iptime();
1677 cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
1678 memmove((char *)cp + ipt->ipt_ptr - 1, cp0,
1679 sizeof(n_time));
1680 ipt->ipt_ptr += sizeof(n_time);
1681 }
1682 }
1683 if (forward) {
1684 if (ip_forwsrcrt == 0) {
1685 type = ICMP_UNREACH;
1686 code = ICMP_UNREACH_SRCFAIL;
1687 goto bad;
1688 }
1689 ip_forward(m, 1);
1690 return (1);
1691 }
1692 return (0);
1693 bad:
1694 icmp_error(m, type, code, 0, 0);
1695 IP_STATINC(IP_STAT_BADOPTIONS);
1696 return (1);
1697 }
1698
1699 /*
1700 * Given address of next destination (final or next hop),
1701 * return internet address info of interface to be used to get there.
1702 */
1703 struct in_ifaddr *
1704 ip_rtaddr(struct in_addr dst)
1705 {
1706 struct rtentry *rt;
1707 union {
1708 struct sockaddr dst;
1709 struct sockaddr_in dst4;
1710 } u;
1711
1712 sockaddr_in_init(&u.dst4, &dst, 0);
1713
1714 if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL)
1715 return NULL;
1716
1717 return ifatoia(rt->rt_ifa);
1718 }
1719
1720 /*
1721 * Save incoming source route for use in replies,
1722 * to be picked up later by ip_srcroute if the receiver is interested.
1723 */
1724 void
1725 save_rte(u_char *option, struct in_addr dst)
1726 {
1727 unsigned olen;
1728
1729 olen = option[IPOPT_OLEN];
1730 #ifdef DIAGNOSTIC
1731 if (ipprintfs)
1732 printf("save_rte: olen %d\n", olen);
1733 #endif /* 0 */
1734 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1735 return;
1736 bcopy((void *)option, (void *)ip_srcrt.srcopt, olen);
1737 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1738 ip_srcrt.dst = dst;
1739 }
1740
1741 /*
1742 * Retrieve incoming source route for use in replies,
1743 * in the same form used by setsockopt.
1744 * The first hop is placed before the options, will be removed later.
1745 */
1746 struct mbuf *
1747 ip_srcroute(void)
1748 {
1749 struct in_addr *p, *q;
1750 struct mbuf *m;
1751
1752 if (ip_nhops == 0)
1753 return NULL;
1754 m = m_get(M_DONTWAIT, MT_SOOPTS);
1755 if (m == 0)
1756 return NULL;
1757
1758 MCLAIM(m, &inetdomain.dom_mowner);
1759 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1760
1761 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1762 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1763 OPTSIZ;
1764 #ifdef DIAGNOSTIC
1765 if (ipprintfs)
1766 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1767 #endif
1768
1769 /*
1770 * First save first hop for return route
1771 */
1772 p = &ip_srcrt.route[ip_nhops - 1];
1773 *(mtod(m, struct in_addr *)) = *p--;
1774 #ifdef DIAGNOSTIC
1775 if (ipprintfs)
1776 printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1777 #endif
1778
1779 /*
1780 * Copy option fields and padding (nop) to mbuf.
1781 */
1782 ip_srcrt.nop = IPOPT_NOP;
1783 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1784 memmove(mtod(m, char *) + sizeof(struct in_addr), &ip_srcrt.nop,
1785 OPTSIZ);
1786 q = (struct in_addr *)(mtod(m, char *) +
1787 sizeof(struct in_addr) + OPTSIZ);
1788 #undef OPTSIZ
1789 /*
1790 * Record return path as an IP source route,
1791 * reversing the path (pointers are now aligned).
1792 */
1793 while (p >= ip_srcrt.route) {
1794 #ifdef DIAGNOSTIC
1795 if (ipprintfs)
1796 printf(" %x", ntohl(q->s_addr));
1797 #endif
1798 *q++ = *p--;
1799 }
1800 /*
1801 * Last hop goes to final destination.
1802 */
1803 *q = ip_srcrt.dst;
1804 #ifdef DIAGNOSTIC
1805 if (ipprintfs)
1806 printf(" %x\n", ntohl(q->s_addr));
1807 #endif
1808 return (m);
1809 }
1810
1811 const int inetctlerrmap[PRC_NCMDS] = {
1812 [PRC_MSGSIZE] = EMSGSIZE,
1813 [PRC_HOSTDEAD] = EHOSTDOWN,
1814 [PRC_HOSTUNREACH] = EHOSTUNREACH,
1815 [PRC_UNREACH_NET] = EHOSTUNREACH,
1816 [PRC_UNREACH_HOST] = EHOSTUNREACH,
1817 [PRC_UNREACH_PROTOCOL] = ECONNREFUSED,
1818 [PRC_UNREACH_PORT] = ECONNREFUSED,
1819 [PRC_UNREACH_SRCFAIL] = EHOSTUNREACH,
1820 [PRC_PARAMPROB] = ENOPROTOOPT,
1821 };
1822
1823 /*
1824 * Forward a packet. If some error occurs return the sender
1825 * an icmp packet. Note we can't always generate a meaningful
1826 * icmp message because icmp doesn't have a large enough repertoire
1827 * of codes and types.
1828 *
1829 * If not forwarding, just drop the packet. This could be confusing
1830 * if ipforwarding was zero but some routing protocol was advancing
1831 * us as a gateway to somewhere. However, we must let the routing
1832 * protocol deal with that.
1833 *
1834 * The srcrt parameter indicates whether the packet is being forwarded
1835 * via a source route.
1836 */
1837 void
1838 ip_forward(struct mbuf *m, int srcrt)
1839 {
1840 struct ip *ip = mtod(m, struct ip *);
1841 struct rtentry *rt;
1842 int error, type = 0, code = 0, destmtu = 0;
1843 struct mbuf *mcopy;
1844 n_long dest;
1845 union {
1846 struct sockaddr dst;
1847 struct sockaddr_in dst4;
1848 } u;
1849
1850 /*
1851 * We are now in the output path.
1852 */
1853 MCLAIM(m, &ip_tx_mowner);
1854
1855 /*
1856 * Clear any in-bound checksum flags for this packet.
1857 */
1858 m->m_pkthdr.csum_flags = 0;
1859
1860 dest = 0;
1861 #ifdef DIAGNOSTIC
1862 if (ipprintfs) {
1863 printf("forward: src %s ", inet_ntoa(ip->ip_src));
1864 printf("dst %s ttl %x\n", inet_ntoa(ip->ip_dst), ip->ip_ttl);
1865 }
1866 #endif
1867 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1868 IP_STATINC(IP_STAT_CANTFORWARD);
1869 m_freem(m);
1870 return;
1871 }
1872 if (ip->ip_ttl <= IPTTLDEC) {
1873 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1874 return;
1875 }
1876
1877 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
1878 if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL) {
1879 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_NET, dest, 0);
1880 return;
1881 }
1882
1883 /*
1884 * Save at most 68 bytes of the packet in case
1885 * we need to generate an ICMP message to the src.
1886 * Pullup to avoid sharing mbuf cluster between m and mcopy.
1887 */
1888 mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
1889 if (mcopy)
1890 mcopy = m_pullup(mcopy, ip->ip_hl << 2);
1891
1892 ip->ip_ttl -= IPTTLDEC;
1893
1894 /*
1895 * If forwarding packet using same interface that it came in on,
1896 * perhaps should send a redirect to sender to shortcut a hop.
1897 * Only send redirect if source is sending directly to us,
1898 * and if packet was not source routed (or has any options).
1899 * Also, don't send redirect if forwarding using a default route
1900 * or a route modified by a redirect.
1901 */
1902 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1903 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1904 !in_nullhost(satocsin(rt_getkey(rt))->sin_addr) &&
1905 ipsendredirects && !srcrt) {
1906 if (rt->rt_ifa &&
1907 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1908 ifatoia(rt->rt_ifa)->ia_subnet) {
1909 if (rt->rt_flags & RTF_GATEWAY)
1910 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1911 else
1912 dest = ip->ip_dst.s_addr;
1913 /*
1914 * Router requirements says to only send host
1915 * redirects.
1916 */
1917 type = ICMP_REDIRECT;
1918 code = ICMP_REDIRECT_HOST;
1919 #ifdef DIAGNOSTIC
1920 if (ipprintfs)
1921 printf("redirect (%d) to %x\n", code,
1922 (u_int32_t)dest);
1923 #endif
1924 }
1925 }
1926
1927 error = ip_output(m, NULL, &ipforward_rt,
1928 (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1929 (struct ip_moptions *)NULL, (struct socket *)NULL);
1930
1931 if (error)
1932 IP_STATINC(IP_STAT_CANTFORWARD);
1933 else {
1934 uint64_t *ips = IP_STAT_GETREF();
1935 ips[IP_STAT_FORWARD]++;
1936 if (type) {
1937 ips[IP_STAT_REDIRECTSENT]++;
1938 IP_STAT_PUTREF();
1939 } else {
1940 IP_STAT_PUTREF();
1941 if (mcopy) {
1942 #ifdef GATEWAY
1943 if (mcopy->m_flags & M_CANFASTFWD)
1944 ipflow_create(&ipforward_rt, mcopy);
1945 #endif
1946 m_freem(mcopy);
1947 }
1948 return;
1949 }
1950 }
1951 if (mcopy == NULL)
1952 return;
1953
1954 switch (error) {
1955
1956 case 0: /* forwarded, but need redirect */
1957 /* type, code set above */
1958 break;
1959
1960 case ENETUNREACH: /* shouldn't happen, checked above */
1961 case EHOSTUNREACH:
1962 case ENETDOWN:
1963 case EHOSTDOWN:
1964 default:
1965 type = ICMP_UNREACH;
1966 code = ICMP_UNREACH_HOST;
1967 break;
1968
1969 case EMSGSIZE:
1970 type = ICMP_UNREACH;
1971 code = ICMP_UNREACH_NEEDFRAG;
1972
1973 if ((rt = rtcache_validate(&ipforward_rt)) != NULL)
1974 destmtu = rt->rt_ifp->if_mtu;
1975
1976 #if defined(IPSEC) || defined(FAST_IPSEC)
1977 {
1978 /*
1979 * If the packet is routed over IPsec tunnel, tell the
1980 * originator the tunnel MTU.
1981 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1982 * XXX quickhack!!!
1983 */
1984
1985 struct secpolicy *sp;
1986 int ipsecerror;
1987 size_t ipsechdr;
1988 struct route *ro;
1989
1990 sp = ipsec4_getpolicybyaddr(mcopy,
1991 IPSEC_DIR_OUTBOUND, IP_FORWARDING,
1992 &ipsecerror);
1993
1994 if (sp != NULL) {
1995 /* count IPsec header size */
1996 ipsechdr = ipsec4_hdrsiz(mcopy,
1997 IPSEC_DIR_OUTBOUND, NULL);
1998
1999 /*
2000 * find the correct route for outer IPv4
2001 * header, compute tunnel MTU.
2002 */
2003
2004 if (sp->req != NULL
2005 && sp->req->sav != NULL
2006 && sp->req->sav->sah != NULL) {
2007 ro = &sp->req->sav->sah->sa_route;
2008 rt = rtcache_validate(ro);
2009 if (rt && rt->rt_ifp) {
2010 destmtu =
2011 rt->rt_rmx.rmx_mtu ?
2012 rt->rt_rmx.rmx_mtu :
2013 rt->rt_ifp->if_mtu;
2014 destmtu -= ipsechdr;
2015 }
2016 }
2017
2018 #ifdef IPSEC
2019 key_freesp(sp);
2020 #else
2021 KEY_FREESP(&sp);
2022 #endif
2023 }
2024 }
2025 #endif /*defined(IPSEC) || defined(FAST_IPSEC)*/
2026 IP_STATINC(IP_STAT_CANTFRAG);
2027 break;
2028
2029 case ENOBUFS:
2030 #if 1
2031 /*
2032 * a router should not generate ICMP_SOURCEQUENCH as
2033 * required in RFC1812 Requirements for IP Version 4 Routers.
2034 * source quench could be a big problem under DoS attacks,
2035 * or if the underlying interface is rate-limited.
2036 */
2037 if (mcopy)
2038 m_freem(mcopy);
2039 return;
2040 #else
2041 type = ICMP_SOURCEQUENCH;
2042 code = 0;
2043 break;
2044 #endif
2045 }
2046 icmp_error(mcopy, type, code, dest, destmtu);
2047 }
2048
2049 void
2050 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2051 struct mbuf *m)
2052 {
2053
2054 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2055 struct timeval tv;
2056
2057 microtime(&tv);
2058 *mp = sbcreatecontrol((void *) &tv, sizeof(tv),
2059 SCM_TIMESTAMP, SOL_SOCKET);
2060 if (*mp)
2061 mp = &(*mp)->m_next;
2062 }
2063 if (inp->inp_flags & INP_RECVDSTADDR) {
2064 *mp = sbcreatecontrol((void *) &ip->ip_dst,
2065 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2066 if (*mp)
2067 mp = &(*mp)->m_next;
2068 }
2069 #ifdef notyet
2070 /*
2071 * XXX
2072 * Moving these out of udp_input() made them even more broken
2073 * than they already were.
2074 * - fenner (at) parc.xerox.com
2075 */
2076 /* options were tossed already */
2077 if (inp->inp_flags & INP_RECVOPTS) {
2078 *mp = sbcreatecontrol((void *) opts_deleted_above,
2079 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2080 if (*mp)
2081 mp = &(*mp)->m_next;
2082 }
2083 /* ip_srcroute doesn't do what we want here, need to fix */
2084 if (inp->inp_flags & INP_RECVRETOPTS) {
2085 *mp = sbcreatecontrol((void *) ip_srcroute(),
2086 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2087 if (*mp)
2088 mp = &(*mp)->m_next;
2089 }
2090 #endif
2091 if (inp->inp_flags & INP_RECVIF) {
2092 struct sockaddr_dl sdl;
2093
2094 sockaddr_dl_init(&sdl, sizeof(sdl),
2095 (m->m_pkthdr.rcvif != NULL)
2096 ? m->m_pkthdr.rcvif->if_index
2097 : 0,
2098 0, NULL, 0, NULL, 0);
2099 *mp = sbcreatecontrol(&sdl, sdl.sdl_len, IP_RECVIF, IPPROTO_IP);
2100 if (*mp)
2101 mp = &(*mp)->m_next;
2102 }
2103 }
2104
2105 /*
2106 * sysctl helper routine for net.inet.ip.forwsrcrt.
2107 */
2108 static int
2109 sysctl_net_inet_ip_forwsrcrt(SYSCTLFN_ARGS)
2110 {
2111 int error, tmp;
2112 struct sysctlnode node;
2113
2114 node = *rnode;
2115 tmp = ip_forwsrcrt;
2116 node.sysctl_data = &tmp;
2117 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2118 if (error || newp == NULL)
2119 return (error);
2120
2121 if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_FORWSRCRT,
2122 0, NULL, NULL, NULL))
2123 return (EPERM);
2124
2125 ip_forwsrcrt = tmp;
2126
2127 return (0);
2128 }
2129
2130 /*
2131 * sysctl helper routine for net.inet.ip.mtudisctimeout. checks the
2132 * range of the new value and tweaks timers if it changes.
2133 */
2134 static int
2135 sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
2136 {
2137 int error, tmp;
2138 struct sysctlnode node;
2139
2140 node = *rnode;
2141 tmp = ip_mtudisc_timeout;
2142 node.sysctl_data = &tmp;
2143 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2144 if (error || newp == NULL)
2145 return (error);
2146 if (tmp < 0)
2147 return (EINVAL);
2148
2149 mutex_enter(softnet_lock);
2150
2151 ip_mtudisc_timeout = tmp;
2152 rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
2153
2154 mutex_exit(softnet_lock);
2155
2156 return (0);
2157 }
2158
2159 #ifdef GATEWAY
2160 /*
2161 * sysctl helper routine for net.inet.ip.maxflows.
2162 */
2163 static int
2164 sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
2165 {
2166 int error;
2167
2168 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
2169 if (error || newp == NULL)
2170 return (error);
2171
2172 mutex_enter(softnet_lock);
2173 KERNEL_LOCK(1, NULL);
2174
2175 ipflow_prune();
2176
2177 KERNEL_UNLOCK_ONE(NULL);
2178 mutex_exit(softnet_lock);
2179
2180 return (0);
2181 }
2182
2183 static int
2184 sysctl_net_inet_ip_hashsize(SYSCTLFN_ARGS)
2185 {
2186 int error, tmp;
2187 struct sysctlnode node;
2188
2189 node = *rnode;
2190 tmp = ip_hashsize;
2191 node.sysctl_data = &tmp;
2192 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2193 if (error || newp == NULL)
2194 return (error);
2195
2196 if ((tmp & (tmp - 1)) == 0 && tmp != 0) {
2197 /*
2198 * Can only fail due to malloc()
2199 */
2200 mutex_enter(softnet_lock);
2201 KERNEL_LOCK(1, NULL);
2202
2203 error = ipflow_invalidate_all(tmp);
2204
2205 KERNEL_UNLOCK_ONE(NULL);
2206 mutex_exit(softnet_lock);
2207
2208 } else {
2209 /*
2210 * EINVAL if not a power of 2
2211 */
2212 error = EINVAL;
2213 }
2214
2215 return error;
2216 }
2217 #endif /* GATEWAY */
2218
2219 static int
2220 sysctl_net_inet_ip_stats(SYSCTLFN_ARGS)
2221 {
2222
2223 return (NETSTAT_SYSCTL(ipstat_percpu, IP_NSTATS));
2224 }
2225
2226 SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
2227 {
2228 extern int subnetsarelocal, hostzeroisbroadcast;
2229
2230 sysctl_createv(clog, 0, NULL, NULL,
2231 CTLFLAG_PERMANENT,
2232 CTLTYPE_NODE, "net", NULL,
2233 NULL, 0, NULL, 0,
2234 CTL_NET, CTL_EOL);
2235 sysctl_createv(clog, 0, NULL, NULL,
2236 CTLFLAG_PERMANENT,
2237 CTLTYPE_NODE, "inet",
2238 SYSCTL_DESCR("PF_INET related settings"),
2239 NULL, 0, NULL, 0,
2240 CTL_NET, PF_INET, CTL_EOL);
2241 sysctl_createv(clog, 0, NULL, NULL,
2242 CTLFLAG_PERMANENT,
2243 CTLTYPE_NODE, "ip",
2244 SYSCTL_DESCR("IPv4 related settings"),
2245 NULL, 0, NULL, 0,
2246 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2247
2248 sysctl_createv(clog, 0, NULL, NULL,
2249 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2250 CTLTYPE_INT, "forwarding",
2251 SYSCTL_DESCR("Enable forwarding of INET datagrams"),
2252 NULL, 0, &ipforwarding, 0,
2253 CTL_NET, PF_INET, IPPROTO_IP,
2254 IPCTL_FORWARDING, CTL_EOL);
2255 sysctl_createv(clog, 0, NULL, NULL,
2256 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2257 CTLTYPE_INT, "redirect",
2258 SYSCTL_DESCR("Enable sending of ICMP redirect messages"),
2259 NULL, 0, &ipsendredirects, 0,
2260 CTL_NET, PF_INET, IPPROTO_IP,
2261 IPCTL_SENDREDIRECTS, CTL_EOL);
2262 sysctl_createv(clog, 0, NULL, NULL,
2263 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2264 CTLTYPE_INT, "ttl",
2265 SYSCTL_DESCR("Default TTL for an INET datagram"),
2266 NULL, 0, &ip_defttl, 0,
2267 CTL_NET, PF_INET, IPPROTO_IP,
2268 IPCTL_DEFTTL, CTL_EOL);
2269 #ifdef IPCTL_DEFMTU
2270 sysctl_createv(clog, 0, NULL, NULL,
2271 CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
2272 CTLTYPE_INT, "mtu",
2273 SYSCTL_DESCR("Default MTA for an INET route"),
2274 NULL, 0, &ip_mtu, 0,
2275 CTL_NET, PF_INET, IPPROTO_IP,
2276 IPCTL_DEFMTU, CTL_EOL);
2277 #endif /* IPCTL_DEFMTU */
2278 sysctl_createv(clog, 0, NULL, NULL,
2279 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2280 CTLTYPE_INT, "forwsrcrt",
2281 SYSCTL_DESCR("Enable forwarding of source-routed "
2282 "datagrams"),
2283 sysctl_net_inet_ip_forwsrcrt, 0, &ip_forwsrcrt, 0,
2284 CTL_NET, PF_INET, IPPROTO_IP,
2285 IPCTL_FORWSRCRT, CTL_EOL);
2286 sysctl_createv(clog, 0, NULL, NULL,
2287 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2288 CTLTYPE_INT, "directed-broadcast",
2289 SYSCTL_DESCR("Enable forwarding of broadcast datagrams"),
2290 NULL, 0, &ip_directedbcast, 0,
2291 CTL_NET, PF_INET, IPPROTO_IP,
2292 IPCTL_DIRECTEDBCAST, CTL_EOL);
2293 sysctl_createv(clog, 0, NULL, NULL,
2294 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2295 CTLTYPE_INT, "allowsrcrt",
2296 SYSCTL_DESCR("Accept source-routed datagrams"),
2297 NULL, 0, &ip_allowsrcrt, 0,
2298 CTL_NET, PF_INET, IPPROTO_IP,
2299 IPCTL_ALLOWSRCRT, CTL_EOL);
2300 sysctl_createv(clog, 0, NULL, NULL,
2301 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2302 CTLTYPE_INT, "subnetsarelocal",
2303 SYSCTL_DESCR("Whether logical subnets are considered "
2304 "local"),
2305 NULL, 0, &subnetsarelocal, 0,
2306 CTL_NET, PF_INET, IPPROTO_IP,
2307 IPCTL_SUBNETSARELOCAL, CTL_EOL);
2308 sysctl_createv(clog, 0, NULL, NULL,
2309 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2310 CTLTYPE_INT, "mtudisc",
2311 SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"),
2312 NULL, 0, &ip_mtudisc, 0,
2313 CTL_NET, PF_INET, IPPROTO_IP,
2314 IPCTL_MTUDISC, CTL_EOL);
2315 sysctl_createv(clog, 0, NULL, NULL,
2316 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2317 CTLTYPE_INT, "anonportmin",
2318 SYSCTL_DESCR("Lowest ephemeral port number to assign"),
2319 sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
2320 CTL_NET, PF_INET, IPPROTO_IP,
2321 IPCTL_ANONPORTMIN, CTL_EOL);
2322 sysctl_createv(clog, 0, NULL, NULL,
2323 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2324 CTLTYPE_INT, "anonportmax",
2325 SYSCTL_DESCR("Highest ephemeral port number to assign"),
2326 sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
2327 CTL_NET, PF_INET, IPPROTO_IP,
2328 IPCTL_ANONPORTMAX, CTL_EOL);
2329 sysctl_createv(clog, 0, NULL, NULL,
2330 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2331 CTLTYPE_INT, "mtudisctimeout",
2332 SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"),
2333 sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
2334 CTL_NET, PF_INET, IPPROTO_IP,
2335 IPCTL_MTUDISCTIMEOUT, CTL_EOL);
2336 #ifdef GATEWAY
2337 sysctl_createv(clog, 0, NULL, NULL,
2338 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2339 CTLTYPE_INT, "maxflows",
2340 SYSCTL_DESCR("Number of flows for fast forwarding"),
2341 sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
2342 CTL_NET, PF_INET, IPPROTO_IP,
2343 IPCTL_MAXFLOWS, CTL_EOL);
2344 sysctl_createv(clog, 0, NULL, NULL,
2345 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2346 CTLTYPE_INT, "hashsize",
2347 SYSCTL_DESCR("Size of hash table for fast forwarding (IPv4)"),
2348 sysctl_net_inet_ip_hashsize, 0, &ip_hashsize, 0,
2349 CTL_NET, PF_INET, IPPROTO_IP,
2350 CTL_CREATE, CTL_EOL);
2351 #endif /* GATEWAY */
2352 sysctl_createv(clog, 0, NULL, NULL,
2353 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2354 CTLTYPE_INT, "hostzerobroadcast",
2355 SYSCTL_DESCR("All zeroes address is broadcast address"),
2356 NULL, 0, &hostzeroisbroadcast, 0,
2357 CTL_NET, PF_INET, IPPROTO_IP,
2358 IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2359 #if NGIF > 0
2360 sysctl_createv(clog, 0, NULL, NULL,
2361 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2362 CTLTYPE_INT, "gifttl",
2363 SYSCTL_DESCR("Default TTL for a gif tunnel datagram"),
2364 NULL, 0, &ip_gif_ttl, 0,
2365 CTL_NET, PF_INET, IPPROTO_IP,
2366 IPCTL_GIF_TTL, CTL_EOL);
2367 #endif /* NGIF */
2368 #ifndef IPNOPRIVPORTS
2369 sysctl_createv(clog, 0, NULL, NULL,
2370 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2371 CTLTYPE_INT, "lowportmin",
2372 SYSCTL_DESCR("Lowest privileged ephemeral port number "
2373 "to assign"),
2374 sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
2375 CTL_NET, PF_INET, IPPROTO_IP,
2376 IPCTL_LOWPORTMIN, CTL_EOL);
2377 sysctl_createv(clog, 0, NULL, NULL,
2378 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2379 CTLTYPE_INT, "lowportmax",
2380 SYSCTL_DESCR("Highest privileged ephemeral port number "
2381 "to assign"),
2382 sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
2383 CTL_NET, PF_INET, IPPROTO_IP,
2384 IPCTL_LOWPORTMAX, CTL_EOL);
2385 #endif /* IPNOPRIVPORTS */
2386 sysctl_createv(clog, 0, NULL, NULL,
2387 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2388 CTLTYPE_INT, "maxfragpackets",
2389 SYSCTL_DESCR("Maximum number of fragments to retain for "
2390 "possible reassembly"),
2391 NULL, 0, &ip_maxfragpackets, 0,
2392 CTL_NET, PF_INET, IPPROTO_IP,
2393 IPCTL_MAXFRAGPACKETS, CTL_EOL);
2394 #if NGRE > 0
2395 sysctl_createv(clog, 0, NULL, NULL,
2396 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2397 CTLTYPE_INT, "grettl",
2398 SYSCTL_DESCR("Default TTL for a gre tunnel datagram"),
2399 NULL, 0, &ip_gre_ttl, 0,
2400 CTL_NET, PF_INET, IPPROTO_IP,
2401 IPCTL_GRE_TTL, CTL_EOL);
2402 #endif /* NGRE */
2403 sysctl_createv(clog, 0, NULL, NULL,
2404 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2405 CTLTYPE_INT, "checkinterface",
2406 SYSCTL_DESCR("Enable receive side of Strong ES model "
2407 "from RFC1122"),
2408 NULL, 0, &ip_checkinterface, 0,
2409 CTL_NET, PF_INET, IPPROTO_IP,
2410 IPCTL_CHECKINTERFACE, CTL_EOL);
2411 sysctl_createv(clog, 0, NULL, NULL,
2412 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2413 CTLTYPE_INT, "random_id",
2414 SYSCTL_DESCR("Assign random ip_id values"),
2415 NULL, 0, &ip_do_randomid, 0,
2416 CTL_NET, PF_INET, IPPROTO_IP,
2417 IPCTL_RANDOMID, CTL_EOL);
2418 sysctl_createv(clog, 0, NULL, NULL,
2419 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2420 CTLTYPE_INT, "do_loopback_cksum",
2421 SYSCTL_DESCR("Perform IP checksum on loopback"),
2422 NULL, 0, &ip_do_loopback_cksum, 0,
2423 CTL_NET, PF_INET, IPPROTO_IP,
2424 IPCTL_LOOPBACKCKSUM, CTL_EOL);
2425 sysctl_createv(clog, 0, NULL, NULL,
2426 CTLFLAG_PERMANENT,
2427 CTLTYPE_STRUCT, "stats",
2428 SYSCTL_DESCR("IP statistics"),
2429 sysctl_net_inet_ip_stats, 0, NULL, 0,
2430 CTL_NET, PF_INET, IPPROTO_IP, IPCTL_STATS,
2431 CTL_EOL);
2432 }
2433
2434 void
2435 ip_statinc(u_int stat)
2436 {
2437
2438 KASSERT(stat < IP_NSTATS);
2439 IP_STATINC(stat);
2440 }
2441