ip_input.c revision 1.285 1 /* $NetBSD: ip_input.c,v 1.285 2010/03/31 07:31:15 tls Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.285 2010/03/31 07:31:15 tls Exp $");
95
96 #include "opt_inet.h"
97 #include "opt_compat_netbsd.h"
98 #include "opt_gateway.h"
99 #include "opt_pfil_hooks.h"
100 #include "opt_ipsec.h"
101 #include "opt_mrouting.h"
102 #include "opt_mbuftrace.h"
103 #include "opt_inet_csum.h"
104
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/malloc.h>
108 #include <sys/mbuf.h>
109 #include <sys/domain.h>
110 #include <sys/protosw.h>
111 #include <sys/socket.h>
112 #include <sys/socketvar.h>
113 #include <sys/errno.h>
114 #include <sys/time.h>
115 #include <sys/kernel.h>
116 #include <sys/pool.h>
117 #include <sys/sysctl.h>
118 #include <sys/kauth.h>
119
120 #include <net/if.h>
121 #include <net/if_dl.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/in_proto.h>
130 #include <netinet/in_var.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/ip_private.h>
133 #include <netinet/ip_icmp.h>
134 /* just for gif_ttl */
135 #include <netinet/in_gif.h>
136 #include "gif.h"
137 #include <net/if_gre.h>
138 #include "gre.h"
139
140 #ifdef MROUTING
141 #include <netinet/ip_mroute.h>
142 #endif
143
144 #ifdef IPSEC
145 #include <netinet6/ipsec.h>
146 #include <netinet6/ipsec_private.h>
147 #include <netkey/key.h>
148 #endif
149 #ifdef FAST_IPSEC
150 #include <netipsec/ipsec.h>
151 #include <netipsec/key.h>
152 #endif /* FAST_IPSEC*/
153
154 #ifndef IPFORWARDING
155 #ifdef GATEWAY
156 #define IPFORWARDING 1 /* forward IP packets not for us */
157 #else /* GATEWAY */
158 #define IPFORWARDING 0 /* don't forward IP packets not for us */
159 #endif /* GATEWAY */
160 #endif /* IPFORWARDING */
161 #ifndef IPSENDREDIRECTS
162 #define IPSENDREDIRECTS 1
163 #endif
164 #ifndef IPFORWSRCRT
165 #define IPFORWSRCRT 1 /* forward source-routed packets */
166 #endif
167 #ifndef IPALLOWSRCRT
168 #define IPALLOWSRCRT 1 /* allow source-routed packets */
169 #endif
170 #ifndef IPMTUDISC
171 #define IPMTUDISC 1
172 #endif
173 #ifndef IPMTUDISCTIMEOUT
174 #define IPMTUDISCTIMEOUT (10 * 60) /* as per RFC 1191 */
175 #endif
176
177 #ifdef COMPAT_50
178 #include <compat/sys/time.h>
179 #include <compat/sys/socket.h>
180 #endif
181
182 /*
183 * Note: DIRECTED_BROADCAST is handled this way so that previous
184 * configuration using this option will Just Work.
185 */
186 #ifndef IPDIRECTEDBCAST
187 #ifdef DIRECTED_BROADCAST
188 #define IPDIRECTEDBCAST 1
189 #else
190 #define IPDIRECTEDBCAST 0
191 #endif /* DIRECTED_BROADCAST */
192 #endif /* IPDIRECTEDBCAST */
193 int ipforwarding = IPFORWARDING;
194 int ipsendredirects = IPSENDREDIRECTS;
195 int ip_defttl = IPDEFTTL;
196 int ip_forwsrcrt = IPFORWSRCRT;
197 int ip_directedbcast = IPDIRECTEDBCAST;
198 int ip_allowsrcrt = IPALLOWSRCRT;
199 int ip_mtudisc = IPMTUDISC;
200 int ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
201 #ifdef DIAGNOSTIC
202 int ipprintfs = 0;
203 #endif
204
205 int ip_do_randomid = 0;
206
207 /*
208 * XXX - Setting ip_checkinterface mostly implements the receive side of
209 * the Strong ES model described in RFC 1122, but since the routing table
210 * and transmit implementation do not implement the Strong ES model,
211 * setting this to 1 results in an odd hybrid.
212 *
213 * XXX - ip_checkinterface currently must be disabled if you use ipnat
214 * to translate the destination address to another local interface.
215 *
216 * XXX - ip_checkinterface must be disabled if you add IP aliases
217 * to the loopback interface instead of the interface where the
218 * packets for those addresses are received.
219 */
220 int ip_checkinterface = 0;
221
222
223 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
224
225 int ipqmaxlen = IFQ_MAXLEN;
226 u_long in_ifaddrhash; /* size of hash table - 1 */
227 int in_ifaddrentries; /* total number of addrs */
228 struct in_ifaddrhead in_ifaddrhead;
229 struct in_ifaddrhashhead *in_ifaddrhashtbl;
230 u_long in_multihash; /* size of hash table - 1 */
231 int in_multientries; /* total number of addrs */
232 struct in_multihashhead *in_multihashtbl;
233 struct ifqueue ipintrq;
234 uint16_t ip_id;
235
236 percpu_t *ipstat_percpu;
237
238 #ifdef PFIL_HOOKS
239 struct pfil_head inet_pfil_hook;
240 #endif
241
242 /*
243 * Cached copy of nmbclusters. If nbclusters is different,
244 * recalculate IP parameters derived from nmbclusters.
245 */
246 static int ip_nmbclusters; /* copy of nmbclusters */
247 static void ip_nmbclusters_changed(void); /* recalc limits */
248
249 #define CHECK_NMBCLUSTER_PARAMS() \
250 do { \
251 if (__predict_false(ip_nmbclusters != nmbclusters)) \
252 ip_nmbclusters_changed(); \
253 } while (/*CONSTCOND*/0)
254
255 /* IP datagram reassembly queues (hashed) */
256 #define IPREASS_NHASH_LOG2 6
257 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
258 #define IPREASS_HMASK (IPREASS_NHASH - 1)
259 #define IPREASS_HASH(x,y) \
260 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
261 struct ipqhead ipq[IPREASS_NHASH];
262 int ipq_locked;
263 static int ip_nfragpackets; /* packets in reass queue */
264 static int ip_nfrags; /* total fragments in reass queues */
265
266 int ip_maxfragpackets = 200; /* limit on packets. XXX sysctl */
267 int ip_maxfrags; /* limit on fragments. XXX sysctl */
268
269
270 /*
271 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
272 * IP reassembly queue buffer managment.
273 *
274 * We keep a count of total IP fragments (NB: not fragmented packets!)
275 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
276 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
277 * total fragments in reassembly queues.This AIMD policy avoids
278 * repeatedly deleting single packets under heavy fragmentation load
279 * (e.g., from lossy NFS peers).
280 */
281 static u_int ip_reass_ttl_decr(u_int ticks);
282 static void ip_reass_drophalf(void);
283
284
285 static inline int ipq_lock_try(void);
286 static inline void ipq_unlock(void);
287
288 static inline int
289 ipq_lock_try(void)
290 {
291 int s;
292
293 /*
294 * Use splvm() -- we're blocking things that would cause
295 * mbuf allocation.
296 */
297 s = splvm();
298 if (ipq_locked) {
299 splx(s);
300 return (0);
301 }
302 ipq_locked = 1;
303 splx(s);
304 return (1);
305 }
306
307 static inline void
308 ipq_unlock(void)
309 {
310 int s;
311
312 s = splvm();
313 ipq_locked = 0;
314 splx(s);
315 }
316
317 #ifdef DIAGNOSTIC
318 #define IPQ_LOCK() \
319 do { \
320 if (ipq_lock_try() == 0) { \
321 printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
322 panic("ipq_lock"); \
323 } \
324 } while (/*CONSTCOND*/ 0)
325 #define IPQ_LOCK_CHECK() \
326 do { \
327 if (ipq_locked == 0) { \
328 printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
329 panic("ipq lock check"); \
330 } \
331 } while (/*CONSTCOND*/ 0)
332 #else
333 #define IPQ_LOCK() (void) ipq_lock_try()
334 #define IPQ_LOCK_CHECK() /* nothing */
335 #endif
336
337 #define IPQ_UNLOCK() ipq_unlock()
338
339 struct pool inmulti_pool;
340 struct pool ipqent_pool;
341
342 #ifdef INET_CSUM_COUNTERS
343 #include <sys/device.h>
344
345 struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
346 NULL, "inet", "hwcsum bad");
347 struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
348 NULL, "inet", "hwcsum ok");
349 struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
350 NULL, "inet", "swcsum");
351
352 #define INET_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
353
354 EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
355 EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
356 EVCNT_ATTACH_STATIC(ip_swcsum);
357
358 #else
359
360 #define INET_CSUM_COUNTER_INCR(ev) /* nothing */
361
362 #endif /* INET_CSUM_COUNTERS */
363
364 /*
365 * We need to save the IP options in case a protocol wants to respond
366 * to an incoming packet over the same route if the packet got here
367 * using IP source routing. This allows connection establishment and
368 * maintenance when the remote end is on a network that is not known
369 * to us.
370 */
371 int ip_nhops = 0;
372 static struct ip_srcrt {
373 struct in_addr dst; /* final destination */
374 char nop; /* one NOP to align */
375 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
376 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
377 } ip_srcrt;
378
379 static void save_rte(u_char *, struct in_addr);
380
381 #ifdef MBUFTRACE
382 struct mowner ip_rx_mowner = MOWNER_INIT("internet", "rx");
383 struct mowner ip_tx_mowner = MOWNER_INIT("internet", "tx");
384 #endif
385
386 static void sysctl_net_inet_ip_setup(struct sysctllog **);
387
388 /*
389 * Compute IP limits derived from the value of nmbclusters.
390 */
391 static void
392 ip_nmbclusters_changed(void)
393 {
394 ip_maxfrags = nmbclusters / 4;
395 ip_nmbclusters = nmbclusters;
396 }
397
398 /*
399 * IP initialization: fill in IP protocol switch table.
400 * All protocols not implemented in kernel go to raw IP protocol handler.
401 */
402 void
403 ip_init(void)
404 {
405 const struct protosw *pr;
406 int i;
407
408 sysctl_net_inet_ip_setup(NULL);
409
410 pool_init(&inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl",
411 NULL, IPL_SOFTNET);
412 pool_init(&ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl",
413 NULL, IPL_VM);
414
415 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
416 if (pr == 0)
417 panic("ip_init");
418 for (i = 0; i < IPPROTO_MAX; i++)
419 ip_protox[i] = pr - inetsw;
420 for (pr = inetdomain.dom_protosw;
421 pr < inetdomain.dom_protoswNPROTOSW; pr++)
422 if (pr->pr_domain->dom_family == PF_INET &&
423 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
424 ip_protox[pr->pr_protocol] = pr - inetsw;
425
426 for (i = 0; i < IPREASS_NHASH; i++)
427 LIST_INIT(&ipq[i]);
428
429 ip_initid();
430 ip_id = time_second & 0xfffff;
431
432 ipintrq.ifq_maxlen = ipqmaxlen;
433 ip_nmbclusters_changed();
434
435 TAILQ_INIT(&in_ifaddrhead);
436 in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
437 &in_ifaddrhash);
438 in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
439 &in_multihash);
440 ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
441 #ifdef GATEWAY
442 ipflow_init(ip_hashsize);
443 #endif
444
445 #ifdef PFIL_HOOKS
446 /* Register our Packet Filter hook. */
447 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
448 inet_pfil_hook.ph_af = AF_INET;
449 i = pfil_head_register(&inet_pfil_hook);
450 if (i != 0)
451 printf("ip_init: WARNING: unable to register pfil hook, "
452 "error %d\n", i);
453 #endif /* PFIL_HOOKS */
454
455 #ifdef MBUFTRACE
456 MOWNER_ATTACH(&ip_tx_mowner);
457 MOWNER_ATTACH(&ip_rx_mowner);
458 #endif /* MBUFTRACE */
459
460 ipstat_percpu = percpu_alloc(sizeof(uint64_t) * IP_NSTATS);
461 }
462
463 struct sockaddr_in ipaddr = {
464 .sin_len = sizeof(ipaddr),
465 .sin_family = AF_INET,
466 };
467 struct route ipforward_rt;
468
469 /*
470 * IP software interrupt routine
471 */
472 void
473 ipintr(void)
474 {
475 int s;
476 struct mbuf *m;
477
478 mutex_enter(softnet_lock);
479 KERNEL_LOCK(1, NULL);
480 while (!IF_IS_EMPTY(&ipintrq)) {
481 s = splnet();
482 IF_DEQUEUE(&ipintrq, m);
483 splx(s);
484 if (m == NULL)
485 break;
486 KERNEL_UNLOCK_ONE(NULL);
487 ip_input(m);
488 KERNEL_LOCK(1, NULL);
489 }
490 KERNEL_UNLOCK_ONE(NULL);
491 mutex_exit(softnet_lock);
492 }
493
494 /*
495 * Ip input routine. Checksum and byte swap header. If fragmented
496 * try to reassemble. Process options. Pass to next level.
497 */
498 void
499 ip_input(struct mbuf *m)
500 {
501 struct ip *ip = NULL;
502 struct ipq *fp;
503 struct in_ifaddr *ia;
504 struct ifaddr *ifa;
505 struct ipqent *ipqe;
506 int hlen = 0, mff, len;
507 int downmatch;
508 int checkif;
509 int srcrt = 0;
510 int s;
511 u_int hash;
512 #ifdef FAST_IPSEC
513 struct m_tag *mtag;
514 struct tdb_ident *tdbi;
515 struct secpolicy *sp;
516 int error;
517 #endif /* FAST_IPSEC */
518
519 MCLAIM(m, &ip_rx_mowner);
520 #ifdef DIAGNOSTIC
521 if ((m->m_flags & M_PKTHDR) == 0)
522 panic("ipintr no HDR");
523 #endif
524
525 /*
526 * If no IP addresses have been set yet but the interfaces
527 * are receiving, can't do anything with incoming packets yet.
528 */
529 if (TAILQ_FIRST(&in_ifaddrhead) == 0)
530 goto bad;
531 IP_STATINC(IP_STAT_TOTAL);
532 /*
533 * If the IP header is not aligned, slurp it up into a new
534 * mbuf with space for link headers, in the event we forward
535 * it. Otherwise, if it is aligned, make sure the entire
536 * base IP header is in the first mbuf of the chain.
537 */
538 if (IP_HDR_ALIGNED_P(mtod(m, void *)) == 0) {
539 if ((m = m_copyup(m, sizeof(struct ip),
540 (max_linkhdr + 3) & ~3)) == NULL) {
541 /* XXXJRT new stat, please */
542 IP_STATINC(IP_STAT_TOOSMALL);
543 return;
544 }
545 } else if (__predict_false(m->m_len < sizeof (struct ip))) {
546 if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
547 IP_STATINC(IP_STAT_TOOSMALL);
548 return;
549 }
550 }
551 ip = mtod(m, struct ip *);
552 if (ip->ip_v != IPVERSION) {
553 IP_STATINC(IP_STAT_BADVERS);
554 goto bad;
555 }
556 hlen = ip->ip_hl << 2;
557 if (hlen < sizeof(struct ip)) { /* minimum header length */
558 IP_STATINC(IP_STAT_BADHLEN);
559 goto bad;
560 }
561 if (hlen > m->m_len) {
562 if ((m = m_pullup(m, hlen)) == 0) {
563 IP_STATINC(IP_STAT_BADHLEN);
564 return;
565 }
566 ip = mtod(m, struct ip *);
567 }
568
569 /*
570 * RFC1122: packets with a multicast source address are
571 * not allowed.
572 */
573 if (IN_MULTICAST(ip->ip_src.s_addr)) {
574 IP_STATINC(IP_STAT_BADADDR);
575 goto bad;
576 }
577
578 /* 127/8 must not appear on wire - RFC1122 */
579 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
580 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
581 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
582 IP_STATINC(IP_STAT_BADADDR);
583 goto bad;
584 }
585 }
586
587 switch (m->m_pkthdr.csum_flags &
588 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
589 M_CSUM_IPv4_BAD)) {
590 case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
591 INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
592 goto badcsum;
593
594 case M_CSUM_IPv4:
595 /* Checksum was okay. */
596 INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
597 break;
598
599 default:
600 /*
601 * Must compute it ourselves. Maybe skip checksum on
602 * loopback interfaces.
603 */
604 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
605 IFF_LOOPBACK) || ip_do_loopback_cksum)) {
606 INET_CSUM_COUNTER_INCR(&ip_swcsum);
607 if (in_cksum(m, hlen) != 0)
608 goto badcsum;
609 }
610 break;
611 }
612
613 /* Retrieve the packet length. */
614 len = ntohs(ip->ip_len);
615
616 /*
617 * Check for additional length bogosity
618 */
619 if (len < hlen) {
620 IP_STATINC(IP_STAT_BADLEN);
621 goto bad;
622 }
623
624 /*
625 * Check that the amount of data in the buffers
626 * is as at least much as the IP header would have us expect.
627 * Trim mbufs if longer than we expect.
628 * Drop packet if shorter than we expect.
629 */
630 if (m->m_pkthdr.len < len) {
631 IP_STATINC(IP_STAT_TOOSHORT);
632 goto bad;
633 }
634 if (m->m_pkthdr.len > len) {
635 if (m->m_len == m->m_pkthdr.len) {
636 m->m_len = len;
637 m->m_pkthdr.len = len;
638 } else
639 m_adj(m, len - m->m_pkthdr.len);
640 }
641
642 #if defined(IPSEC)
643 /* ipflow (IP fast forwarding) is not compatible with IPsec. */
644 m->m_flags &= ~M_CANFASTFWD;
645 #else
646 /*
647 * Assume that we can create a fast-forward IP flow entry
648 * based on this packet.
649 */
650 m->m_flags |= M_CANFASTFWD;
651 #endif
652
653 #ifdef PFIL_HOOKS
654 /*
655 * Run through list of hooks for input packets. If there are any
656 * filters which require that additional packets in the flow are
657 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
658 * Note that filters must _never_ set this flag, as another filter
659 * in the list may have previously cleared it.
660 */
661 /*
662 * let ipfilter look at packet on the wire,
663 * not the decapsulated packet.
664 */
665 #ifdef IPSEC
666 if (!ipsec_getnhist(m))
667 #elif defined(FAST_IPSEC)
668 if (!ipsec_indone(m))
669 #else
670 if (1)
671 #endif
672 {
673 struct in_addr odst;
674
675 odst = ip->ip_dst;
676 if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
677 PFIL_IN) != 0)
678 return;
679 if (m == NULL)
680 return;
681 ip = mtod(m, struct ip *);
682 hlen = ip->ip_hl << 2;
683 /*
684 * XXX The setting of "srcrt" here is to prevent ip_forward()
685 * from generating ICMP redirects for packets that have
686 * been redirected by a hook back out on to the same LAN that
687 * they came from and is not an indication that the packet
688 * is being inffluenced by source routing options. This
689 * allows things like
690 * "rdr tlp0 0/0 port 80 -> 1.1.1.200 3128 tcp"
691 * where tlp0 is both on the 1.1.1.0/24 network and is the
692 * default route for hosts on 1.1.1.0/24. Of course this
693 * also requires a "map tlp0 ..." to complete the story.
694 * One might argue whether or not this kind of network config.
695 * should be supported in this manner...
696 */
697 srcrt = (odst.s_addr != ip->ip_dst.s_addr);
698 }
699 #endif /* PFIL_HOOKS */
700
701 #ifdef ALTQ
702 /* XXX Temporary until ALTQ is changed to use a pfil hook */
703 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
704 /* packet dropped by traffic conditioner */
705 return;
706 }
707 #endif
708
709 /*
710 * Process options and, if not destined for us,
711 * ship it on. ip_dooptions returns 1 when an
712 * error was detected (causing an icmp message
713 * to be sent and the original packet to be freed).
714 */
715 ip_nhops = 0; /* for source routed packets */
716 if (hlen > sizeof (struct ip) && ip_dooptions(m))
717 return;
718
719 /*
720 * Enable a consistency check between the destination address
721 * and the arrival interface for a unicast packet (the RFC 1122
722 * strong ES model) if IP forwarding is disabled and the packet
723 * is not locally generated.
724 *
725 * XXX - Checking also should be disabled if the destination
726 * address is ipnat'ed to a different interface.
727 *
728 * XXX - Checking is incompatible with IP aliases added
729 * to the loopback interface instead of the interface where
730 * the packets are received.
731 *
732 * XXX - We need to add a per ifaddr flag for this so that
733 * we get finer grain control.
734 */
735 checkif = ip_checkinterface && (ipforwarding == 0) &&
736 (m->m_pkthdr.rcvif != NULL) &&
737 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
738
739 /*
740 * Check our list of addresses, to see if the packet is for us.
741 *
742 * Traditional 4.4BSD did not consult IFF_UP at all.
743 * The behavior here is to treat addresses on !IFF_UP interface
744 * as not mine.
745 */
746 downmatch = 0;
747 LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
748 if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
749 if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
750 continue;
751 if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
752 break;
753 else
754 downmatch++;
755 }
756 }
757 if (ia != NULL)
758 goto ours;
759 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
760 IFADDR_FOREACH(ifa, m->m_pkthdr.rcvif) {
761 if (ifa->ifa_addr->sa_family != AF_INET)
762 continue;
763 ia = ifatoia(ifa);
764 if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
765 in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
766 /*
767 * Look for all-0's host part (old broadcast addr),
768 * either for subnet or net.
769 */
770 ip->ip_dst.s_addr == ia->ia_subnet ||
771 ip->ip_dst.s_addr == ia->ia_net)
772 goto ours;
773 /*
774 * An interface with IP address zero accepts
775 * all packets that arrive on that interface.
776 */
777 if (in_nullhost(ia->ia_addr.sin_addr))
778 goto ours;
779 }
780 }
781 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
782 struct in_multi *inm;
783 #ifdef MROUTING
784 extern struct socket *ip_mrouter;
785
786 if (ip_mrouter) {
787 /*
788 * If we are acting as a multicast router, all
789 * incoming multicast packets are passed to the
790 * kernel-level multicast forwarding function.
791 * The packet is returned (relatively) intact; if
792 * ip_mforward() returns a non-zero value, the packet
793 * must be discarded, else it may be accepted below.
794 *
795 * (The IP ident field is put in the same byte order
796 * as expected when ip_mforward() is called from
797 * ip_output().)
798 */
799 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
800 IP_STATINC(IP_STAT_CANTFORWARD);
801 m_freem(m);
802 return;
803 }
804
805 /*
806 * The process-level routing demon needs to receive
807 * all multicast IGMP packets, whether or not this
808 * host belongs to their destination groups.
809 */
810 if (ip->ip_p == IPPROTO_IGMP)
811 goto ours;
812 IP_STATINC(IP_STAT_CANTFORWARD);
813 }
814 #endif
815 /*
816 * See if we belong to the destination multicast group on the
817 * arrival interface.
818 */
819 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
820 if (inm == NULL) {
821 IP_STATINC(IP_STAT_CANTFORWARD);
822 m_freem(m);
823 return;
824 }
825 goto ours;
826 }
827 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
828 in_nullhost(ip->ip_dst))
829 goto ours;
830
831 /*
832 * Not for us; forward if possible and desirable.
833 */
834 if (ipforwarding == 0) {
835 IP_STATINC(IP_STAT_CANTFORWARD);
836 m_freem(m);
837 } else {
838 /*
839 * If ip_dst matched any of my address on !IFF_UP interface,
840 * and there's no IFF_UP interface that matches ip_dst,
841 * send icmp unreach. Forwarding it will result in in-kernel
842 * forwarding loop till TTL goes to 0.
843 */
844 if (downmatch) {
845 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
846 IP_STATINC(IP_STAT_CANTFORWARD);
847 return;
848 }
849 #ifdef IPSEC
850 if (ipsec4_in_reject(m, NULL)) {
851 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
852 goto bad;
853 }
854 #endif
855 #ifdef FAST_IPSEC
856 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
857 s = splsoftnet();
858 if (mtag != NULL) {
859 tdbi = (struct tdb_ident *)(mtag + 1);
860 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
861 } else {
862 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
863 IP_FORWARDING, &error);
864 }
865 if (sp == NULL) { /* NB: can happen if error */
866 splx(s);
867 /*XXX error stat???*/
868 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
869 goto bad;
870 }
871
872 /*
873 * Check security policy against packet attributes.
874 */
875 error = ipsec_in_reject(sp, m);
876 KEY_FREESP(&sp);
877 splx(s);
878 if (error) {
879 IP_STATINC(IP_STAT_CANTFORWARD);
880 goto bad;
881 }
882
883 /*
884 * Peek at the outbound SP for this packet to determine if
885 * it's a Fast Forward candidate.
886 */
887 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
888 if (mtag != NULL)
889 m->m_flags &= ~M_CANFASTFWD;
890 else {
891 s = splsoftnet();
892 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
893 (IP_FORWARDING |
894 (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
895 &error, NULL);
896 if (sp != NULL) {
897 m->m_flags &= ~M_CANFASTFWD;
898 KEY_FREESP(&sp);
899 }
900 splx(s);
901 }
902 #endif /* FAST_IPSEC */
903
904 ip_forward(m, srcrt);
905 }
906 return;
907
908 ours:
909 /*
910 * If offset or IP_MF are set, must reassemble.
911 * Otherwise, nothing need be done.
912 * (We could look in the reassembly queue to see
913 * if the packet was previously fragmented,
914 * but it's not worth the time; just let them time out.)
915 */
916 if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
917 uint16_t off;
918 /*
919 * Prevent TCP blind data attacks by not allowing non-initial
920 * fragments to start at less than 68 bytes (minimal fragment
921 * size) and making sure the first fragment is at least 68
922 * bytes.
923 */
924 off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
925 if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
926 IP_STATINC(IP_STAT_BADFRAGS);
927 goto bad;
928 }
929 /*
930 * Look for queue of fragments
931 * of this datagram.
932 */
933 IPQ_LOCK();
934 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
935 LIST_FOREACH(fp, &ipq[hash], ipq_q) {
936 if (ip->ip_id == fp->ipq_id &&
937 in_hosteq(ip->ip_src, fp->ipq_src) &&
938 in_hosteq(ip->ip_dst, fp->ipq_dst) &&
939 ip->ip_p == fp->ipq_p) {
940 /*
941 * Make sure the TOS is matches previous
942 * fragments.
943 */
944 if (ip->ip_tos != fp->ipq_tos) {
945 IP_STATINC(IP_STAT_BADFRAGS);
946 IPQ_UNLOCK();
947 goto bad;
948 }
949 goto found;
950 }
951 }
952 fp = 0;
953 found:
954
955 /*
956 * Adjust ip_len to not reflect header,
957 * set ipqe_mff if more fragments are expected,
958 * convert offset of this to bytes.
959 */
960 ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
961 mff = (ip->ip_off & htons(IP_MF)) != 0;
962 if (mff) {
963 /*
964 * Make sure that fragments have a data length
965 * that's a non-zero multiple of 8 bytes.
966 */
967 if (ntohs(ip->ip_len) == 0 ||
968 (ntohs(ip->ip_len) & 0x7) != 0) {
969 IP_STATINC(IP_STAT_BADFRAGS);
970 IPQ_UNLOCK();
971 goto bad;
972 }
973 }
974 ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
975
976 /*
977 * If datagram marked as having more fragments
978 * or if this is not the first fragment,
979 * attempt reassembly; if it succeeds, proceed.
980 */
981 if (mff || ip->ip_off != htons(0)) {
982 IP_STATINC(IP_STAT_FRAGMENTS);
983 s = splvm();
984 ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
985 splx(s);
986 if (ipqe == NULL) {
987 IP_STATINC(IP_STAT_RCVMEMDROP);
988 IPQ_UNLOCK();
989 goto bad;
990 }
991 ipqe->ipqe_mff = mff;
992 ipqe->ipqe_m = m;
993 ipqe->ipqe_ip = ip;
994 m = ip_reass(ipqe, fp, &ipq[hash]);
995 if (m == 0) {
996 IPQ_UNLOCK();
997 return;
998 }
999 IP_STATINC(IP_STAT_REASSEMBLED);
1000 ip = mtod(m, struct ip *);
1001 hlen = ip->ip_hl << 2;
1002 ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
1003 } else
1004 if (fp)
1005 ip_freef(fp);
1006 IPQ_UNLOCK();
1007 }
1008
1009 #if defined(IPSEC)
1010 /*
1011 * enforce IPsec policy checking if we are seeing last header.
1012 * note that we do not visit this with protocols with pcb layer
1013 * code - like udp/tcp/raw ip.
1014 */
1015 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
1016 ipsec4_in_reject(m, NULL)) {
1017 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1018 goto bad;
1019 }
1020 #endif
1021 #ifdef FAST_IPSEC
1022 /*
1023 * enforce IPsec policy checking if we are seeing last header.
1024 * note that we do not visit this with protocols with pcb layer
1025 * code - like udp/tcp/raw ip.
1026 */
1027 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
1028 /*
1029 * Check if the packet has already had IPsec processing
1030 * done. If so, then just pass it along. This tag gets
1031 * set during AH, ESP, etc. input handling, before the
1032 * packet is returned to the ip input queue for delivery.
1033 */
1034 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1035 s = splsoftnet();
1036 if (mtag != NULL) {
1037 tdbi = (struct tdb_ident *)(mtag + 1);
1038 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1039 } else {
1040 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1041 IP_FORWARDING, &error);
1042 }
1043 if (sp != NULL) {
1044 /*
1045 * Check security policy against packet attributes.
1046 */
1047 error = ipsec_in_reject(sp, m);
1048 KEY_FREESP(&sp);
1049 } else {
1050 /* XXX error stat??? */
1051 error = EINVAL;
1052 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1053 }
1054 splx(s);
1055 if (error)
1056 goto bad;
1057 }
1058 #endif /* FAST_IPSEC */
1059
1060 /*
1061 * Switch out to protocol's input routine.
1062 */
1063 #if IFA_STATS
1064 if (ia && ip)
1065 ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
1066 #endif
1067 IP_STATINC(IP_STAT_DELIVERED);
1068 {
1069 int off = hlen, nh = ip->ip_p;
1070
1071 (*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
1072 return;
1073 }
1074 bad:
1075 m_freem(m);
1076 return;
1077
1078 badcsum:
1079 IP_STATINC(IP_STAT_BADSUM);
1080 m_freem(m);
1081 }
1082
1083 /*
1084 * Take incoming datagram fragment and try to
1085 * reassemble it into whole datagram. If a chain for
1086 * reassembly of this datagram already exists, then it
1087 * is given as fp; otherwise have to make a chain.
1088 */
1089 struct mbuf *
1090 ip_reass(struct ipqent *ipqe, struct ipq *fp, struct ipqhead *ipqhead)
1091 {
1092 struct mbuf *m = ipqe->ipqe_m;
1093 struct ipqent *nq, *p, *q;
1094 struct ip *ip;
1095 struct mbuf *t;
1096 int hlen = ipqe->ipqe_ip->ip_hl << 2;
1097 int i, next, s;
1098
1099 IPQ_LOCK_CHECK();
1100
1101 /*
1102 * Presence of header sizes in mbufs
1103 * would confuse code below.
1104 */
1105 m->m_data += hlen;
1106 m->m_len -= hlen;
1107
1108 #ifdef notyet
1109 /* make sure fragment limit is up-to-date */
1110 CHECK_NMBCLUSTER_PARAMS();
1111
1112 /* If we have too many fragments, drop the older half. */
1113 if (ip_nfrags >= ip_maxfrags)
1114 ip_reass_drophalf(void);
1115 #endif
1116
1117 /*
1118 * We are about to add a fragment; increment frag count.
1119 */
1120 ip_nfrags++;
1121
1122 /*
1123 * If first fragment to arrive, create a reassembly queue.
1124 */
1125 if (fp == 0) {
1126 /*
1127 * Enforce upper bound on number of fragmented packets
1128 * for which we attempt reassembly;
1129 * If maxfrag is 0, never accept fragments.
1130 * If maxfrag is -1, accept all fragments without limitation.
1131 */
1132 if (ip_maxfragpackets < 0)
1133 ;
1134 else if (ip_nfragpackets >= ip_maxfragpackets)
1135 goto dropfrag;
1136 ip_nfragpackets++;
1137 fp = malloc(sizeof (struct ipq), M_FTABLE, M_NOWAIT);
1138 if (fp == NULL)
1139 goto dropfrag;
1140 LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
1141 fp->ipq_nfrags = 1;
1142 fp->ipq_ttl = IPFRAGTTL;
1143 fp->ipq_p = ipqe->ipqe_ip->ip_p;
1144 fp->ipq_id = ipqe->ipqe_ip->ip_id;
1145 fp->ipq_tos = ipqe->ipqe_ip->ip_tos;
1146 TAILQ_INIT(&fp->ipq_fragq);
1147 fp->ipq_src = ipqe->ipqe_ip->ip_src;
1148 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
1149 p = NULL;
1150 goto insert;
1151 } else {
1152 fp->ipq_nfrags++;
1153 }
1154
1155 /*
1156 * Find a segment which begins after this one does.
1157 */
1158 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1159 p = q, q = TAILQ_NEXT(q, ipqe_q))
1160 if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
1161 break;
1162
1163 /*
1164 * If there is a preceding segment, it may provide some of
1165 * our data already. If so, drop the data from the incoming
1166 * segment. If it provides all of our data, drop us.
1167 */
1168 if (p != NULL) {
1169 i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
1170 ntohs(ipqe->ipqe_ip->ip_off);
1171 if (i > 0) {
1172 if (i >= ntohs(ipqe->ipqe_ip->ip_len))
1173 goto dropfrag;
1174 m_adj(ipqe->ipqe_m, i);
1175 ipqe->ipqe_ip->ip_off =
1176 htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
1177 ipqe->ipqe_ip->ip_len =
1178 htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
1179 }
1180 }
1181
1182 /*
1183 * While we overlap succeeding segments trim them or,
1184 * if they are completely covered, dequeue them.
1185 */
1186 for (; q != NULL &&
1187 ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
1188 ntohs(q->ipqe_ip->ip_off); q = nq) {
1189 i = (ntohs(ipqe->ipqe_ip->ip_off) +
1190 ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
1191 if (i < ntohs(q->ipqe_ip->ip_len)) {
1192 q->ipqe_ip->ip_len =
1193 htons(ntohs(q->ipqe_ip->ip_len) - i);
1194 q->ipqe_ip->ip_off =
1195 htons(ntohs(q->ipqe_ip->ip_off) + i);
1196 m_adj(q->ipqe_m, i);
1197 break;
1198 }
1199 nq = TAILQ_NEXT(q, ipqe_q);
1200 m_freem(q->ipqe_m);
1201 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1202 s = splvm();
1203 pool_put(&ipqent_pool, q);
1204 splx(s);
1205 fp->ipq_nfrags--;
1206 ip_nfrags--;
1207 }
1208
1209 insert:
1210 /*
1211 * Stick new segment in its place;
1212 * check for complete reassembly.
1213 */
1214 if (p == NULL) {
1215 TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
1216 } else {
1217 TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
1218 }
1219 next = 0;
1220 for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1221 p = q, q = TAILQ_NEXT(q, ipqe_q)) {
1222 if (ntohs(q->ipqe_ip->ip_off) != next)
1223 return (0);
1224 next += ntohs(q->ipqe_ip->ip_len);
1225 }
1226 if (p->ipqe_mff)
1227 return (0);
1228
1229 /*
1230 * Reassembly is complete. Check for a bogus message size and
1231 * concatenate fragments.
1232 */
1233 q = TAILQ_FIRST(&fp->ipq_fragq);
1234 ip = q->ipqe_ip;
1235 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
1236 IP_STATINC(IP_STAT_TOOLONG);
1237 ip_freef(fp);
1238 return (0);
1239 }
1240 m = q->ipqe_m;
1241 t = m->m_next;
1242 m->m_next = 0;
1243 m_cat(m, t);
1244 nq = TAILQ_NEXT(q, ipqe_q);
1245 s = splvm();
1246 pool_put(&ipqent_pool, q);
1247 splx(s);
1248 for (q = nq; q != NULL; q = nq) {
1249 t = q->ipqe_m;
1250 nq = TAILQ_NEXT(q, ipqe_q);
1251 s = splvm();
1252 pool_put(&ipqent_pool, q);
1253 splx(s);
1254 m_cat(m, t);
1255 }
1256 ip_nfrags -= fp->ipq_nfrags;
1257
1258 /*
1259 * Create header for new ip packet by
1260 * modifying header of first packet;
1261 * dequeue and discard fragment reassembly header.
1262 * Make header visible.
1263 */
1264 ip->ip_len = htons(next);
1265 ip->ip_src = fp->ipq_src;
1266 ip->ip_dst = fp->ipq_dst;
1267 LIST_REMOVE(fp, ipq_q);
1268 free(fp, M_FTABLE);
1269 ip_nfragpackets--;
1270 m->m_len += (ip->ip_hl << 2);
1271 m->m_data -= (ip->ip_hl << 2);
1272 /* some debugging cruft by sklower, below, will go away soon */
1273 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1274 int plen = 0;
1275 for (t = m; t; t = t->m_next)
1276 plen += t->m_len;
1277 m->m_pkthdr.len = plen;
1278 m->m_pkthdr.csum_flags = 0;
1279 }
1280 return (m);
1281
1282 dropfrag:
1283 if (fp != 0)
1284 fp->ipq_nfrags--;
1285 ip_nfrags--;
1286 IP_STATINC(IP_STAT_FRAGDROPPED);
1287 m_freem(m);
1288 s = splvm();
1289 pool_put(&ipqent_pool, ipqe);
1290 splx(s);
1291 return (0);
1292 }
1293
1294 /*
1295 * Free a fragment reassembly header and all
1296 * associated datagrams.
1297 */
1298 void
1299 ip_freef(struct ipq *fp)
1300 {
1301 struct ipqent *q, *p;
1302 u_int nfrags = 0;
1303 int s;
1304
1305 IPQ_LOCK_CHECK();
1306
1307 for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
1308 p = TAILQ_NEXT(q, ipqe_q);
1309 m_freem(q->ipqe_m);
1310 nfrags++;
1311 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1312 s = splvm();
1313 pool_put(&ipqent_pool, q);
1314 splx(s);
1315 }
1316
1317 if (nfrags != fp->ipq_nfrags)
1318 printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
1319 ip_nfrags -= nfrags;
1320 LIST_REMOVE(fp, ipq_q);
1321 free(fp, M_FTABLE);
1322 ip_nfragpackets--;
1323 }
1324
1325 /*
1326 * IP reassembly TTL machinery for multiplicative drop.
1327 */
1328 static u_int fragttl_histo[(IPFRAGTTL+1)];
1329
1330
1331 /*
1332 * Decrement TTL of all reasembly queue entries by `ticks'.
1333 * Count number of distinct fragments (as opposed to partial, fragmented
1334 * datagrams) in the reassembly queue. While we traverse the entire
1335 * reassembly queue, compute and return the median TTL over all fragments.
1336 */
1337 static u_int
1338 ip_reass_ttl_decr(u_int ticks)
1339 {
1340 u_int nfrags, median, dropfraction, keepfraction;
1341 struct ipq *fp, *nfp;
1342 int i;
1343
1344 nfrags = 0;
1345 memset(fragttl_histo, 0, sizeof fragttl_histo);
1346
1347 for (i = 0; i < IPREASS_NHASH; i++) {
1348 for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
1349 fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
1350 0 : fp->ipq_ttl - ticks);
1351 nfp = LIST_NEXT(fp, ipq_q);
1352 if (fp->ipq_ttl == 0) {
1353 IP_STATINC(IP_STAT_FRAGTIMEOUT);
1354 ip_freef(fp);
1355 } else {
1356 nfrags += fp->ipq_nfrags;
1357 fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
1358 }
1359 }
1360 }
1361
1362 KASSERT(ip_nfrags == nfrags);
1363
1364 /* Find median (or other drop fraction) in histogram. */
1365 dropfraction = (ip_nfrags / 2);
1366 keepfraction = ip_nfrags - dropfraction;
1367 for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
1368 median += fragttl_histo[i];
1369 if (median >= keepfraction)
1370 break;
1371 }
1372
1373 /* Return TTL of median (or other fraction). */
1374 return (u_int)i;
1375 }
1376
1377 void
1378 ip_reass_drophalf(void)
1379 {
1380
1381 u_int median_ticks;
1382 /*
1383 * Compute median TTL of all fragments, and count frags
1384 * with that TTL or lower (roughly half of all fragments).
1385 */
1386 median_ticks = ip_reass_ttl_decr(0);
1387
1388 /* Drop half. */
1389 median_ticks = ip_reass_ttl_decr(median_ticks);
1390
1391 }
1392
1393 /*
1394 * IP timer processing;
1395 * if a timer expires on a reassembly
1396 * queue, discard it.
1397 */
1398 void
1399 ip_slowtimo(void)
1400 {
1401 static u_int dropscanidx = 0;
1402 u_int i;
1403 u_int median_ttl;
1404
1405 mutex_enter(softnet_lock);
1406 KERNEL_LOCK(1, NULL);
1407
1408 IPQ_LOCK();
1409
1410 /* Age TTL of all fragments by 1 tick .*/
1411 median_ttl = ip_reass_ttl_decr(1);
1412
1413 /* make sure fragment limit is up-to-date */
1414 CHECK_NMBCLUSTER_PARAMS();
1415
1416 /* If we have too many fragments, drop the older half. */
1417 if (ip_nfrags > ip_maxfrags)
1418 ip_reass_ttl_decr(median_ttl);
1419
1420 /*
1421 * If we are over the maximum number of fragmented packets
1422 * (due to the limit being lowered), drain off
1423 * enough to get down to the new limit. Start draining
1424 * from the reassembly hashqueue most recently drained.
1425 */
1426 if (ip_maxfragpackets < 0)
1427 ;
1428 else {
1429 int wrapped = 0;
1430
1431 i = dropscanidx;
1432 while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
1433 while (LIST_FIRST(&ipq[i]) != NULL)
1434 ip_freef(LIST_FIRST(&ipq[i]));
1435 if (++i >= IPREASS_NHASH) {
1436 i = 0;
1437 }
1438 /*
1439 * Dont scan forever even if fragment counters are
1440 * wrong: stop after scanning entire reassembly queue.
1441 */
1442 if (i == dropscanidx)
1443 wrapped = 1;
1444 }
1445 dropscanidx = i;
1446 }
1447 IPQ_UNLOCK();
1448
1449 KERNEL_UNLOCK_ONE(NULL);
1450 mutex_exit(softnet_lock);
1451 }
1452
1453 /*
1454 * Drain off all datagram fragments. Don't acquire softnet_lock as
1455 * can be called from hardware interrupt context.
1456 */
1457 void
1458 ip_drain(void)
1459 {
1460
1461 KERNEL_LOCK(1, NULL);
1462
1463 /*
1464 * We may be called from a device's interrupt context. If
1465 * the ipq is already busy, just bail out now.
1466 */
1467 if (ipq_lock_try() != 0) {
1468 /*
1469 * Drop half the total fragments now. If more mbufs are
1470 * needed, we will be called again soon.
1471 */
1472 ip_reass_drophalf();
1473 IPQ_UNLOCK();
1474 }
1475
1476 KERNEL_UNLOCK_ONE(NULL);
1477 }
1478
1479 /*
1480 * Do option processing on a datagram,
1481 * possibly discarding it if bad options are encountered,
1482 * or forwarding it if source-routed.
1483 * Returns 1 if packet has been forwarded/freed,
1484 * 0 if the packet should be processed further.
1485 */
1486 int
1487 ip_dooptions(struct mbuf *m)
1488 {
1489 struct ip *ip = mtod(m, struct ip *);
1490 u_char *cp, *cp0;
1491 struct ip_timestamp *ipt;
1492 struct in_ifaddr *ia;
1493 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1494 struct in_addr dst;
1495 n_time ntime;
1496
1497 dst = ip->ip_dst;
1498 cp = (u_char *)(ip + 1);
1499 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1500 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1501 opt = cp[IPOPT_OPTVAL];
1502 if (opt == IPOPT_EOL)
1503 break;
1504 if (opt == IPOPT_NOP)
1505 optlen = 1;
1506 else {
1507 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1508 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1509 goto bad;
1510 }
1511 optlen = cp[IPOPT_OLEN];
1512 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1513 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1514 goto bad;
1515 }
1516 }
1517 switch (opt) {
1518
1519 default:
1520 break;
1521
1522 /*
1523 * Source routing with record.
1524 * Find interface with current destination address.
1525 * If none on this machine then drop if strictly routed,
1526 * or do nothing if loosely routed.
1527 * Record interface address and bring up next address
1528 * component. If strictly routed make sure next
1529 * address is on directly accessible net.
1530 */
1531 case IPOPT_LSRR:
1532 case IPOPT_SSRR:
1533 if (ip_allowsrcrt == 0) {
1534 type = ICMP_UNREACH;
1535 code = ICMP_UNREACH_NET_PROHIB;
1536 goto bad;
1537 }
1538 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1539 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1540 goto bad;
1541 }
1542 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1543 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1544 goto bad;
1545 }
1546 ipaddr.sin_addr = ip->ip_dst;
1547 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
1548 if (ia == 0) {
1549 if (opt == IPOPT_SSRR) {
1550 type = ICMP_UNREACH;
1551 code = ICMP_UNREACH_SRCFAIL;
1552 goto bad;
1553 }
1554 /*
1555 * Loose routing, and not at next destination
1556 * yet; nothing to do except forward.
1557 */
1558 break;
1559 }
1560 off--; /* 0 origin */
1561 if ((off + sizeof(struct in_addr)) > optlen) {
1562 /*
1563 * End of source route. Should be for us.
1564 */
1565 save_rte(cp, ip->ip_src);
1566 break;
1567 }
1568 /*
1569 * locate outgoing interface
1570 */
1571 memcpy((void *)&ipaddr.sin_addr, (void *)(cp + off),
1572 sizeof(ipaddr.sin_addr));
1573 if (opt == IPOPT_SSRR)
1574 ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
1575 else
1576 ia = ip_rtaddr(ipaddr.sin_addr);
1577 if (ia == 0) {
1578 type = ICMP_UNREACH;
1579 code = ICMP_UNREACH_SRCFAIL;
1580 goto bad;
1581 }
1582 ip->ip_dst = ipaddr.sin_addr;
1583 bcopy((void *)&ia->ia_addr.sin_addr,
1584 (void *)(cp + off), sizeof(struct in_addr));
1585 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1586 /*
1587 * Let ip_intr's mcast routing check handle mcast pkts
1588 */
1589 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1590 break;
1591
1592 case IPOPT_RR:
1593 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1594 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1595 goto bad;
1596 }
1597 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1598 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1599 goto bad;
1600 }
1601 /*
1602 * If no space remains, ignore.
1603 */
1604 off--; /* 0 origin */
1605 if ((off + sizeof(struct in_addr)) > optlen)
1606 break;
1607 memcpy((void *)&ipaddr.sin_addr, (void *)(&ip->ip_dst),
1608 sizeof(ipaddr.sin_addr));
1609 /*
1610 * locate outgoing interface; if we're the destination,
1611 * use the incoming interface (should be same).
1612 */
1613 if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
1614 == NULL &&
1615 (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1616 type = ICMP_UNREACH;
1617 code = ICMP_UNREACH_HOST;
1618 goto bad;
1619 }
1620 bcopy((void *)&ia->ia_addr.sin_addr,
1621 (void *)(cp + off), sizeof(struct in_addr));
1622 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1623 break;
1624
1625 case IPOPT_TS:
1626 code = cp - (u_char *)ip;
1627 ipt = (struct ip_timestamp *)cp;
1628 if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1629 code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1630 goto bad;
1631 }
1632 if (ipt->ipt_ptr < 5) {
1633 code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1634 goto bad;
1635 }
1636 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
1637 if (++ipt->ipt_oflw == 0) {
1638 code = (u_char *)&ipt->ipt_ptr -
1639 (u_char *)ip;
1640 goto bad;
1641 }
1642 break;
1643 }
1644 cp0 = (cp + ipt->ipt_ptr - 1);
1645 switch (ipt->ipt_flg) {
1646
1647 case IPOPT_TS_TSONLY:
1648 break;
1649
1650 case IPOPT_TS_TSANDADDR:
1651 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1652 sizeof(struct in_addr) > ipt->ipt_len) {
1653 code = (u_char *)&ipt->ipt_ptr -
1654 (u_char *)ip;
1655 goto bad;
1656 }
1657 ipaddr.sin_addr = dst;
1658 ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1659 m->m_pkthdr.rcvif));
1660 if (ia == 0)
1661 continue;
1662 bcopy(&ia->ia_addr.sin_addr,
1663 cp0, sizeof(struct in_addr));
1664 ipt->ipt_ptr += sizeof(struct in_addr);
1665 break;
1666
1667 case IPOPT_TS_PRESPEC:
1668 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1669 sizeof(struct in_addr) > ipt->ipt_len) {
1670 code = (u_char *)&ipt->ipt_ptr -
1671 (u_char *)ip;
1672 goto bad;
1673 }
1674 memcpy(&ipaddr.sin_addr, cp0,
1675 sizeof(struct in_addr));
1676 if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
1677 == NULL)
1678 continue;
1679 ipt->ipt_ptr += sizeof(struct in_addr);
1680 break;
1681
1682 default:
1683 /* XXX can't take &ipt->ipt_flg */
1684 code = (u_char *)&ipt->ipt_ptr -
1685 (u_char *)ip + 1;
1686 goto bad;
1687 }
1688 ntime = iptime();
1689 cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
1690 memmove((char *)cp + ipt->ipt_ptr - 1, cp0,
1691 sizeof(n_time));
1692 ipt->ipt_ptr += sizeof(n_time);
1693 }
1694 }
1695 if (forward) {
1696 if (ip_forwsrcrt == 0) {
1697 type = ICMP_UNREACH;
1698 code = ICMP_UNREACH_SRCFAIL;
1699 goto bad;
1700 }
1701 ip_forward(m, 1);
1702 return (1);
1703 }
1704 return (0);
1705 bad:
1706 icmp_error(m, type, code, 0, 0);
1707 IP_STATINC(IP_STAT_BADOPTIONS);
1708 return (1);
1709 }
1710
1711 /*
1712 * Given address of next destination (final or next hop),
1713 * return internet address info of interface to be used to get there.
1714 */
1715 struct in_ifaddr *
1716 ip_rtaddr(struct in_addr dst)
1717 {
1718 struct rtentry *rt;
1719 union {
1720 struct sockaddr dst;
1721 struct sockaddr_in dst4;
1722 } u;
1723
1724 sockaddr_in_init(&u.dst4, &dst, 0);
1725
1726 if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL)
1727 return NULL;
1728
1729 return ifatoia(rt->rt_ifa);
1730 }
1731
1732 /*
1733 * Save incoming source route for use in replies,
1734 * to be picked up later by ip_srcroute if the receiver is interested.
1735 */
1736 void
1737 save_rte(u_char *option, struct in_addr dst)
1738 {
1739 unsigned olen;
1740
1741 olen = option[IPOPT_OLEN];
1742 #ifdef DIAGNOSTIC
1743 if (ipprintfs)
1744 printf("save_rte: olen %d\n", olen);
1745 #endif /* 0 */
1746 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1747 return;
1748 memcpy((void *)ip_srcrt.srcopt, (void *)option, olen);
1749 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1750 ip_srcrt.dst = dst;
1751 }
1752
1753 /*
1754 * Retrieve incoming source route for use in replies,
1755 * in the same form used by setsockopt.
1756 * The first hop is placed before the options, will be removed later.
1757 */
1758 struct mbuf *
1759 ip_srcroute(void)
1760 {
1761 struct in_addr *p, *q;
1762 struct mbuf *m;
1763
1764 if (ip_nhops == 0)
1765 return NULL;
1766 m = m_get(M_DONTWAIT, MT_SOOPTS);
1767 if (m == 0)
1768 return NULL;
1769
1770 MCLAIM(m, &inetdomain.dom_mowner);
1771 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1772
1773 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1774 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1775 OPTSIZ;
1776 #ifdef DIAGNOSTIC
1777 if (ipprintfs)
1778 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1779 #endif
1780
1781 /*
1782 * First save first hop for return route
1783 */
1784 p = &ip_srcrt.route[ip_nhops - 1];
1785 *(mtod(m, struct in_addr *)) = *p--;
1786 #ifdef DIAGNOSTIC
1787 if (ipprintfs)
1788 printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1789 #endif
1790
1791 /*
1792 * Copy option fields and padding (nop) to mbuf.
1793 */
1794 ip_srcrt.nop = IPOPT_NOP;
1795 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1796 memmove(mtod(m, char *) + sizeof(struct in_addr), &ip_srcrt.nop,
1797 OPTSIZ);
1798 q = (struct in_addr *)(mtod(m, char *) +
1799 sizeof(struct in_addr) + OPTSIZ);
1800 #undef OPTSIZ
1801 /*
1802 * Record return path as an IP source route,
1803 * reversing the path (pointers are now aligned).
1804 */
1805 while (p >= ip_srcrt.route) {
1806 #ifdef DIAGNOSTIC
1807 if (ipprintfs)
1808 printf(" %x", ntohl(q->s_addr));
1809 #endif
1810 *q++ = *p--;
1811 }
1812 /*
1813 * Last hop goes to final destination.
1814 */
1815 *q = ip_srcrt.dst;
1816 #ifdef DIAGNOSTIC
1817 if (ipprintfs)
1818 printf(" %x\n", ntohl(q->s_addr));
1819 #endif
1820 return (m);
1821 }
1822
1823 const int inetctlerrmap[PRC_NCMDS] = {
1824 [PRC_MSGSIZE] = EMSGSIZE,
1825 [PRC_HOSTDEAD] = EHOSTDOWN,
1826 [PRC_HOSTUNREACH] = EHOSTUNREACH,
1827 [PRC_UNREACH_NET] = EHOSTUNREACH,
1828 [PRC_UNREACH_HOST] = EHOSTUNREACH,
1829 [PRC_UNREACH_PROTOCOL] = ECONNREFUSED,
1830 [PRC_UNREACH_PORT] = ECONNREFUSED,
1831 [PRC_UNREACH_SRCFAIL] = EHOSTUNREACH,
1832 [PRC_PARAMPROB] = ENOPROTOOPT,
1833 };
1834
1835 /*
1836 * Forward a packet. If some error occurs return the sender
1837 * an icmp packet. Note we can't always generate a meaningful
1838 * icmp message because icmp doesn't have a large enough repertoire
1839 * of codes and types.
1840 *
1841 * If not forwarding, just drop the packet. This could be confusing
1842 * if ipforwarding was zero but some routing protocol was advancing
1843 * us as a gateway to somewhere. However, we must let the routing
1844 * protocol deal with that.
1845 *
1846 * The srcrt parameter indicates whether the packet is being forwarded
1847 * via a source route.
1848 */
1849 void
1850 ip_forward(struct mbuf *m, int srcrt)
1851 {
1852 struct ip *ip = mtod(m, struct ip *);
1853 struct rtentry *rt;
1854 int error, type = 0, code = 0, destmtu = 0;
1855 struct mbuf *mcopy;
1856 n_long dest;
1857 union {
1858 struct sockaddr dst;
1859 struct sockaddr_in dst4;
1860 } u;
1861
1862 /*
1863 * We are now in the output path.
1864 */
1865 MCLAIM(m, &ip_tx_mowner);
1866
1867 /*
1868 * Clear any in-bound checksum flags for this packet.
1869 */
1870 m->m_pkthdr.csum_flags = 0;
1871
1872 dest = 0;
1873 #ifdef DIAGNOSTIC
1874 if (ipprintfs) {
1875 printf("forward: src %s ", inet_ntoa(ip->ip_src));
1876 printf("dst %s ttl %x\n", inet_ntoa(ip->ip_dst), ip->ip_ttl);
1877 }
1878 #endif
1879 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1880 IP_STATINC(IP_STAT_CANTFORWARD);
1881 m_freem(m);
1882 return;
1883 }
1884 if (ip->ip_ttl <= IPTTLDEC) {
1885 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1886 return;
1887 }
1888
1889 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
1890 if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL) {
1891 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_NET, dest, 0);
1892 return;
1893 }
1894
1895 /*
1896 * Save at most 68 bytes of the packet in case
1897 * we need to generate an ICMP message to the src.
1898 * Pullup to avoid sharing mbuf cluster between m and mcopy.
1899 */
1900 mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
1901 if (mcopy)
1902 mcopy = m_pullup(mcopy, ip->ip_hl << 2);
1903
1904 ip->ip_ttl -= IPTTLDEC;
1905
1906 /*
1907 * If forwarding packet using same interface that it came in on,
1908 * perhaps should send a redirect to sender to shortcut a hop.
1909 * Only send redirect if source is sending directly to us,
1910 * and if packet was not source routed (or has any options).
1911 * Also, don't send redirect if forwarding using a default route
1912 * or a route modified by a redirect.
1913 */
1914 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1915 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1916 !in_nullhost(satocsin(rt_getkey(rt))->sin_addr) &&
1917 ipsendredirects && !srcrt) {
1918 if (rt->rt_ifa &&
1919 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1920 ifatoia(rt->rt_ifa)->ia_subnet) {
1921 if (rt->rt_flags & RTF_GATEWAY)
1922 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1923 else
1924 dest = ip->ip_dst.s_addr;
1925 /*
1926 * Router requirements says to only send host
1927 * redirects.
1928 */
1929 type = ICMP_REDIRECT;
1930 code = ICMP_REDIRECT_HOST;
1931 #ifdef DIAGNOSTIC
1932 if (ipprintfs)
1933 printf("redirect (%d) to %x\n", code,
1934 (u_int32_t)dest);
1935 #endif
1936 }
1937 }
1938
1939 error = ip_output(m, NULL, &ipforward_rt,
1940 (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1941 (struct ip_moptions *)NULL, (struct socket *)NULL);
1942
1943 if (error)
1944 IP_STATINC(IP_STAT_CANTFORWARD);
1945 else {
1946 uint64_t *ips = IP_STAT_GETREF();
1947 ips[IP_STAT_FORWARD]++;
1948 if (type) {
1949 ips[IP_STAT_REDIRECTSENT]++;
1950 IP_STAT_PUTREF();
1951 } else {
1952 IP_STAT_PUTREF();
1953 if (mcopy) {
1954 #ifdef GATEWAY
1955 if (mcopy->m_flags & M_CANFASTFWD)
1956 ipflow_create(&ipforward_rt, mcopy);
1957 #endif
1958 m_freem(mcopy);
1959 }
1960 return;
1961 }
1962 }
1963 if (mcopy == NULL)
1964 return;
1965
1966 switch (error) {
1967
1968 case 0: /* forwarded, but need redirect */
1969 /* type, code set above */
1970 break;
1971
1972 case ENETUNREACH: /* shouldn't happen, checked above */
1973 case EHOSTUNREACH:
1974 case ENETDOWN:
1975 case EHOSTDOWN:
1976 default:
1977 type = ICMP_UNREACH;
1978 code = ICMP_UNREACH_HOST;
1979 break;
1980
1981 case EMSGSIZE:
1982 type = ICMP_UNREACH;
1983 code = ICMP_UNREACH_NEEDFRAG;
1984
1985 if ((rt = rtcache_validate(&ipforward_rt)) != NULL)
1986 destmtu = rt->rt_ifp->if_mtu;
1987
1988 #if defined(IPSEC) || defined(FAST_IPSEC)
1989 {
1990 /*
1991 * If the packet is routed over IPsec tunnel, tell the
1992 * originator the tunnel MTU.
1993 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1994 * XXX quickhack!!!
1995 */
1996
1997 struct secpolicy *sp;
1998 int ipsecerror;
1999 size_t ipsechdr;
2000 struct route *ro;
2001
2002 sp = ipsec4_getpolicybyaddr(mcopy,
2003 IPSEC_DIR_OUTBOUND, IP_FORWARDING,
2004 &ipsecerror);
2005
2006 if (sp != NULL) {
2007 /* count IPsec header size */
2008 ipsechdr = ipsec4_hdrsiz(mcopy,
2009 IPSEC_DIR_OUTBOUND, NULL);
2010
2011 /*
2012 * find the correct route for outer IPv4
2013 * header, compute tunnel MTU.
2014 */
2015
2016 if (sp->req != NULL
2017 && sp->req->sav != NULL
2018 && sp->req->sav->sah != NULL) {
2019 ro = &sp->req->sav->sah->sa_route;
2020 rt = rtcache_validate(ro);
2021 if (rt && rt->rt_ifp) {
2022 destmtu =
2023 rt->rt_rmx.rmx_mtu ?
2024 rt->rt_rmx.rmx_mtu :
2025 rt->rt_ifp->if_mtu;
2026 destmtu -= ipsechdr;
2027 }
2028 }
2029
2030 #ifdef IPSEC
2031 key_freesp(sp);
2032 #else
2033 KEY_FREESP(&sp);
2034 #endif
2035 }
2036 }
2037 #endif /*defined(IPSEC) || defined(FAST_IPSEC)*/
2038 IP_STATINC(IP_STAT_CANTFRAG);
2039 break;
2040
2041 case ENOBUFS:
2042 #if 1
2043 /*
2044 * a router should not generate ICMP_SOURCEQUENCH as
2045 * required in RFC1812 Requirements for IP Version 4 Routers.
2046 * source quench could be a big problem under DoS attacks,
2047 * or if the underlying interface is rate-limited.
2048 */
2049 if (mcopy)
2050 m_freem(mcopy);
2051 return;
2052 #else
2053 type = ICMP_SOURCEQUENCH;
2054 code = 0;
2055 break;
2056 #endif
2057 }
2058 icmp_error(mcopy, type, code, dest, destmtu);
2059 }
2060
2061 void
2062 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2063 struct mbuf *m)
2064 {
2065
2066 if (inp->inp_socket->so_options & SO_TIMESTAMP
2067 #ifdef SO_OTIMESTAMP
2068 || inp->inp_socket->so_options & SO_OTIMESTAMP
2069 #endif
2070 ) {
2071 struct timeval tv;
2072
2073 microtime(&tv);
2074 #ifdef SO_OTIMESTAMP
2075 if (inp->inp_socket->so_options & SO_OTIMESTAMP) {
2076 struct timeval50 tv50;
2077 timeval_to_timeval50(&tv, &tv50);
2078 *mp = sbcreatecontrol((void *) &tv50, sizeof(tv50),
2079 SCM_OTIMESTAMP, SOL_SOCKET);
2080 } else
2081 #endif
2082 *mp = sbcreatecontrol((void *) &tv, sizeof(tv),
2083 SCM_TIMESTAMP, SOL_SOCKET);
2084 if (*mp)
2085 mp = &(*mp)->m_next;
2086 }
2087 if (inp->inp_flags & INP_RECVDSTADDR) {
2088 *mp = sbcreatecontrol((void *) &ip->ip_dst,
2089 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2090 if (*mp)
2091 mp = &(*mp)->m_next;
2092 }
2093 #ifdef notyet
2094 /*
2095 * XXX
2096 * Moving these out of udp_input() made them even more broken
2097 * than they already were.
2098 * - fenner (at) parc.xerox.com
2099 */
2100 /* options were tossed already */
2101 if (inp->inp_flags & INP_RECVOPTS) {
2102 *mp = sbcreatecontrol((void *) opts_deleted_above,
2103 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2104 if (*mp)
2105 mp = &(*mp)->m_next;
2106 }
2107 /* ip_srcroute doesn't do what we want here, need to fix */
2108 if (inp->inp_flags & INP_RECVRETOPTS) {
2109 *mp = sbcreatecontrol((void *) ip_srcroute(),
2110 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2111 if (*mp)
2112 mp = &(*mp)->m_next;
2113 }
2114 #endif
2115 if (inp->inp_flags & INP_RECVIF) {
2116 struct sockaddr_dl sdl;
2117
2118 sockaddr_dl_init(&sdl, sizeof(sdl),
2119 (m->m_pkthdr.rcvif != NULL)
2120 ? m->m_pkthdr.rcvif->if_index
2121 : 0,
2122 0, NULL, 0, NULL, 0);
2123 *mp = sbcreatecontrol(&sdl, sdl.sdl_len, IP_RECVIF, IPPROTO_IP);
2124 if (*mp)
2125 mp = &(*mp)->m_next;
2126 }
2127 if (inp->inp_flags & INP_RECVTTL) {
2128 *mp = sbcreatecontrol((void *) &ip->ip_ttl,
2129 sizeof(uint8_t), IP_RECVTTL, IPPROTO_IP);
2130 if (*mp)
2131 mp = &(*mp)->m_next;
2132 }
2133 }
2134
2135 /*
2136 * sysctl helper routine for net.inet.ip.forwsrcrt.
2137 */
2138 static int
2139 sysctl_net_inet_ip_forwsrcrt(SYSCTLFN_ARGS)
2140 {
2141 int error, tmp;
2142 struct sysctlnode node;
2143
2144 node = *rnode;
2145 tmp = ip_forwsrcrt;
2146 node.sysctl_data = &tmp;
2147 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2148 if (error || newp == NULL)
2149 return (error);
2150
2151 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_FORWSRCRT,
2152 0, NULL, NULL, NULL);
2153 if (error)
2154 return (error);
2155
2156 ip_forwsrcrt = tmp;
2157
2158 return (0);
2159 }
2160
2161 /*
2162 * sysctl helper routine for net.inet.ip.mtudisctimeout. checks the
2163 * range of the new value and tweaks timers if it changes.
2164 */
2165 static int
2166 sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
2167 {
2168 int error, tmp;
2169 struct sysctlnode node;
2170
2171 node = *rnode;
2172 tmp = ip_mtudisc_timeout;
2173 node.sysctl_data = &tmp;
2174 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2175 if (error || newp == NULL)
2176 return (error);
2177 if (tmp < 0)
2178 return (EINVAL);
2179
2180 mutex_enter(softnet_lock);
2181
2182 ip_mtudisc_timeout = tmp;
2183 rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
2184
2185 mutex_exit(softnet_lock);
2186
2187 return (0);
2188 }
2189
2190 #ifdef GATEWAY
2191 /*
2192 * sysctl helper routine for net.inet.ip.maxflows.
2193 */
2194 static int
2195 sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
2196 {
2197 int error;
2198
2199 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
2200 if (error || newp == NULL)
2201 return (error);
2202
2203 mutex_enter(softnet_lock);
2204 KERNEL_LOCK(1, NULL);
2205
2206 ipflow_prune();
2207
2208 KERNEL_UNLOCK_ONE(NULL);
2209 mutex_exit(softnet_lock);
2210
2211 return (0);
2212 }
2213
2214 static int
2215 sysctl_net_inet_ip_hashsize(SYSCTLFN_ARGS)
2216 {
2217 int error, tmp;
2218 struct sysctlnode node;
2219
2220 node = *rnode;
2221 tmp = ip_hashsize;
2222 node.sysctl_data = &tmp;
2223 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2224 if (error || newp == NULL)
2225 return (error);
2226
2227 if ((tmp & (tmp - 1)) == 0 && tmp != 0) {
2228 /*
2229 * Can only fail due to malloc()
2230 */
2231 mutex_enter(softnet_lock);
2232 KERNEL_LOCK(1, NULL);
2233
2234 error = ipflow_invalidate_all(tmp);
2235
2236 KERNEL_UNLOCK_ONE(NULL);
2237 mutex_exit(softnet_lock);
2238
2239 } else {
2240 /*
2241 * EINVAL if not a power of 2
2242 */
2243 error = EINVAL;
2244 }
2245
2246 return error;
2247 }
2248 #endif /* GATEWAY */
2249
2250 static int
2251 sysctl_net_inet_ip_stats(SYSCTLFN_ARGS)
2252 {
2253
2254 return (NETSTAT_SYSCTL(ipstat_percpu, IP_NSTATS));
2255 }
2256
2257 static void
2258 sysctl_net_inet_ip_setup(struct sysctllog **clog)
2259 {
2260 extern int subnetsarelocal, hostzeroisbroadcast;
2261
2262 sysctl_createv(clog, 0, NULL, NULL,
2263 CTLFLAG_PERMANENT,
2264 CTLTYPE_NODE, "net", NULL,
2265 NULL, 0, NULL, 0,
2266 CTL_NET, CTL_EOL);
2267 sysctl_createv(clog, 0, NULL, NULL,
2268 CTLFLAG_PERMANENT,
2269 CTLTYPE_NODE, "inet",
2270 SYSCTL_DESCR("PF_INET related settings"),
2271 NULL, 0, NULL, 0,
2272 CTL_NET, PF_INET, CTL_EOL);
2273 sysctl_createv(clog, 0, NULL, NULL,
2274 CTLFLAG_PERMANENT,
2275 CTLTYPE_NODE, "ip",
2276 SYSCTL_DESCR("IPv4 related settings"),
2277 NULL, 0, NULL, 0,
2278 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2279
2280 sysctl_createv(clog, 0, NULL, NULL,
2281 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2282 CTLTYPE_INT, "forwarding",
2283 SYSCTL_DESCR("Enable forwarding of INET datagrams"),
2284 NULL, 0, &ipforwarding, 0,
2285 CTL_NET, PF_INET, IPPROTO_IP,
2286 IPCTL_FORWARDING, CTL_EOL);
2287 sysctl_createv(clog, 0, NULL, NULL,
2288 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2289 CTLTYPE_INT, "redirect",
2290 SYSCTL_DESCR("Enable sending of ICMP redirect messages"),
2291 NULL, 0, &ipsendredirects, 0,
2292 CTL_NET, PF_INET, IPPROTO_IP,
2293 IPCTL_SENDREDIRECTS, CTL_EOL);
2294 sysctl_createv(clog, 0, NULL, NULL,
2295 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2296 CTLTYPE_INT, "ttl",
2297 SYSCTL_DESCR("Default TTL for an INET datagram"),
2298 NULL, 0, &ip_defttl, 0,
2299 CTL_NET, PF_INET, IPPROTO_IP,
2300 IPCTL_DEFTTL, CTL_EOL);
2301 #ifdef IPCTL_DEFMTU
2302 sysctl_createv(clog, 0, NULL, NULL,
2303 CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
2304 CTLTYPE_INT, "mtu",
2305 SYSCTL_DESCR("Default MTA for an INET route"),
2306 NULL, 0, &ip_mtu, 0,
2307 CTL_NET, PF_INET, IPPROTO_IP,
2308 IPCTL_DEFMTU, CTL_EOL);
2309 #endif /* IPCTL_DEFMTU */
2310 sysctl_createv(clog, 0, NULL, NULL,
2311 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2312 CTLTYPE_INT, "forwsrcrt",
2313 SYSCTL_DESCR("Enable forwarding of source-routed "
2314 "datagrams"),
2315 sysctl_net_inet_ip_forwsrcrt, 0, &ip_forwsrcrt, 0,
2316 CTL_NET, PF_INET, IPPROTO_IP,
2317 IPCTL_FORWSRCRT, CTL_EOL);
2318 sysctl_createv(clog, 0, NULL, NULL,
2319 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2320 CTLTYPE_INT, "directed-broadcast",
2321 SYSCTL_DESCR("Enable forwarding of broadcast datagrams"),
2322 NULL, 0, &ip_directedbcast, 0,
2323 CTL_NET, PF_INET, IPPROTO_IP,
2324 IPCTL_DIRECTEDBCAST, CTL_EOL);
2325 sysctl_createv(clog, 0, NULL, NULL,
2326 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2327 CTLTYPE_INT, "allowsrcrt",
2328 SYSCTL_DESCR("Accept source-routed datagrams"),
2329 NULL, 0, &ip_allowsrcrt, 0,
2330 CTL_NET, PF_INET, IPPROTO_IP,
2331 IPCTL_ALLOWSRCRT, CTL_EOL);
2332 sysctl_createv(clog, 0, NULL, NULL,
2333 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2334 CTLTYPE_INT, "subnetsarelocal",
2335 SYSCTL_DESCR("Whether logical subnets are considered "
2336 "local"),
2337 NULL, 0, &subnetsarelocal, 0,
2338 CTL_NET, PF_INET, IPPROTO_IP,
2339 IPCTL_SUBNETSARELOCAL, CTL_EOL);
2340 sysctl_createv(clog, 0, NULL, NULL,
2341 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2342 CTLTYPE_INT, "mtudisc",
2343 SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"),
2344 NULL, 0, &ip_mtudisc, 0,
2345 CTL_NET, PF_INET, IPPROTO_IP,
2346 IPCTL_MTUDISC, CTL_EOL);
2347 sysctl_createv(clog, 0, NULL, NULL,
2348 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2349 CTLTYPE_INT, "anonportmin",
2350 SYSCTL_DESCR("Lowest ephemeral port number to assign"),
2351 sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
2352 CTL_NET, PF_INET, IPPROTO_IP,
2353 IPCTL_ANONPORTMIN, CTL_EOL);
2354 sysctl_createv(clog, 0, NULL, NULL,
2355 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2356 CTLTYPE_INT, "anonportmax",
2357 SYSCTL_DESCR("Highest ephemeral port number to assign"),
2358 sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
2359 CTL_NET, PF_INET, IPPROTO_IP,
2360 IPCTL_ANONPORTMAX, CTL_EOL);
2361 sysctl_createv(clog, 0, NULL, NULL,
2362 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2363 CTLTYPE_INT, "mtudisctimeout",
2364 SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"),
2365 sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
2366 CTL_NET, PF_INET, IPPROTO_IP,
2367 IPCTL_MTUDISCTIMEOUT, CTL_EOL);
2368 #ifdef GATEWAY
2369 sysctl_createv(clog, 0, NULL, NULL,
2370 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2371 CTLTYPE_INT, "maxflows",
2372 SYSCTL_DESCR("Number of flows for fast forwarding"),
2373 sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
2374 CTL_NET, PF_INET, IPPROTO_IP,
2375 IPCTL_MAXFLOWS, CTL_EOL);
2376 sysctl_createv(clog, 0, NULL, NULL,
2377 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2378 CTLTYPE_INT, "hashsize",
2379 SYSCTL_DESCR("Size of hash table for fast forwarding (IPv4)"),
2380 sysctl_net_inet_ip_hashsize, 0, &ip_hashsize, 0,
2381 CTL_NET, PF_INET, IPPROTO_IP,
2382 CTL_CREATE, CTL_EOL);
2383 #endif /* GATEWAY */
2384 sysctl_createv(clog, 0, NULL, NULL,
2385 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2386 CTLTYPE_INT, "hostzerobroadcast",
2387 SYSCTL_DESCR("All zeroes address is broadcast address"),
2388 NULL, 0, &hostzeroisbroadcast, 0,
2389 CTL_NET, PF_INET, IPPROTO_IP,
2390 IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2391 #if NGIF > 0
2392 sysctl_createv(clog, 0, NULL, NULL,
2393 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2394 CTLTYPE_INT, "gifttl",
2395 SYSCTL_DESCR("Default TTL for a gif tunnel datagram"),
2396 NULL, 0, &ip_gif_ttl, 0,
2397 CTL_NET, PF_INET, IPPROTO_IP,
2398 IPCTL_GIF_TTL, CTL_EOL);
2399 #endif /* NGIF */
2400 #ifndef IPNOPRIVPORTS
2401 sysctl_createv(clog, 0, NULL, NULL,
2402 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2403 CTLTYPE_INT, "lowportmin",
2404 SYSCTL_DESCR("Lowest privileged ephemeral port number "
2405 "to assign"),
2406 sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
2407 CTL_NET, PF_INET, IPPROTO_IP,
2408 IPCTL_LOWPORTMIN, CTL_EOL);
2409 sysctl_createv(clog, 0, NULL, NULL,
2410 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2411 CTLTYPE_INT, "lowportmax",
2412 SYSCTL_DESCR("Highest privileged ephemeral port number "
2413 "to assign"),
2414 sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
2415 CTL_NET, PF_INET, IPPROTO_IP,
2416 IPCTL_LOWPORTMAX, CTL_EOL);
2417 #endif /* IPNOPRIVPORTS */
2418 sysctl_createv(clog, 0, NULL, NULL,
2419 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2420 CTLTYPE_INT, "maxfragpackets",
2421 SYSCTL_DESCR("Maximum number of fragments to retain for "
2422 "possible reassembly"),
2423 NULL, 0, &ip_maxfragpackets, 0,
2424 CTL_NET, PF_INET, IPPROTO_IP,
2425 IPCTL_MAXFRAGPACKETS, CTL_EOL);
2426 #if NGRE > 0
2427 sysctl_createv(clog, 0, NULL, NULL,
2428 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2429 CTLTYPE_INT, "grettl",
2430 SYSCTL_DESCR("Default TTL for a gre tunnel datagram"),
2431 NULL, 0, &ip_gre_ttl, 0,
2432 CTL_NET, PF_INET, IPPROTO_IP,
2433 IPCTL_GRE_TTL, CTL_EOL);
2434 #endif /* NGRE */
2435 sysctl_createv(clog, 0, NULL, NULL,
2436 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2437 CTLTYPE_INT, "checkinterface",
2438 SYSCTL_DESCR("Enable receive side of Strong ES model "
2439 "from RFC1122"),
2440 NULL, 0, &ip_checkinterface, 0,
2441 CTL_NET, PF_INET, IPPROTO_IP,
2442 IPCTL_CHECKINTERFACE, CTL_EOL);
2443 sysctl_createv(clog, 0, NULL, NULL,
2444 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2445 CTLTYPE_INT, "random_id",
2446 SYSCTL_DESCR("Assign random ip_id values"),
2447 NULL, 0, &ip_do_randomid, 0,
2448 CTL_NET, PF_INET, IPPROTO_IP,
2449 IPCTL_RANDOMID, CTL_EOL);
2450 sysctl_createv(clog, 0, NULL, NULL,
2451 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2452 CTLTYPE_INT, "do_loopback_cksum",
2453 SYSCTL_DESCR("Perform IP checksum on loopback"),
2454 NULL, 0, &ip_do_loopback_cksum, 0,
2455 CTL_NET, PF_INET, IPPROTO_IP,
2456 IPCTL_LOOPBACKCKSUM, CTL_EOL);
2457 sysctl_createv(clog, 0, NULL, NULL,
2458 CTLFLAG_PERMANENT,
2459 CTLTYPE_STRUCT, "stats",
2460 SYSCTL_DESCR("IP statistics"),
2461 sysctl_net_inet_ip_stats, 0, NULL, 0,
2462 CTL_NET, PF_INET, IPPROTO_IP, IPCTL_STATS,
2463 CTL_EOL);
2464 }
2465
2466 void
2467 ip_statinc(u_int stat)
2468 {
2469
2470 KASSERT(stat < IP_NSTATS);
2471 IP_STATINC(stat);
2472 }
2473