ip_input.c revision 1.29 1 /* $NetBSD: ip_input.c,v 1.29 1996/02/26 23:17:06 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/errno.h>
46 #include <sys/time.h>
47 #include <sys/kernel.h>
48 #include <sys/proc.h>
49
50 #include <vm/vm.h>
51 #include <sys/sysctl.h>
52
53 #include <net/if.h>
54 #include <net/route.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/ip.h>
59 #include <netinet/in_pcb.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip_var.h>
62 #include <netinet/ip_icmp.h>
63
64 #ifndef IPFORWARDING
65 #ifdef GATEWAY
66 #define IPFORWARDING 1 /* forward IP packets not for us */
67 #else /* GATEWAY */
68 #define IPFORWARDING 0 /* don't forward IP packets not for us */
69 #endif /* GATEWAY */
70 #endif /* IPFORWARDING */
71 #ifndef IPSENDREDIRECTS
72 #define IPSENDREDIRECTS 1
73 #endif
74 #ifndef IPFORWSRCRT
75 #define IPFORWSRCRT 1 /* allow source-routed packets */
76 #endif
77 /*
78 * Note: DIRECTED_BROADCAST is handled this way so that previous
79 * configuration using this option will Just Work.
80 */
81 #ifndef IPDIRECTEDBCAST
82 #ifdef DIRECTED_BROADCAST
83 #define IPDIRECTEDBCAST 1
84 #else
85 #define IPDIRECTEDBCAST 0
86 #endif /* DIRECTED_BROADCAST */
87 #endif /* IPDIRECTEDBCAST */
88 int ipforwarding = IPFORWARDING;
89 int ipsendredirects = IPSENDREDIRECTS;
90 int ip_defttl = IPDEFTTL;
91 int ip_forwsrcrt = IPFORWSRCRT;
92 int ip_directedbcast = IPDIRECTEDBCAST;
93 #ifdef DIAGNOSTIC
94 int ipprintfs = 0;
95 #endif
96
97 extern struct domain inetdomain;
98 extern struct protosw inetsw[];
99 u_char ip_protox[IPPROTO_MAX];
100 int ipqmaxlen = IFQ_MAXLEN;
101 struct in_ifaddrhead in_ifaddr;
102 struct ifqueue ipintrq;
103
104 /*
105 * We need to save the IP options in case a protocol wants to respond
106 * to an incoming packet over the same route if the packet got here
107 * using IP source routing. This allows connection establishment and
108 * maintenance when the remote end is on a network that is not known
109 * to us.
110 */
111 int ip_nhops = 0;
112 static struct ip_srcrt {
113 struct in_addr dst; /* final destination */
114 char nop; /* one NOP to align */
115 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
116 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
117 } ip_srcrt;
118
119 static void save_rte __P((u_char *, struct in_addr));
120 /*
121 * IP initialization: fill in IP protocol switch table.
122 * All protocols not implemented in kernel go to raw IP protocol handler.
123 */
124 void
125 ip_init()
126 {
127 register struct protosw *pr;
128 register int i;
129
130 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
131 if (pr == 0)
132 panic("ip_init");
133 for (i = 0; i < IPPROTO_MAX; i++)
134 ip_protox[i] = pr - inetsw;
135 for (pr = inetdomain.dom_protosw;
136 pr < inetdomain.dom_protoswNPROTOSW; pr++)
137 if (pr->pr_domain->dom_family == PF_INET &&
138 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
139 ip_protox[pr->pr_protocol] = pr - inetsw;
140 LIST_INIT(&ipq);
141 ip_id = time.tv_sec & 0xffff;
142 ipintrq.ifq_maxlen = ipqmaxlen;
143 TAILQ_INIT(&in_ifaddr);
144 }
145
146 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
147 struct route ipforward_rt;
148
149 /*
150 * Ip input routine. Checksum and byte swap header. If fragmented
151 * try to reassemble. Process options. Pass to next level.
152 */
153 void
154 ipintr()
155 {
156 register struct ip *ip;
157 register struct mbuf *m;
158 register struct ipq *fp;
159 register struct in_ifaddr *ia;
160 struct ipqent *ipqe;
161 int hlen, mff, s;
162
163 next:
164 /*
165 * Get next datagram off input queue and get IP header
166 * in first mbuf.
167 */
168 s = splimp();
169 IF_DEQUEUE(&ipintrq, m);
170 splx(s);
171 if (m == 0)
172 return;
173 #ifdef DIAGNOSTIC
174 if ((m->m_flags & M_PKTHDR) == 0)
175 panic("ipintr no HDR");
176 #endif
177 /*
178 * If no IP addresses have been set yet but the interfaces
179 * are receiving, can't do anything with incoming packets yet.
180 */
181 if (in_ifaddr.tqh_first == 0)
182 goto bad;
183 ipstat.ips_total++;
184 if (m->m_len < sizeof (struct ip) &&
185 (m = m_pullup(m, sizeof (struct ip))) == 0) {
186 ipstat.ips_toosmall++;
187 goto next;
188 }
189 ip = mtod(m, struct ip *);
190 if (ip->ip_v != IPVERSION) {
191 ipstat.ips_badvers++;
192 goto bad;
193 }
194 hlen = ip->ip_hl << 2;
195 if (hlen < sizeof(struct ip)) { /* minimum header length */
196 ipstat.ips_badhlen++;
197 goto bad;
198 }
199 if (hlen > m->m_len) {
200 if ((m = m_pullup(m, hlen)) == 0) {
201 ipstat.ips_badhlen++;
202 goto next;
203 }
204 ip = mtod(m, struct ip *);
205 }
206 if ((ip->ip_sum = in_cksum(m, hlen)) != 0) {
207 ipstat.ips_badsum++;
208 goto bad;
209 }
210
211 /*
212 * Convert fields to host representation.
213 */
214 NTOHS(ip->ip_len);
215 if (ip->ip_len < hlen) {
216 ipstat.ips_badlen++;
217 goto bad;
218 }
219 NTOHS(ip->ip_id);
220 NTOHS(ip->ip_off);
221
222 /*
223 * Check that the amount of data in the buffers
224 * is as at least much as the IP header would have us expect.
225 * Trim mbufs if longer than we expect.
226 * Drop packet if shorter than we expect.
227 */
228 if (m->m_pkthdr.len < ip->ip_len) {
229 ipstat.ips_tooshort++;
230 goto bad;
231 }
232 if (m->m_pkthdr.len > ip->ip_len) {
233 if (m->m_len == m->m_pkthdr.len) {
234 m->m_len = ip->ip_len;
235 m->m_pkthdr.len = ip->ip_len;
236 } else
237 m_adj(m, ip->ip_len - m->m_pkthdr.len);
238 }
239
240 /*
241 * Process options and, if not destined for us,
242 * ship it on. ip_dooptions returns 1 when an
243 * error was detected (causing an icmp message
244 * to be sent and the original packet to be freed).
245 */
246 ip_nhops = 0; /* for source routed packets */
247 if (hlen > sizeof (struct ip) && ip_dooptions(m))
248 goto next;
249
250 /*
251 * Check our list of addresses, to see if the packet is for us.
252 */
253 for (ia = in_ifaddr.tqh_first; ia; ia = ia->ia_list.tqe_next) {
254 if (ip->ip_dst.s_addr == ia->ia_addr.sin_addr.s_addr)
255 goto ours;
256 if (((ip_directedbcast == 0) || (ip_directedbcast &&
257 ia->ia_ifp == m->m_pkthdr.rcvif)) &&
258 (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
259 if (ip->ip_dst.s_addr == ia->ia_broadaddr.sin_addr.s_addr ||
260 ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr ||
261 /*
262 * Look for all-0's host part (old broadcast addr),
263 * either for subnet or net.
264 */
265 ip->ip_dst.s_addr == ia->ia_subnet ||
266 ip->ip_dst.s_addr == ia->ia_net)
267 goto ours;
268 }
269 }
270 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
271 struct in_multi *inm;
272 #ifdef MROUTING
273 extern struct socket *ip_mrouter;
274
275 if (m->m_flags & M_EXT) {
276 if ((m = m_pullup(m, hlen)) == 0) {
277 ipstat.ips_toosmall++;
278 goto next;
279 }
280 ip = mtod(m, struct ip *);
281 }
282
283 if (ip_mrouter) {
284 /*
285 * If we are acting as a multicast router, all
286 * incoming multicast packets are passed to the
287 * kernel-level multicast forwarding function.
288 * The packet is returned (relatively) intact; if
289 * ip_mforward() returns a non-zero value, the packet
290 * must be discarded, else it may be accepted below.
291 *
292 * (The IP ident field is put in the same byte order
293 * as expected when ip_mforward() is called from
294 * ip_output().)
295 */
296 ip->ip_id = htons(ip->ip_id);
297 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
298 ipstat.ips_cantforward++;
299 m_freem(m);
300 goto next;
301 }
302 ip->ip_id = ntohs(ip->ip_id);
303
304 /*
305 * The process-level routing demon needs to receive
306 * all multicast IGMP packets, whether or not this
307 * host belongs to their destination groups.
308 */
309 if (ip->ip_p == IPPROTO_IGMP)
310 goto ours;
311 ipstat.ips_forward++;
312 }
313 #endif
314 /*
315 * See if we belong to the destination multicast group on the
316 * arrival interface.
317 */
318 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
319 if (inm == NULL) {
320 ipstat.ips_cantforward++;
321 m_freem(m);
322 goto next;
323 }
324 goto ours;
325 }
326 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
327 ip->ip_dst.s_addr == INADDR_ANY)
328 goto ours;
329
330 /*
331 * Not for us; forward if possible and desirable.
332 */
333 if (ipforwarding == 0) {
334 ipstat.ips_cantforward++;
335 m_freem(m);
336 } else
337 ip_forward(m, 0);
338 goto next;
339
340 ours:
341 /*
342 * If offset or IP_MF are set, must reassemble.
343 * Otherwise, nothing need be done.
344 * (We could look in the reassembly queue to see
345 * if the packet was previously fragmented,
346 * but it's not worth the time; just let them time out.)
347 */
348 if (ip->ip_off &~ IP_DF) {
349 if (m->m_flags & M_EXT) { /* XXX */
350 if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
351 ipstat.ips_toosmall++;
352 goto next;
353 }
354 ip = mtod(m, struct ip *);
355 }
356 /*
357 * Look for queue of fragments
358 * of this datagram.
359 */
360 for (fp = ipq.lh_first; fp != NULL; fp = fp->ipq_q.le_next)
361 if (ip->ip_id == fp->ipq_id &&
362 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
363 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
364 ip->ip_p == fp->ipq_p)
365 goto found;
366 fp = 0;
367 found:
368
369 /*
370 * Adjust ip_len to not reflect header,
371 * set ipqe_mff if more fragments are expected,
372 * convert offset of this to bytes.
373 */
374 ip->ip_len -= hlen;
375 mff = (ip->ip_off & IP_MF) != 0;
376 if (mff) {
377 /*
378 * Make sure that fragments have a data length
379 * that's a non-zero multiple of 8 bytes.
380 */
381 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
382 ipstat.ips_badfrags++;
383 goto bad;
384 }
385 }
386 ip->ip_off <<= 3;
387
388 /*
389 * If datagram marked as having more fragments
390 * or if this is not the first fragment,
391 * attempt reassembly; if it succeeds, proceed.
392 */
393 if (mff || ip->ip_off) {
394 ipstat.ips_fragments++;
395 MALLOC(ipqe, struct ipqent *, sizeof (struct ipqent),
396 M_IPQ, M_NOWAIT);
397 if (ipqe == NULL) {
398 ipstat.ips_rcvmemdrop++;
399 goto bad;
400 }
401 ipqe->ipqe_mff = mff;
402 ipqe->ipqe_ip = ip;
403 ip = ip_reass(ipqe, fp);
404 if (ip == 0)
405 goto next;
406 ipstat.ips_reassembled++;
407 m = dtom(ip);
408 } else
409 if (fp)
410 ip_freef(fp);
411 } else
412 ip->ip_len -= hlen;
413
414 /*
415 * Switch out to protocol's input routine.
416 */
417 ipstat.ips_delivered++;
418 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
419 goto next;
420 bad:
421 m_freem(m);
422 goto next;
423 }
424
425 /*
426 * Take incoming datagram fragment and try to
427 * reassemble it into whole datagram. If a chain for
428 * reassembly of this datagram already exists, then it
429 * is given as fp; otherwise have to make a chain.
430 */
431 struct ip *
432 ip_reass(ipqe, fp)
433 register struct ipqent *ipqe;
434 register struct ipq *fp;
435 {
436 register struct mbuf *m = dtom(ipqe->ipqe_ip);
437 register struct ipqent *nq, *p, *q;
438 struct ip *ip;
439 struct mbuf *t;
440 int hlen = ipqe->ipqe_ip->ip_hl << 2;
441 int i, next;
442
443 /*
444 * Presence of header sizes in mbufs
445 * would confuse code below.
446 */
447 m->m_data += hlen;
448 m->m_len -= hlen;
449
450 /*
451 * If first fragment to arrive, create a reassembly queue.
452 */
453 if (fp == 0) {
454 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
455 goto dropfrag;
456 fp = mtod(t, struct ipq *);
457 LIST_INSERT_HEAD(&ipq, fp, ipq_q);
458 fp->ipq_ttl = IPFRAGTTL;
459 fp->ipq_p = ipqe->ipqe_ip->ip_p;
460 fp->ipq_id = ipqe->ipqe_ip->ip_id;
461 LIST_INIT(&fp->ipq_fragq);
462 fp->ipq_src = ipqe->ipqe_ip->ip_src;
463 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
464 p = NULL;
465 goto insert;
466 }
467
468 /*
469 * Find a segment which begins after this one does.
470 */
471 for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
472 p = q, q = q->ipqe_q.le_next)
473 if (q->ipqe_ip->ip_off > ipqe->ipqe_ip->ip_off)
474 break;
475
476 /*
477 * If there is a preceding segment, it may provide some of
478 * our data already. If so, drop the data from the incoming
479 * segment. If it provides all of our data, drop us.
480 */
481 if (p != NULL) {
482 i = p->ipqe_ip->ip_off + p->ipqe_ip->ip_len -
483 ipqe->ipqe_ip->ip_off;
484 if (i > 0) {
485 if (i >= ipqe->ipqe_ip->ip_len)
486 goto dropfrag;
487 m_adj(dtom(ipqe->ipqe_ip), i);
488 ipqe->ipqe_ip->ip_off += i;
489 ipqe->ipqe_ip->ip_len -= i;
490 }
491 }
492
493 /*
494 * While we overlap succeeding segments trim them or,
495 * if they are completely covered, dequeue them.
496 */
497 for (; q != NULL && ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len >
498 q->ipqe_ip->ip_off; q = nq) {
499 i = (ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len) -
500 q->ipqe_ip->ip_off;
501 if (i < q->ipqe_ip->ip_len) {
502 q->ipqe_ip->ip_len -= i;
503 q->ipqe_ip->ip_off += i;
504 m_adj(dtom(q->ipqe_ip), i);
505 break;
506 }
507 nq = q->ipqe_q.le_next;
508 m_freem(dtom(q->ipqe_ip));
509 LIST_REMOVE(q, ipqe_q);
510 FREE(q, M_IPQ);
511 }
512
513 insert:
514 /*
515 * Stick new segment in its place;
516 * check for complete reassembly.
517 */
518 if (p == NULL) {
519 LIST_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
520 } else {
521 LIST_INSERT_AFTER(p, ipqe, ipqe_q);
522 }
523 next = 0;
524 for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
525 p = q, q = q->ipqe_q.le_next) {
526 if (q->ipqe_ip->ip_off != next)
527 return (0);
528 next += q->ipqe_ip->ip_len;
529 }
530 if (p->ipqe_mff)
531 return (0);
532
533 /*
534 * Reassembly is complete; concatenate fragments.
535 */
536 q = fp->ipq_fragq.lh_first;
537 ip = q->ipqe_ip;
538 m = dtom(q->ipqe_ip);
539 t = m->m_next;
540 m->m_next = 0;
541 m_cat(m, t);
542 nq = q->ipqe_q.le_next;
543 FREE(q, M_IPQ);
544 for (q = nq; q != NULL; q = nq) {
545 t = dtom(q->ipqe_ip);
546 nq = q->ipqe_q.le_next;
547 FREE(q, M_IPQ);
548 m_cat(m, t);
549 }
550
551 /*
552 * Create header for new ip packet by
553 * modifying header of first packet;
554 * dequeue and discard fragment reassembly header.
555 * Make header visible.
556 */
557 ip->ip_len = next;
558 ip->ip_src = fp->ipq_src;
559 ip->ip_dst = fp->ipq_dst;
560 LIST_REMOVE(fp, ipq_q);
561 (void) m_free(dtom(fp));
562 m->m_len += (ip->ip_hl << 2);
563 m->m_data -= (ip->ip_hl << 2);
564 /* some debugging cruft by sklower, below, will go away soon */
565 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
566 register int plen = 0;
567 for (t = m; m; m = m->m_next)
568 plen += m->m_len;
569 t->m_pkthdr.len = plen;
570 }
571 return (ip);
572
573 dropfrag:
574 ipstat.ips_fragdropped++;
575 m_freem(m);
576 FREE(ipqe, M_IPQ);
577 return (0);
578 }
579
580 /*
581 * Free a fragment reassembly header and all
582 * associated datagrams.
583 */
584 void
585 ip_freef(fp)
586 struct ipq *fp;
587 {
588 register struct ipqent *q, *p;
589
590 for (q = fp->ipq_fragq.lh_first; q != NULL; q = p) {
591 p = q->ipqe_q.le_next;
592 m_freem(dtom(q->ipqe_ip));
593 LIST_REMOVE(q, ipqe_q);
594 FREE(q, M_IPQ);
595 }
596 LIST_REMOVE(fp, ipq_q);
597 (void) m_free(dtom(fp));
598 }
599
600 /*
601 * IP timer processing;
602 * if a timer expires on a reassembly
603 * queue, discard it.
604 */
605 void
606 ip_slowtimo()
607 {
608 register struct ipq *fp, *nfp;
609 int s = splsoftnet();
610
611 for (fp = ipq.lh_first; fp != NULL; fp = nfp) {
612 nfp = fp->ipq_q.le_next;
613 if (--fp->ipq_ttl == 0) {
614 ipstat.ips_fragtimeout++;
615 ip_freef(fp);
616 }
617 }
618 splx(s);
619 }
620
621 /*
622 * Drain off all datagram fragments.
623 */
624 void
625 ip_drain()
626 {
627
628 while (ipq.lh_first != NULL) {
629 ipstat.ips_fragdropped++;
630 ip_freef(ipq.lh_first);
631 }
632 }
633
634 /*
635 * Do option processing on a datagram,
636 * possibly discarding it if bad options are encountered,
637 * or forwarding it if source-routed.
638 * Returns 1 if packet has been forwarded/freed,
639 * 0 if the packet should be processed further.
640 */
641 int
642 ip_dooptions(m)
643 struct mbuf *m;
644 {
645 register struct ip *ip = mtod(m, struct ip *);
646 register u_char *cp;
647 register struct ip_timestamp *ipt;
648 register struct in_ifaddr *ia;
649 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
650 struct in_addr *sin, dst;
651 n_time ntime;
652
653 dst = ip->ip_dst;
654 cp = (u_char *)(ip + 1);
655 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
656 for (; cnt > 0; cnt -= optlen, cp += optlen) {
657 opt = cp[IPOPT_OPTVAL];
658 if (opt == IPOPT_EOL)
659 break;
660 if (opt == IPOPT_NOP)
661 optlen = 1;
662 else {
663 optlen = cp[IPOPT_OLEN];
664 if (optlen <= 0 || optlen > cnt) {
665 code = &cp[IPOPT_OLEN] - (u_char *)ip;
666 goto bad;
667 }
668 }
669 switch (opt) {
670
671 default:
672 break;
673
674 /*
675 * Source routing with record.
676 * Find interface with current destination address.
677 * If none on this machine then drop if strictly routed,
678 * or do nothing if loosely routed.
679 * Record interface address and bring up next address
680 * component. If strictly routed make sure next
681 * address is on directly accessible net.
682 */
683 case IPOPT_LSRR:
684 case IPOPT_SSRR:
685 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
686 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
687 goto bad;
688 }
689 ipaddr.sin_addr = ip->ip_dst;
690 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
691 if (ia == 0) {
692 if (opt == IPOPT_SSRR) {
693 type = ICMP_UNREACH;
694 code = ICMP_UNREACH_SRCFAIL;
695 goto bad;
696 }
697 /*
698 * Loose routing, and not at next destination
699 * yet; nothing to do except forward.
700 */
701 break;
702 }
703 off--; /* 0 origin */
704 if (off > optlen - sizeof(struct in_addr)) {
705 /*
706 * End of source route. Should be for us.
707 */
708 save_rte(cp, ip->ip_src);
709 break;
710 }
711 /*
712 * locate outgoing interface
713 */
714 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
715 sizeof(ipaddr.sin_addr));
716 if (opt == IPOPT_SSRR) {
717 #define INA struct in_ifaddr *
718 #define SA struct sockaddr *
719 ia = (INA)ifa_ifwithladdr((SA)&ipaddr);
720 } else
721 ia = ip_rtaddr(ipaddr.sin_addr);
722 if (ia == 0) {
723 type = ICMP_UNREACH;
724 code = ICMP_UNREACH_SRCFAIL;
725 goto bad;
726 }
727 ip->ip_dst = ipaddr.sin_addr;
728 bcopy((caddr_t)&ia->ia_addr.sin_addr,
729 (caddr_t)(cp + off), sizeof(struct in_addr));
730 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
731 /*
732 * Let ip_intr's mcast routing check handle mcast pkts
733 */
734 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
735 break;
736
737 case IPOPT_RR:
738 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
739 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
740 goto bad;
741 }
742 /*
743 * If no space remains, ignore.
744 */
745 off--; /* 0 origin */
746 if (off > optlen - sizeof(struct in_addr))
747 break;
748 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
749 sizeof(ipaddr.sin_addr));
750 /*
751 * locate outgoing interface; if we're the destination,
752 * use the incoming interface (should be same).
753 */
754 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
755 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
756 type = ICMP_UNREACH;
757 code = ICMP_UNREACH_HOST;
758 goto bad;
759 }
760 bcopy((caddr_t)&ia->ia_addr.sin_addr,
761 (caddr_t)(cp + off), sizeof(struct in_addr));
762 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
763 break;
764
765 case IPOPT_TS:
766 code = cp - (u_char *)ip;
767 ipt = (struct ip_timestamp *)cp;
768 if (ipt->ipt_len < 5)
769 goto bad;
770 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
771 if (++ipt->ipt_oflw == 0)
772 goto bad;
773 break;
774 }
775 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
776 switch (ipt->ipt_flg) {
777
778 case IPOPT_TS_TSONLY:
779 break;
780
781 case IPOPT_TS_TSANDADDR:
782 if (ipt->ipt_ptr + sizeof(n_time) +
783 sizeof(struct in_addr) > ipt->ipt_len)
784 goto bad;
785 ipaddr.sin_addr = dst;
786 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
787 m->m_pkthdr.rcvif);
788 if (ia == 0)
789 continue;
790 bcopy((caddr_t)&ia->ia_addr.sin_addr,
791 (caddr_t)sin, sizeof(struct in_addr));
792 ipt->ipt_ptr += sizeof(struct in_addr);
793 break;
794
795 case IPOPT_TS_PRESPEC:
796 if (ipt->ipt_ptr + sizeof(n_time) +
797 sizeof(struct in_addr) > ipt->ipt_len)
798 goto bad;
799 bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
800 sizeof(struct in_addr));
801 if (ifa_ifwithaddr((SA)&ipaddr) == 0)
802 continue;
803 ipt->ipt_ptr += sizeof(struct in_addr);
804 break;
805
806 default:
807 goto bad;
808 }
809 ntime = iptime();
810 bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
811 sizeof(n_time));
812 ipt->ipt_ptr += sizeof(n_time);
813 }
814 }
815 if (forward) {
816 if (ip_forwsrcrt == 0) {
817 type = ICMP_UNREACH;
818 code = ICMP_UNREACH_SRCFAIL;
819 goto bad;
820 }
821 ip_forward(m, 1);
822 return (1);
823 }
824 return (0);
825 bad:
826 ip->ip_len -= ip->ip_hl << 2; /* XXX icmp_error adds in hdr length */
827 icmp_error(m, type, code, 0, 0);
828 ipstat.ips_badoptions++;
829 return (1);
830 }
831
832 /*
833 * Given address of next destination (final or next hop),
834 * return internet address info of interface to be used to get there.
835 */
836 struct in_ifaddr *
837 ip_rtaddr(dst)
838 struct in_addr dst;
839 {
840 register struct sockaddr_in *sin;
841
842 sin = satosin(&ipforward_rt.ro_dst);
843
844 if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
845 if (ipforward_rt.ro_rt) {
846 RTFREE(ipforward_rt.ro_rt);
847 ipforward_rt.ro_rt = 0;
848 }
849 sin->sin_family = AF_INET;
850 sin->sin_len = sizeof(*sin);
851 sin->sin_addr = dst;
852
853 rtalloc(&ipforward_rt);
854 }
855 if (ipforward_rt.ro_rt == 0)
856 return ((struct in_ifaddr *)0);
857 return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
858 }
859
860 /*
861 * Save incoming source route for use in replies,
862 * to be picked up later by ip_srcroute if the receiver is interested.
863 */
864 void
865 save_rte(option, dst)
866 u_char *option;
867 struct in_addr dst;
868 {
869 unsigned olen;
870
871 olen = option[IPOPT_OLEN];
872 #ifdef DIAGNOSTIC
873 if (ipprintfs)
874 printf("save_rte: olen %d\n", olen);
875 #endif
876 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
877 return;
878 bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
879 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
880 ip_srcrt.dst = dst;
881 }
882
883 /*
884 * Retrieve incoming source route for use in replies,
885 * in the same form used by setsockopt.
886 * The first hop is placed before the options, will be removed later.
887 */
888 struct mbuf *
889 ip_srcroute()
890 {
891 register struct in_addr *p, *q;
892 register struct mbuf *m;
893
894 if (ip_nhops == 0)
895 return ((struct mbuf *)0);
896 m = m_get(M_DONTWAIT, MT_SOOPTS);
897 if (m == 0)
898 return ((struct mbuf *)0);
899
900 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
901
902 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
903 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
904 OPTSIZ;
905 #ifdef DIAGNOSTIC
906 if (ipprintfs)
907 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
908 #endif
909
910 /*
911 * First save first hop for return route
912 */
913 p = &ip_srcrt.route[ip_nhops - 1];
914 *(mtod(m, struct in_addr *)) = *p--;
915 #ifdef DIAGNOSTIC
916 if (ipprintfs)
917 printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
918 #endif
919
920 /*
921 * Copy option fields and padding (nop) to mbuf.
922 */
923 ip_srcrt.nop = IPOPT_NOP;
924 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
925 bcopy((caddr_t)&ip_srcrt.nop,
926 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
927 q = (struct in_addr *)(mtod(m, caddr_t) +
928 sizeof(struct in_addr) + OPTSIZ);
929 #undef OPTSIZ
930 /*
931 * Record return path as an IP source route,
932 * reversing the path (pointers are now aligned).
933 */
934 while (p >= ip_srcrt.route) {
935 #ifdef DIAGNOSTIC
936 if (ipprintfs)
937 printf(" %lx", ntohl(q->s_addr));
938 #endif
939 *q++ = *p--;
940 }
941 /*
942 * Last hop goes to final destination.
943 */
944 *q = ip_srcrt.dst;
945 #ifdef DIAGNOSTIC
946 if (ipprintfs)
947 printf(" %lx\n", ntohl(q->s_addr));
948 #endif
949 return (m);
950 }
951
952 /*
953 * Strip out IP options, at higher
954 * level protocol in the kernel.
955 * Second argument is buffer to which options
956 * will be moved, and return value is their length.
957 * XXX should be deleted; last arg currently ignored.
958 */
959 void
960 ip_stripoptions(m, mopt)
961 register struct mbuf *m;
962 struct mbuf *mopt;
963 {
964 register int i;
965 struct ip *ip = mtod(m, struct ip *);
966 register caddr_t opts;
967 int olen;
968
969 olen = (ip->ip_hl<<2) - sizeof (struct ip);
970 opts = (caddr_t)(ip + 1);
971 i = m->m_len - (sizeof (struct ip) + olen);
972 bcopy(opts + olen, opts, (unsigned)i);
973 m->m_len -= olen;
974 if (m->m_flags & M_PKTHDR)
975 m->m_pkthdr.len -= olen;
976 ip->ip_hl = sizeof(struct ip) >> 2;
977 }
978
979 int inetctlerrmap[PRC_NCMDS] = {
980 0, 0, 0, 0,
981 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
982 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
983 EMSGSIZE, EHOSTUNREACH, 0, 0,
984 0, 0, 0, 0,
985 ENOPROTOOPT
986 };
987
988 /*
989 * Forward a packet. If some error occurs return the sender
990 * an icmp packet. Note we can't always generate a meaningful
991 * icmp message because icmp doesn't have a large enough repertoire
992 * of codes and types.
993 *
994 * If not forwarding, just drop the packet. This could be confusing
995 * if ipforwarding was zero but some routing protocol was advancing
996 * us as a gateway to somewhere. However, we must let the routing
997 * protocol deal with that.
998 *
999 * The srcrt parameter indicates whether the packet is being forwarded
1000 * via a source route.
1001 */
1002 void
1003 ip_forward(m, srcrt)
1004 struct mbuf *m;
1005 int srcrt;
1006 {
1007 register struct ip *ip = mtod(m, struct ip *);
1008 register struct sockaddr_in *sin;
1009 register struct rtentry *rt;
1010 int error, type = 0, code = 0;
1011 struct mbuf *mcopy;
1012 n_long dest;
1013 struct ifnet *destifp;
1014
1015 dest = 0;
1016 #ifdef DIAGNOSTIC
1017 if (ipprintfs)
1018 printf("forward: src %x dst %x ttl %x\n",
1019 ip->ip_src.s_addr, ip->ip_dst.s_addr, ip->ip_ttl);
1020 #endif
1021 if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1022 ipstat.ips_cantforward++;
1023 m_freem(m);
1024 return;
1025 }
1026 HTONS(ip->ip_id);
1027 if (ip->ip_ttl <= IPTTLDEC) {
1028 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1029 return;
1030 }
1031 ip->ip_ttl -= IPTTLDEC;
1032
1033 sin = satosin(&ipforward_rt.ro_dst);
1034 if ((rt = ipforward_rt.ro_rt) == 0 ||
1035 ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1036 if (ipforward_rt.ro_rt) {
1037 RTFREE(ipforward_rt.ro_rt);
1038 ipforward_rt.ro_rt = 0;
1039 }
1040 sin->sin_family = AF_INET;
1041 sin->sin_len = sizeof(*sin);
1042 sin->sin_addr = ip->ip_dst;
1043
1044 rtalloc(&ipforward_rt);
1045 if (ipforward_rt.ro_rt == 0) {
1046 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1047 return;
1048 }
1049 rt = ipforward_rt.ro_rt;
1050 }
1051
1052 /*
1053 * Save at most 64 bytes of the packet in case
1054 * we need to generate an ICMP message to the src.
1055 */
1056 mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1057
1058 /*
1059 * If forwarding packet using same interface that it came in on,
1060 * perhaps should send a redirect to sender to shortcut a hop.
1061 * Only send redirect if source is sending directly to us,
1062 * and if packet was not source routed (or has any options).
1063 * Also, don't send redirect if forwarding using a default route
1064 * or a route modified by a redirect.
1065 */
1066 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1067 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1068 satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1069 ipsendredirects && !srcrt) {
1070 if (rt->rt_ifa &&
1071 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1072 ifatoia(rt->rt_ifa)->ia_subnet) {
1073 if (rt->rt_flags & RTF_GATEWAY)
1074 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1075 else
1076 dest = ip->ip_dst.s_addr;
1077 /* Router requirements says to only send host redirects */
1078 type = ICMP_REDIRECT;
1079 code = ICMP_REDIRECT_HOST;
1080 #ifdef DIAGNOSTIC
1081 if (ipprintfs)
1082 printf("redirect (%d) to %lx\n", code, (u_int32_t)dest);
1083 #endif
1084 }
1085 }
1086
1087 error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1088 (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)), 0);
1089 if (error)
1090 ipstat.ips_cantforward++;
1091 else {
1092 ipstat.ips_forward++;
1093 if (type)
1094 ipstat.ips_redirectsent++;
1095 else {
1096 if (mcopy)
1097 m_freem(mcopy);
1098 return;
1099 }
1100 }
1101 if (mcopy == NULL)
1102 return;
1103 destifp = NULL;
1104
1105 switch (error) {
1106
1107 case 0: /* forwarded, but need redirect */
1108 /* type, code set above */
1109 break;
1110
1111 case ENETUNREACH: /* shouldn't happen, checked above */
1112 case EHOSTUNREACH:
1113 case ENETDOWN:
1114 case EHOSTDOWN:
1115 default:
1116 type = ICMP_UNREACH;
1117 code = ICMP_UNREACH_HOST;
1118 break;
1119
1120 case EMSGSIZE:
1121 type = ICMP_UNREACH;
1122 code = ICMP_UNREACH_NEEDFRAG;
1123 if (ipforward_rt.ro_rt)
1124 destifp = ipforward_rt.ro_rt->rt_ifp;
1125 ipstat.ips_cantfrag++;
1126 break;
1127
1128 case ENOBUFS:
1129 type = ICMP_SOURCEQUENCH;
1130 code = 0;
1131 break;
1132 }
1133 icmp_error(mcopy, type, code, dest, destifp);
1134 }
1135
1136 int
1137 ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
1138 int *name;
1139 u_int namelen;
1140 void *oldp;
1141 size_t *oldlenp;
1142 void *newp;
1143 size_t newlen;
1144 {
1145 /* All sysctl names at this level are terminal. */
1146 if (namelen != 1)
1147 return (ENOTDIR);
1148
1149 switch (name[0]) {
1150 case IPCTL_FORWARDING:
1151 return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
1152 case IPCTL_SENDREDIRECTS:
1153 return (sysctl_int(oldp, oldlenp, newp, newlen,
1154 &ipsendredirects));
1155 case IPCTL_DEFTTL:
1156 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
1157 #ifdef notyet
1158 case IPCTL_DEFMTU:
1159 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
1160 #endif
1161 case IPCTL_FORWSRCRT:
1162 /*
1163 * Don't allow this to change in a secure environment.
1164 */
1165 if (securelevel > 0)
1166 return (EPERM);
1167 return (sysctl_int(oldp, oldlenp, newp, newlen,
1168 &ip_forwsrcrt));
1169 case IPCTL_DIRECTEDBCAST:
1170 return (sysctl_int(oldp, oldlenp, newp, newlen,
1171 &ip_directedbcast));
1172 default:
1173 return (EOPNOTSUPP);
1174 }
1175 /* NOTREACHED */
1176 }
1177