ip_input.c revision 1.30.4.1 1 /* $NetBSD: ip_input.c,v 1.30.4.1 1996/11/10 21:57:51 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/errno.h>
46 #include <sys/time.h>
47 #include <sys/kernel.h>
48 #include <sys/proc.h>
49
50 #include <vm/vm.h>
51 #include <sys/sysctl.h>
52
53 #include <net/if.h>
54 #include <net/route.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/ip.h>
59 #include <netinet/in_pcb.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip_var.h>
62 #include <netinet/ip_icmp.h>
63
64 #ifndef IPFORWARDING
65 #ifdef GATEWAY
66 #define IPFORWARDING 1 /* forward IP packets not for us */
67 #else /* GATEWAY */
68 #define IPFORWARDING 0 /* don't forward IP packets not for us */
69 #endif /* GATEWAY */
70 #endif /* IPFORWARDING */
71 #ifndef IPSENDREDIRECTS
72 #define IPSENDREDIRECTS 1
73 #endif
74 #ifndef IPFORWSRCRT
75 #define IPFORWSRCRT 1 /* allow source-routed packets */
76 #endif
77 /*
78 * Note: DIRECTED_BROADCAST is handled this way so that previous
79 * configuration using this option will Just Work.
80 */
81 #ifndef IPDIRECTEDBCAST
82 #ifdef DIRECTED_BROADCAST
83 #define IPDIRECTEDBCAST 1
84 #else
85 #define IPDIRECTEDBCAST 0
86 #endif /* DIRECTED_BROADCAST */
87 #endif /* IPDIRECTEDBCAST */
88 int ipforwarding = IPFORWARDING;
89 int ipsendredirects = IPSENDREDIRECTS;
90 int ip_defttl = IPDEFTTL;
91 int ip_forwsrcrt = IPFORWSRCRT;
92 int ip_directedbcast = IPDIRECTEDBCAST;
93 #ifdef DIAGNOSTIC
94 int ipprintfs = 0;
95 #endif
96
97 extern struct domain inetdomain;
98 extern struct protosw inetsw[];
99 u_char ip_protox[IPPROTO_MAX];
100 int ipqmaxlen = IFQ_MAXLEN;
101 struct in_ifaddrhead in_ifaddr;
102 struct ifqueue ipintrq;
103
104 /*
105 * We need to save the IP options in case a protocol wants to respond
106 * to an incoming packet over the same route if the packet got here
107 * using IP source routing. This allows connection establishment and
108 * maintenance when the remote end is on a network that is not known
109 * to us.
110 */
111 int ip_nhops = 0;
112 static struct ip_srcrt {
113 struct in_addr dst; /* final destination */
114 char nop; /* one NOP to align */
115 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
116 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
117 } ip_srcrt;
118
119 static void save_rte __P((u_char *, struct in_addr));
120 /*
121 * IP initialization: fill in IP protocol switch table.
122 * All protocols not implemented in kernel go to raw IP protocol handler.
123 */
124 void
125 ip_init()
126 {
127 register struct protosw *pr;
128 register int i;
129
130 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
131 if (pr == 0)
132 panic("ip_init");
133 for (i = 0; i < IPPROTO_MAX; i++)
134 ip_protox[i] = pr - inetsw;
135 for (pr = inetdomain.dom_protosw;
136 pr < inetdomain.dom_protoswNPROTOSW; pr++)
137 if (pr->pr_domain->dom_family == PF_INET &&
138 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
139 ip_protox[pr->pr_protocol] = pr - inetsw;
140 LIST_INIT(&ipq);
141 ip_id = time.tv_sec & 0xffff;
142 ipintrq.ifq_maxlen = ipqmaxlen;
143 TAILQ_INIT(&in_ifaddr);
144 }
145
146 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
147 struct route ipforward_rt;
148
149 /*
150 * Ip input routine. Checksum and byte swap header. If fragmented
151 * try to reassemble. Process options. Pass to next level.
152 */
153 void
154 ipintr()
155 {
156 register struct ip *ip;
157 register struct mbuf *m;
158 register struct ipq *fp;
159 register struct in_ifaddr *ia;
160 struct ipqent *ipqe;
161 int hlen, mff, s;
162
163 next:
164 /*
165 * Get next datagram off input queue and get IP header
166 * in first mbuf.
167 */
168 s = splimp();
169 IF_DEQUEUE(&ipintrq, m);
170 splx(s);
171 if (m == 0)
172 return;
173 #ifdef DIAGNOSTIC
174 if ((m->m_flags & M_PKTHDR) == 0)
175 panic("ipintr no HDR");
176 #endif
177 /*
178 * If no IP addresses have been set yet but the interfaces
179 * are receiving, can't do anything with incoming packets yet.
180 */
181 if (in_ifaddr.tqh_first == 0)
182 goto bad;
183 ipstat.ips_total++;
184 if (m->m_len < sizeof (struct ip) &&
185 (m = m_pullup(m, sizeof (struct ip))) == 0) {
186 ipstat.ips_toosmall++;
187 goto next;
188 }
189 ip = mtod(m, struct ip *);
190 if (ip->ip_v != IPVERSION) {
191 ipstat.ips_badvers++;
192 goto bad;
193 }
194 hlen = ip->ip_hl << 2;
195 if (hlen < sizeof(struct ip)) { /* minimum header length */
196 ipstat.ips_badhlen++;
197 goto bad;
198 }
199 if (hlen > m->m_len) {
200 if ((m = m_pullup(m, hlen)) == 0) {
201 ipstat.ips_badhlen++;
202 goto next;
203 }
204 ip = mtod(m, struct ip *);
205 }
206 if ((ip->ip_sum = in_cksum(m, hlen)) != 0) {
207 ipstat.ips_badsum++;
208 goto bad;
209 }
210
211 /*
212 * Convert fields to host representation.
213 */
214 NTOHS(ip->ip_len);
215 if (ip->ip_len < hlen) {
216 ipstat.ips_badlen++;
217 goto bad;
218 }
219 NTOHS(ip->ip_id);
220 NTOHS(ip->ip_off);
221
222 /*
223 * Check that the amount of data in the buffers
224 * is as at least much as the IP header would have us expect.
225 * Trim mbufs if longer than we expect.
226 * Drop packet if shorter than we expect.
227 */
228 if (m->m_pkthdr.len < ip->ip_len) {
229 ipstat.ips_tooshort++;
230 goto bad;
231 }
232 if (m->m_pkthdr.len > ip->ip_len) {
233 if (m->m_len == m->m_pkthdr.len) {
234 m->m_len = ip->ip_len;
235 m->m_pkthdr.len = ip->ip_len;
236 } else
237 m_adj(m, ip->ip_len - m->m_pkthdr.len);
238 }
239
240 /*
241 * Process options and, if not destined for us,
242 * ship it on. ip_dooptions returns 1 when an
243 * error was detected (causing an icmp message
244 * to be sent and the original packet to be freed).
245 */
246 ip_nhops = 0; /* for source routed packets */
247 if (hlen > sizeof (struct ip) && ip_dooptions(m))
248 goto next;
249
250 /*
251 * Check our list of addresses, to see if the packet is for us.
252 */
253 for (ia = in_ifaddr.tqh_first; ia; ia = ia->ia_list.tqe_next) {
254 if (ip->ip_dst.s_addr == ia->ia_addr.sin_addr.s_addr)
255 goto ours;
256 if (((ip_directedbcast == 0) || (ip_directedbcast &&
257 ia->ia_ifp == m->m_pkthdr.rcvif)) &&
258 (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
259 if (ip->ip_dst.s_addr == ia->ia_broadaddr.sin_addr.s_addr ||
260 ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr ||
261 /*
262 * Look for all-0's host part (old broadcast addr),
263 * either for subnet or net.
264 */
265 ip->ip_dst.s_addr == ia->ia_subnet ||
266 ip->ip_dst.s_addr == ia->ia_net)
267 goto ours;
268 }
269 }
270 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
271 struct in_multi *inm;
272 #ifdef MROUTING
273 extern struct socket *ip_mrouter;
274
275 if (m->m_flags & M_EXT) {
276 if ((m = m_pullup(m, hlen)) == 0) {
277 ipstat.ips_toosmall++;
278 goto next;
279 }
280 ip = mtod(m, struct ip *);
281 }
282
283 if (ip_mrouter) {
284 /*
285 * If we are acting as a multicast router, all
286 * incoming multicast packets are passed to the
287 * kernel-level multicast forwarding function.
288 * The packet is returned (relatively) intact; if
289 * ip_mforward() returns a non-zero value, the packet
290 * must be discarded, else it may be accepted below.
291 *
292 * (The IP ident field is put in the same byte order
293 * as expected when ip_mforward() is called from
294 * ip_output().)
295 */
296 ip->ip_id = htons(ip->ip_id);
297 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
298 ipstat.ips_cantforward++;
299 m_freem(m);
300 goto next;
301 }
302 ip->ip_id = ntohs(ip->ip_id);
303
304 /*
305 * The process-level routing demon needs to receive
306 * all multicast IGMP packets, whether or not this
307 * host belongs to their destination groups.
308 */
309 if (ip->ip_p == IPPROTO_IGMP)
310 goto ours;
311 ipstat.ips_forward++;
312 }
313 #endif
314 /*
315 * See if we belong to the destination multicast group on the
316 * arrival interface.
317 */
318 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
319 if (inm == NULL) {
320 ipstat.ips_cantforward++;
321 m_freem(m);
322 goto next;
323 }
324 goto ours;
325 }
326 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
327 ip->ip_dst.s_addr == INADDR_ANY)
328 goto ours;
329
330 /*
331 * Not for us; forward if possible and desirable.
332 */
333 if (ipforwarding == 0) {
334 ipstat.ips_cantforward++;
335 m_freem(m);
336 } else
337 ip_forward(m, 0);
338 goto next;
339
340 ours:
341 /*
342 * If offset or IP_MF are set, must reassemble.
343 * Otherwise, nothing need be done.
344 * (We could look in the reassembly queue to see
345 * if the packet was previously fragmented,
346 * but it's not worth the time; just let them time out.)
347 */
348 if (ip->ip_off &~ IP_DF) {
349 if (m->m_flags & M_EXT) { /* XXX */
350 if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
351 ipstat.ips_toosmall++;
352 goto next;
353 }
354 ip = mtod(m, struct ip *);
355 }
356 /*
357 * Look for queue of fragments
358 * of this datagram.
359 */
360 for (fp = ipq.lh_first; fp != NULL; fp = fp->ipq_q.le_next)
361 if (ip->ip_id == fp->ipq_id &&
362 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
363 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
364 ip->ip_p == fp->ipq_p)
365 goto found;
366 fp = 0;
367 found:
368
369 /*
370 * Adjust ip_len to not reflect header,
371 * set ipqe_mff if more fragments are expected,
372 * convert offset of this to bytes.
373 */
374 ip->ip_len -= hlen;
375 mff = (ip->ip_off & IP_MF) != 0;
376 if (mff) {
377 /*
378 * Make sure that fragments have a data length
379 * that's a non-zero multiple of 8 bytes.
380 */
381 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
382 ipstat.ips_badfrags++;
383 goto bad;
384 }
385 }
386 ip->ip_off <<= 3;
387
388 /*
389 * If datagram marked as having more fragments
390 * or if this is not the first fragment,
391 * attempt reassembly; if it succeeds, proceed.
392 */
393 if (mff || ip->ip_off) {
394 ipstat.ips_fragments++;
395 MALLOC(ipqe, struct ipqent *, sizeof (struct ipqent),
396 M_IPQ, M_NOWAIT);
397 if (ipqe == NULL) {
398 ipstat.ips_rcvmemdrop++;
399 goto bad;
400 }
401 ipqe->ipqe_mff = mff;
402 ipqe->ipqe_ip = ip;
403 ip = ip_reass(ipqe, fp);
404 if (ip == 0)
405 goto next;
406 ipstat.ips_reassembled++;
407 m = dtom(ip);
408 } else
409 if (fp)
410 ip_freef(fp);
411 } else
412 ip->ip_len -= hlen;
413
414 /*
415 * Switch out to protocol's input routine.
416 */
417 ipstat.ips_delivered++;
418 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
419 goto next;
420 bad:
421 m_freem(m);
422 goto next;
423 }
424
425 /*
426 * Take incoming datagram fragment and try to
427 * reassemble it into whole datagram. If a chain for
428 * reassembly of this datagram already exists, then it
429 * is given as fp; otherwise have to make a chain.
430 */
431 struct ip *
432 ip_reass(ipqe, fp)
433 register struct ipqent *ipqe;
434 register struct ipq *fp;
435 {
436 register struct mbuf *m = dtom(ipqe->ipqe_ip);
437 register struct ipqent *nq, *p, *q;
438 struct ip *ip;
439 struct mbuf *t;
440 int hlen = ipqe->ipqe_ip->ip_hl << 2;
441 int i, next;
442
443 /*
444 * Presence of header sizes in mbufs
445 * would confuse code below.
446 */
447 m->m_data += hlen;
448 m->m_len -= hlen;
449
450 /*
451 * If first fragment to arrive, create a reassembly queue.
452 */
453 if (fp == 0) {
454 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
455 goto dropfrag;
456 fp = mtod(t, struct ipq *);
457 LIST_INSERT_HEAD(&ipq, fp, ipq_q);
458 fp->ipq_ttl = IPFRAGTTL;
459 fp->ipq_p = ipqe->ipqe_ip->ip_p;
460 fp->ipq_id = ipqe->ipqe_ip->ip_id;
461 LIST_INIT(&fp->ipq_fragq);
462 fp->ipq_src = ipqe->ipqe_ip->ip_src;
463 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
464 p = NULL;
465 goto insert;
466 }
467
468 /*
469 * Find a segment which begins after this one does.
470 */
471 for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
472 p = q, q = q->ipqe_q.le_next)
473 if (q->ipqe_ip->ip_off > ipqe->ipqe_ip->ip_off)
474 break;
475
476 /*
477 * If there is a preceding segment, it may provide some of
478 * our data already. If so, drop the data from the incoming
479 * segment. If it provides all of our data, drop us.
480 */
481 if (p != NULL) {
482 i = p->ipqe_ip->ip_off + p->ipqe_ip->ip_len -
483 ipqe->ipqe_ip->ip_off;
484 if (i > 0) {
485 if (i >= ipqe->ipqe_ip->ip_len)
486 goto dropfrag;
487 m_adj(dtom(ipqe->ipqe_ip), i);
488 ipqe->ipqe_ip->ip_off += i;
489 ipqe->ipqe_ip->ip_len -= i;
490 }
491 }
492
493 /*
494 * While we overlap succeeding segments trim them or,
495 * if they are completely covered, dequeue them.
496 */
497 for (; q != NULL && ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len >
498 q->ipqe_ip->ip_off; q = nq) {
499 i = (ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len) -
500 q->ipqe_ip->ip_off;
501 if (i < q->ipqe_ip->ip_len) {
502 q->ipqe_ip->ip_len -= i;
503 q->ipqe_ip->ip_off += i;
504 m_adj(dtom(q->ipqe_ip), i);
505 break;
506 }
507 nq = q->ipqe_q.le_next;
508 m_freem(dtom(q->ipqe_ip));
509 LIST_REMOVE(q, ipqe_q);
510 FREE(q, M_IPQ);
511 }
512
513 insert:
514 /*
515 * Stick new segment in its place;
516 * check for complete reassembly.
517 */
518 if (p == NULL) {
519 LIST_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
520 } else {
521 LIST_INSERT_AFTER(p, ipqe, ipqe_q);
522 }
523 next = 0;
524 for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
525 p = q, q = q->ipqe_q.le_next) {
526 if (q->ipqe_ip->ip_off != next)
527 return (0);
528 next += q->ipqe_ip->ip_len;
529 }
530 if (p->ipqe_mff)
531 return (0);
532
533 /*
534 * Reassembly is complete. Check for a bogus message size and
535 * concatenate fragments.
536 */
537 q = fp->ipq_fragq.lh_first;
538 ip = q->ipqe_ip;
539 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
540 ipstat.ips_toolong++;
541 ip_freef(fp);
542 return (0);
543 }
544 m = dtom(q->ipqe_ip);
545 t = m->m_next;
546 m->m_next = 0;
547 m_cat(m, t);
548 nq = q->ipqe_q.le_next;
549 FREE(q, M_IPQ);
550 for (q = nq; q != NULL; q = nq) {
551 t = dtom(q->ipqe_ip);
552 nq = q->ipqe_q.le_next;
553 FREE(q, M_IPQ);
554 m_cat(m, t);
555 }
556
557 /*
558 * Create header for new ip packet by
559 * modifying header of first packet;
560 * dequeue and discard fragment reassembly header.
561 * Make header visible.
562 */
563 ip->ip_len = next;
564 ip->ip_src = fp->ipq_src;
565 ip->ip_dst = fp->ipq_dst;
566 LIST_REMOVE(fp, ipq_q);
567 (void) m_free(dtom(fp));
568 m->m_len += (ip->ip_hl << 2);
569 m->m_data -= (ip->ip_hl << 2);
570 /* some debugging cruft by sklower, below, will go away soon */
571 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
572 register int plen = 0;
573 for (t = m; m; m = m->m_next)
574 plen += m->m_len;
575 t->m_pkthdr.len = plen;
576 }
577 return (ip);
578
579 dropfrag:
580 ipstat.ips_fragdropped++;
581 m_freem(m);
582 FREE(ipqe, M_IPQ);
583 return (0);
584 }
585
586 /*
587 * Free a fragment reassembly header and all
588 * associated datagrams.
589 */
590 void
591 ip_freef(fp)
592 struct ipq *fp;
593 {
594 register struct ipqent *q, *p;
595
596 for (q = fp->ipq_fragq.lh_first; q != NULL; q = p) {
597 p = q->ipqe_q.le_next;
598 m_freem(dtom(q->ipqe_ip));
599 LIST_REMOVE(q, ipqe_q);
600 FREE(q, M_IPQ);
601 }
602 LIST_REMOVE(fp, ipq_q);
603 (void) m_free(dtom(fp));
604 }
605
606 /*
607 * IP timer processing;
608 * if a timer expires on a reassembly
609 * queue, discard it.
610 */
611 void
612 ip_slowtimo()
613 {
614 register struct ipq *fp, *nfp;
615 int s = splsoftnet();
616
617 for (fp = ipq.lh_first; fp != NULL; fp = nfp) {
618 nfp = fp->ipq_q.le_next;
619 if (--fp->ipq_ttl == 0) {
620 ipstat.ips_fragtimeout++;
621 ip_freef(fp);
622 }
623 }
624 splx(s);
625 }
626
627 /*
628 * Drain off all datagram fragments.
629 */
630 void
631 ip_drain()
632 {
633
634 while (ipq.lh_first != NULL) {
635 ipstat.ips_fragdropped++;
636 ip_freef(ipq.lh_first);
637 }
638 }
639
640 /*
641 * Do option processing on a datagram,
642 * possibly discarding it if bad options are encountered,
643 * or forwarding it if source-routed.
644 * Returns 1 if packet has been forwarded/freed,
645 * 0 if the packet should be processed further.
646 */
647 int
648 ip_dooptions(m)
649 struct mbuf *m;
650 {
651 register struct ip *ip = mtod(m, struct ip *);
652 register u_char *cp;
653 register struct ip_timestamp *ipt;
654 register struct in_ifaddr *ia;
655 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
656 struct in_addr *sin, dst;
657 n_time ntime;
658
659 dst = ip->ip_dst;
660 cp = (u_char *)(ip + 1);
661 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
662 for (; cnt > 0; cnt -= optlen, cp += optlen) {
663 opt = cp[IPOPT_OPTVAL];
664 if (opt == IPOPT_EOL)
665 break;
666 if (opt == IPOPT_NOP)
667 optlen = 1;
668 else {
669 optlen = cp[IPOPT_OLEN];
670 if (optlen <= 0 || optlen > cnt) {
671 code = &cp[IPOPT_OLEN] - (u_char *)ip;
672 goto bad;
673 }
674 }
675 switch (opt) {
676
677 default:
678 break;
679
680 /*
681 * Source routing with record.
682 * Find interface with current destination address.
683 * If none on this machine then drop if strictly routed,
684 * or do nothing if loosely routed.
685 * Record interface address and bring up next address
686 * component. If strictly routed make sure next
687 * address is on directly accessible net.
688 */
689 case IPOPT_LSRR:
690 case IPOPT_SSRR:
691 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
692 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
693 goto bad;
694 }
695 ipaddr.sin_addr = ip->ip_dst;
696 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
697 if (ia == 0) {
698 if (opt == IPOPT_SSRR) {
699 type = ICMP_UNREACH;
700 code = ICMP_UNREACH_SRCFAIL;
701 goto bad;
702 }
703 /*
704 * Loose routing, and not at next destination
705 * yet; nothing to do except forward.
706 */
707 break;
708 }
709 off--; /* 0 origin */
710 if (off > optlen - sizeof(struct in_addr)) {
711 /*
712 * End of source route. Should be for us.
713 */
714 save_rte(cp, ip->ip_src);
715 break;
716 }
717 /*
718 * locate outgoing interface
719 */
720 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
721 sizeof(ipaddr.sin_addr));
722 if (opt == IPOPT_SSRR) {
723 #define INA struct in_ifaddr *
724 #define SA struct sockaddr *
725 ia = (INA)ifa_ifwithladdr((SA)&ipaddr);
726 } else
727 ia = ip_rtaddr(ipaddr.sin_addr);
728 if (ia == 0) {
729 type = ICMP_UNREACH;
730 code = ICMP_UNREACH_SRCFAIL;
731 goto bad;
732 }
733 ip->ip_dst = ipaddr.sin_addr;
734 bcopy((caddr_t)&ia->ia_addr.sin_addr,
735 (caddr_t)(cp + off), sizeof(struct in_addr));
736 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
737 /*
738 * Let ip_intr's mcast routing check handle mcast pkts
739 */
740 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
741 break;
742
743 case IPOPT_RR:
744 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
745 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
746 goto bad;
747 }
748 /*
749 * If no space remains, ignore.
750 */
751 off--; /* 0 origin */
752 if (off > optlen - sizeof(struct in_addr))
753 break;
754 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
755 sizeof(ipaddr.sin_addr));
756 /*
757 * locate outgoing interface; if we're the destination,
758 * use the incoming interface (should be same).
759 */
760 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
761 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
762 type = ICMP_UNREACH;
763 code = ICMP_UNREACH_HOST;
764 goto bad;
765 }
766 bcopy((caddr_t)&ia->ia_addr.sin_addr,
767 (caddr_t)(cp + off), sizeof(struct in_addr));
768 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
769 break;
770
771 case IPOPT_TS:
772 code = cp - (u_char *)ip;
773 ipt = (struct ip_timestamp *)cp;
774 if (ipt->ipt_len < 5)
775 goto bad;
776 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
777 if (++ipt->ipt_oflw == 0)
778 goto bad;
779 break;
780 }
781 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
782 switch (ipt->ipt_flg) {
783
784 case IPOPT_TS_TSONLY:
785 break;
786
787 case IPOPT_TS_TSANDADDR:
788 if (ipt->ipt_ptr + sizeof(n_time) +
789 sizeof(struct in_addr) > ipt->ipt_len)
790 goto bad;
791 ipaddr.sin_addr = dst;
792 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
793 m->m_pkthdr.rcvif);
794 if (ia == 0)
795 continue;
796 bcopy((caddr_t)&ia->ia_addr.sin_addr,
797 (caddr_t)sin, sizeof(struct in_addr));
798 ipt->ipt_ptr += sizeof(struct in_addr);
799 break;
800
801 case IPOPT_TS_PRESPEC:
802 if (ipt->ipt_ptr + sizeof(n_time) +
803 sizeof(struct in_addr) > ipt->ipt_len)
804 goto bad;
805 bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
806 sizeof(struct in_addr));
807 if (ifa_ifwithaddr((SA)&ipaddr) == 0)
808 continue;
809 ipt->ipt_ptr += sizeof(struct in_addr);
810 break;
811
812 default:
813 goto bad;
814 }
815 ntime = iptime();
816 bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
817 sizeof(n_time));
818 ipt->ipt_ptr += sizeof(n_time);
819 }
820 }
821 if (forward) {
822 if (ip_forwsrcrt == 0) {
823 type = ICMP_UNREACH;
824 code = ICMP_UNREACH_SRCFAIL;
825 goto bad;
826 }
827 ip_forward(m, 1);
828 return (1);
829 }
830 return (0);
831 bad:
832 ip->ip_len -= ip->ip_hl << 2; /* XXX icmp_error adds in hdr length */
833 icmp_error(m, type, code, 0, 0);
834 ipstat.ips_badoptions++;
835 return (1);
836 }
837
838 /*
839 * Given address of next destination (final or next hop),
840 * return internet address info of interface to be used to get there.
841 */
842 struct in_ifaddr *
843 ip_rtaddr(dst)
844 struct in_addr dst;
845 {
846 register struct sockaddr_in *sin;
847
848 sin = satosin(&ipforward_rt.ro_dst);
849
850 if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
851 if (ipforward_rt.ro_rt) {
852 RTFREE(ipforward_rt.ro_rt);
853 ipforward_rt.ro_rt = 0;
854 }
855 sin->sin_family = AF_INET;
856 sin->sin_len = sizeof(*sin);
857 sin->sin_addr = dst;
858
859 rtalloc(&ipforward_rt);
860 }
861 if (ipforward_rt.ro_rt == 0)
862 return ((struct in_ifaddr *)0);
863 return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
864 }
865
866 /*
867 * Save incoming source route for use in replies,
868 * to be picked up later by ip_srcroute if the receiver is interested.
869 */
870 void
871 save_rte(option, dst)
872 u_char *option;
873 struct in_addr dst;
874 {
875 unsigned olen;
876
877 olen = option[IPOPT_OLEN];
878 #ifdef DIAGNOSTIC
879 if (ipprintfs)
880 printf("save_rte: olen %d\n", olen);
881 #endif
882 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
883 return;
884 bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
885 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
886 ip_srcrt.dst = dst;
887 }
888
889 /*
890 * Retrieve incoming source route for use in replies,
891 * in the same form used by setsockopt.
892 * The first hop is placed before the options, will be removed later.
893 */
894 struct mbuf *
895 ip_srcroute()
896 {
897 register struct in_addr *p, *q;
898 register struct mbuf *m;
899
900 if (ip_nhops == 0)
901 return ((struct mbuf *)0);
902 m = m_get(M_DONTWAIT, MT_SOOPTS);
903 if (m == 0)
904 return ((struct mbuf *)0);
905
906 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
907
908 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
909 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
910 OPTSIZ;
911 #ifdef DIAGNOSTIC
912 if (ipprintfs)
913 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
914 #endif
915
916 /*
917 * First save first hop for return route
918 */
919 p = &ip_srcrt.route[ip_nhops - 1];
920 *(mtod(m, struct in_addr *)) = *p--;
921 #ifdef DIAGNOSTIC
922 if (ipprintfs)
923 printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
924 #endif
925
926 /*
927 * Copy option fields and padding (nop) to mbuf.
928 */
929 ip_srcrt.nop = IPOPT_NOP;
930 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
931 bcopy((caddr_t)&ip_srcrt.nop,
932 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
933 q = (struct in_addr *)(mtod(m, caddr_t) +
934 sizeof(struct in_addr) + OPTSIZ);
935 #undef OPTSIZ
936 /*
937 * Record return path as an IP source route,
938 * reversing the path (pointers are now aligned).
939 */
940 while (p >= ip_srcrt.route) {
941 #ifdef DIAGNOSTIC
942 if (ipprintfs)
943 printf(" %x", ntohl(q->s_addr));
944 #endif
945 *q++ = *p--;
946 }
947 /*
948 * Last hop goes to final destination.
949 */
950 *q = ip_srcrt.dst;
951 #ifdef DIAGNOSTIC
952 if (ipprintfs)
953 printf(" %x\n", ntohl(q->s_addr));
954 #endif
955 return (m);
956 }
957
958 /*
959 * Strip out IP options, at higher
960 * level protocol in the kernel.
961 * Second argument is buffer to which options
962 * will be moved, and return value is their length.
963 * XXX should be deleted; last arg currently ignored.
964 */
965 void
966 ip_stripoptions(m, mopt)
967 register struct mbuf *m;
968 struct mbuf *mopt;
969 {
970 register int i;
971 struct ip *ip = mtod(m, struct ip *);
972 register caddr_t opts;
973 int olen;
974
975 olen = (ip->ip_hl<<2) - sizeof (struct ip);
976 opts = (caddr_t)(ip + 1);
977 i = m->m_len - (sizeof (struct ip) + olen);
978 bcopy(opts + olen, opts, (unsigned)i);
979 m->m_len -= olen;
980 if (m->m_flags & M_PKTHDR)
981 m->m_pkthdr.len -= olen;
982 ip->ip_hl = sizeof(struct ip) >> 2;
983 }
984
985 int inetctlerrmap[PRC_NCMDS] = {
986 0, 0, 0, 0,
987 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
988 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
989 EMSGSIZE, EHOSTUNREACH, 0, 0,
990 0, 0, 0, 0,
991 ENOPROTOOPT
992 };
993
994 /*
995 * Forward a packet. If some error occurs return the sender
996 * an icmp packet. Note we can't always generate a meaningful
997 * icmp message because icmp doesn't have a large enough repertoire
998 * of codes and types.
999 *
1000 * If not forwarding, just drop the packet. This could be confusing
1001 * if ipforwarding was zero but some routing protocol was advancing
1002 * us as a gateway to somewhere. However, we must let the routing
1003 * protocol deal with that.
1004 *
1005 * The srcrt parameter indicates whether the packet is being forwarded
1006 * via a source route.
1007 */
1008 void
1009 ip_forward(m, srcrt)
1010 struct mbuf *m;
1011 int srcrt;
1012 {
1013 register struct ip *ip = mtod(m, struct ip *);
1014 register struct sockaddr_in *sin;
1015 register struct rtentry *rt;
1016 int error, type = 0, code = 0;
1017 struct mbuf *mcopy;
1018 n_long dest;
1019 struct ifnet *destifp;
1020
1021 dest = 0;
1022 #ifdef DIAGNOSTIC
1023 if (ipprintfs)
1024 printf("forward: src %x dst %x ttl %x\n",
1025 ip->ip_src.s_addr, ip->ip_dst.s_addr, ip->ip_ttl);
1026 #endif
1027 if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1028 ipstat.ips_cantforward++;
1029 m_freem(m);
1030 return;
1031 }
1032 HTONS(ip->ip_id);
1033 if (ip->ip_ttl <= IPTTLDEC) {
1034 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1035 return;
1036 }
1037 ip->ip_ttl -= IPTTLDEC;
1038
1039 sin = satosin(&ipforward_rt.ro_dst);
1040 if ((rt = ipforward_rt.ro_rt) == 0 ||
1041 ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1042 if (ipforward_rt.ro_rt) {
1043 RTFREE(ipforward_rt.ro_rt);
1044 ipforward_rt.ro_rt = 0;
1045 }
1046 sin->sin_family = AF_INET;
1047 sin->sin_len = sizeof(*sin);
1048 sin->sin_addr = ip->ip_dst;
1049
1050 rtalloc(&ipforward_rt);
1051 if (ipforward_rt.ro_rt == 0) {
1052 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1053 return;
1054 }
1055 rt = ipforward_rt.ro_rt;
1056 }
1057
1058 /*
1059 * Save at most 64 bytes of the packet in case
1060 * we need to generate an ICMP message to the src.
1061 */
1062 mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1063
1064 /*
1065 * If forwarding packet using same interface that it came in on,
1066 * perhaps should send a redirect to sender to shortcut a hop.
1067 * Only send redirect if source is sending directly to us,
1068 * and if packet was not source routed (or has any options).
1069 * Also, don't send redirect if forwarding using a default route
1070 * or a route modified by a redirect.
1071 */
1072 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1073 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1074 satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1075 ipsendredirects && !srcrt) {
1076 if (rt->rt_ifa &&
1077 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1078 ifatoia(rt->rt_ifa)->ia_subnet) {
1079 if (rt->rt_flags & RTF_GATEWAY)
1080 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1081 else
1082 dest = ip->ip_dst.s_addr;
1083 /* Router requirements says to only send host redirects */
1084 type = ICMP_REDIRECT;
1085 code = ICMP_REDIRECT_HOST;
1086 #ifdef DIAGNOSTIC
1087 if (ipprintfs)
1088 printf("redirect (%d) to %x\n", code, (u_int32_t)dest);
1089 #endif
1090 }
1091 }
1092
1093 error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1094 (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)), 0);
1095 if (error)
1096 ipstat.ips_cantforward++;
1097 else {
1098 ipstat.ips_forward++;
1099 if (type)
1100 ipstat.ips_redirectsent++;
1101 else {
1102 if (mcopy)
1103 m_freem(mcopy);
1104 return;
1105 }
1106 }
1107 if (mcopy == NULL)
1108 return;
1109 destifp = NULL;
1110
1111 switch (error) {
1112
1113 case 0: /* forwarded, but need redirect */
1114 /* type, code set above */
1115 break;
1116
1117 case ENETUNREACH: /* shouldn't happen, checked above */
1118 case EHOSTUNREACH:
1119 case ENETDOWN:
1120 case EHOSTDOWN:
1121 default:
1122 type = ICMP_UNREACH;
1123 code = ICMP_UNREACH_HOST;
1124 break;
1125
1126 case EMSGSIZE:
1127 type = ICMP_UNREACH;
1128 code = ICMP_UNREACH_NEEDFRAG;
1129 if (ipforward_rt.ro_rt)
1130 destifp = ipforward_rt.ro_rt->rt_ifp;
1131 ipstat.ips_cantfrag++;
1132 break;
1133
1134 case ENOBUFS:
1135 type = ICMP_SOURCEQUENCH;
1136 code = 0;
1137 break;
1138 }
1139 icmp_error(mcopy, type, code, dest, destifp);
1140 }
1141
1142 int
1143 ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
1144 int *name;
1145 u_int namelen;
1146 void *oldp;
1147 size_t *oldlenp;
1148 void *newp;
1149 size_t newlen;
1150 {
1151 /* All sysctl names at this level are terminal. */
1152 if (namelen != 1)
1153 return (ENOTDIR);
1154
1155 switch (name[0]) {
1156 case IPCTL_FORWARDING:
1157 return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
1158 case IPCTL_SENDREDIRECTS:
1159 return (sysctl_int(oldp, oldlenp, newp, newlen,
1160 &ipsendredirects));
1161 case IPCTL_DEFTTL:
1162 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
1163 #ifdef notyet
1164 case IPCTL_DEFMTU:
1165 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
1166 #endif
1167 case IPCTL_FORWSRCRT:
1168 /*
1169 * Don't allow this to change in a secure environment.
1170 */
1171 if (securelevel > 0)
1172 return (EPERM);
1173 return (sysctl_int(oldp, oldlenp, newp, newlen,
1174 &ip_forwsrcrt));
1175 case IPCTL_DIRECTEDBCAST:
1176 return (sysctl_int(oldp, oldlenp, newp, newlen,
1177 &ip_directedbcast));
1178 default:
1179 return (EOPNOTSUPP);
1180 }
1181 /* NOTREACHED */
1182 }
1183