ip_input.c revision 1.5 1 /*
2 * Copyright (c) 1982, 1986, 1988 Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * from: @(#)ip_input.c 7.19 (Berkeley) 5/25/91
34 * $Id: ip_input.c,v 1.5 1993/12/18 00:41:57 mycroft Exp $
35 */
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/domain.h>
42 #include <sys/protosw.h>
43 #include <sys/socket.h>
44 #include <sys/errno.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47
48 #include <net/if.h>
49 #include <net/route.h>
50
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/ip.h>
54 #include <netinet/in_pcb.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip_var.h>
57 #include <netinet/ip_icmp.h>
58
59 #ifndef IPFORWARDING
60 #ifdef GATEWAY
61 #define IPFORWARDING 1 /* forward IP packets not for us */
62 #else /* GATEWAY */
63 #define IPFORWARDING 0 /* don't forward IP packets not for us */
64 #endif /* GATEWAY */
65 #endif /* IPFORWARDING */
66 #ifndef IPSENDREDIRECTS
67 #define IPSENDREDIRECTS 1
68 #endif
69 int ipforwarding = IPFORWARDING;
70 int ipsendredirects = IPSENDREDIRECTS;
71 #ifdef DIAGNOSTIC
72 int ipprintfs = 0;
73 #endif
74
75 extern struct domain inetdomain;
76 extern struct protosw inetsw[];
77 u_char ip_protox[IPPROTO_MAX];
78 int ipqmaxlen = IFQ_MAXLEN;
79 struct in_ifaddr *in_ifaddr; /* first inet address */
80
81 /*
82 * We need to save the IP options in case a protocol wants to respond
83 * to an incoming packet over the same route if the packet got here
84 * using IP source routing. This allows connection establishment and
85 * maintenance when the remote end is on a network that is not known
86 * to us.
87 */
88 int ip_nhops = 0;
89 static struct ip_srcrt {
90 struct in_addr dst; /* final destination */
91 char nop; /* one NOP to align */
92 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
93 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
94 } ip_srcrt;
95
96 #ifdef GATEWAY
97 extern int if_index;
98 u_long *ip_ifmatrix;
99 #endif
100
101 /*
102 * IP initialization: fill in IP protocol switch table.
103 * All protocols not implemented in kernel go to raw IP protocol handler.
104 */
105 ip_init()
106 {
107 register struct protosw *pr;
108 register int i;
109
110 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
111 if (pr == 0)
112 panic("ip_init");
113 for (i = 0; i < IPPROTO_MAX; i++)
114 ip_protox[i] = pr - inetsw;
115 for (pr = inetdomain.dom_protosw;
116 pr < inetdomain.dom_protoswNPROTOSW; pr++)
117 if (pr->pr_domain->dom_family == PF_INET &&
118 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
119 ip_protox[pr->pr_protocol] = pr - inetsw;
120 ipq.next = ipq.prev = &ipq;
121 ip_id = time.tv_sec & 0xffff;
122 ipintrq.ifq_maxlen = ipqmaxlen;
123 #ifdef GATEWAY
124 i = (if_index + 1) * (if_index + 1) * sizeof (u_long);
125 if ((ip_ifmatrix = (u_long *) malloc(i, M_RTABLE, M_WAITOK)) == 0)
126 panic("no memory for ip_ifmatrix");
127 #endif
128 }
129
130 struct ip *ip_reass();
131 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
132 struct route ipforward_rt;
133
134 /*
135 * Ip input routine. Checksum and byte swap header. If fragmented
136 * try to reassemble. Process options. Pass to next level.
137 */
138 ipintr()
139 {
140 register struct ip *ip;
141 register struct mbuf *m;
142 register struct ipq *fp;
143 register struct in_ifaddr *ia;
144 int hlen, s;
145 #ifdef PARANOID
146 static int busy = 0;
147
148 if (busy)
149 panic("ipintr: called recursively\n");
150 ++busy;
151 #endif
152 next:
153 /*
154 * Get next datagram off input queue and get IP header
155 * in first mbuf.
156 */
157 s = splimp();
158 IF_DEQUEUE(&ipintrq, m);
159 splx(s);
160 if (m == 0) {
161 #ifdef PARANOID
162 --busy;
163 #endif
164 return;
165 }
166 #ifdef DIAGNOSTIC
167 if ((m->m_flags & M_PKTHDR) == 0)
168 panic("ipintr no HDR");
169 #endif
170 /*
171 * If no IP addresses have been set yet but the interfaces
172 * are receiving, can't do anything with incoming packets yet.
173 */
174 if (in_ifaddr == NULL)
175 goto bad;
176 ipstat.ips_total++;
177 if (m->m_len < sizeof (struct ip) &&
178 (m = m_pullup(m, sizeof (struct ip))) == 0) {
179 ipstat.ips_toosmall++;
180 goto next;
181 }
182 ip = mtod(m, struct ip *);
183 hlen = ip->ip_hl << 2;
184 if (hlen < sizeof(struct ip)) { /* minimum header length */
185 ipstat.ips_badhlen++;
186 goto bad;
187 }
188 if (hlen > m->m_len) {
189 if ((m = m_pullup(m, hlen)) == 0) {
190 ipstat.ips_badhlen++;
191 goto next;
192 }
193 ip = mtod(m, struct ip *);
194 }
195 if (ip->ip_sum = in_cksum(m, hlen)) {
196 ipstat.ips_badsum++;
197 goto bad;
198 }
199
200 /*
201 * Convert fields to host representation.
202 */
203 NTOHS(ip->ip_len);
204 if (ip->ip_len < hlen) {
205 ipstat.ips_badlen++;
206 goto bad;
207 }
208 NTOHS(ip->ip_id);
209 NTOHS(ip->ip_off);
210
211 /*
212 * Check that the amount of data in the buffers
213 * is as at least much as the IP header would have us expect.
214 * Trim mbufs if longer than we expect.
215 * Drop packet if shorter than we expect.
216 */
217 if (m->m_pkthdr.len < ip->ip_len) {
218 ipstat.ips_tooshort++;
219 goto bad;
220 }
221 if (m->m_pkthdr.len > ip->ip_len) {
222 if (m->m_len == m->m_pkthdr.len) {
223 m->m_len = ip->ip_len;
224 m->m_pkthdr.len = ip->ip_len;
225 } else
226 m_adj(m, ip->ip_len - m->m_pkthdr.len);
227 }
228
229 /*
230 * Process options and, if not destined for us,
231 * ship it on. ip_dooptions returns 1 when an
232 * error was detected (causing an icmp message
233 * to be sent and the original packet to be freed).
234 */
235 ip_nhops = 0; /* for source routed packets */
236 if (hlen > sizeof (struct ip) && ip_dooptions(m))
237 goto next;
238
239 /*
240 * Check our list of addresses, to see if the packet is for us.
241 */
242 for (ia = in_ifaddr; ia; ia = ia->ia_next) {
243 #define satosin(sa) ((struct sockaddr_in *)(sa))
244
245 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
246 goto ours;
247 if (
248 #ifdef DIRECTED_BROADCAST
249 ia->ia_ifp == m->m_pkthdr.rcvif &&
250 #endif
251 (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
252 u_long t;
253
254 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
255 ip->ip_dst.s_addr)
256 goto ours;
257 if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
258 goto ours;
259 /*
260 * Look for all-0's host part (old broadcast addr),
261 * either for subnet or net.
262 */
263 t = ntohl(ip->ip_dst.s_addr);
264 if (t == ia->ia_subnet)
265 goto ours;
266 if (t == ia->ia_net)
267 goto ours;
268 }
269 }
270 #ifdef MULTICAST
271 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
272 struct in_multi *inm;
273 #ifdef MROUTING
274 extern struct socket *ip_mrouter;
275
276 if (ip_mrouter) {
277 /*
278 * If we are acting as a multicast router, all
279 * incoming multicast packets are passed to the
280 * kernel-level multicast forwarding function.
281 * The packet is returned (relatively) intact; if
282 * ip_mforward() returns a non-zero value, the packet
283 * must be discarded, else it may be accepted below.
284 *
285 * (The IP ident field is put in the same byte order
286 * as expected when ip_mforward() is called from
287 * ip_output().)
288 */
289 ip->ip_id = htons(ip->ip_id);
290 if (ip_mforward(ip, m->m_pkthdr.rcvif, m) != 0) {
291 m_freem(m);
292 goto next;
293 }
294 ip->ip_id = ntohs(ip->ip_id);
295
296 /*
297 * The process-level routing demon needs to receive
298 * all multicast IGMP packets, whether or not this
299 * host belongs to their destination groups.
300 */
301 if (ip->ip_p == IPPROTO_IGMP)
302 goto ours;
303 }
304 #endif
305 /*
306 * See if we belong to the destination multicast group on the
307 * arrival interface.
308 */
309 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
310 if (inm == NULL) {
311 m_freem(m);
312 goto next;
313 }
314 goto ours;
315 }
316 #endif
317 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
318 goto ours;
319 if (ip->ip_dst.s_addr == INADDR_ANY)
320 goto ours;
321
322 /*
323 * Not for us; forward if possible and desirable.
324 */
325 if (ipforwarding == 0) {
326 ipstat.ips_cantforward++;
327 m_freem(m);
328 } else
329 ip_forward(m, 0);
330 goto next;
331
332 ours:
333 /*
334 * If offset or IP_MF are set, must reassemble.
335 * Otherwise, nothing need be done.
336 * (We could look in the reassembly queue to see
337 * if the packet was previously fragmented,
338 * but it's not worth the time; just let them time out.)
339 */
340 if (ip->ip_off &~ IP_DF) {
341 if (m->m_flags & M_EXT) { /* XXX */
342 if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
343 ipstat.ips_toosmall++;
344 goto next;
345 }
346 ip = mtod(m, struct ip *);
347 }
348 /*
349 * Look for queue of fragments
350 * of this datagram.
351 */
352 for (fp = ipq.next; fp != &ipq; fp = fp->next)
353 if (ip->ip_id == fp->ipq_id &&
354 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
355 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
356 ip->ip_p == fp->ipq_p)
357 goto found;
358 fp = 0;
359 found:
360
361 /*
362 * Adjust ip_len to not reflect header,
363 * set ip_mff if more fragments are expected,
364 * convert offset of this to bytes.
365 */
366 ip->ip_len -= hlen;
367 ((struct ipasfrag *)ip)->ipf_mff = 0;
368 if (ip->ip_off & IP_MF)
369 ((struct ipasfrag *)ip)->ipf_mff = 1;
370 ip->ip_off <<= 3;
371
372 /*
373 * If datagram marked as having more fragments
374 * or if this is not the first fragment,
375 * attempt reassembly; if it succeeds, proceed.
376 */
377 if (((struct ipasfrag *)ip)->ipf_mff || ip->ip_off) {
378 ipstat.ips_fragments++;
379 ip = ip_reass((struct ipasfrag *)ip, fp);
380 if (ip == 0)
381 goto next;
382 else
383 ipstat.ips_reassembled++;
384 m = dtom(ip);
385 } else
386 if (fp)
387 ip_freef(fp);
388 } else
389 ip->ip_len -= hlen;
390
391 /*
392 * Switch out to protocol's input routine.
393 */
394 ipstat.ips_delivered++;
395 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
396 goto next;
397 bad:
398 m_freem(m);
399 goto next;
400 }
401
402 /*
403 * Take incoming datagram fragment and try to
404 * reassemble it into whole datagram. If a chain for
405 * reassembly of this datagram already exists, then it
406 * is given as fp; otherwise have to make a chain.
407 */
408 struct ip *
409 ip_reass(ip, fp)
410 register struct ipasfrag *ip;
411 register struct ipq *fp;
412 {
413 register struct mbuf *m = dtom(ip);
414 register struct ipasfrag *q;
415 struct mbuf *t;
416 int hlen = ip->ip_hl << 2;
417 int i, next;
418
419 /*
420 * Presence of header sizes in mbufs
421 * would confuse code below.
422 */
423 m->m_data += hlen;
424 m->m_len -= hlen;
425
426 /*
427 * If first fragment to arrive, create a reassembly queue.
428 */
429 if (fp == 0) {
430 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
431 goto dropfrag;
432 fp = mtod(t, struct ipq *);
433 insque(fp, &ipq);
434 fp->ipq_ttl = IPFRAGTTL;
435 fp->ipq_p = ip->ip_p;
436 fp->ipq_id = ip->ip_id;
437 fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
438 fp->ipq_src = ((struct ip *)ip)->ip_src;
439 fp->ipq_dst = ((struct ip *)ip)->ip_dst;
440 q = (struct ipasfrag *)fp;
441 goto insert;
442 }
443
444 /*
445 * Find a segment which begins after this one does.
446 */
447 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
448 if (q->ip_off > ip->ip_off)
449 break;
450
451 /*
452 * If there is a preceding segment, it may provide some of
453 * our data already. If so, drop the data from the incoming
454 * segment. If it provides all of our data, drop us.
455 */
456 if (q->ipf_prev != (struct ipasfrag *)fp) {
457 i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
458 if (i > 0) {
459 if (i >= ip->ip_len)
460 goto dropfrag;
461 m_adj(dtom(ip), i);
462 ip->ip_off += i;
463 ip->ip_len -= i;
464 }
465 }
466
467 /*
468 * While we overlap succeeding segments trim them or,
469 * if they are completely covered, dequeue them.
470 */
471 while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
472 i = (ip->ip_off + ip->ip_len) - q->ip_off;
473 if (i < q->ip_len) {
474 q->ip_len -= i;
475 q->ip_off += i;
476 m_adj(dtom(q), i);
477 break;
478 }
479 q = q->ipf_next;
480 m_freem(dtom(q->ipf_prev));
481 ip_deq(q->ipf_prev);
482 }
483
484 insert:
485 /*
486 * Stick new segment in its place;
487 * check for complete reassembly.
488 */
489 ip_enq(ip, q->ipf_prev);
490 next = 0;
491 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
492 if (q->ip_off != next)
493 return (0);
494 next += q->ip_len;
495 }
496 if (q->ipf_prev->ipf_mff)
497 return (0);
498
499 /*
500 * Reassembly is complete; concatenate fragments.
501 */
502 q = fp->ipq_next;
503 m = dtom(q);
504 t = m->m_next;
505 m->m_next = 0;
506 m_cat(m, t);
507 q = q->ipf_next;
508 while (q != (struct ipasfrag *)fp) {
509 t = dtom(q);
510 q = q->ipf_next;
511 m_cat(m, t);
512 }
513
514 /*
515 * Create header for new ip packet by
516 * modifying header of first packet;
517 * dequeue and discard fragment reassembly header.
518 * Make header visible.
519 */
520 ip = fp->ipq_next;
521 ip->ip_len = next;
522 ((struct ip *)ip)->ip_src = fp->ipq_src;
523 ((struct ip *)ip)->ip_dst = fp->ipq_dst;
524 remque(fp);
525 (void) m_free(dtom(fp));
526 m = dtom(ip);
527 m->m_len += (ip->ip_hl << 2);
528 m->m_data -= (ip->ip_hl << 2);
529 /* some debugging cruft by sklower, below, will go away soon */
530 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
531 register int plen = 0;
532 for (t = m; m; m = m->m_next)
533 plen += m->m_len;
534 t->m_pkthdr.len = plen;
535 }
536 return ((struct ip *)ip);
537
538 dropfrag:
539 ipstat.ips_fragdropped++;
540 m_freem(m);
541 return (0);
542 }
543
544 /*
545 * Free a fragment reassembly header and all
546 * associated datagrams.
547 */
548 ip_freef(fp)
549 struct ipq *fp;
550 {
551 register struct ipasfrag *q, *p;
552
553 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
554 p = q->ipf_next;
555 ip_deq(q);
556 m_freem(dtom(q));
557 }
558 remque(fp);
559 (void) m_free(dtom(fp));
560 }
561
562 /*
563 * Put an ip fragment on a reassembly chain.
564 * Like insque, but pointers in middle of structure.
565 */
566 ip_enq(p, prev)
567 register struct ipasfrag *p, *prev;
568 {
569
570 p->ipf_prev = prev;
571 p->ipf_next = prev->ipf_next;
572 prev->ipf_next->ipf_prev = p;
573 prev->ipf_next = p;
574 }
575
576 /*
577 * To ip_enq as remque is to insque.
578 */
579 ip_deq(p)
580 register struct ipasfrag *p;
581 {
582
583 p->ipf_prev->ipf_next = p->ipf_next;
584 p->ipf_next->ipf_prev = p->ipf_prev;
585 }
586
587 /*
588 * IP timer processing;
589 * if a timer expires on a reassembly
590 * queue, discard it.
591 */
592 ip_slowtimo()
593 {
594 register struct ipq *fp;
595 int s = splnet();
596
597 fp = ipq.next;
598 if (fp == 0) {
599 splx(s);
600 return;
601 }
602 while (fp != &ipq) {
603 --fp->ipq_ttl;
604 fp = fp->next;
605 if (fp->prev->ipq_ttl == 0) {
606 ipstat.ips_fragtimeout++;
607 ip_freef(fp->prev);
608 }
609 }
610 splx(s);
611 }
612
613 /*
614 * Drain off all datagram fragments.
615 */
616 ip_drain()
617 {
618
619 while (ipq.next != &ipq) {
620 ipstat.ips_fragdropped++;
621 ip_freef(ipq.next);
622 }
623 }
624
625 extern struct in_ifaddr *ifptoia();
626 struct in_ifaddr *ip_rtaddr();
627
628 /*
629 * Do option processing on a datagram,
630 * possibly discarding it if bad options are encountered,
631 * or forwarding it if source-routed.
632 * Returns 1 if packet has been forwarded/freed,
633 * 0 if the packet should be processed further.
634 */
635 ip_dooptions(m)
636 struct mbuf *m;
637 {
638 register struct ip *ip = mtod(m, struct ip *);
639 register u_char *cp;
640 register struct ip_timestamp *ipt;
641 register struct in_ifaddr *ia;
642 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
643 struct in_addr *sin;
644 n_time ntime;
645
646 cp = (u_char *)(ip + 1);
647 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
648 for (; cnt > 0; cnt -= optlen, cp += optlen) {
649 opt = cp[IPOPT_OPTVAL];
650 if (opt == IPOPT_EOL)
651 break;
652 if (opt == IPOPT_NOP)
653 optlen = 1;
654 else {
655 optlen = cp[IPOPT_OLEN];
656 if (optlen <= 0 || optlen > cnt) {
657 code = &cp[IPOPT_OLEN] - (u_char *)ip;
658 goto bad;
659 }
660 }
661 switch (opt) {
662
663 default:
664 break;
665
666 /*
667 * Source routing with record.
668 * Find interface with current destination address.
669 * If none on this machine then drop if strictly routed,
670 * or do nothing if loosely routed.
671 * Record interface address and bring up next address
672 * component. If strictly routed make sure next
673 * address is on directly accessible net.
674 */
675 case IPOPT_LSRR:
676 case IPOPT_SSRR:
677 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
678 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
679 goto bad;
680 }
681 ipaddr.sin_addr = ip->ip_dst;
682 ia = (struct in_ifaddr *)
683 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
684 if (ia == 0) {
685 if (opt == IPOPT_SSRR) {
686 type = ICMP_UNREACH;
687 code = ICMP_UNREACH_SRCFAIL;
688 goto bad;
689 }
690 /*
691 * Loose routing, and not at next destination
692 * yet; nothing to do except forward.
693 */
694 break;
695 }
696 off--; /* 0 origin */
697 if (off > optlen - sizeof(struct in_addr)) {
698 /*
699 * End of source route. Should be for us.
700 */
701 save_rte(cp, ip->ip_src);
702 break;
703 }
704 /*
705 * locate outgoing interface
706 */
707 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
708 sizeof(ipaddr.sin_addr));
709 if (opt == IPOPT_SSRR) {
710 #define INA struct in_ifaddr *
711 #define SA struct sockaddr *
712 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
713 ia = in_iaonnetof(in_netof(ipaddr.sin_addr));
714 } else
715 ia = ip_rtaddr(ipaddr.sin_addr);
716 if (ia == 0) {
717 type = ICMP_UNREACH;
718 code = ICMP_UNREACH_SRCFAIL;
719 goto bad;
720 }
721 ip->ip_dst = ipaddr.sin_addr;
722 bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
723 (caddr_t)(cp + off), sizeof(struct in_addr));
724 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
725 forward = 1;
726 break;
727
728 case IPOPT_RR:
729 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
730 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
731 goto bad;
732 }
733 /*
734 * If no space remains, ignore.
735 */
736 off--; /* 0 origin */
737 if (off > optlen - sizeof(struct in_addr))
738 break;
739 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
740 sizeof(ipaddr.sin_addr));
741 /*
742 * locate outgoing interface; if we're the destination,
743 * use the incoming interface (should be same).
744 */
745 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
746 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
747 type = ICMP_UNREACH;
748 code = ICMP_UNREACH_HOST;
749 goto bad;
750 }
751 bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
752 (caddr_t)(cp + off), sizeof(struct in_addr));
753 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
754 break;
755
756 case IPOPT_TS:
757 code = cp - (u_char *)ip;
758 ipt = (struct ip_timestamp *)cp;
759 if (ipt->ipt_len < 5)
760 goto bad;
761 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) {
762 if (++ipt->ipt_oflw == 0)
763 goto bad;
764 break;
765 }
766 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
767 switch (ipt->ipt_flg) {
768
769 case IPOPT_TS_TSONLY:
770 break;
771
772 case IPOPT_TS_TSANDADDR:
773 if (ipt->ipt_ptr + sizeof(n_time) +
774 sizeof(struct in_addr) > ipt->ipt_len)
775 goto bad;
776 ia = ifptoia(m->m_pkthdr.rcvif);
777 bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
778 (caddr_t)sin, sizeof(struct in_addr));
779 ipt->ipt_ptr += sizeof(struct in_addr);
780 break;
781
782 case IPOPT_TS_PRESPEC:
783 if (ipt->ipt_ptr + sizeof(n_time) +
784 sizeof(struct in_addr) > ipt->ipt_len)
785 goto bad;
786 bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
787 sizeof(struct in_addr));
788 if (ifa_ifwithaddr((SA)&ipaddr) == 0)
789 continue;
790 ipt->ipt_ptr += sizeof(struct in_addr);
791 break;
792
793 default:
794 goto bad;
795 }
796 ntime = iptime();
797 bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
798 sizeof(n_time));
799 ipt->ipt_ptr += sizeof(n_time);
800 }
801 }
802 if (forward) {
803 ip_forward(m, 1);
804 return (1);
805 } else
806 return (0);
807 bad:
808 icmp_error(m, type, code);
809 return (1);
810 }
811
812 /*
813 * Given address of next destination (final or next hop),
814 * return internet address info of interface to be used to get there.
815 */
816 struct in_ifaddr *
817 ip_rtaddr(dst)
818 struct in_addr dst;
819 {
820 register struct sockaddr_in *sin;
821
822 sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
823
824 if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
825 if (ipforward_rt.ro_rt) {
826 RTFREE(ipforward_rt.ro_rt);
827 ipforward_rt.ro_rt = 0;
828 }
829 sin->sin_family = AF_INET;
830 sin->sin_len = sizeof(*sin);
831 sin->sin_addr = dst;
832
833 rtalloc(&ipforward_rt);
834 }
835 if (ipforward_rt.ro_rt == 0)
836 return ((struct in_ifaddr *)0);
837 return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
838 }
839
840 /*
841 * Save incoming source route for use in replies,
842 * to be picked up later by ip_srcroute if the receiver is interested.
843 */
844 save_rte(option, dst)
845 u_char *option;
846 struct in_addr dst;
847 {
848 unsigned olen;
849
850 olen = option[IPOPT_OLEN];
851 #ifdef DIAGNOSTIC
852 if (ipprintfs)
853 printf("save_rte: olen %d\n", olen);
854 #endif
855 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
856 return;
857 bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
858 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
859 ip_srcrt.dst = dst;
860 }
861
862 /*
863 * Retrieve incoming source route for use in replies,
864 * in the same form used by setsockopt.
865 * The first hop is placed before the options, will be removed later.
866 */
867 struct mbuf *
868 ip_srcroute()
869 {
870 register struct in_addr *p, *q;
871 register struct mbuf *m;
872
873 if (ip_nhops == 0)
874 return ((struct mbuf *)0);
875 m = m_get(M_DONTWAIT, MT_SOOPTS);
876 if (m == 0)
877 return ((struct mbuf *)0);
878
879 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
880
881 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
882 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
883 OPTSIZ;
884 #ifdef DIAGNOSTIC
885 if (ipprintfs)
886 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
887 #endif
888
889 /*
890 * First save first hop for return route
891 */
892 p = &ip_srcrt.route[ip_nhops - 1];
893 *(mtod(m, struct in_addr *)) = *p--;
894 #ifdef DIAGNOSTIC
895 if (ipprintfs)
896 printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
897 #endif
898
899 /*
900 * Copy option fields and padding (nop) to mbuf.
901 */
902 ip_srcrt.nop = IPOPT_NOP;
903 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
904 bcopy((caddr_t)&ip_srcrt.nop,
905 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
906 q = (struct in_addr *)(mtod(m, caddr_t) +
907 sizeof(struct in_addr) + OPTSIZ);
908 #undef OPTSIZ
909 /*
910 * Record return path as an IP source route,
911 * reversing the path (pointers are now aligned).
912 */
913 while (p >= ip_srcrt.route) {
914 #ifdef DIAGNOSTIC
915 if (ipprintfs)
916 printf(" %lx", ntohl(q->s_addr));
917 #endif
918 *q++ = *p--;
919 }
920 /*
921 * Last hop goes to final destination.
922 */
923 *q = ip_srcrt.dst;
924 #ifdef DIAGNOSTIC
925 if (ipprintfs)
926 printf(" %lx\n", ntohl(q->s_addr));
927 #endif
928 return (m);
929 }
930
931 /*
932 * Strip out IP options, at higher
933 * level protocol in the kernel.
934 * Second argument is buffer to which options
935 * will be moved, and return value is their length.
936 * XXX should be deleted; last arg currently ignored.
937 */
938 ip_stripoptions(m, mopt)
939 register struct mbuf *m;
940 struct mbuf *mopt;
941 {
942 register int i;
943 struct ip *ip = mtod(m, struct ip *);
944 register caddr_t opts;
945 int olen;
946
947 olen = (ip->ip_hl<<2) - sizeof (struct ip);
948 opts = (caddr_t)(ip + 1);
949 i = m->m_len - (sizeof (struct ip) + olen);
950 bcopy(opts + olen, opts, (unsigned)i);
951 m->m_len -= olen;
952 if (m->m_flags & M_PKTHDR)
953 m->m_pkthdr.len -= olen;
954 ip->ip_hl = sizeof(struct ip) >> 2;
955 }
956
957 u_char inetctlerrmap[PRC_NCMDS] = {
958 0, 0, 0, 0,
959 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
960 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
961 EMSGSIZE, EHOSTUNREACH, 0, 0,
962 0, 0, 0, 0,
963 ENOPROTOOPT
964 };
965
966 /*
967 * Forward a packet. If some error occurs return the sender
968 * an icmp packet. Note we can't always generate a meaningful
969 * icmp message because icmp doesn't have a large enough repertoire
970 * of codes and types.
971 *
972 * If not forwarding, just drop the packet. This could be confusing
973 * if ipforwarding was zero but some routing protocol was advancing
974 * us as a gateway to somewhere. However, we must let the routing
975 * protocol deal with that.
976 *
977 * The srcrt parameter indicates whether the packet is being forwarded
978 * via a source route.
979 */
980 ip_forward(m, srcrt)
981 struct mbuf *m;
982 int srcrt;
983 {
984 register struct ip *ip = mtod(m, struct ip *);
985 register struct sockaddr_in *sin;
986 register struct rtentry *rt;
987 int error, type = 0, code;
988 struct mbuf *mcopy;
989 struct in_addr dest;
990
991 dest.s_addr = 0;
992 #ifdef DIAGNOSTIC
993 if (ipprintfs)
994 printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
995 ip->ip_dst, ip->ip_ttl);
996 #endif
997 if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
998 ipstat.ips_cantforward++;
999 m_freem(m);
1000 return;
1001 }
1002 HTONS(ip->ip_id);
1003 if (ip->ip_ttl <= IPTTLDEC) {
1004 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest);
1005 return;
1006 }
1007 ip->ip_ttl -= IPTTLDEC;
1008
1009 sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1010 if ((rt = ipforward_rt.ro_rt) == 0 ||
1011 ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1012 if (ipforward_rt.ro_rt) {
1013 RTFREE(ipforward_rt.ro_rt);
1014 ipforward_rt.ro_rt = 0;
1015 }
1016 sin->sin_family = AF_INET;
1017 sin->sin_len = sizeof(*sin);
1018 sin->sin_addr = ip->ip_dst;
1019
1020 rtalloc(&ipforward_rt);
1021 if (ipforward_rt.ro_rt == 0) {
1022 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest);
1023 return;
1024 }
1025 rt = ipforward_rt.ro_rt;
1026 }
1027
1028 /*
1029 * Save at most 64 bytes of the packet in case
1030 * we need to generate an ICMP message to the src.
1031 */
1032 mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1033
1034 #ifdef GATEWAY
1035 ip_ifmatrix[rt->rt_ifp->if_index +
1036 if_index * m->m_pkthdr.rcvif->if_index]++;
1037 #endif
1038 /*
1039 * If forwarding packet using same interface that it came in on,
1040 * perhaps should send a redirect to sender to shortcut a hop.
1041 * Only send redirect if source is sending directly to us,
1042 * and if packet was not source routed (or has any options).
1043 * Also, don't send redirect if forwarding using a default route
1044 * or a route modified by a redirect.
1045 */
1046 #define satosin(sa) ((struct sockaddr_in *)(sa))
1047 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1048 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1049 satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1050 ipsendredirects && !srcrt) {
1051 struct in_ifaddr *ia;
1052 u_long src = ntohl(ip->ip_src.s_addr);
1053 u_long dst = ntohl(ip->ip_dst.s_addr);
1054
1055 if ((ia = ifptoia(m->m_pkthdr.rcvif)) &&
1056 (src & ia->ia_subnetmask) == ia->ia_subnet) {
1057 if (rt->rt_flags & RTF_GATEWAY)
1058 dest = satosin(rt->rt_gateway)->sin_addr;
1059 else
1060 dest = ip->ip_dst;
1061 /*
1062 * If the destination is reached by a route to host,
1063 * is on a subnet of a local net, or is directly
1064 * on the attached net (!), use host redirect.
1065 * (We may be the correct first hop for other subnets.)
1066 */
1067 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
1068 type = ICMP_REDIRECT;
1069 if ((rt->rt_flags & RTF_HOST) ||
1070 (rt->rt_flags & RTF_GATEWAY) == 0)
1071 code = ICMP_REDIRECT_HOST;
1072 else if (RTA(rt)->ia_subnetmask != RTA(rt)->ia_netmask &&
1073 (dst & RTA(rt)->ia_netmask) == RTA(rt)->ia_net)
1074 code = ICMP_REDIRECT_HOST;
1075 else
1076 code = ICMP_REDIRECT_NET;
1077 #ifdef DIAGNOSTIC
1078 if (ipprintfs)
1079 printf("redirect (%d) to %x\n", code, dest.s_addr);
1080 #endif
1081 }
1082 }
1083
1084 error = ip_output(m, (struct mbuf *)0, &ipforward_rt, IP_FORWARDING);
1085 if (error)
1086 ipstat.ips_cantforward++;
1087 else {
1088 ipstat.ips_forward++;
1089 if (type)
1090 ipstat.ips_redirectsent++;
1091 else {
1092 if (mcopy)
1093 m_freem(mcopy);
1094 return;
1095 }
1096 }
1097 if (mcopy == NULL)
1098 return;
1099 switch (error) {
1100
1101 case 0: /* forwarded, but need redirect */
1102 /* type, code set above */
1103 break;
1104
1105 case ENETUNREACH: /* shouldn't happen, checked above */
1106 case EHOSTUNREACH:
1107 case ENETDOWN:
1108 case EHOSTDOWN:
1109 default:
1110 type = ICMP_UNREACH;
1111 code = ICMP_UNREACH_HOST;
1112 break;
1113
1114 case EMSGSIZE:
1115 type = ICMP_UNREACH;
1116 code = ICMP_UNREACH_NEEDFRAG;
1117 ipstat.ips_cantfrag++;
1118 break;
1119
1120 case ENOBUFS:
1121 type = ICMP_SOURCEQUENCH;
1122 code = 0;
1123 break;
1124 }
1125 icmp_error(mcopy, type, code, dest);
1126 }
1127