ip_input.c revision 1.53.2.2 1 /* $NetBSD: ip_input.c,v 1.53.2.2 1998/07/22 23:50:10 mellon Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/errno.h>
47 #include <sys/time.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50
51 #include <vm/vm.h>
52 #include <sys/sysctl.h>
53
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/route.h>
57 #include <net/pfil.h>
58
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 #include <netinet/ip.h>
62 #include <netinet/in_pcb.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip_var.h>
65 #include <netinet/ip_icmp.h>
66
67 /* XXX should really put this in libkern.h */
68 #define offsetof(type, member) ((size_t)(&((type *)0)->member))
69
70 #ifndef IPFORWARDING
71 #ifdef GATEWAY
72 #define IPFORWARDING 1 /* forward IP packets not for us */
73 #else /* GATEWAY */
74 #define IPFORWARDING 0 /* don't forward IP packets not for us */
75 #endif /* GATEWAY */
76 #endif /* IPFORWARDING */
77 #ifndef IPSENDREDIRECTS
78 #define IPSENDREDIRECTS 1
79 #endif
80 #ifndef IPFORWSRCRT
81 #define IPFORWSRCRT 1 /* forward source-routed packets */
82 #endif
83 #ifndef IPALLOWSRCRT
84 #define IPALLOWSRCRT 1 /* allow source-routed packets */
85 #endif
86 #ifndef IPMTUDISC
87 #define IPMTUDISC 0
88 #endif
89 #ifndef IPMTUDISCTIMEOUT
90 #define IPMTUDISCTIMEOUT (10 * 60) /* as per RFC 1191 */
91 #endif
92
93
94 /*
95 * Note: DIRECTED_BROADCAST is handled this way so that previous
96 * configuration using this option will Just Work.
97 */
98 #ifndef IPDIRECTEDBCAST
99 #ifdef DIRECTED_BROADCAST
100 #define IPDIRECTEDBCAST 1
101 #else
102 #define IPDIRECTEDBCAST 0
103 #endif /* DIRECTED_BROADCAST */
104 #endif /* IPDIRECTEDBCAST */
105 int ipforwarding = IPFORWARDING;
106 int ipsendredirects = IPSENDREDIRECTS;
107 int ip_defttl = IPDEFTTL;
108 int ip_forwsrcrt = IPFORWSRCRT;
109 int ip_directedbcast = IPDIRECTEDBCAST;
110 int ip_allowsrcrt = IPALLOWSRCRT;
111 int ip_mtudisc = IPMTUDISC;
112 u_int ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
113 #ifdef DIAGNOSTIC
114 int ipprintfs = 0;
115 #endif
116
117 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
118
119 extern struct domain inetdomain;
120 extern struct protosw inetsw[];
121 u_char ip_protox[IPPROTO_MAX];
122 int ipqmaxlen = IFQ_MAXLEN;
123 struct in_ifaddrhead in_ifaddr;
124 struct ifqueue ipintrq;
125
126 /*
127 * We need to save the IP options in case a protocol wants to respond
128 * to an incoming packet over the same route if the packet got here
129 * using IP source routing. This allows connection establishment and
130 * maintenance when the remote end is on a network that is not known
131 * to us.
132 */
133 int ip_nhops = 0;
134 static struct ip_srcrt {
135 struct in_addr dst; /* final destination */
136 char nop; /* one NOP to align */
137 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
138 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
139 } ip_srcrt;
140
141 static void save_rte __P((u_char *, struct in_addr));
142
143 /*
144 * IP initialization: fill in IP protocol switch table.
145 * All protocols not implemented in kernel go to raw IP protocol handler.
146 */
147 void
148 ip_init()
149 {
150 register struct protosw *pr;
151 register int i;
152
153 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
154 if (pr == 0)
155 panic("ip_init");
156 for (i = 0; i < IPPROTO_MAX; i++)
157 ip_protox[i] = pr - inetsw;
158 for (pr = inetdomain.dom_protosw;
159 pr < inetdomain.dom_protoswNPROTOSW; pr++)
160 if (pr->pr_domain->dom_family == PF_INET &&
161 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
162 ip_protox[pr->pr_protocol] = pr - inetsw;
163 LIST_INIT(&ipq);
164 ip_id = time.tv_sec & 0xffff;
165 ipintrq.ifq_maxlen = ipqmaxlen;
166 TAILQ_INIT(&in_ifaddr);
167
168 if (ip_mtudisc != 0)
169 ip_mtudisc_timeout_q =
170 rt_timer_queue_create(ip_mtudisc_timeout);
171 }
172
173 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
174 struct route ipforward_rt;
175
176 /*
177 * Ip input routine. Checksum and byte swap header. If fragmented
178 * try to reassemble. Process options. Pass to next level.
179 */
180 void
181 ipintr()
182 {
183 register struct ip *ip = NULL;
184 register struct mbuf *m;
185 register struct ipq *fp;
186 register struct in_ifaddr *ia;
187 struct ipqent *ipqe;
188 int hlen = 0, mff, len, s;
189 #ifdef PFIL_HOOKS
190 struct packet_filter_hook *pfh;
191 struct mbuf *m0;
192 int rv;
193 #endif /* PFIL_HOOKS */
194
195 next:
196 /*
197 * Get next datagram off input queue and get IP header
198 * in first mbuf.
199 */
200 s = splimp();
201 IF_DEQUEUE(&ipintrq, m);
202 splx(s);
203 if (m == 0)
204 return;
205 #ifdef DIAGNOSTIC
206 if ((m->m_flags & M_PKTHDR) == 0)
207 panic("ipintr no HDR");
208 #endif
209 /*
210 * If no IP addresses have been set yet but the interfaces
211 * are receiving, can't do anything with incoming packets yet.
212 */
213 if (in_ifaddr.tqh_first == 0)
214 goto bad;
215 ipstat.ips_total++;
216 if (m->m_len < sizeof (struct ip) &&
217 (m = m_pullup(m, sizeof (struct ip))) == 0) {
218 ipstat.ips_toosmall++;
219 goto next;
220 }
221 ip = mtod(m, struct ip *);
222 if (ip->ip_v != IPVERSION) {
223 ipstat.ips_badvers++;
224 goto bad;
225 }
226 hlen = ip->ip_hl << 2;
227 if (hlen < sizeof(struct ip)) { /* minimum header length */
228 ipstat.ips_badhlen++;
229 goto bad;
230 }
231 if (hlen > m->m_len) {
232 if ((m = m_pullup(m, hlen)) == 0) {
233 ipstat.ips_badhlen++;
234 goto next;
235 }
236 ip = mtod(m, struct ip *);
237 }
238 if ((ip->ip_sum = in_cksum(m, hlen)) != 0) {
239 ipstat.ips_badsum++;
240 goto bad;
241 }
242
243 /*
244 * Convert fields to host representation.
245 */
246 NTOHS(ip->ip_len);
247 NTOHS(ip->ip_id);
248 NTOHS(ip->ip_off);
249 len = ip->ip_len;
250
251 /*
252 * Check that the amount of data in the buffers
253 * is as at least much as the IP header would have us expect.
254 * Trim mbufs if longer than we expect.
255 * Drop packet if shorter than we expect.
256 */
257 if (m->m_pkthdr.len < len) {
258 ipstat.ips_tooshort++;
259 goto bad;
260 }
261 if (m->m_pkthdr.len > len) {
262 if (m->m_len == m->m_pkthdr.len) {
263 m->m_len = len;
264 m->m_pkthdr.len = len;
265 } else
266 m_adj(m, len - m->m_pkthdr.len);
267 }
268
269 #ifdef PFIL_HOOKS
270 /*
271 * Run through list of hooks for input packets.
272 */
273 m0 = m;
274 for (pfh = pfil_hook_get(PFIL_IN); pfh; pfh = pfh->pfil_link.tqe_next)
275 if (pfh->pfil_func) {
276 rv = pfh->pfil_func(ip, hlen, m->m_pkthdr.rcvif, 0, &m0);
277 if (rv)
278 goto next;
279 m = m0;
280 if (m == NULL)
281 goto next;
282 ip = mtod(m, struct ip *);
283 }
284 #endif /* PFIL_HOOKS */
285
286 /*
287 * Process options and, if not destined for us,
288 * ship it on. ip_dooptions returns 1 when an
289 * error was detected (causing an icmp message
290 * to be sent and the original packet to be freed).
291 */
292 ip_nhops = 0; /* for source routed packets */
293 if (hlen > sizeof (struct ip) && ip_dooptions(m))
294 goto next;
295
296 /*
297 * Check our list of addresses, to see if the packet is for us.
298 */
299 for (ia = in_ifaddr.tqh_first; ia; ia = ia->ia_list.tqe_next) {
300 if (in_hosteq(ip->ip_dst, ia->ia_addr.sin_addr))
301 goto ours;
302 if (((ip_directedbcast == 0) || (ip_directedbcast &&
303 ia->ia_ifp == m->m_pkthdr.rcvif)) &&
304 (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
305 if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
306 in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
307 /*
308 * Look for all-0's host part (old broadcast addr),
309 * either for subnet or net.
310 */
311 ip->ip_dst.s_addr == ia->ia_subnet ||
312 ip->ip_dst.s_addr == ia->ia_net)
313 goto ours;
314 }
315 /*
316 * An interface with IP address zero accepts
317 * all packets that arrive on that interface.
318 */
319 if ((ia->ia_ifp == m->m_pkthdr.rcvif) &&
320 in_nullhost(ia->ia_addr.sin_addr))
321 goto ours;
322 }
323 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
324 struct in_multi *inm;
325 #ifdef MROUTING
326 extern struct socket *ip_mrouter;
327
328 if (m->m_flags & M_EXT) {
329 if ((m = m_pullup(m, hlen)) == 0) {
330 ipstat.ips_toosmall++;
331 goto next;
332 }
333 ip = mtod(m, struct ip *);
334 }
335
336 if (ip_mrouter) {
337 /*
338 * If we are acting as a multicast router, all
339 * incoming multicast packets are passed to the
340 * kernel-level multicast forwarding function.
341 * The packet is returned (relatively) intact; if
342 * ip_mforward() returns a non-zero value, the packet
343 * must be discarded, else it may be accepted below.
344 *
345 * (The IP ident field is put in the same byte order
346 * as expected when ip_mforward() is called from
347 * ip_output().)
348 */
349 ip->ip_id = htons(ip->ip_id);
350 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
351 ipstat.ips_cantforward++;
352 m_freem(m);
353 goto next;
354 }
355 ip->ip_id = ntohs(ip->ip_id);
356
357 /*
358 * The process-level routing demon needs to receive
359 * all multicast IGMP packets, whether or not this
360 * host belongs to their destination groups.
361 */
362 if (ip->ip_p == IPPROTO_IGMP)
363 goto ours;
364 ipstat.ips_forward++;
365 }
366 #endif
367 /*
368 * See if we belong to the destination multicast group on the
369 * arrival interface.
370 */
371 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
372 if (inm == NULL) {
373 ipstat.ips_cantforward++;
374 m_freem(m);
375 goto next;
376 }
377 goto ours;
378 }
379 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
380 in_nullhost(ip->ip_dst))
381 goto ours;
382
383 /*
384 * Not for us; forward if possible and desirable.
385 */
386 if (ipforwarding == 0) {
387 ipstat.ips_cantforward++;
388 m_freem(m);
389 } else
390 ip_forward(m, 0);
391 goto next;
392
393 ours:
394 /*
395 * If offset or IP_MF are set, must reassemble.
396 * Otherwise, nothing need be done.
397 * (We could look in the reassembly queue to see
398 * if the packet was previously fragmented,
399 * but it's not worth the time; just let them time out.)
400 */
401 if (ip->ip_off & ~(IP_DF|IP_RF)) {
402 /*
403 * Look for queue of fragments
404 * of this datagram.
405 */
406 for (fp = ipq.lh_first; fp != NULL; fp = fp->ipq_q.le_next)
407 if (ip->ip_id == fp->ipq_id &&
408 in_hosteq(ip->ip_src, fp->ipq_src) &&
409 in_hosteq(ip->ip_dst, fp->ipq_dst) &&
410 ip->ip_p == fp->ipq_p)
411 goto found;
412 fp = 0;
413 found:
414
415 /*
416 * Adjust ip_len to not reflect header,
417 * set ipqe_mff if more fragments are expected,
418 * convert offset of this to bytes.
419 */
420 ip->ip_len -= hlen;
421 mff = (ip->ip_off & IP_MF) != 0;
422 if (mff) {
423 /*
424 * Make sure that fragments have a data length
425 * that's a non-zero multiple of 8 bytes.
426 */
427 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
428 ipstat.ips_badfrags++;
429 goto bad;
430 }
431 }
432 ip->ip_off <<= 3;
433
434 /*
435 * If datagram marked as having more fragments
436 * or if this is not the first fragment,
437 * attempt reassembly; if it succeeds, proceed.
438 */
439 if (mff || ip->ip_off) {
440 ipstat.ips_fragments++;
441 MALLOC(ipqe, struct ipqent *, sizeof (struct ipqent),
442 M_IPQ, M_NOWAIT);
443 if (ipqe == NULL) {
444 ipstat.ips_rcvmemdrop++;
445 goto bad;
446 }
447 ipqe->ipqe_mff = mff;
448 ipqe->ipqe_m = m;
449 ipqe->ipqe_ip = ip;
450 m = ip_reass(ipqe, fp);
451 if (m == 0)
452 goto next;
453 ipstat.ips_reassembled++;
454 ip = mtod(m, struct ip *);
455 } else
456 if (fp)
457 ip_freef(fp);
458 } else
459 ip->ip_len -= hlen;
460
461 /*
462 * Switch out to protocol's input routine.
463 */
464 ipstat.ips_delivered++;
465 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
466 goto next;
467 bad:
468 m_freem(m);
469 goto next;
470 }
471
472 /*
473 * Take incoming datagram fragment and try to
474 * reassemble it into whole datagram. If a chain for
475 * reassembly of this datagram already exists, then it
476 * is given as fp; otherwise have to make a chain.
477 */
478 struct mbuf *
479 ip_reass(ipqe, fp)
480 register struct ipqent *ipqe;
481 register struct ipq *fp;
482 {
483 register struct mbuf *m = ipqe->ipqe_m;
484 register struct ipqent *nq, *p, *q;
485 struct ip *ip;
486 struct mbuf *t;
487 int hlen = ipqe->ipqe_ip->ip_hl << 2;
488 int i, next;
489
490 /*
491 * Presence of header sizes in mbufs
492 * would confuse code below.
493 */
494 m->m_data += hlen;
495 m->m_len -= hlen;
496
497 /*
498 * If first fragment to arrive, create a reassembly queue.
499 */
500 if (fp == 0) {
501 MALLOC(fp, struct ipq *, sizeof (struct ipq),
502 M_FTABLE, M_NOWAIT);
503 if (fp == NULL)
504 goto dropfrag;
505 LIST_INSERT_HEAD(&ipq, fp, ipq_q);
506 fp->ipq_ttl = IPFRAGTTL;
507 fp->ipq_p = ipqe->ipqe_ip->ip_p;
508 fp->ipq_id = ipqe->ipqe_ip->ip_id;
509 LIST_INIT(&fp->ipq_fragq);
510 fp->ipq_src = ipqe->ipqe_ip->ip_src;
511 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
512 p = NULL;
513 goto insert;
514 }
515
516 /*
517 * Find a segment which begins after this one does.
518 */
519 for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
520 p = q, q = q->ipqe_q.le_next)
521 if (q->ipqe_ip->ip_off > ipqe->ipqe_ip->ip_off)
522 break;
523
524 /*
525 * If there is a preceding segment, it may provide some of
526 * our data already. If so, drop the data from the incoming
527 * segment. If it provides all of our data, drop us.
528 */
529 if (p != NULL) {
530 i = p->ipqe_ip->ip_off + p->ipqe_ip->ip_len -
531 ipqe->ipqe_ip->ip_off;
532 if (i > 0) {
533 if (i >= ipqe->ipqe_ip->ip_len)
534 goto dropfrag;
535 m_adj(ipqe->ipqe_m, i);
536 ipqe->ipqe_ip->ip_off += i;
537 ipqe->ipqe_ip->ip_len -= i;
538 }
539 }
540
541 /*
542 * While we overlap succeeding segments trim them or,
543 * if they are completely covered, dequeue them.
544 */
545 for (; q != NULL && ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len >
546 q->ipqe_ip->ip_off; q = nq) {
547 i = (ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len) -
548 q->ipqe_ip->ip_off;
549 if (i < q->ipqe_ip->ip_len) {
550 q->ipqe_ip->ip_len -= i;
551 q->ipqe_ip->ip_off += i;
552 m_adj(q->ipqe_m, i);
553 break;
554 }
555 nq = q->ipqe_q.le_next;
556 m_freem(q->ipqe_m);
557 LIST_REMOVE(q, ipqe_q);
558 FREE(q, M_IPQ);
559 }
560
561 insert:
562 /*
563 * Stick new segment in its place;
564 * check for complete reassembly.
565 */
566 if (p == NULL) {
567 LIST_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
568 } else {
569 LIST_INSERT_AFTER(p, ipqe, ipqe_q);
570 }
571 next = 0;
572 for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
573 p = q, q = q->ipqe_q.le_next) {
574 if (q->ipqe_ip->ip_off != next)
575 return (0);
576 next += q->ipqe_ip->ip_len;
577 }
578 if (p->ipqe_mff)
579 return (0);
580
581 /*
582 * Reassembly is complete. Check for a bogus message size and
583 * concatenate fragments.
584 */
585 q = fp->ipq_fragq.lh_first;
586 ip = q->ipqe_ip;
587 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
588 ipstat.ips_toolong++;
589 ip_freef(fp);
590 return (0);
591 }
592 m = q->ipqe_m;
593 t = m->m_next;
594 m->m_next = 0;
595 m_cat(m, t);
596 nq = q->ipqe_q.le_next;
597 FREE(q, M_IPQ);
598 for (q = nq; q != NULL; q = nq) {
599 t = q->ipqe_m;
600 nq = q->ipqe_q.le_next;
601 FREE(q, M_IPQ);
602 m_cat(m, t);
603 }
604
605 /*
606 * Create header for new ip packet by
607 * modifying header of first packet;
608 * dequeue and discard fragment reassembly header.
609 * Make header visible.
610 */
611 ip->ip_len = next;
612 ip->ip_src = fp->ipq_src;
613 ip->ip_dst = fp->ipq_dst;
614 LIST_REMOVE(fp, ipq_q);
615 FREE(fp, M_FTABLE);
616 m->m_len += (ip->ip_hl << 2);
617 m->m_data -= (ip->ip_hl << 2);
618 /* some debugging cruft by sklower, below, will go away soon */
619 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
620 register int plen = 0;
621 for (t = m; t; t = t->m_next)
622 plen += t->m_len;
623 m->m_pkthdr.len = plen;
624 }
625 return (m);
626
627 dropfrag:
628 ipstat.ips_fragdropped++;
629 m_freem(m);
630 FREE(ipqe, M_IPQ);
631 return (0);
632 }
633
634 /*
635 * Free a fragment reassembly header and all
636 * associated datagrams.
637 */
638 void
639 ip_freef(fp)
640 struct ipq *fp;
641 {
642 register struct ipqent *q, *p;
643
644 for (q = fp->ipq_fragq.lh_first; q != NULL; q = p) {
645 p = q->ipqe_q.le_next;
646 m_freem(q->ipqe_m);
647 LIST_REMOVE(q, ipqe_q);
648 FREE(q, M_IPQ);
649 }
650 LIST_REMOVE(fp, ipq_q);
651 FREE(fp, M_FTABLE);
652 }
653
654 /*
655 * IP timer processing;
656 * if a timer expires on a reassembly
657 * queue, discard it.
658 */
659 void
660 ip_slowtimo()
661 {
662 register struct ipq *fp, *nfp;
663 int s = splsoftnet();
664
665 for (fp = ipq.lh_first; fp != NULL; fp = nfp) {
666 nfp = fp->ipq_q.le_next;
667 if (--fp->ipq_ttl == 0) {
668 ipstat.ips_fragtimeout++;
669 ip_freef(fp);
670 }
671 }
672 splx(s);
673 }
674
675 /*
676 * Drain off all datagram fragments.
677 */
678 void
679 ip_drain()
680 {
681
682 while (ipq.lh_first != NULL) {
683 ipstat.ips_fragdropped++;
684 ip_freef(ipq.lh_first);
685 }
686 }
687
688 /*
689 * Do option processing on a datagram,
690 * possibly discarding it if bad options are encountered,
691 * or forwarding it if source-routed.
692 * Returns 1 if packet has been forwarded/freed,
693 * 0 if the packet should be processed further.
694 */
695 int
696 ip_dooptions(m)
697 struct mbuf *m;
698 {
699 register struct ip *ip = mtod(m, struct ip *);
700 register u_char *cp;
701 register struct ip_timestamp *ipt;
702 register struct in_ifaddr *ia;
703 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
704 struct in_addr *sin, dst;
705 n_time ntime;
706
707 dst = ip->ip_dst;
708 cp = (u_char *)(ip + 1);
709 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
710 for (; cnt > 0; cnt -= optlen, cp += optlen) {
711 opt = cp[IPOPT_OPTVAL];
712 if (opt == IPOPT_EOL)
713 break;
714 if (opt == IPOPT_NOP)
715 optlen = 1;
716 else {
717 optlen = cp[IPOPT_OLEN];
718 if (optlen <= 0 || optlen > cnt) {
719 code = &cp[IPOPT_OLEN] - (u_char *)ip;
720 goto bad;
721 }
722 }
723 switch (opt) {
724
725 default:
726 break;
727
728 /*
729 * Source routing with record.
730 * Find interface with current destination address.
731 * If none on this machine then drop if strictly routed,
732 * or do nothing if loosely routed.
733 * Record interface address and bring up next address
734 * component. If strictly routed make sure next
735 * address is on directly accessible net.
736 */
737 case IPOPT_LSRR:
738 case IPOPT_SSRR:
739 if (ip_allowsrcrt == 0) {
740 type = ICMP_UNREACH;
741 code = ICMP_UNREACH_NET_PROHIB;
742 goto bad;
743 }
744 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
745 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
746 goto bad;
747 }
748 ipaddr.sin_addr = ip->ip_dst;
749 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
750 if (ia == 0) {
751 if (opt == IPOPT_SSRR) {
752 type = ICMP_UNREACH;
753 code = ICMP_UNREACH_SRCFAIL;
754 goto bad;
755 }
756 /*
757 * Loose routing, and not at next destination
758 * yet; nothing to do except forward.
759 */
760 break;
761 }
762 off--; /* 0 origin */
763 if (off > optlen - sizeof(struct in_addr)) {
764 /*
765 * End of source route. Should be for us.
766 */
767 save_rte(cp, ip->ip_src);
768 break;
769 }
770 /*
771 * locate outgoing interface
772 */
773 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
774 sizeof(ipaddr.sin_addr));
775 if (opt == IPOPT_SSRR) {
776 #define INA struct in_ifaddr *
777 #define SA struct sockaddr *
778 ia = (INA)ifa_ifwithladdr((SA)&ipaddr);
779 } else
780 ia = ip_rtaddr(ipaddr.sin_addr);
781 if (ia == 0) {
782 type = ICMP_UNREACH;
783 code = ICMP_UNREACH_SRCFAIL;
784 goto bad;
785 }
786 ip->ip_dst = ipaddr.sin_addr;
787 bcopy((caddr_t)&ia->ia_addr.sin_addr,
788 (caddr_t)(cp + off), sizeof(struct in_addr));
789 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
790 /*
791 * Let ip_intr's mcast routing check handle mcast pkts
792 */
793 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
794 break;
795
796 case IPOPT_RR:
797 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
798 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
799 goto bad;
800 }
801 /*
802 * If no space remains, ignore.
803 */
804 off--; /* 0 origin */
805 if (off > optlen - sizeof(struct in_addr))
806 break;
807 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
808 sizeof(ipaddr.sin_addr));
809 /*
810 * locate outgoing interface; if we're the destination,
811 * use the incoming interface (should be same).
812 */
813 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
814 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
815 type = ICMP_UNREACH;
816 code = ICMP_UNREACH_HOST;
817 goto bad;
818 }
819 bcopy((caddr_t)&ia->ia_addr.sin_addr,
820 (caddr_t)(cp + off), sizeof(struct in_addr));
821 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
822 break;
823
824 case IPOPT_TS:
825 code = cp - (u_char *)ip;
826 ipt = (struct ip_timestamp *)cp;
827 if (ipt->ipt_len < 5)
828 goto bad;
829 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
830 if (++ipt->ipt_oflw == 0)
831 goto bad;
832 break;
833 }
834 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
835 switch (ipt->ipt_flg) {
836
837 case IPOPT_TS_TSONLY:
838 break;
839
840 case IPOPT_TS_TSANDADDR:
841 if (ipt->ipt_ptr + sizeof(n_time) +
842 sizeof(struct in_addr) > ipt->ipt_len)
843 goto bad;
844 ipaddr.sin_addr = dst;
845 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
846 m->m_pkthdr.rcvif);
847 if (ia == 0)
848 continue;
849 bcopy((caddr_t)&ia->ia_addr.sin_addr,
850 (caddr_t)sin, sizeof(struct in_addr));
851 ipt->ipt_ptr += sizeof(struct in_addr);
852 break;
853
854 case IPOPT_TS_PRESPEC:
855 if (ipt->ipt_ptr + sizeof(n_time) +
856 sizeof(struct in_addr) > ipt->ipt_len)
857 goto bad;
858 bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
859 sizeof(struct in_addr));
860 if (ifa_ifwithaddr((SA)&ipaddr) == 0)
861 continue;
862 ipt->ipt_ptr += sizeof(struct in_addr);
863 break;
864
865 default:
866 goto bad;
867 }
868 ntime = iptime();
869 bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
870 sizeof(n_time));
871 ipt->ipt_ptr += sizeof(n_time);
872 }
873 }
874 if (forward) {
875 if (ip_forwsrcrt == 0) {
876 type = ICMP_UNREACH;
877 code = ICMP_UNREACH_SRCFAIL;
878 goto bad;
879 }
880 ip_forward(m, 1);
881 return (1);
882 }
883 return (0);
884 bad:
885 ip->ip_len -= ip->ip_hl << 2; /* XXX icmp_error adds in hdr length */
886 icmp_error(m, type, code, 0, 0);
887 ipstat.ips_badoptions++;
888 return (1);
889 }
890
891 /*
892 * Given address of next destination (final or next hop),
893 * return internet address info of interface to be used to get there.
894 */
895 struct in_ifaddr *
896 ip_rtaddr(dst)
897 struct in_addr dst;
898 {
899 register struct sockaddr_in *sin;
900
901 sin = satosin(&ipforward_rt.ro_dst);
902
903 if (ipforward_rt.ro_rt == 0 || !in_hosteq(dst, sin->sin_addr)) {
904 if (ipforward_rt.ro_rt) {
905 RTFREE(ipforward_rt.ro_rt);
906 ipforward_rt.ro_rt = 0;
907 }
908 sin->sin_family = AF_INET;
909 sin->sin_len = sizeof(*sin);
910 sin->sin_addr = dst;
911
912 rtalloc(&ipforward_rt);
913 }
914 if (ipforward_rt.ro_rt == 0)
915 return ((struct in_ifaddr *)0);
916 return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
917 }
918
919 /*
920 * Save incoming source route for use in replies,
921 * to be picked up later by ip_srcroute if the receiver is interested.
922 */
923 void
924 save_rte(option, dst)
925 u_char *option;
926 struct in_addr dst;
927 {
928 unsigned olen;
929
930 olen = option[IPOPT_OLEN];
931 #ifdef DIAGNOSTIC
932 if (ipprintfs)
933 printf("save_rte: olen %d\n", olen);
934 #endif
935 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
936 return;
937 bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
938 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
939 ip_srcrt.dst = dst;
940 }
941
942 /*
943 * Retrieve incoming source route for use in replies,
944 * in the same form used by setsockopt.
945 * The first hop is placed before the options, will be removed later.
946 */
947 struct mbuf *
948 ip_srcroute()
949 {
950 register struct in_addr *p, *q;
951 register struct mbuf *m;
952
953 if (ip_nhops == 0)
954 return ((struct mbuf *)0);
955 m = m_get(M_DONTWAIT, MT_SOOPTS);
956 if (m == 0)
957 return ((struct mbuf *)0);
958
959 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
960
961 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
962 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
963 OPTSIZ;
964 #ifdef DIAGNOSTIC
965 if (ipprintfs)
966 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
967 #endif
968
969 /*
970 * First save first hop for return route
971 */
972 p = &ip_srcrt.route[ip_nhops - 1];
973 *(mtod(m, struct in_addr *)) = *p--;
974 #ifdef DIAGNOSTIC
975 if (ipprintfs)
976 printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
977 #endif
978
979 /*
980 * Copy option fields and padding (nop) to mbuf.
981 */
982 ip_srcrt.nop = IPOPT_NOP;
983 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
984 bcopy((caddr_t)&ip_srcrt.nop,
985 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
986 q = (struct in_addr *)(mtod(m, caddr_t) +
987 sizeof(struct in_addr) + OPTSIZ);
988 #undef OPTSIZ
989 /*
990 * Record return path as an IP source route,
991 * reversing the path (pointers are now aligned).
992 */
993 while (p >= ip_srcrt.route) {
994 #ifdef DIAGNOSTIC
995 if (ipprintfs)
996 printf(" %x", ntohl(q->s_addr));
997 #endif
998 *q++ = *p--;
999 }
1000 /*
1001 * Last hop goes to final destination.
1002 */
1003 *q = ip_srcrt.dst;
1004 #ifdef DIAGNOSTIC
1005 if (ipprintfs)
1006 printf(" %x\n", ntohl(q->s_addr));
1007 #endif
1008 return (m);
1009 }
1010
1011 /*
1012 * Strip out IP options, at higher
1013 * level protocol in the kernel.
1014 * Second argument is buffer to which options
1015 * will be moved, and return value is their length.
1016 * XXX should be deleted; last arg currently ignored.
1017 */
1018 void
1019 ip_stripoptions(m, mopt)
1020 register struct mbuf *m;
1021 struct mbuf *mopt;
1022 {
1023 register int i;
1024 struct ip *ip = mtod(m, struct ip *);
1025 register caddr_t opts;
1026 int olen;
1027
1028 olen = (ip->ip_hl<<2) - sizeof (struct ip);
1029 opts = (caddr_t)(ip + 1);
1030 i = m->m_len - (sizeof (struct ip) + olen);
1031 bcopy(opts + olen, opts, (unsigned)i);
1032 m->m_len -= olen;
1033 if (m->m_flags & M_PKTHDR)
1034 m->m_pkthdr.len -= olen;
1035 ip->ip_hl = sizeof(struct ip) >> 2;
1036 }
1037
1038 int inetctlerrmap[PRC_NCMDS] = {
1039 0, 0, 0, 0,
1040 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1041 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1042 EMSGSIZE, EHOSTUNREACH, 0, 0,
1043 0, 0, 0, 0,
1044 ENOPROTOOPT
1045 };
1046
1047 /*
1048 * Forward a packet. If some error occurs return the sender
1049 * an icmp packet. Note we can't always generate a meaningful
1050 * icmp message because icmp doesn't have a large enough repertoire
1051 * of codes and types.
1052 *
1053 * If not forwarding, just drop the packet. This could be confusing
1054 * if ipforwarding was zero but some routing protocol was advancing
1055 * us as a gateway to somewhere. However, we must let the routing
1056 * protocol deal with that.
1057 *
1058 * The srcrt parameter indicates whether the packet is being forwarded
1059 * via a source route.
1060 */
1061 void
1062 ip_forward(m, srcrt)
1063 struct mbuf *m;
1064 int srcrt;
1065 {
1066 register struct ip *ip = mtod(m, struct ip *);
1067 register struct sockaddr_in *sin;
1068 register struct rtentry *rt;
1069 int error, type = 0, code = 0;
1070 struct mbuf *mcopy;
1071 n_long dest;
1072 struct ifnet *destifp;
1073
1074 dest = 0;
1075 #ifdef DIAGNOSTIC
1076 if (ipprintfs)
1077 printf("forward: src %x dst %x ttl %x\n",
1078 ip->ip_src.s_addr, ip->ip_dst.s_addr, ip->ip_ttl);
1079 #endif
1080 if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1081 ipstat.ips_cantforward++;
1082 m_freem(m);
1083 return;
1084 }
1085 HTONS(ip->ip_id);
1086 if (ip->ip_ttl <= IPTTLDEC) {
1087 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1088 return;
1089 }
1090 ip->ip_ttl -= IPTTLDEC;
1091
1092 sin = satosin(&ipforward_rt.ro_dst);
1093 if ((rt = ipforward_rt.ro_rt) == 0 ||
1094 !in_hosteq(ip->ip_dst, sin->sin_addr)) {
1095 if (ipforward_rt.ro_rt) {
1096 RTFREE(ipforward_rt.ro_rt);
1097 ipforward_rt.ro_rt = 0;
1098 }
1099 sin->sin_family = AF_INET;
1100 sin->sin_len = sizeof(struct sockaddr_in);
1101 sin->sin_addr = ip->ip_dst;
1102
1103 rtalloc(&ipforward_rt);
1104 if (ipforward_rt.ro_rt == 0) {
1105 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1106 return;
1107 }
1108 rt = ipforward_rt.ro_rt;
1109 }
1110
1111 /*
1112 * Save at most 68 bytes of the packet in case
1113 * we need to generate an ICMP message to the src.
1114 */
1115 mcopy = m_copy(m, 0, imin((int)ip->ip_len, 68));
1116
1117 /*
1118 * If forwarding packet using same interface that it came in on,
1119 * perhaps should send a redirect to sender to shortcut a hop.
1120 * Only send redirect if source is sending directly to us,
1121 * and if packet was not source routed (or has any options).
1122 * Also, don't send redirect if forwarding using a default route
1123 * or a route modified by a redirect.
1124 */
1125 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1126 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1127 !in_nullhost(satosin(rt_key(rt))->sin_addr) &&
1128 ipsendredirects && !srcrt) {
1129 if (rt->rt_ifa &&
1130 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1131 ifatoia(rt->rt_ifa)->ia_subnet) {
1132 if (rt->rt_flags & RTF_GATEWAY)
1133 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1134 else
1135 dest = ip->ip_dst.s_addr;
1136 /* Router requirements says to only send host redirects */
1137 type = ICMP_REDIRECT;
1138 code = ICMP_REDIRECT_HOST;
1139 #ifdef DIAGNOSTIC
1140 if (ipprintfs)
1141 printf("redirect (%d) to %x\n", code, (u_int32_t)dest);
1142 #endif
1143 }
1144 }
1145
1146 error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1147 (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)), 0);
1148 if (error)
1149 ipstat.ips_cantforward++;
1150 else {
1151 ipstat.ips_forward++;
1152 if (type)
1153 ipstat.ips_redirectsent++;
1154 else {
1155 if (mcopy)
1156 m_freem(mcopy);
1157 return;
1158 }
1159 }
1160 if (mcopy == NULL)
1161 return;
1162 destifp = NULL;
1163
1164 switch (error) {
1165
1166 case 0: /* forwarded, but need redirect */
1167 /* type, code set above */
1168 break;
1169
1170 case ENETUNREACH: /* shouldn't happen, checked above */
1171 case EHOSTUNREACH:
1172 case ENETDOWN:
1173 case EHOSTDOWN:
1174 default:
1175 type = ICMP_UNREACH;
1176 code = ICMP_UNREACH_HOST;
1177 break;
1178
1179 case EMSGSIZE:
1180 type = ICMP_UNREACH;
1181 code = ICMP_UNREACH_NEEDFRAG;
1182 if (ipforward_rt.ro_rt)
1183 destifp = ipforward_rt.ro_rt->rt_ifp;
1184 ipstat.ips_cantfrag++;
1185 break;
1186
1187 case ENOBUFS:
1188 type = ICMP_SOURCEQUENCH;
1189 code = 0;
1190 break;
1191 }
1192 icmp_error(mcopy, type, code, dest, destifp);
1193 }
1194
1195 void
1196 ip_savecontrol(inp, mp, ip, m)
1197 register struct inpcb *inp;
1198 register struct mbuf **mp;
1199 register struct ip *ip;
1200 register struct mbuf *m;
1201 {
1202
1203 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1204 struct timeval tv;
1205
1206 microtime(&tv);
1207 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1208 SCM_TIMESTAMP, SOL_SOCKET);
1209 if (*mp)
1210 mp = &(*mp)->m_next;
1211 }
1212 if (inp->inp_flags & INP_RECVDSTADDR) {
1213 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1214 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1215 if (*mp)
1216 mp = &(*mp)->m_next;
1217 }
1218 #ifdef notyet
1219 /*
1220 * XXX
1221 * Moving these out of udp_input() made them even more broken
1222 * than they already were.
1223 * - fenner (at) parc.xerox.com
1224 */
1225 /* options were tossed already */
1226 if (inp->inp_flags & INP_RECVOPTS) {
1227 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1228 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1229 if (*mp)
1230 mp = &(*mp)->m_next;
1231 }
1232 /* ip_srcroute doesn't do what we want here, need to fix */
1233 if (inp->inp_flags & INP_RECVRETOPTS) {
1234 *mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1235 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1236 if (*mp)
1237 mp = &(*mp)->m_next;
1238 }
1239 #endif
1240 if (inp->inp_flags & INP_RECVIF) {
1241 struct sockaddr_dl sdl;
1242
1243 sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]);
1244 sdl.sdl_family = AF_LINK;
1245 sdl.sdl_index = m->m_pkthdr.rcvif ?
1246 m->m_pkthdr.rcvif->if_index : 0;
1247 sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0;
1248 *mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len,
1249 IP_RECVIF, IPPROTO_IP);
1250 if (*mp)
1251 mp = &(*mp)->m_next;
1252 }
1253 }
1254
1255 int
1256 ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
1257 int *name;
1258 u_int namelen;
1259 void *oldp;
1260 size_t *oldlenp;
1261 void *newp;
1262 size_t newlen;
1263 {
1264 extern int subnetsarelocal;
1265 int error;
1266
1267 /* All sysctl names at this level are terminal. */
1268 if (namelen != 1)
1269 return (ENOTDIR);
1270
1271 switch (name[0]) {
1272 case IPCTL_FORWARDING:
1273 return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
1274 case IPCTL_SENDREDIRECTS:
1275 return (sysctl_int(oldp, oldlenp, newp, newlen,
1276 &ipsendredirects));
1277 case IPCTL_DEFTTL:
1278 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
1279 #ifdef notyet
1280 case IPCTL_DEFMTU:
1281 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
1282 #endif
1283 case IPCTL_FORWSRCRT:
1284 /* Don't allow this to change in a secure environment. */
1285 if (securelevel > 0)
1286 return (sysctl_rdint(oldp, oldlenp, newp,
1287 ip_forwsrcrt));
1288 else
1289 return (sysctl_int(oldp, oldlenp, newp, newlen,
1290 &ip_forwsrcrt));
1291 case IPCTL_DIRECTEDBCAST:
1292 return (sysctl_int(oldp, oldlenp, newp, newlen,
1293 &ip_directedbcast));
1294 case IPCTL_ALLOWSRCRT:
1295 return (sysctl_int(oldp, oldlenp, newp, newlen,
1296 &ip_allowsrcrt));
1297 case IPCTL_SUBNETSARELOCAL:
1298 return (sysctl_int(oldp, oldlenp, newp, newlen,
1299 &subnetsarelocal));
1300 case IPCTL_MTUDISC:
1301 error = sysctl_int(oldp, oldlenp, newp, newlen,
1302 &ip_mtudisc);
1303 if (ip_mtudisc != 0 && ip_mtudisc_timeout_q == NULL) {
1304 ip_mtudisc_timeout_q =
1305 rt_timer_queue_create(ip_mtudisc_timeout);
1306 } else if (ip_mtudisc == 0 && ip_mtudisc_timeout_q != NULL) {
1307 rt_timer_queue_destroy(ip_mtudisc_timeout_q, TRUE);
1308 ip_mtudisc_timeout_q = NULL;
1309 }
1310 return error;
1311 case IPCTL_MTUDISCTIMEOUT:
1312 error = sysctl_int(oldp, oldlenp, newp, newlen,
1313 &ip_mtudisc_timeout);
1314 if (ip_mtudisc_timeout_q != NULL)
1315 rt_timer_queue_change(ip_mtudisc_timeout_q,
1316 ip_mtudisc_timeout);
1317 return (error);
1318 default:
1319 return (EOPNOTSUPP);
1320 }
1321 /* NOTREACHED */
1322 }
1323