ip_input.c revision 1.65 1 /* $NetBSD: ip_input.c,v 1.65 1998/05/04 19:24:53 matt Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Public Access Networks Corporation ("Panix"). It was developed under
9 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1988, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by the University of
55 * California, Berkeley and its contributors.
56 * 4. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
73 */
74
75 #include "opt_gateway.h"
76 #include "opt_mrouting.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/malloc.h>
81 #include <sys/mbuf.h>
82 #include <sys/domain.h>
83 #include <sys/protosw.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/errno.h>
87 #include <sys/time.h>
88 #include <sys/kernel.h>
89 #include <sys/proc.h>
90
91 #include <vm/vm.h>
92 #include <sys/sysctl.h>
93
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/route.h>
97 #include <net/pfil.h>
98
99 #include <netinet/in.h>
100 #include <netinet/in_systm.h>
101 #include <netinet/ip.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet/in_var.h>
104 #include <netinet/ip_var.h>
105 #include <netinet/ip_icmp.h>
106
107 #ifndef IPFORWARDING
108 #ifdef GATEWAY
109 #define IPFORWARDING 1 /* forward IP packets not for us */
110 #else /* GATEWAY */
111 #define IPFORWARDING 0 /* don't forward IP packets not for us */
112 #endif /* GATEWAY */
113 #endif /* IPFORWARDING */
114 #ifndef IPSENDREDIRECTS
115 #define IPSENDREDIRECTS 1
116 #endif
117 #ifndef IPFORWSRCRT
118 #define IPFORWSRCRT 1 /* forward source-routed packets */
119 #endif
120 #ifndef IPALLOWSRCRT
121 #define IPALLOWSRCRT 1 /* allow source-routed packets */
122 #endif
123 #ifndef IPMTUDISC
124 #define IPMTUDISC 0
125 #endif
126 #ifndef IPMTUDISCTIMEOUT
127 #define IPMTUDISCTIMEOUT (10 * 60) /* as per RFC 1191 */
128 #endif
129
130 /*
131 * Note: DIRECTED_BROADCAST is handled this way so that previous
132 * configuration using this option will Just Work.
133 */
134 #ifndef IPDIRECTEDBCAST
135 #ifdef DIRECTED_BROADCAST
136 #define IPDIRECTEDBCAST 1
137 #else
138 #define IPDIRECTEDBCAST 0
139 #endif /* DIRECTED_BROADCAST */
140 #endif /* IPDIRECTEDBCAST */
141 int ipforwarding = IPFORWARDING;
142 int ipsendredirects = IPSENDREDIRECTS;
143 int ip_defttl = IPDEFTTL;
144 int ip_forwsrcrt = IPFORWSRCRT;
145 int ip_directedbcast = IPDIRECTEDBCAST;
146 int ip_allowsrcrt = IPALLOWSRCRT;
147 int ip_mtudisc = IPMTUDISC;
148 u_int ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
149 #ifdef DIAGNOSTIC
150 int ipprintfs = 0;
151 #endif
152
153 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
154
155 extern struct domain inetdomain;
156 extern struct protosw inetsw[];
157 u_char ip_protox[IPPROTO_MAX];
158 int ipqmaxlen = IFQ_MAXLEN;
159 struct in_ifaddrhead in_ifaddr;
160 struct in_ifaddrhashhead *in_ifaddrhashtbl;
161 struct ifqueue ipintrq;
162 struct ipstat ipstat;
163 u_int16_t ip_id;
164 int ip_defttl;
165 struct ipqhead ipq;
166
167 /*
168 * We need to save the IP options in case a protocol wants to respond
169 * to an incoming packet over the same route if the packet got here
170 * using IP source routing. This allows connection establishment and
171 * maintenance when the remote end is on a network that is not known
172 * to us.
173 */
174 int ip_nhops = 0;
175 static struct ip_srcrt {
176 struct in_addr dst; /* final destination */
177 char nop; /* one NOP to align */
178 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
179 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
180 } ip_srcrt;
181
182 static void save_rte __P((u_char *, struct in_addr));
183
184 /*
185 * IP initialization: fill in IP protocol switch table.
186 * All protocols not implemented in kernel go to raw IP protocol handler.
187 */
188 void
189 ip_init()
190 {
191 register struct protosw *pr;
192 register int i;
193
194 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
195 if (pr == 0)
196 panic("ip_init");
197 for (i = 0; i < IPPROTO_MAX; i++)
198 ip_protox[i] = pr - inetsw;
199 for (pr = inetdomain.dom_protosw;
200 pr < inetdomain.dom_protoswNPROTOSW; pr++)
201 if (pr->pr_domain->dom_family == PF_INET &&
202 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
203 ip_protox[pr->pr_protocol] = pr - inetsw;
204 LIST_INIT(&ipq);
205 ip_id = time.tv_sec & 0xffff;
206 ipintrq.ifq_maxlen = ipqmaxlen;
207 TAILQ_INIT(&in_ifaddr);
208 in_ifaddrhashtbl =
209 hashinit(IN_IFADDR_HASH_SIZE, M_IFADDR, M_WAITOK, &in_ifaddrhash);
210 if (ip_mtudisc != 0)
211 ip_mtudisc_timeout_q =
212 rt_timer_queue_create(ip_mtudisc_timeout);
213 }
214
215 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
216 struct route ipforward_rt;
217
218 /*
219 * Ip input routine. Checksum and byte swap header. If fragmented
220 * try to reassemble. Process options. Pass to next level.
221 */
222 void
223 ipintr()
224 {
225 register struct ip *ip = NULL;
226 register struct mbuf *m;
227 register struct ipq *fp;
228 register struct in_ifaddr *ia;
229 register struct ifaddr *ifa;
230 struct ipqent *ipqe;
231 int hlen = 0, mff, len, s;
232 #ifdef PFIL_HOOKS
233 struct packet_filter_hook *pfh;
234 struct mbuf *m0;
235 int rv;
236 #endif /* PFIL_HOOKS */
237
238 next:
239 /*
240 * Get next datagram off input queue and get IP header
241 * in first mbuf.
242 */
243 s = splimp();
244 IF_DEQUEUE(&ipintrq, m);
245 splx(s);
246 if (m == 0)
247 return;
248 #ifdef DIAGNOSTIC
249 if ((m->m_flags & M_PKTHDR) == 0)
250 panic("ipintr no HDR");
251 #endif
252 /*
253 * If no IP addresses have been set yet but the interfaces
254 * are receiving, can't do anything with incoming packets yet.
255 */
256 if (in_ifaddr.tqh_first == 0)
257 goto bad;
258 ipstat.ips_total++;
259 if (m->m_len < sizeof (struct ip) &&
260 (m = m_pullup(m, sizeof (struct ip))) == 0) {
261 ipstat.ips_toosmall++;
262 goto next;
263 }
264 ip = mtod(m, struct ip *);
265 if (ip->ip_v != IPVERSION) {
266 ipstat.ips_badvers++;
267 goto bad;
268 }
269 hlen = ip->ip_hl << 2;
270 if (hlen < sizeof(struct ip)) { /* minimum header length */
271 ipstat.ips_badhlen++;
272 goto bad;
273 }
274 if (hlen > m->m_len) {
275 if ((m = m_pullup(m, hlen)) == 0) {
276 ipstat.ips_badhlen++;
277 goto next;
278 }
279 ip = mtod(m, struct ip *);
280 }
281 if ((ip->ip_sum = in_cksum(m, hlen)) != 0) {
282 ipstat.ips_badsum++;
283 goto bad;
284 }
285
286 /*
287 * Convert fields to host representation.
288 */
289 NTOHS(ip->ip_len);
290 NTOHS(ip->ip_id);
291 NTOHS(ip->ip_off);
292 len = ip->ip_len;
293
294 /*
295 * Check that the amount of data in the buffers
296 * is as at least much as the IP header would have us expect.
297 * Trim mbufs if longer than we expect.
298 * Drop packet if shorter than we expect.
299 */
300 if (m->m_pkthdr.len < len) {
301 ipstat.ips_tooshort++;
302 goto bad;
303 }
304 if (m->m_pkthdr.len > len) {
305 if (m->m_len == m->m_pkthdr.len) {
306 m->m_len = len;
307 m->m_pkthdr.len = len;
308 } else
309 m_adj(m, len - m->m_pkthdr.len);
310 }
311
312 /*
313 * Assume that we can create a fast-forward IP flow entry
314 * based on this packet.
315 */
316 m->m_flags |= M_CANFASTFWD;
317
318 #ifdef PFIL_HOOKS
319 /*
320 * Run through list of hooks for input packets. If there are any
321 * filters which require that additional packets in the flow are
322 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
323 * Note that filters must _never_ set this flag, as another filter
324 * in the list may have previously cleared it.
325 */
326 m0 = m;
327 for (pfh = pfil_hook_get(PFIL_IN); pfh; pfh = pfh->pfil_link.tqe_next)
328 if (pfh->pfil_func) {
329 rv = pfh->pfil_func(ip, hlen, m->m_pkthdr.rcvif, 0, &m0);
330 if (rv)
331 goto next;
332 ip = mtod(m = m0, struct ip *);
333 }
334 #endif /* PFIL_HOOKS */
335
336 /*
337 * Process options and, if not destined for us,
338 * ship it on. ip_dooptions returns 1 when an
339 * error was detected (causing an icmp message
340 * to be sent and the original packet to be freed).
341 */
342 ip_nhops = 0; /* for source routed packets */
343 if (hlen > sizeof (struct ip) && ip_dooptions(m))
344 goto next;
345
346 /*
347 * Check our list of addresses, to see if the packet is for us.
348 */
349 INADDR_TO_IA(ip->ip_dst, ia);
350 if (ia != NULL) goto ours;
351 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
352 for (ifa = m->m_pkthdr.rcvif->if_addrlist.tqh_first;
353 ifa != NULL; ifa = ifa->ifa_list.tqe_next) {
354 if (ifa->ifa_addr->sa_family != AF_INET) continue;
355 ia = ifatoia(ifa);
356 if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
357 in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
358 /*
359 * Look for all-0's host part (old broadcast addr),
360 * either for subnet or net.
361 */
362 ip->ip_dst.s_addr == ia->ia_subnet ||
363 ip->ip_dst.s_addr == ia->ia_net)
364 goto ours;
365 /*
366 * An interface with IP address zero accepts
367 * all packets that arrive on that interface.
368 */
369 if (in_nullhost(ia->ia_addr.sin_addr))
370 goto ours;
371 }
372 }
373 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
374 struct in_multi *inm;
375 #ifdef MROUTING
376 extern struct socket *ip_mrouter;
377
378 if (m->m_flags & M_EXT) {
379 if ((m = m_pullup(m, hlen)) == 0) {
380 ipstat.ips_toosmall++;
381 goto next;
382 }
383 ip = mtod(m, struct ip *);
384 }
385
386 if (ip_mrouter) {
387 /*
388 * If we are acting as a multicast router, all
389 * incoming multicast packets are passed to the
390 * kernel-level multicast forwarding function.
391 * The packet is returned (relatively) intact; if
392 * ip_mforward() returns a non-zero value, the packet
393 * must be discarded, else it may be accepted below.
394 *
395 * (The IP ident field is put in the same byte order
396 * as expected when ip_mforward() is called from
397 * ip_output().)
398 */
399 ip->ip_id = htons(ip->ip_id);
400 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
401 ipstat.ips_cantforward++;
402 m_freem(m);
403 goto next;
404 }
405 ip->ip_id = ntohs(ip->ip_id);
406
407 /*
408 * The process-level routing demon needs to receive
409 * all multicast IGMP packets, whether or not this
410 * host belongs to their destination groups.
411 */
412 if (ip->ip_p == IPPROTO_IGMP)
413 goto ours;
414 ipstat.ips_forward++;
415 }
416 #endif
417 /*
418 * See if we belong to the destination multicast group on the
419 * arrival interface.
420 */
421 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
422 if (inm == NULL) {
423 ipstat.ips_cantforward++;
424 m_freem(m);
425 goto next;
426 }
427 goto ours;
428 }
429 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
430 in_nullhost(ip->ip_dst))
431 goto ours;
432
433 /*
434 * Not for us; forward if possible and desirable.
435 */
436 if (ipforwarding == 0) {
437 ipstat.ips_cantforward++;
438 m_freem(m);
439 } else
440 ip_forward(m, 0);
441 goto next;
442
443 ours:
444 /*
445 * If offset or IP_MF are set, must reassemble.
446 * Otherwise, nothing need be done.
447 * (We could look in the reassembly queue to see
448 * if the packet was previously fragmented,
449 * but it's not worth the time; just let them time out.)
450 */
451 if (ip->ip_off & ~(IP_DF|IP_RF)) {
452 /*
453 * Look for queue of fragments
454 * of this datagram.
455 */
456 for (fp = ipq.lh_first; fp != NULL; fp = fp->ipq_q.le_next)
457 if (ip->ip_id == fp->ipq_id &&
458 in_hosteq(ip->ip_src, fp->ipq_src) &&
459 in_hosteq(ip->ip_dst, fp->ipq_dst) &&
460 ip->ip_p == fp->ipq_p)
461 goto found;
462 fp = 0;
463 found:
464
465 /*
466 * Adjust ip_len to not reflect header,
467 * set ipqe_mff if more fragments are expected,
468 * convert offset of this to bytes.
469 */
470 ip->ip_len -= hlen;
471 mff = (ip->ip_off & IP_MF) != 0;
472 if (mff) {
473 /*
474 * Make sure that fragments have a data length
475 * that's a non-zero multiple of 8 bytes.
476 */
477 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
478 ipstat.ips_badfrags++;
479 goto bad;
480 }
481 }
482 ip->ip_off <<= 3;
483
484 /*
485 * If datagram marked as having more fragments
486 * or if this is not the first fragment,
487 * attempt reassembly; if it succeeds, proceed.
488 */
489 if (mff || ip->ip_off) {
490 ipstat.ips_fragments++;
491 MALLOC(ipqe, struct ipqent *, sizeof (struct ipqent),
492 M_IPQ, M_NOWAIT);
493 if (ipqe == NULL) {
494 ipstat.ips_rcvmemdrop++;
495 goto bad;
496 }
497 ipqe->ipqe_mff = mff;
498 ipqe->ipqe_m = m;
499 ipqe->ipqe_ip = ip;
500 m = ip_reass(ipqe, fp);
501 if (m == 0)
502 goto next;
503 ipstat.ips_reassembled++;
504 ip = mtod(m, struct ip *);
505 } else
506 if (fp)
507 ip_freef(fp);
508 } else
509 ip->ip_len -= hlen;
510
511 /*
512 * Switch out to protocol's input routine.
513 */
514 ipstat.ips_delivered++;
515 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
516 goto next;
517 bad:
518 m_freem(m);
519 goto next;
520 }
521
522 /*
523 * Take incoming datagram fragment and try to
524 * reassemble it into whole datagram. If a chain for
525 * reassembly of this datagram already exists, then it
526 * is given as fp; otherwise have to make a chain.
527 */
528 struct mbuf *
529 ip_reass(ipqe, fp)
530 register struct ipqent *ipqe;
531 register struct ipq *fp;
532 {
533 register struct mbuf *m = ipqe->ipqe_m;
534 register struct ipqent *nq, *p, *q;
535 struct ip *ip;
536 struct mbuf *t;
537 int hlen = ipqe->ipqe_ip->ip_hl << 2;
538 int i, next;
539
540 /*
541 * Presence of header sizes in mbufs
542 * would confuse code below.
543 */
544 m->m_data += hlen;
545 m->m_len -= hlen;
546
547 /*
548 * If first fragment to arrive, create a reassembly queue.
549 */
550 if (fp == 0) {
551 MALLOC(fp, struct ipq *, sizeof (struct ipq),
552 M_FTABLE, M_NOWAIT);
553 if (fp == NULL)
554 goto dropfrag;
555 LIST_INSERT_HEAD(&ipq, fp, ipq_q);
556 fp->ipq_ttl = IPFRAGTTL;
557 fp->ipq_p = ipqe->ipqe_ip->ip_p;
558 fp->ipq_id = ipqe->ipqe_ip->ip_id;
559 LIST_INIT(&fp->ipq_fragq);
560 fp->ipq_src = ipqe->ipqe_ip->ip_src;
561 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
562 p = NULL;
563 goto insert;
564 }
565
566 /*
567 * Find a segment which begins after this one does.
568 */
569 for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
570 p = q, q = q->ipqe_q.le_next)
571 if (q->ipqe_ip->ip_off > ipqe->ipqe_ip->ip_off)
572 break;
573
574 /*
575 * If there is a preceding segment, it may provide some of
576 * our data already. If so, drop the data from the incoming
577 * segment. If it provides all of our data, drop us.
578 */
579 if (p != NULL) {
580 i = p->ipqe_ip->ip_off + p->ipqe_ip->ip_len -
581 ipqe->ipqe_ip->ip_off;
582 if (i > 0) {
583 if (i >= ipqe->ipqe_ip->ip_len)
584 goto dropfrag;
585 m_adj(ipqe->ipqe_m, i);
586 ipqe->ipqe_ip->ip_off += i;
587 ipqe->ipqe_ip->ip_len -= i;
588 }
589 }
590
591 /*
592 * While we overlap succeeding segments trim them or,
593 * if they are completely covered, dequeue them.
594 */
595 for (; q != NULL && ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len >
596 q->ipqe_ip->ip_off; q = nq) {
597 i = (ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len) -
598 q->ipqe_ip->ip_off;
599 if (i < q->ipqe_ip->ip_len) {
600 q->ipqe_ip->ip_len -= i;
601 q->ipqe_ip->ip_off += i;
602 m_adj(q->ipqe_m, i);
603 break;
604 }
605 nq = q->ipqe_q.le_next;
606 m_freem(q->ipqe_m);
607 LIST_REMOVE(q, ipqe_q);
608 FREE(q, M_IPQ);
609 }
610
611 insert:
612 /*
613 * Stick new segment in its place;
614 * check for complete reassembly.
615 */
616 if (p == NULL) {
617 LIST_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
618 } else {
619 LIST_INSERT_AFTER(p, ipqe, ipqe_q);
620 }
621 next = 0;
622 for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
623 p = q, q = q->ipqe_q.le_next) {
624 if (q->ipqe_ip->ip_off != next)
625 return (0);
626 next += q->ipqe_ip->ip_len;
627 }
628 if (p->ipqe_mff)
629 return (0);
630
631 /*
632 * Reassembly is complete. Check for a bogus message size and
633 * concatenate fragments.
634 */
635 q = fp->ipq_fragq.lh_first;
636 ip = q->ipqe_ip;
637 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
638 ipstat.ips_toolong++;
639 ip_freef(fp);
640 return (0);
641 }
642 m = q->ipqe_m;
643 t = m->m_next;
644 m->m_next = 0;
645 m_cat(m, t);
646 nq = q->ipqe_q.le_next;
647 FREE(q, M_IPQ);
648 for (q = nq; q != NULL; q = nq) {
649 t = q->ipqe_m;
650 nq = q->ipqe_q.le_next;
651 FREE(q, M_IPQ);
652 m_cat(m, t);
653 }
654
655 /*
656 * Create header for new ip packet by
657 * modifying header of first packet;
658 * dequeue and discard fragment reassembly header.
659 * Make header visible.
660 */
661 ip->ip_len = next;
662 ip->ip_src = fp->ipq_src;
663 ip->ip_dst = fp->ipq_dst;
664 LIST_REMOVE(fp, ipq_q);
665 FREE(fp, M_FTABLE);
666 m->m_len += (ip->ip_hl << 2);
667 m->m_data -= (ip->ip_hl << 2);
668 /* some debugging cruft by sklower, below, will go away soon */
669 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
670 register int plen = 0;
671 for (t = m; t; t = t->m_next)
672 plen += t->m_len;
673 m->m_pkthdr.len = plen;
674 }
675 return (m);
676
677 dropfrag:
678 ipstat.ips_fragdropped++;
679 m_freem(m);
680 FREE(ipqe, M_IPQ);
681 return (0);
682 }
683
684 /*
685 * Free a fragment reassembly header and all
686 * associated datagrams.
687 */
688 void
689 ip_freef(fp)
690 struct ipq *fp;
691 {
692 register struct ipqent *q, *p;
693
694 for (q = fp->ipq_fragq.lh_first; q != NULL; q = p) {
695 p = q->ipqe_q.le_next;
696 m_freem(q->ipqe_m);
697 LIST_REMOVE(q, ipqe_q);
698 FREE(q, M_IPQ);
699 }
700 LIST_REMOVE(fp, ipq_q);
701 FREE(fp, M_FTABLE);
702 }
703
704 /*
705 * IP timer processing;
706 * if a timer expires on a reassembly
707 * queue, discard it.
708 */
709 void
710 ip_slowtimo()
711 {
712 register struct ipq *fp, *nfp;
713 int s = splsoftnet();
714
715 for (fp = ipq.lh_first; fp != NULL; fp = nfp) {
716 nfp = fp->ipq_q.le_next;
717 if (--fp->ipq_ttl == 0) {
718 ipstat.ips_fragtimeout++;
719 ip_freef(fp);
720 }
721 }
722 #ifdef GATEWAY
723 ipflow_slowtimo();
724 #endif
725 splx(s);
726 }
727
728 /*
729 * Drain off all datagram fragments.
730 */
731 void
732 ip_drain()
733 {
734
735 while (ipq.lh_first != NULL) {
736 ipstat.ips_fragdropped++;
737 ip_freef(ipq.lh_first);
738 }
739 }
740
741 /*
742 * Do option processing on a datagram,
743 * possibly discarding it if bad options are encountered,
744 * or forwarding it if source-routed.
745 * Returns 1 if packet has been forwarded/freed,
746 * 0 if the packet should be processed further.
747 */
748 int
749 ip_dooptions(m)
750 struct mbuf *m;
751 {
752 register struct ip *ip = mtod(m, struct ip *);
753 register u_char *cp;
754 register struct ip_timestamp *ipt;
755 register struct in_ifaddr *ia;
756 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
757 struct in_addr *sin, dst;
758 n_time ntime;
759
760 dst = ip->ip_dst;
761 cp = (u_char *)(ip + 1);
762 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
763 for (; cnt > 0; cnt -= optlen, cp += optlen) {
764 opt = cp[IPOPT_OPTVAL];
765 if (opt == IPOPT_EOL)
766 break;
767 if (opt == IPOPT_NOP)
768 optlen = 1;
769 else {
770 optlen = cp[IPOPT_OLEN];
771 if (optlen <= 0 || optlen > cnt) {
772 code = &cp[IPOPT_OLEN] - (u_char *)ip;
773 goto bad;
774 }
775 }
776 switch (opt) {
777
778 default:
779 break;
780
781 /*
782 * Source routing with record.
783 * Find interface with current destination address.
784 * If none on this machine then drop if strictly routed,
785 * or do nothing if loosely routed.
786 * Record interface address and bring up next address
787 * component. If strictly routed make sure next
788 * address is on directly accessible net.
789 */
790 case IPOPT_LSRR:
791 case IPOPT_SSRR:
792 if (ip_allowsrcrt == 0) {
793 type = ICMP_UNREACH;
794 code = ICMP_UNREACH_NET_PROHIB;
795 goto bad;
796 }
797 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
798 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
799 goto bad;
800 }
801 ipaddr.sin_addr = ip->ip_dst;
802 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
803 if (ia == 0) {
804 if (opt == IPOPT_SSRR) {
805 type = ICMP_UNREACH;
806 code = ICMP_UNREACH_SRCFAIL;
807 goto bad;
808 }
809 /*
810 * Loose routing, and not at next destination
811 * yet; nothing to do except forward.
812 */
813 break;
814 }
815 off--; /* 0 origin */
816 if (off > optlen - sizeof(struct in_addr)) {
817 /*
818 * End of source route. Should be for us.
819 */
820 save_rte(cp, ip->ip_src);
821 break;
822 }
823 /*
824 * locate outgoing interface
825 */
826 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
827 sizeof(ipaddr.sin_addr));
828 if (opt == IPOPT_SSRR) {
829 #define INA struct in_ifaddr *
830 #define SA struct sockaddr *
831 ia = (INA)ifa_ifwithladdr((SA)&ipaddr);
832 } else
833 ia = ip_rtaddr(ipaddr.sin_addr);
834 if (ia == 0) {
835 type = ICMP_UNREACH;
836 code = ICMP_UNREACH_SRCFAIL;
837 goto bad;
838 }
839 ip->ip_dst = ipaddr.sin_addr;
840 bcopy((caddr_t)&ia->ia_addr.sin_addr,
841 (caddr_t)(cp + off), sizeof(struct in_addr));
842 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
843 /*
844 * Let ip_intr's mcast routing check handle mcast pkts
845 */
846 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
847 break;
848
849 case IPOPT_RR:
850 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
851 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
852 goto bad;
853 }
854 /*
855 * If no space remains, ignore.
856 */
857 off--; /* 0 origin */
858 if (off > optlen - sizeof(struct in_addr))
859 break;
860 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
861 sizeof(ipaddr.sin_addr));
862 /*
863 * locate outgoing interface; if we're the destination,
864 * use the incoming interface (should be same).
865 */
866 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
867 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
868 type = ICMP_UNREACH;
869 code = ICMP_UNREACH_HOST;
870 goto bad;
871 }
872 bcopy((caddr_t)&ia->ia_addr.sin_addr,
873 (caddr_t)(cp + off), sizeof(struct in_addr));
874 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
875 break;
876
877 case IPOPT_TS:
878 code = cp - (u_char *)ip;
879 ipt = (struct ip_timestamp *)cp;
880 if (ipt->ipt_len < 5)
881 goto bad;
882 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
883 if (++ipt->ipt_oflw == 0)
884 goto bad;
885 break;
886 }
887 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
888 switch (ipt->ipt_flg) {
889
890 case IPOPT_TS_TSONLY:
891 break;
892
893 case IPOPT_TS_TSANDADDR:
894 if (ipt->ipt_ptr + sizeof(n_time) +
895 sizeof(struct in_addr) > ipt->ipt_len)
896 goto bad;
897 ipaddr.sin_addr = dst;
898 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
899 m->m_pkthdr.rcvif);
900 if (ia == 0)
901 continue;
902 bcopy((caddr_t)&ia->ia_addr.sin_addr,
903 (caddr_t)sin, sizeof(struct in_addr));
904 ipt->ipt_ptr += sizeof(struct in_addr);
905 break;
906
907 case IPOPT_TS_PRESPEC:
908 if (ipt->ipt_ptr + sizeof(n_time) +
909 sizeof(struct in_addr) > ipt->ipt_len)
910 goto bad;
911 bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
912 sizeof(struct in_addr));
913 if (ifa_ifwithaddr((SA)&ipaddr) == 0)
914 continue;
915 ipt->ipt_ptr += sizeof(struct in_addr);
916 break;
917
918 default:
919 goto bad;
920 }
921 ntime = iptime();
922 bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
923 sizeof(n_time));
924 ipt->ipt_ptr += sizeof(n_time);
925 }
926 }
927 if (forward) {
928 if (ip_forwsrcrt == 0) {
929 type = ICMP_UNREACH;
930 code = ICMP_UNREACH_SRCFAIL;
931 goto bad;
932 }
933 ip_forward(m, 1);
934 return (1);
935 }
936 return (0);
937 bad:
938 ip->ip_len -= ip->ip_hl << 2; /* XXX icmp_error adds in hdr length */
939 icmp_error(m, type, code, 0, 0);
940 ipstat.ips_badoptions++;
941 return (1);
942 }
943
944 /*
945 * Given address of next destination (final or next hop),
946 * return internet address info of interface to be used to get there.
947 */
948 struct in_ifaddr *
949 ip_rtaddr(dst)
950 struct in_addr dst;
951 {
952 register struct sockaddr_in *sin;
953
954 sin = satosin(&ipforward_rt.ro_dst);
955
956 if (ipforward_rt.ro_rt == 0 || !in_hosteq(dst, sin->sin_addr)) {
957 if (ipforward_rt.ro_rt) {
958 RTFREE(ipforward_rt.ro_rt);
959 ipforward_rt.ro_rt = 0;
960 }
961 sin->sin_family = AF_INET;
962 sin->sin_len = sizeof(*sin);
963 sin->sin_addr = dst;
964
965 rtalloc(&ipforward_rt);
966 }
967 if (ipforward_rt.ro_rt == 0)
968 return ((struct in_ifaddr *)0);
969 return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
970 }
971
972 /*
973 * Save incoming source route for use in replies,
974 * to be picked up later by ip_srcroute if the receiver is interested.
975 */
976 void
977 save_rte(option, dst)
978 u_char *option;
979 struct in_addr dst;
980 {
981 unsigned olen;
982
983 olen = option[IPOPT_OLEN];
984 #ifdef DIAGNOSTIC
985 if (ipprintfs)
986 printf("save_rte: olen %d\n", olen);
987 #endif
988 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
989 return;
990 bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
991 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
992 ip_srcrt.dst = dst;
993 }
994
995 /*
996 * Retrieve incoming source route for use in replies,
997 * in the same form used by setsockopt.
998 * The first hop is placed before the options, will be removed later.
999 */
1000 struct mbuf *
1001 ip_srcroute()
1002 {
1003 register struct in_addr *p, *q;
1004 register struct mbuf *m;
1005
1006 if (ip_nhops == 0)
1007 return ((struct mbuf *)0);
1008 m = m_get(M_DONTWAIT, MT_SOOPTS);
1009 if (m == 0)
1010 return ((struct mbuf *)0);
1011
1012 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1013
1014 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1015 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1016 OPTSIZ;
1017 #ifdef DIAGNOSTIC
1018 if (ipprintfs)
1019 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1020 #endif
1021
1022 /*
1023 * First save first hop for return route
1024 */
1025 p = &ip_srcrt.route[ip_nhops - 1];
1026 *(mtod(m, struct in_addr *)) = *p--;
1027 #ifdef DIAGNOSTIC
1028 if (ipprintfs)
1029 printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1030 #endif
1031
1032 /*
1033 * Copy option fields and padding (nop) to mbuf.
1034 */
1035 ip_srcrt.nop = IPOPT_NOP;
1036 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1037 bcopy((caddr_t)&ip_srcrt.nop,
1038 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
1039 q = (struct in_addr *)(mtod(m, caddr_t) +
1040 sizeof(struct in_addr) + OPTSIZ);
1041 #undef OPTSIZ
1042 /*
1043 * Record return path as an IP source route,
1044 * reversing the path (pointers are now aligned).
1045 */
1046 while (p >= ip_srcrt.route) {
1047 #ifdef DIAGNOSTIC
1048 if (ipprintfs)
1049 printf(" %x", ntohl(q->s_addr));
1050 #endif
1051 *q++ = *p--;
1052 }
1053 /*
1054 * Last hop goes to final destination.
1055 */
1056 *q = ip_srcrt.dst;
1057 #ifdef DIAGNOSTIC
1058 if (ipprintfs)
1059 printf(" %x\n", ntohl(q->s_addr));
1060 #endif
1061 return (m);
1062 }
1063
1064 /*
1065 * Strip out IP options, at higher
1066 * level protocol in the kernel.
1067 * Second argument is buffer to which options
1068 * will be moved, and return value is their length.
1069 * XXX should be deleted; last arg currently ignored.
1070 */
1071 void
1072 ip_stripoptions(m, mopt)
1073 register struct mbuf *m;
1074 struct mbuf *mopt;
1075 {
1076 register int i;
1077 struct ip *ip = mtod(m, struct ip *);
1078 register caddr_t opts;
1079 int olen;
1080
1081 olen = (ip->ip_hl<<2) - sizeof (struct ip);
1082 opts = (caddr_t)(ip + 1);
1083 i = m->m_len - (sizeof (struct ip) + olen);
1084 bcopy(opts + olen, opts, (unsigned)i);
1085 m->m_len -= olen;
1086 if (m->m_flags & M_PKTHDR)
1087 m->m_pkthdr.len -= olen;
1088 ip->ip_hl = sizeof(struct ip) >> 2;
1089 }
1090
1091 int inetctlerrmap[PRC_NCMDS] = {
1092 0, 0, 0, 0,
1093 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1094 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1095 EMSGSIZE, EHOSTUNREACH, 0, 0,
1096 0, 0, 0, 0,
1097 ENOPROTOOPT
1098 };
1099
1100 /*
1101 * Forward a packet. If some error occurs return the sender
1102 * an icmp packet. Note we can't always generate a meaningful
1103 * icmp message because icmp doesn't have a large enough repertoire
1104 * of codes and types.
1105 *
1106 * If not forwarding, just drop the packet. This could be confusing
1107 * if ipforwarding was zero but some routing protocol was advancing
1108 * us as a gateway to somewhere. However, we must let the routing
1109 * protocol deal with that.
1110 *
1111 * The srcrt parameter indicates whether the packet is being forwarded
1112 * via a source route.
1113 */
1114 void
1115 ip_forward(m, srcrt)
1116 struct mbuf *m;
1117 int srcrt;
1118 {
1119 register struct ip *ip = mtod(m, struct ip *);
1120 register struct sockaddr_in *sin;
1121 register struct rtentry *rt;
1122 int error, type = 0, code = 0;
1123 struct mbuf *mcopy;
1124 n_long dest;
1125 struct ifnet *destifp;
1126
1127 dest = 0;
1128 #ifdef DIAGNOSTIC
1129 if (ipprintfs)
1130 printf("forward: src %x dst %x ttl %x\n",
1131 ip->ip_src.s_addr, ip->ip_dst.s_addr, ip->ip_ttl);
1132 #endif
1133 if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1134 ipstat.ips_cantforward++;
1135 m_freem(m);
1136 return;
1137 }
1138 HTONS(ip->ip_id);
1139 if (ip->ip_ttl <= IPTTLDEC) {
1140 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1141 return;
1142 }
1143 ip->ip_ttl -= IPTTLDEC;
1144
1145 sin = satosin(&ipforward_rt.ro_dst);
1146 if ((rt = ipforward_rt.ro_rt) == 0 ||
1147 !in_hosteq(ip->ip_dst, sin->sin_addr)) {
1148 if (ipforward_rt.ro_rt) {
1149 RTFREE(ipforward_rt.ro_rt);
1150 ipforward_rt.ro_rt = 0;
1151 }
1152 sin->sin_family = AF_INET;
1153 sin->sin_len = sizeof(struct sockaddr_in);
1154 sin->sin_addr = ip->ip_dst;
1155
1156 rtalloc(&ipforward_rt);
1157 if (ipforward_rt.ro_rt == 0) {
1158 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1159 return;
1160 }
1161 rt = ipforward_rt.ro_rt;
1162 }
1163
1164 /*
1165 * Save at most 68 bytes of the packet in case
1166 * we need to generate an ICMP message to the src.
1167 */
1168 mcopy = m_copy(m, 0, imin((int)ip->ip_len, 68));
1169
1170 /*
1171 * If forwarding packet using same interface that it came in on,
1172 * perhaps should send a redirect to sender to shortcut a hop.
1173 * Only send redirect if source is sending directly to us,
1174 * and if packet was not source routed (or has any options).
1175 * Also, don't send redirect if forwarding using a default route
1176 * or a route modified by a redirect.
1177 */
1178 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1179 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1180 !in_nullhost(satosin(rt_key(rt))->sin_addr) &&
1181 ipsendredirects && !srcrt) {
1182 if (rt->rt_ifa &&
1183 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1184 ifatoia(rt->rt_ifa)->ia_subnet) {
1185 if (rt->rt_flags & RTF_GATEWAY)
1186 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1187 else
1188 dest = ip->ip_dst.s_addr;
1189 /* Router requirements says to only send host redirects */
1190 type = ICMP_REDIRECT;
1191 code = ICMP_REDIRECT_HOST;
1192 #ifdef DIAGNOSTIC
1193 if (ipprintfs)
1194 printf("redirect (%d) to %x\n", code, (u_int32_t)dest);
1195 #endif
1196 }
1197 }
1198
1199 error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1200 (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)), 0);
1201 if (error)
1202 ipstat.ips_cantforward++;
1203 else {
1204 ipstat.ips_forward++;
1205 if (type)
1206 ipstat.ips_redirectsent++;
1207 else {
1208 if (mcopy) {
1209 #ifdef GATEWAY
1210 if (mcopy->m_flags & M_CANFASTFWD)
1211 ipflow_create(&ipforward_rt, mcopy);
1212 #endif
1213 m_freem(mcopy);
1214 }
1215 return;
1216 }
1217 }
1218 if (mcopy == NULL)
1219 return;
1220 destifp = NULL;
1221
1222 switch (error) {
1223
1224 case 0: /* forwarded, but need redirect */
1225 /* type, code set above */
1226 break;
1227
1228 case ENETUNREACH: /* shouldn't happen, checked above */
1229 case EHOSTUNREACH:
1230 case ENETDOWN:
1231 case EHOSTDOWN:
1232 default:
1233 type = ICMP_UNREACH;
1234 code = ICMP_UNREACH_HOST;
1235 break;
1236
1237 case EMSGSIZE:
1238 type = ICMP_UNREACH;
1239 code = ICMP_UNREACH_NEEDFRAG;
1240 if (ipforward_rt.ro_rt)
1241 destifp = ipforward_rt.ro_rt->rt_ifp;
1242 ipstat.ips_cantfrag++;
1243 break;
1244
1245 case ENOBUFS:
1246 type = ICMP_SOURCEQUENCH;
1247 code = 0;
1248 break;
1249 }
1250 icmp_error(mcopy, type, code, dest, destifp);
1251 }
1252
1253 void
1254 ip_savecontrol(inp, mp, ip, m)
1255 register struct inpcb *inp;
1256 register struct mbuf **mp;
1257 register struct ip *ip;
1258 register struct mbuf *m;
1259 {
1260
1261 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1262 struct timeval tv;
1263
1264 microtime(&tv);
1265 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1266 SCM_TIMESTAMP, SOL_SOCKET);
1267 if (*mp)
1268 mp = &(*mp)->m_next;
1269 }
1270 if (inp->inp_flags & INP_RECVDSTADDR) {
1271 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1272 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1273 if (*mp)
1274 mp = &(*mp)->m_next;
1275 }
1276 #ifdef notyet
1277 /*
1278 * XXX
1279 * Moving these out of udp_input() made them even more broken
1280 * than they already were.
1281 * - fenner (at) parc.xerox.com
1282 */
1283 /* options were tossed already */
1284 if (inp->inp_flags & INP_RECVOPTS) {
1285 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1286 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1287 if (*mp)
1288 mp = &(*mp)->m_next;
1289 }
1290 /* ip_srcroute doesn't do what we want here, need to fix */
1291 if (inp->inp_flags & INP_RECVRETOPTS) {
1292 *mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1293 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1294 if (*mp)
1295 mp = &(*mp)->m_next;
1296 }
1297 #endif
1298 if (inp->inp_flags & INP_RECVIF) {
1299 struct sockaddr_dl sdl;
1300
1301 sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]);
1302 sdl.sdl_family = AF_LINK;
1303 sdl.sdl_index = m->m_pkthdr.rcvif ?
1304 m->m_pkthdr.rcvif->if_index : 0;
1305 sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0;
1306 *mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len,
1307 IP_RECVIF, IPPROTO_IP);
1308 if (*mp)
1309 mp = &(*mp)->m_next;
1310 }
1311 }
1312
1313 int
1314 ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
1315 int *name;
1316 u_int namelen;
1317 void *oldp;
1318 size_t *oldlenp;
1319 void *newp;
1320 size_t newlen;
1321 {
1322 extern int subnetsarelocal;
1323
1324 int error, old;
1325
1326 /* All sysctl names at this level are terminal. */
1327 if (namelen != 1)
1328 return (ENOTDIR);
1329
1330 switch (name[0]) {
1331 case IPCTL_FORWARDING:
1332 return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
1333 case IPCTL_SENDREDIRECTS:
1334 return (sysctl_int(oldp, oldlenp, newp, newlen,
1335 &ipsendredirects));
1336 case IPCTL_DEFTTL:
1337 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
1338 #ifdef notyet
1339 case IPCTL_DEFMTU:
1340 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
1341 #endif
1342 case IPCTL_FORWSRCRT:
1343 /* Don't allow this to change in a secure environment. */
1344 if (securelevel > 0)
1345 return (sysctl_rdint(oldp, oldlenp, newp,
1346 ip_forwsrcrt));
1347 else
1348 return (sysctl_int(oldp, oldlenp, newp, newlen,
1349 &ip_forwsrcrt));
1350 case IPCTL_DIRECTEDBCAST:
1351 return (sysctl_int(oldp, oldlenp, newp, newlen,
1352 &ip_directedbcast));
1353 case IPCTL_ALLOWSRCRT:
1354 return (sysctl_int(oldp, oldlenp, newp, newlen,
1355 &ip_allowsrcrt));
1356 case IPCTL_SUBNETSARELOCAL:
1357 return (sysctl_int(oldp, oldlenp, newp, newlen,
1358 &subnetsarelocal));
1359 case IPCTL_MTUDISC:
1360 error = sysctl_int(oldp, oldlenp, newp, newlen,
1361 &ip_mtudisc);
1362 if (ip_mtudisc != 0 && ip_mtudisc_timeout_q == NULL) {
1363 ip_mtudisc_timeout_q =
1364 rt_timer_queue_create(ip_mtudisc_timeout);
1365 } else if (ip_mtudisc == 0 && ip_mtudisc_timeout_q != NULL) {
1366 rt_timer_queue_destroy(ip_mtudisc_timeout_q, TRUE);
1367 ip_mtudisc_timeout_q = NULL;
1368 }
1369 return error;
1370 case IPCTL_ANONPORTMIN:
1371 old = anonportmin;
1372 error = sysctl_int(oldp, oldlenp, newp, newlen, &anonportmin);
1373 if (anonportmin >= anonportmax || anonportmin > 65535
1374 #ifndef IPNOPRIVPORTS
1375 || anonportmin < IPPORT_RESERVED
1376 #endif
1377 ) {
1378 anonportmin = old;
1379 return (EINVAL);
1380 }
1381 return (error);
1382 case IPCTL_ANONPORTMAX:
1383 old = anonportmax;
1384 error = sysctl_int(oldp, oldlenp, newp, newlen, &anonportmax);
1385 if (anonportmin >= anonportmax || anonportmax > 65535
1386 #ifndef IPNOPRIVPORTS
1387 || anonportmax < IPPORT_RESERVED
1388 #endif
1389 ) {
1390 anonportmax = old;
1391 return (EINVAL);
1392 }
1393 return (error);
1394 case IPCTL_MTUDISCTIMEOUT:
1395 error = sysctl_int(oldp, oldlenp, newp, newlen,
1396 &ip_mtudisc_timeout);
1397 if (ip_mtudisc_timeout_q != NULL)
1398 rt_timer_queue_change(ip_mtudisc_timeout_q,
1399 ip_mtudisc_timeout);
1400 return (error);
1401 #ifdef GATEWAY
1402 case IPCTL_MAXFLOWS:
1403 error = sysctl_int(oldp, oldlenp, newp, newlen,
1404 &ip_maxflows);
1405 ipflow_reap(0);
1406 return (error);
1407 #endif
1408 default:
1409 return (EOPNOTSUPP);
1410 }
1411 /* NOTREACHED */
1412 }
1413