Home | History | Annotate | Line # | Download | only in netinet
ip_input.c revision 1.81
      1 /*	$NetBSD: ip_input.c,v 1.81 1999/03/26 08:51:36 proff Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Public Access Networks Corporation ("Panix").  It was developed under
      9  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1988, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by the University of
     55  *	California, Berkeley and its contributors.
     56  * 4. Neither the name of the University nor the names of its contributors
     57  *    may be used to endorse or promote products derived from this software
     58  *    without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     62  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     63  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     64  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     65  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     66  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     70  * SUCH DAMAGE.
     71  *
     72  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
     73  */
     74 
     75 #include "opt_gateway.h"
     76 #include "opt_pfil_hooks.h"
     77 #include "opt_mrouting.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/malloc.h>
     82 #include <sys/mbuf.h>
     83 #include <sys/domain.h>
     84 #include <sys/protosw.h>
     85 #include <sys/socket.h>
     86 #include <sys/socketvar.h>
     87 #include <sys/errno.h>
     88 #include <sys/time.h>
     89 #include <sys/kernel.h>
     90 #include <sys/proc.h>
     91 #include <sys/pool.h>
     92 
     93 #include <vm/vm.h>
     94 #include <sys/sysctl.h>
     95 
     96 #include <net/if.h>
     97 #include <net/if_dl.h>
     98 #include <net/route.h>
     99 #include <net/pfil.h>
    100 
    101 #include <netinet/in.h>
    102 #include <netinet/in_systm.h>
    103 #include <netinet/ip.h>
    104 #include <netinet/in_pcb.h>
    105 #include <netinet/in_var.h>
    106 #include <netinet/ip_var.h>
    107 #include <netinet/ip_icmp.h>
    108 
    109 #ifndef	IPFORWARDING
    110 #ifdef GATEWAY
    111 #define	IPFORWARDING	1	/* forward IP packets not for us */
    112 #else /* GATEWAY */
    113 #define	IPFORWARDING	0	/* don't forward IP packets not for us */
    114 #endif /* GATEWAY */
    115 #endif /* IPFORWARDING */
    116 #ifndef	IPSENDREDIRECTS
    117 #define	IPSENDREDIRECTS	1
    118 #endif
    119 #ifndef IPFORWSRCRT
    120 #define	IPFORWSRCRT	1	/* forward source-routed packets */
    121 #endif
    122 #ifndef IPALLOWSRCRT
    123 #define	IPALLOWSRCRT	1	/* allow source-routed packets */
    124 #endif
    125 #ifndef IPMTUDISC
    126 #define IPMTUDISC	0
    127 #endif
    128 #ifndef IPMTUDISCTIMEOUT
    129 #define IPMTUDISCTIMEOUT (10 * 60)	/* as per RFC 1191 */
    130 #endif
    131 
    132 /*
    133  * Note: DIRECTED_BROADCAST is handled this way so that previous
    134  * configuration using this option will Just Work.
    135  */
    136 #ifndef IPDIRECTEDBCAST
    137 #ifdef DIRECTED_BROADCAST
    138 #define IPDIRECTEDBCAST	1
    139 #else
    140 #define	IPDIRECTEDBCAST	0
    141 #endif /* DIRECTED_BROADCAST */
    142 #endif /* IPDIRECTEDBCAST */
    143 int	ipforwarding = IPFORWARDING;
    144 int	ipsendredirects = IPSENDREDIRECTS;
    145 int	ip_defttl = IPDEFTTL;
    146 int	ip_forwsrcrt = IPFORWSRCRT;
    147 int	ip_directedbcast = IPDIRECTEDBCAST;
    148 int	ip_allowsrcrt = IPALLOWSRCRT;
    149 int	ip_mtudisc = IPMTUDISC;
    150 u_int	ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
    151 #ifdef DIAGNOSTIC
    152 int	ipprintfs = 0;
    153 #endif
    154 
    155 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
    156 
    157 extern	struct domain inetdomain;
    158 extern	struct protosw inetsw[];
    159 u_char	ip_protox[IPPROTO_MAX];
    160 int	ipqmaxlen = IFQ_MAXLEN;
    161 struct	in_ifaddrhead in_ifaddr;
    162 struct	in_ifaddrhashhead *in_ifaddrhashtbl;
    163 struct	ifqueue ipintrq;
    164 struct	ipstat	ipstat;
    165 u_int16_t	ip_id;
    166 int	ip_defttl;
    167 
    168 struct ipqhead ipq;
    169 int	ipq_locked;
    170 
    171 static __inline int ipq_lock_try __P((void));
    172 static __inline void ipq_unlock __P((void));
    173 
    174 static __inline int
    175 ipq_lock_try()
    176 {
    177 	int s;
    178 
    179 	s = splimp();
    180 	if (ipq_locked) {
    181 		splx(s);
    182 		return (0);
    183 	}
    184 	ipq_locked = 1;
    185 	splx(s);
    186 	return (1);
    187 }
    188 
    189 static __inline void
    190 ipq_unlock()
    191 {
    192 	int s;
    193 
    194 	s = splimp();
    195 	ipq_locked = 0;
    196 	splx(s);
    197 }
    198 
    199 #ifdef DIAGNOSTIC
    200 #define	IPQ_LOCK()							\
    201 do {									\
    202 	if (ipq_lock_try() == 0) {					\
    203 		printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
    204 		panic("ipq_lock");					\
    205 	}								\
    206 } while (0)
    207 #define	IPQ_LOCK_CHECK()						\
    208 do {									\
    209 	if (ipq_locked == 0) {						\
    210 		printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
    211 		panic("ipq lock check");				\
    212 	}								\
    213 } while (0)
    214 #else
    215 #define	IPQ_LOCK()		(void) ipq_lock_try()
    216 #define	IPQ_LOCK_CHECK()	/* nothing */
    217 #endif
    218 
    219 #define	IPQ_UNLOCK()		ipq_unlock()
    220 
    221 struct pool ipqent_pool;
    222 
    223 /*
    224  * We need to save the IP options in case a protocol wants to respond
    225  * to an incoming packet over the same route if the packet got here
    226  * using IP source routing.  This allows connection establishment and
    227  * maintenance when the remote end is on a network that is not known
    228  * to us.
    229  */
    230 int	ip_nhops = 0;
    231 static	struct ip_srcrt {
    232 	struct	in_addr dst;			/* final destination */
    233 	char	nop;				/* one NOP to align */
    234 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
    235 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
    236 } ip_srcrt;
    237 
    238 static void save_rte __P((u_char *, struct in_addr));
    239 
    240 /*
    241  * IP initialization: fill in IP protocol switch table.
    242  * All protocols not implemented in kernel go to raw IP protocol handler.
    243  */
    244 void
    245 ip_init()
    246 {
    247 	register struct protosw *pr;
    248 	register int i;
    249 
    250 	pool_init(&ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl",
    251 	    0, NULL, NULL, M_IPQ);
    252 
    253 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
    254 	if (pr == 0)
    255 		panic("ip_init");
    256 	for (i = 0; i < IPPROTO_MAX; i++)
    257 		ip_protox[i] = pr - inetsw;
    258 	for (pr = inetdomain.dom_protosw;
    259 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
    260 		if (pr->pr_domain->dom_family == PF_INET &&
    261 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
    262 			ip_protox[pr->pr_protocol] = pr - inetsw;
    263 	LIST_INIT(&ipq);
    264 	ip_id = time.tv_sec & 0xffff;
    265 	ipintrq.ifq_maxlen = ipqmaxlen;
    266 	TAILQ_INIT(&in_ifaddr);
    267 	in_ifaddrhashtbl =
    268 	    hashinit(IN_IFADDR_HASH_SIZE, M_IFADDR, M_WAITOK, &in_ifaddrhash);
    269 	if (ip_mtudisc != 0)
    270 		ip_mtudisc_timeout_q =
    271 		    rt_timer_queue_create(ip_mtudisc_timeout);
    272 #ifdef GATEWAY
    273 	ipflow_init();
    274 #endif
    275 }
    276 
    277 struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
    278 struct	route ipforward_rt;
    279 
    280 /*
    281  * Ip input routine.  Checksum and byte swap header.  If fragmented
    282  * try to reassemble.  Process options.  Pass to next level.
    283  */
    284 void
    285 ipintr()
    286 {
    287 	register struct ip *ip = NULL;
    288 	register struct mbuf *m;
    289 	register struct ipq *fp;
    290 	register struct in_ifaddr *ia;
    291 	register struct ifaddr *ifa;
    292 	struct ipqent *ipqe;
    293 	int hlen = 0, mff, len, s;
    294 #ifdef PFIL_HOOKS
    295 	struct packet_filter_hook *pfh;
    296 	struct mbuf *m0;
    297 	int rv;
    298 #endif /* PFIL_HOOKS */
    299 
    300 next:
    301 	/*
    302 	 * Get next datagram off input queue and get IP header
    303 	 * in first mbuf.
    304 	 */
    305 	s = splimp();
    306 	IF_DEQUEUE(&ipintrq, m);
    307 	splx(s);
    308 	if (m == 0)
    309 		return;
    310 #ifdef	DIAGNOSTIC
    311 	if ((m->m_flags & M_PKTHDR) == 0)
    312 		panic("ipintr no HDR");
    313 #endif
    314 	/*
    315 	 * If no IP addresses have been set yet but the interfaces
    316 	 * are receiving, can't do anything with incoming packets yet.
    317 	 */
    318 	if (in_ifaddr.tqh_first == 0)
    319 		goto bad;
    320 	ipstat.ips_total++;
    321 	if (m->m_len < sizeof (struct ip) &&
    322 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
    323 		ipstat.ips_toosmall++;
    324 		goto next;
    325 	}
    326 	ip = mtod(m, struct ip *);
    327 	if (ip->ip_v != IPVERSION) {
    328 		ipstat.ips_badvers++;
    329 		goto bad;
    330 	}
    331 	hlen = ip->ip_hl << 2;
    332 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
    333 		ipstat.ips_badhlen++;
    334 		goto bad;
    335 	}
    336 	if (hlen > m->m_len) {
    337 		if ((m = m_pullup(m, hlen)) == 0) {
    338 			ipstat.ips_badhlen++;
    339 			goto next;
    340 		}
    341 		ip = mtod(m, struct ip *);
    342 	}
    343 	if (in_cksum(m, hlen) != 0) {
    344 		ipstat.ips_badsum++;
    345 		goto bad;
    346 	}
    347 
    348 	/*
    349 	 * Convert fields to host representation.
    350 	 */
    351 	NTOHS(ip->ip_len);
    352 	NTOHS(ip->ip_off);
    353 	len = ip->ip_len;
    354 
    355 	/*
    356 	 * Check for additional length bogosity
    357 	 */
    358 	if (len < hlen)
    359 	{
    360 	 	ipstat.ips_badlen++;
    361 		goto bad;
    362 	}
    363 
    364 	/*
    365 	 * Check that the amount of data in the buffers
    366 	 * is as at least much as the IP header would have us expect.
    367 	 * Trim mbufs if longer than we expect.
    368 	 * Drop packet if shorter than we expect.
    369 	 */
    370 	if (m->m_pkthdr.len < len) {
    371 		ipstat.ips_tooshort++;
    372 		goto bad;
    373 	}
    374 	if (m->m_pkthdr.len > len) {
    375 		if (m->m_len == m->m_pkthdr.len) {
    376 			m->m_len = len;
    377 			m->m_pkthdr.len = len;
    378 		} else
    379 			m_adj(m, len - m->m_pkthdr.len);
    380 	}
    381 
    382 	/*
    383 	 * Assume that we can create a fast-forward IP flow entry
    384 	 * based on this packet.
    385 	 */
    386 	m->m_flags |= M_CANFASTFWD;
    387 
    388 #ifdef PFIL_HOOKS
    389 	/*
    390 	 * Run through list of hooks for input packets.  If there are any
    391 	 * filters which require that additional packets in the flow are
    392 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
    393 	 * Note that filters must _never_ set this flag, as another filter
    394 	 * in the list may have previously cleared it.
    395 	 */
    396 	m0 = m;
    397 	for (pfh = pfil_hook_get(PFIL_IN); pfh; pfh = pfh->pfil_link.tqe_next)
    398 		if (pfh->pfil_func) {
    399 			rv = pfh->pfil_func(ip, hlen, m->m_pkthdr.rcvif, 0, &m0);
    400 			if (rv)
    401 				goto next;
    402 			m = m0;
    403 			if (m == NULL)
    404 				goto next;
    405 			ip = mtod(m, struct ip *);
    406 		}
    407 #endif /* PFIL_HOOKS */
    408 
    409 	/*
    410 	 * Process options and, if not destined for us,
    411 	 * ship it on.  ip_dooptions returns 1 when an
    412 	 * error was detected (causing an icmp message
    413 	 * to be sent and the original packet to be freed).
    414 	 */
    415 	ip_nhops = 0;		/* for source routed packets */
    416 	if (hlen > sizeof (struct ip) && ip_dooptions(m))
    417 		goto next;
    418 
    419 	/*
    420 	 * Check our list of addresses, to see if the packet is for us.
    421 	 */
    422 	INADDR_TO_IA(ip->ip_dst, ia);
    423 	if (ia != NULL) goto ours;
    424 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
    425 		for (ifa = m->m_pkthdr.rcvif->if_addrlist.tqh_first;
    426 		    ifa != NULL; ifa = ifa->ifa_list.tqe_next) {
    427 			if (ifa->ifa_addr->sa_family != AF_INET) continue;
    428 			ia = ifatoia(ifa);
    429 			if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
    430 			    in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
    431 			    /*
    432 			     * Look for all-0's host part (old broadcast addr),
    433 			     * either for subnet or net.
    434 			     */
    435 			    ip->ip_dst.s_addr == ia->ia_subnet ||
    436 			    ip->ip_dst.s_addr == ia->ia_net)
    437 				goto ours;
    438 			/*
    439 			 * An interface with IP address zero accepts
    440 			 * all packets that arrive on that interface.
    441 			 */
    442 			if (in_nullhost(ia->ia_addr.sin_addr))
    443 				goto ours;
    444 		}
    445 	}
    446 	if (IN_MULTICAST(ip->ip_dst.s_addr)) {
    447 		struct in_multi *inm;
    448 #ifdef MROUTING
    449 		extern struct socket *ip_mrouter;
    450 
    451 		if (m->m_flags & M_EXT) {
    452 			if ((m = m_pullup(m, hlen)) == 0) {
    453 				ipstat.ips_toosmall++;
    454 				goto next;
    455 			}
    456 			ip = mtod(m, struct ip *);
    457 		}
    458 
    459 		if (ip_mrouter) {
    460 			/*
    461 			 * If we are acting as a multicast router, all
    462 			 * incoming multicast packets are passed to the
    463 			 * kernel-level multicast forwarding function.
    464 			 * The packet is returned (relatively) intact; if
    465 			 * ip_mforward() returns a non-zero value, the packet
    466 			 * must be discarded, else it may be accepted below.
    467 			 *
    468 			 * (The IP ident field is put in the same byte order
    469 			 * as expected when ip_mforward() is called from
    470 			 * ip_output().)
    471 			 */
    472 			if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
    473 				ipstat.ips_cantforward++;
    474 				m_freem(m);
    475 				goto next;
    476 			}
    477 
    478 			/*
    479 			 * The process-level routing demon needs to receive
    480 			 * all multicast IGMP packets, whether or not this
    481 			 * host belongs to their destination groups.
    482 			 */
    483 			if (ip->ip_p == IPPROTO_IGMP)
    484 				goto ours;
    485 			ipstat.ips_forward++;
    486 		}
    487 #endif
    488 		/*
    489 		 * See if we belong to the destination multicast group on the
    490 		 * arrival interface.
    491 		 */
    492 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
    493 		if (inm == NULL) {
    494 			ipstat.ips_cantforward++;
    495 			m_freem(m);
    496 			goto next;
    497 		}
    498 		goto ours;
    499 	}
    500 	if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
    501 	    in_nullhost(ip->ip_dst))
    502 		goto ours;
    503 
    504 	/*
    505 	 * Not for us; forward if possible and desirable.
    506 	 */
    507 	if (ipforwarding == 0) {
    508 		ipstat.ips_cantforward++;
    509 		m_freem(m);
    510 	} else
    511 		ip_forward(m, 0);
    512 	goto next;
    513 
    514 ours:
    515 	/*
    516 	 * If offset or IP_MF are set, must reassemble.
    517 	 * Otherwise, nothing need be done.
    518 	 * (We could look in the reassembly queue to see
    519 	 * if the packet was previously fragmented,
    520 	 * but it's not worth the time; just let them time out.)
    521 	 */
    522 	if (ip->ip_off & ~(IP_DF|IP_RF)) {
    523 		/*
    524 		 * Look for queue of fragments
    525 		 * of this datagram.
    526 		 */
    527 		IPQ_LOCK();
    528 		for (fp = ipq.lh_first; fp != NULL; fp = fp->ipq_q.le_next)
    529 			if (ip->ip_id == fp->ipq_id &&
    530 			    in_hosteq(ip->ip_src, fp->ipq_src) &&
    531 			    in_hosteq(ip->ip_dst, fp->ipq_dst) &&
    532 			    ip->ip_p == fp->ipq_p)
    533 				goto found;
    534 		fp = 0;
    535 found:
    536 
    537 		/*
    538 		 * Adjust ip_len to not reflect header,
    539 		 * set ipqe_mff if more fragments are expected,
    540 		 * convert offset of this to bytes.
    541 		 */
    542 		ip->ip_len -= hlen;
    543 		mff = (ip->ip_off & IP_MF) != 0;
    544 		if (mff) {
    545 		        /*
    546 		         * Make sure that fragments have a data length
    547 			 * that's a non-zero multiple of 8 bytes.
    548 		         */
    549 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
    550 				ipstat.ips_badfrags++;
    551 				IPQ_UNLOCK();
    552 				goto bad;
    553 			}
    554 		}
    555 		ip->ip_off <<= 3;
    556 
    557 		/*
    558 		 * If datagram marked as having more fragments
    559 		 * or if this is not the first fragment,
    560 		 * attempt reassembly; if it succeeds, proceed.
    561 		 */
    562 		if (mff || ip->ip_off) {
    563 			ipstat.ips_fragments++;
    564 			ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
    565 			if (ipqe == NULL) {
    566 				ipstat.ips_rcvmemdrop++;
    567 				IPQ_UNLOCK();
    568 				goto bad;
    569 			}
    570 			ipqe->ipqe_mff = mff;
    571 			ipqe->ipqe_m = m;
    572 			ipqe->ipqe_ip = ip;
    573 			m = ip_reass(ipqe, fp);
    574 			if (m == 0) {
    575 				IPQ_UNLOCK();
    576 				goto next;
    577 			}
    578 			ipstat.ips_reassembled++;
    579 			ip = mtod(m, struct ip *);
    580 			hlen = ip->ip_hl << 2;
    581 			ip->ip_len += hlen;
    582 		} else
    583 			if (fp)
    584 				ip_freef(fp);
    585 		IPQ_UNLOCK();
    586 	}
    587 
    588 	/*
    589 	 * Switch out to protocol's input routine.
    590 	 */
    591 	ipstat.ips_delivered++;
    592 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
    593 	goto next;
    594 bad:
    595 	m_freem(m);
    596 	goto next;
    597 }
    598 
    599 /*
    600  * Take incoming datagram fragment and try to
    601  * reassemble it into whole datagram.  If a chain for
    602  * reassembly of this datagram already exists, then it
    603  * is given as fp; otherwise have to make a chain.
    604  */
    605 struct mbuf *
    606 ip_reass(ipqe, fp)
    607 	register struct ipqent *ipqe;
    608 	register struct ipq *fp;
    609 {
    610 	register struct mbuf *m = ipqe->ipqe_m;
    611 	register struct ipqent *nq, *p, *q;
    612 	struct ip *ip;
    613 	struct mbuf *t;
    614 	int hlen = ipqe->ipqe_ip->ip_hl << 2;
    615 	int i, next;
    616 
    617 	IPQ_LOCK_CHECK();
    618 
    619 	/*
    620 	 * Presence of header sizes in mbufs
    621 	 * would confuse code below.
    622 	 */
    623 	m->m_data += hlen;
    624 	m->m_len -= hlen;
    625 
    626 	/*
    627 	 * If first fragment to arrive, create a reassembly queue.
    628 	 */
    629 	if (fp == 0) {
    630 		MALLOC(fp, struct ipq *, sizeof (struct ipq),
    631 		    M_FTABLE, M_NOWAIT);
    632 		if (fp == NULL)
    633 			goto dropfrag;
    634 		LIST_INSERT_HEAD(&ipq, fp, ipq_q);
    635 		fp->ipq_ttl = IPFRAGTTL;
    636 		fp->ipq_p = ipqe->ipqe_ip->ip_p;
    637 		fp->ipq_id = ipqe->ipqe_ip->ip_id;
    638 		LIST_INIT(&fp->ipq_fragq);
    639 		fp->ipq_src = ipqe->ipqe_ip->ip_src;
    640 		fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
    641 		p = NULL;
    642 		goto insert;
    643 	}
    644 
    645 	/*
    646 	 * Find a segment which begins after this one does.
    647 	 */
    648 	for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
    649 	    p = q, q = q->ipqe_q.le_next)
    650 		if (q->ipqe_ip->ip_off > ipqe->ipqe_ip->ip_off)
    651 			break;
    652 
    653 	/*
    654 	 * If there is a preceding segment, it may provide some of
    655 	 * our data already.  If so, drop the data from the incoming
    656 	 * segment.  If it provides all of our data, drop us.
    657 	 */
    658 	if (p != NULL) {
    659 		i = p->ipqe_ip->ip_off + p->ipqe_ip->ip_len -
    660 		    ipqe->ipqe_ip->ip_off;
    661 		if (i > 0) {
    662 			if (i >= ipqe->ipqe_ip->ip_len)
    663 				goto dropfrag;
    664 			m_adj(ipqe->ipqe_m, i);
    665 			ipqe->ipqe_ip->ip_off += i;
    666 			ipqe->ipqe_ip->ip_len -= i;
    667 		}
    668 	}
    669 
    670 	/*
    671 	 * While we overlap succeeding segments trim them or,
    672 	 * if they are completely covered, dequeue them.
    673 	 */
    674 	for (; q != NULL && ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len >
    675 	    q->ipqe_ip->ip_off; q = nq) {
    676 		i = (ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len) -
    677 		    q->ipqe_ip->ip_off;
    678 		if (i < q->ipqe_ip->ip_len) {
    679 			q->ipqe_ip->ip_len -= i;
    680 			q->ipqe_ip->ip_off += i;
    681 			m_adj(q->ipqe_m, i);
    682 			break;
    683 		}
    684 		nq = q->ipqe_q.le_next;
    685 		m_freem(q->ipqe_m);
    686 		LIST_REMOVE(q, ipqe_q);
    687 		pool_put(&ipqent_pool, q);
    688 	}
    689 
    690 insert:
    691 	/*
    692 	 * Stick new segment in its place;
    693 	 * check for complete reassembly.
    694 	 */
    695 	if (p == NULL) {
    696 		LIST_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
    697 	} else {
    698 		LIST_INSERT_AFTER(p, ipqe, ipqe_q);
    699 	}
    700 	next = 0;
    701 	for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
    702 	    p = q, q = q->ipqe_q.le_next) {
    703 		if (q->ipqe_ip->ip_off != next)
    704 			return (0);
    705 		next += q->ipqe_ip->ip_len;
    706 	}
    707 	if (p->ipqe_mff)
    708 		return (0);
    709 
    710 	/*
    711 	 * Reassembly is complete.  Check for a bogus message size and
    712 	 * concatenate fragments.
    713 	 */
    714 	q = fp->ipq_fragq.lh_first;
    715 	ip = q->ipqe_ip;
    716 	if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
    717 		ipstat.ips_toolong++;
    718 		ip_freef(fp);
    719 		return (0);
    720 	}
    721 	m = q->ipqe_m;
    722 	t = m->m_next;
    723 	m->m_next = 0;
    724 	m_cat(m, t);
    725 	nq = q->ipqe_q.le_next;
    726 	pool_put(&ipqent_pool, q);
    727 	for (q = nq; q != NULL; q = nq) {
    728 		t = q->ipqe_m;
    729 		nq = q->ipqe_q.le_next;
    730 		pool_put(&ipqent_pool, q);
    731 		m_cat(m, t);
    732 	}
    733 
    734 	/*
    735 	 * Create header for new ip packet by
    736 	 * modifying header of first packet;
    737 	 * dequeue and discard fragment reassembly header.
    738 	 * Make header visible.
    739 	 */
    740 	ip->ip_len = next;
    741 	ip->ip_src = fp->ipq_src;
    742 	ip->ip_dst = fp->ipq_dst;
    743 	LIST_REMOVE(fp, ipq_q);
    744 	FREE(fp, M_FTABLE);
    745 	m->m_len += (ip->ip_hl << 2);
    746 	m->m_data -= (ip->ip_hl << 2);
    747 	/* some debugging cruft by sklower, below, will go away soon */
    748 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
    749 		register int plen = 0;
    750 		for (t = m; t; t = t->m_next)
    751 			plen += t->m_len;
    752 		m->m_pkthdr.len = plen;
    753 	}
    754 	return (m);
    755 
    756 dropfrag:
    757 	ipstat.ips_fragdropped++;
    758 	m_freem(m);
    759 	pool_put(&ipqent_pool, ipqe);
    760 	return (0);
    761 }
    762 
    763 /*
    764  * Free a fragment reassembly header and all
    765  * associated datagrams.
    766  */
    767 void
    768 ip_freef(fp)
    769 	struct ipq *fp;
    770 {
    771 	register struct ipqent *q, *p;
    772 
    773 	IPQ_LOCK_CHECK();
    774 
    775 	for (q = fp->ipq_fragq.lh_first; q != NULL; q = p) {
    776 		p = q->ipqe_q.le_next;
    777 		m_freem(q->ipqe_m);
    778 		LIST_REMOVE(q, ipqe_q);
    779 		pool_put(&ipqent_pool, q);
    780 	}
    781 	LIST_REMOVE(fp, ipq_q);
    782 	FREE(fp, M_FTABLE);
    783 }
    784 
    785 /*
    786  * IP timer processing;
    787  * if a timer expires on a reassembly
    788  * queue, discard it.
    789  */
    790 void
    791 ip_slowtimo()
    792 {
    793 	register struct ipq *fp, *nfp;
    794 	int s = splsoftnet();
    795 
    796 	IPQ_LOCK();
    797 	for (fp = ipq.lh_first; fp != NULL; fp = nfp) {
    798 		nfp = fp->ipq_q.le_next;
    799 		if (--fp->ipq_ttl == 0) {
    800 			ipstat.ips_fragtimeout++;
    801 			ip_freef(fp);
    802 		}
    803 	}
    804 	IPQ_UNLOCK();
    805 #ifdef GATEWAY
    806 	ipflow_slowtimo();
    807 #endif
    808 	splx(s);
    809 }
    810 
    811 /*
    812  * Drain off all datagram fragments.
    813  */
    814 void
    815 ip_drain()
    816 {
    817 
    818 	/*
    819 	 * We may be called from a device's interrupt context.  If
    820 	 * the ipq is already busy, just bail out now.
    821 	 */
    822 	if (ipq_lock_try() == 0)
    823 		return;
    824 
    825 	while (ipq.lh_first != NULL) {
    826 		ipstat.ips_fragdropped++;
    827 		ip_freef(ipq.lh_first);
    828 	}
    829 
    830 	IPQ_UNLOCK();
    831 }
    832 
    833 /*
    834  * Do option processing on a datagram,
    835  * possibly discarding it if bad options are encountered,
    836  * or forwarding it if source-routed.
    837  * Returns 1 if packet has been forwarded/freed,
    838  * 0 if the packet should be processed further.
    839  */
    840 int
    841 ip_dooptions(m)
    842 	struct mbuf *m;
    843 {
    844 	register struct ip *ip = mtod(m, struct ip *);
    845 	register u_char *cp;
    846 	register struct ip_timestamp *ipt;
    847 	register struct in_ifaddr *ia;
    848 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
    849 	struct in_addr *sin, dst;
    850 	n_time ntime;
    851 
    852 	dst = ip->ip_dst;
    853 	cp = (u_char *)(ip + 1);
    854 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
    855 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
    856 		opt = cp[IPOPT_OPTVAL];
    857 		if (opt == IPOPT_EOL)
    858 			break;
    859 		if (opt == IPOPT_NOP)
    860 			optlen = 1;
    861 		else {
    862 			optlen = cp[IPOPT_OLEN];
    863 			if (optlen <= 0 || optlen > cnt) {
    864 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
    865 				goto bad;
    866 			}
    867 		}
    868 		switch (opt) {
    869 
    870 		default:
    871 			break;
    872 
    873 		/*
    874 		 * Source routing with record.
    875 		 * Find interface with current destination address.
    876 		 * If none on this machine then drop if strictly routed,
    877 		 * or do nothing if loosely routed.
    878 		 * Record interface address and bring up next address
    879 		 * component.  If strictly routed make sure next
    880 		 * address is on directly accessible net.
    881 		 */
    882 		case IPOPT_LSRR:
    883 		case IPOPT_SSRR:
    884 			if (ip_allowsrcrt == 0) {
    885 				type = ICMP_UNREACH;
    886 				code = ICMP_UNREACH_NET_PROHIB;
    887 				goto bad;
    888 			}
    889 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
    890 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
    891 				goto bad;
    892 			}
    893 			ipaddr.sin_addr = ip->ip_dst;
    894 			ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
    895 			if (ia == 0) {
    896 				if (opt == IPOPT_SSRR) {
    897 					type = ICMP_UNREACH;
    898 					code = ICMP_UNREACH_SRCFAIL;
    899 					goto bad;
    900 				}
    901 				/*
    902 				 * Loose routing, and not at next destination
    903 				 * yet; nothing to do except forward.
    904 				 */
    905 				break;
    906 			}
    907 			off--;			/* 0 origin */
    908 			if (off > optlen - sizeof(struct in_addr)) {
    909 				/*
    910 				 * End of source route.  Should be for us.
    911 				 */
    912 				save_rte(cp, ip->ip_src);
    913 				break;
    914 			}
    915 			/*
    916 			 * locate outgoing interface
    917 			 */
    918 			bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
    919 			    sizeof(ipaddr.sin_addr));
    920 			if (opt == IPOPT_SSRR) {
    921 #define	INA	struct in_ifaddr *
    922 #define	SA	struct sockaddr *
    923 			    ia = (INA)ifa_ifwithladdr((SA)&ipaddr);
    924 			} else
    925 				ia = ip_rtaddr(ipaddr.sin_addr);
    926 			if (ia == 0) {
    927 				type = ICMP_UNREACH;
    928 				code = ICMP_UNREACH_SRCFAIL;
    929 				goto bad;
    930 			}
    931 			ip->ip_dst = ipaddr.sin_addr;
    932 			bcopy((caddr_t)&ia->ia_addr.sin_addr,
    933 			    (caddr_t)(cp + off), sizeof(struct in_addr));
    934 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
    935 			/*
    936 			 * Let ip_intr's mcast routing check handle mcast pkts
    937 			 */
    938 			forward = !IN_MULTICAST(ip->ip_dst.s_addr);
    939 			break;
    940 
    941 		case IPOPT_RR:
    942 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
    943 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
    944 				goto bad;
    945 			}
    946 			/*
    947 			 * If no space remains, ignore.
    948 			 */
    949 			off--;			/* 0 origin */
    950 			if (off > optlen - sizeof(struct in_addr))
    951 				break;
    952 			bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
    953 			    sizeof(ipaddr.sin_addr));
    954 			/*
    955 			 * locate outgoing interface; if we're the destination,
    956 			 * use the incoming interface (should be same).
    957 			 */
    958 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
    959 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
    960 				type = ICMP_UNREACH;
    961 				code = ICMP_UNREACH_HOST;
    962 				goto bad;
    963 			}
    964 			bcopy((caddr_t)&ia->ia_addr.sin_addr,
    965 			    (caddr_t)(cp + off), sizeof(struct in_addr));
    966 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
    967 			break;
    968 
    969 		case IPOPT_TS:
    970 			code = cp - (u_char *)ip;
    971 			ipt = (struct ip_timestamp *)cp;
    972 			if (ipt->ipt_len < 5)
    973 				goto bad;
    974 			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
    975 				if (++ipt->ipt_oflw == 0)
    976 					goto bad;
    977 				break;
    978 			}
    979 			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
    980 			switch (ipt->ipt_flg) {
    981 
    982 			case IPOPT_TS_TSONLY:
    983 				break;
    984 
    985 			case IPOPT_TS_TSANDADDR:
    986 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
    987 				    sizeof(struct in_addr) > ipt->ipt_len)
    988 					goto bad;
    989 				ipaddr.sin_addr = dst;
    990 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
    991 							    m->m_pkthdr.rcvif);
    992 				if (ia == 0)
    993 					continue;
    994 				bcopy((caddr_t)&ia->ia_addr.sin_addr,
    995 				    (caddr_t)sin, sizeof(struct in_addr));
    996 				ipt->ipt_ptr += sizeof(struct in_addr);
    997 				break;
    998 
    999 			case IPOPT_TS_PRESPEC:
   1000 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
   1001 				    sizeof(struct in_addr) > ipt->ipt_len)
   1002 					goto bad;
   1003 				bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
   1004 				    sizeof(struct in_addr));
   1005 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
   1006 					continue;
   1007 				ipt->ipt_ptr += sizeof(struct in_addr);
   1008 				break;
   1009 
   1010 			default:
   1011 				goto bad;
   1012 			}
   1013 			ntime = iptime();
   1014 			bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
   1015 			    sizeof(n_time));
   1016 			ipt->ipt_ptr += sizeof(n_time);
   1017 		}
   1018 	}
   1019 	if (forward) {
   1020 		if (ip_forwsrcrt == 0) {
   1021 			type = ICMP_UNREACH;
   1022 			code = ICMP_UNREACH_SRCFAIL;
   1023 			goto bad;
   1024 		}
   1025 		ip_forward(m, 1);
   1026 		return (1);
   1027 	}
   1028 	return (0);
   1029 bad:
   1030 	icmp_error(m, type, code, 0, 0);
   1031 	ipstat.ips_badoptions++;
   1032 	return (1);
   1033 }
   1034 
   1035 /*
   1036  * Given address of next destination (final or next hop),
   1037  * return internet address info of interface to be used to get there.
   1038  */
   1039 struct in_ifaddr *
   1040 ip_rtaddr(dst)
   1041 	 struct in_addr dst;
   1042 {
   1043 	register struct sockaddr_in *sin;
   1044 
   1045 	sin = satosin(&ipforward_rt.ro_dst);
   1046 
   1047 	if (ipforward_rt.ro_rt == 0 || !in_hosteq(dst, sin->sin_addr)) {
   1048 		if (ipforward_rt.ro_rt) {
   1049 			RTFREE(ipforward_rt.ro_rt);
   1050 			ipforward_rt.ro_rt = 0;
   1051 		}
   1052 		sin->sin_family = AF_INET;
   1053 		sin->sin_len = sizeof(*sin);
   1054 		sin->sin_addr = dst;
   1055 
   1056 		rtalloc(&ipforward_rt);
   1057 	}
   1058 	if (ipforward_rt.ro_rt == 0)
   1059 		return ((struct in_ifaddr *)0);
   1060 	return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
   1061 }
   1062 
   1063 /*
   1064  * Save incoming source route for use in replies,
   1065  * to be picked up later by ip_srcroute if the receiver is interested.
   1066  */
   1067 void
   1068 save_rte(option, dst)
   1069 	u_char *option;
   1070 	struct in_addr dst;
   1071 {
   1072 	unsigned olen;
   1073 
   1074 	olen = option[IPOPT_OLEN];
   1075 #ifdef DIAGNOSTIC
   1076 	if (ipprintfs)
   1077 		printf("save_rte: olen %d\n", olen);
   1078 #endif
   1079 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
   1080 		return;
   1081 	bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
   1082 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
   1083 	ip_srcrt.dst = dst;
   1084 }
   1085 
   1086 /*
   1087  * Retrieve incoming source route for use in replies,
   1088  * in the same form used by setsockopt.
   1089  * The first hop is placed before the options, will be removed later.
   1090  */
   1091 struct mbuf *
   1092 ip_srcroute()
   1093 {
   1094 	register struct in_addr *p, *q;
   1095 	register struct mbuf *m;
   1096 
   1097 	if (ip_nhops == 0)
   1098 		return ((struct mbuf *)0);
   1099 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1100 	if (m == 0)
   1101 		return ((struct mbuf *)0);
   1102 
   1103 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
   1104 
   1105 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
   1106 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
   1107 	    OPTSIZ;
   1108 #ifdef DIAGNOSTIC
   1109 	if (ipprintfs)
   1110 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
   1111 #endif
   1112 
   1113 	/*
   1114 	 * First save first hop for return route
   1115 	 */
   1116 	p = &ip_srcrt.route[ip_nhops - 1];
   1117 	*(mtod(m, struct in_addr *)) = *p--;
   1118 #ifdef DIAGNOSTIC
   1119 	if (ipprintfs)
   1120 		printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
   1121 #endif
   1122 
   1123 	/*
   1124 	 * Copy option fields and padding (nop) to mbuf.
   1125 	 */
   1126 	ip_srcrt.nop = IPOPT_NOP;
   1127 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
   1128 	bcopy((caddr_t)&ip_srcrt.nop,
   1129 	    mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
   1130 	q = (struct in_addr *)(mtod(m, caddr_t) +
   1131 	    sizeof(struct in_addr) + OPTSIZ);
   1132 #undef OPTSIZ
   1133 	/*
   1134 	 * Record return path as an IP source route,
   1135 	 * reversing the path (pointers are now aligned).
   1136 	 */
   1137 	while (p >= ip_srcrt.route) {
   1138 #ifdef DIAGNOSTIC
   1139 		if (ipprintfs)
   1140 			printf(" %x", ntohl(q->s_addr));
   1141 #endif
   1142 		*q++ = *p--;
   1143 	}
   1144 	/*
   1145 	 * Last hop goes to final destination.
   1146 	 */
   1147 	*q = ip_srcrt.dst;
   1148 #ifdef DIAGNOSTIC
   1149 	if (ipprintfs)
   1150 		printf(" %x\n", ntohl(q->s_addr));
   1151 #endif
   1152 	return (m);
   1153 }
   1154 
   1155 /*
   1156  * Strip out IP options, at higher
   1157  * level protocol in the kernel.
   1158  * Second argument is buffer to which options
   1159  * will be moved, and return value is their length.
   1160  * XXX should be deleted; last arg currently ignored.
   1161  */
   1162 void
   1163 ip_stripoptions(m, mopt)
   1164 	register struct mbuf *m;
   1165 	struct mbuf *mopt;
   1166 {
   1167 	register int i;
   1168 	struct ip *ip = mtod(m, struct ip *);
   1169 	register caddr_t opts;
   1170 	int olen;
   1171 
   1172 	olen = (ip->ip_hl << 2) - sizeof (struct ip);
   1173 	opts = (caddr_t)(ip + 1);
   1174 	i = m->m_len - (sizeof (struct ip) + olen);
   1175 	bcopy(opts  + olen, opts, (unsigned)i);
   1176 	m->m_len -= olen;
   1177 	if (m->m_flags & M_PKTHDR)
   1178 		m->m_pkthdr.len -= olen;
   1179 	ip->ip_len -= olen;
   1180 	ip->ip_hl = sizeof (struct ip) >> 2;
   1181 }
   1182 
   1183 int inetctlerrmap[PRC_NCMDS] = {
   1184 	0,		0,		0,		0,
   1185 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
   1186 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
   1187 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
   1188 	0,		0,		0,		0,
   1189 	ENOPROTOOPT
   1190 };
   1191 
   1192 /*
   1193  * Forward a packet.  If some error occurs return the sender
   1194  * an icmp packet.  Note we can't always generate a meaningful
   1195  * icmp message because icmp doesn't have a large enough repertoire
   1196  * of codes and types.
   1197  *
   1198  * If not forwarding, just drop the packet.  This could be confusing
   1199  * if ipforwarding was zero but some routing protocol was advancing
   1200  * us as a gateway to somewhere.  However, we must let the routing
   1201  * protocol deal with that.
   1202  *
   1203  * The srcrt parameter indicates whether the packet is being forwarded
   1204  * via a source route.
   1205  */
   1206 void
   1207 ip_forward(m, srcrt)
   1208 	struct mbuf *m;
   1209 	int srcrt;
   1210 {
   1211 	register struct ip *ip = mtod(m, struct ip *);
   1212 	register struct sockaddr_in *sin;
   1213 	register struct rtentry *rt;
   1214 	int error, type = 0, code = 0;
   1215 	struct mbuf *mcopy;
   1216 	n_long dest;
   1217 	struct ifnet *destifp;
   1218 
   1219 	dest = 0;
   1220 #ifdef DIAGNOSTIC
   1221 	if (ipprintfs)
   1222 		printf("forward: src %2.2x dst %2.2x ttl %x\n",
   1223 		    ntohl(ip->ip_src.s_addr),
   1224 		    ntohl(ip->ip_dst.s_addr), ip->ip_ttl);
   1225 #endif
   1226 	if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
   1227 		ipstat.ips_cantforward++;
   1228 		m_freem(m);
   1229 		return;
   1230 	}
   1231 	if (ip->ip_ttl <= IPTTLDEC) {
   1232 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
   1233 		return;
   1234 	}
   1235 	ip->ip_ttl -= IPTTLDEC;
   1236 
   1237 	sin = satosin(&ipforward_rt.ro_dst);
   1238 	if ((rt = ipforward_rt.ro_rt) == 0 ||
   1239 	    !in_hosteq(ip->ip_dst, sin->sin_addr)) {
   1240 		if (ipforward_rt.ro_rt) {
   1241 			RTFREE(ipforward_rt.ro_rt);
   1242 			ipforward_rt.ro_rt = 0;
   1243 		}
   1244 		sin->sin_family = AF_INET;
   1245 		sin->sin_len = sizeof(struct sockaddr_in);
   1246 		sin->sin_addr = ip->ip_dst;
   1247 
   1248 		rtalloc(&ipforward_rt);
   1249 		if (ipforward_rt.ro_rt == 0) {
   1250 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
   1251 			return;
   1252 		}
   1253 		rt = ipforward_rt.ro_rt;
   1254 	}
   1255 
   1256 	/*
   1257 	 * Save at most 68 bytes of the packet in case
   1258 	 * we need to generate an ICMP message to the src.
   1259 	 */
   1260 	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 68));
   1261 
   1262 	/*
   1263 	 * If forwarding packet using same interface that it came in on,
   1264 	 * perhaps should send a redirect to sender to shortcut a hop.
   1265 	 * Only send redirect if source is sending directly to us,
   1266 	 * and if packet was not source routed (or has any options).
   1267 	 * Also, don't send redirect if forwarding using a default route
   1268 	 * or a route modified by a redirect.
   1269 	 */
   1270 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
   1271 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
   1272 	    !in_nullhost(satosin(rt_key(rt))->sin_addr) &&
   1273 	    ipsendredirects && !srcrt) {
   1274 		if (rt->rt_ifa &&
   1275 		    (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
   1276 		    ifatoia(rt->rt_ifa)->ia_subnet) {
   1277 			if (rt->rt_flags & RTF_GATEWAY)
   1278 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
   1279 			else
   1280 				dest = ip->ip_dst.s_addr;
   1281 			/*
   1282 			 * Router requirements says to only send host
   1283 			 * redirects.
   1284 			 */
   1285 			type = ICMP_REDIRECT;
   1286 			code = ICMP_REDIRECT_HOST;
   1287 #ifdef DIAGNOSTIC
   1288 			if (ipprintfs)
   1289 				printf("redirect (%d) to %x\n", code,
   1290 				    (u_int32_t)dest);
   1291 #endif
   1292 		}
   1293 	}
   1294 
   1295 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
   1296 	    (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)), 0);
   1297 	if (error)
   1298 		ipstat.ips_cantforward++;
   1299 	else {
   1300 		ipstat.ips_forward++;
   1301 		if (type)
   1302 			ipstat.ips_redirectsent++;
   1303 		else {
   1304 			if (mcopy) {
   1305 #ifdef GATEWAY
   1306 				if (mcopy->m_flags & M_CANFASTFWD)
   1307 					ipflow_create(&ipforward_rt, mcopy);
   1308 #endif
   1309 				m_freem(mcopy);
   1310 			}
   1311 			return;
   1312 		}
   1313 	}
   1314 	if (mcopy == NULL)
   1315 		return;
   1316 	destifp = NULL;
   1317 
   1318 	switch (error) {
   1319 
   1320 	case 0:				/* forwarded, but need redirect */
   1321 		/* type, code set above */
   1322 		break;
   1323 
   1324 	case ENETUNREACH:		/* shouldn't happen, checked above */
   1325 	case EHOSTUNREACH:
   1326 	case ENETDOWN:
   1327 	case EHOSTDOWN:
   1328 	default:
   1329 		type = ICMP_UNREACH;
   1330 		code = ICMP_UNREACH_HOST;
   1331 		break;
   1332 
   1333 	case EMSGSIZE:
   1334 		type = ICMP_UNREACH;
   1335 		code = ICMP_UNREACH_NEEDFRAG;
   1336 		if (ipforward_rt.ro_rt)
   1337 			destifp = ipforward_rt.ro_rt->rt_ifp;
   1338 		ipstat.ips_cantfrag++;
   1339 		break;
   1340 
   1341 	case ENOBUFS:
   1342 		type = ICMP_SOURCEQUENCH;
   1343 		code = 0;
   1344 		break;
   1345 	}
   1346 	icmp_error(mcopy, type, code, dest, destifp);
   1347 }
   1348 
   1349 void
   1350 ip_savecontrol(inp, mp, ip, m)
   1351 	register struct inpcb *inp;
   1352 	register struct mbuf **mp;
   1353 	register struct ip *ip;
   1354 	register struct mbuf *m;
   1355 {
   1356 
   1357 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
   1358 		struct timeval tv;
   1359 
   1360 		microtime(&tv);
   1361 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
   1362 		    SCM_TIMESTAMP, SOL_SOCKET);
   1363 		if (*mp)
   1364 			mp = &(*mp)->m_next;
   1365 	}
   1366 	if (inp->inp_flags & INP_RECVDSTADDR) {
   1367 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
   1368 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
   1369 		if (*mp)
   1370 			mp = &(*mp)->m_next;
   1371 	}
   1372 #ifdef notyet
   1373 	/*
   1374 	 * XXX
   1375 	 * Moving these out of udp_input() made them even more broken
   1376 	 * than they already were.
   1377 	 *	- fenner (at) parc.xerox.com
   1378 	 */
   1379 	/* options were tossed already */
   1380 	if (inp->inp_flags & INP_RECVOPTS) {
   1381 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
   1382 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
   1383 		if (*mp)
   1384 			mp = &(*mp)->m_next;
   1385 	}
   1386 	/* ip_srcroute doesn't do what we want here, need to fix */
   1387 	if (inp->inp_flags & INP_RECVRETOPTS) {
   1388 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
   1389 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
   1390 		if (*mp)
   1391 			mp = &(*mp)->m_next;
   1392 	}
   1393 #endif
   1394 	if (inp->inp_flags & INP_RECVIF) {
   1395 		struct sockaddr_dl sdl;
   1396 
   1397 		sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]);
   1398 		sdl.sdl_family = AF_LINK;
   1399 		sdl.sdl_index = m->m_pkthdr.rcvif ?
   1400 		    m->m_pkthdr.rcvif->if_index : 0;
   1401 		sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0;
   1402 		*mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len,
   1403 		    IP_RECVIF, IPPROTO_IP);
   1404 		if (*mp)
   1405 			mp = &(*mp)->m_next;
   1406 	}
   1407 }
   1408 
   1409 int
   1410 ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
   1411 	int *name;
   1412 	u_int namelen;
   1413 	void *oldp;
   1414 	size_t *oldlenp;
   1415 	void *newp;
   1416 	size_t newlen;
   1417 {
   1418 	extern int subnetsarelocal;
   1419 
   1420 	int error, old;
   1421 
   1422 	/* All sysctl names at this level are terminal. */
   1423 	if (namelen != 1)
   1424 		return (ENOTDIR);
   1425 
   1426 	switch (name[0]) {
   1427 	case IPCTL_FORWARDING:
   1428 		return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
   1429 	case IPCTL_SENDREDIRECTS:
   1430 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1431 			&ipsendredirects));
   1432 	case IPCTL_DEFTTL:
   1433 		return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
   1434 #ifdef notyet
   1435 	case IPCTL_DEFMTU:
   1436 		return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
   1437 #endif
   1438 	case IPCTL_FORWSRCRT:
   1439 		/* Don't allow this to change in a secure environment.  */
   1440 		if (securelevel > 0)
   1441 			return (sysctl_rdint(oldp, oldlenp, newp,
   1442 			    ip_forwsrcrt));
   1443 		else
   1444 			return (sysctl_int(oldp, oldlenp, newp, newlen,
   1445 			    &ip_forwsrcrt));
   1446 	case IPCTL_DIRECTEDBCAST:
   1447 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1448 		    &ip_directedbcast));
   1449 	case IPCTL_ALLOWSRCRT:
   1450 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1451 		    &ip_allowsrcrt));
   1452 	case IPCTL_SUBNETSARELOCAL:
   1453 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1454 		    &subnetsarelocal));
   1455 	case IPCTL_MTUDISC:
   1456 		error = sysctl_int(oldp, oldlenp, newp, newlen,
   1457 		    &ip_mtudisc);
   1458 		if (ip_mtudisc != 0 && ip_mtudisc_timeout_q == NULL) {
   1459 			ip_mtudisc_timeout_q =
   1460 			    rt_timer_queue_create(ip_mtudisc_timeout);
   1461 		} else if (ip_mtudisc == 0 && ip_mtudisc_timeout_q != NULL) {
   1462 			rt_timer_queue_destroy(ip_mtudisc_timeout_q, TRUE);
   1463 			ip_mtudisc_timeout_q = NULL;
   1464 		}
   1465 		return error;
   1466 	case IPCTL_ANONPORTMIN:
   1467 		old = anonportmin;
   1468 		error = sysctl_int(oldp, oldlenp, newp, newlen, &anonportmin);
   1469 		if (anonportmin >= anonportmax || anonportmin > 65535
   1470 #ifndef IPNOPRIVPORTS
   1471 		    || anonportmin < IPPORT_RESERVED
   1472 #endif
   1473 		    ) {
   1474 			anonportmin = old;
   1475 			return (EINVAL);
   1476 		}
   1477 		return (error);
   1478 	case IPCTL_ANONPORTMAX:
   1479 		old = anonportmax;
   1480 		error = sysctl_int(oldp, oldlenp, newp, newlen, &anonportmax);
   1481 		if (anonportmin >= anonportmax || anonportmax > 65535
   1482 #ifndef IPNOPRIVPORTS
   1483 		    || anonportmax < IPPORT_RESERVED
   1484 #endif
   1485 		    ) {
   1486 			anonportmax = old;
   1487 			return (EINVAL);
   1488 		}
   1489 		return (error);
   1490 	case IPCTL_MTUDISCTIMEOUT:
   1491 		error = sysctl_int(oldp, oldlenp, newp, newlen,
   1492 		   &ip_mtudisc_timeout);
   1493 		if (ip_mtudisc_timeout_q != NULL)
   1494 			rt_timer_queue_change(ip_mtudisc_timeout_q,
   1495 					      ip_mtudisc_timeout);
   1496 		return (error);
   1497 #ifdef GATEWAY
   1498 	case IPCTL_MAXFLOWS:
   1499 	    {
   1500 		int s;
   1501 
   1502 		error = sysctl_int(oldp, oldlenp, newp, newlen,
   1503 		   &ip_maxflows);
   1504 		s = splsoftnet();
   1505 		ipflow_reap(0);
   1506 		splx(s);
   1507 		return (error);
   1508 	    }
   1509 #endif
   1510 	default:
   1511 		return (EOPNOTSUPP);
   1512 	}
   1513 	/* NOTREACHED */
   1514 }
   1515