Home | History | Annotate | Line # | Download | only in netinet
ip_input.c revision 1.82
      1 /*	$NetBSD: ip_input.c,v 1.82 1999/03/27 01:24:49 aidan Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Public Access Networks Corporation ("Panix").  It was developed under
      9  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1988, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by the University of
     55  *	California, Berkeley and its contributors.
     56  * 4. Neither the name of the University nor the names of its contributors
     57  *    may be used to endorse or promote products derived from this software
     58  *    without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     62  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     63  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     64  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     65  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     66  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     70  * SUCH DAMAGE.
     71  *
     72  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
     73  */
     74 
     75 #include "opt_gateway.h"
     76 #include "opt_pfil_hooks.h"
     77 #include "opt_mrouting.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/malloc.h>
     82 #include <sys/mbuf.h>
     83 #include <sys/domain.h>
     84 #include <sys/protosw.h>
     85 #include <sys/socket.h>
     86 #include <sys/socketvar.h>
     87 #include <sys/errno.h>
     88 #include <sys/time.h>
     89 #include <sys/kernel.h>
     90 #include <sys/proc.h>
     91 #include <sys/pool.h>
     92 
     93 #include <vm/vm.h>
     94 #include <sys/sysctl.h>
     95 
     96 #include <net/if.h>
     97 #include <net/if_dl.h>
     98 #include <net/route.h>
     99 #include <net/pfil.h>
    100 
    101 #include <netinet/in.h>
    102 #include <netinet/in_systm.h>
    103 #include <netinet/ip.h>
    104 #include <netinet/in_pcb.h>
    105 #include <netinet/in_var.h>
    106 #include <netinet/ip_var.h>
    107 #include <netinet/ip_icmp.h>
    108 
    109 #ifndef	IPFORWARDING
    110 #ifdef GATEWAY
    111 #define	IPFORWARDING	1	/* forward IP packets not for us */
    112 #else /* GATEWAY */
    113 #define	IPFORWARDING	0	/* don't forward IP packets not for us */
    114 #endif /* GATEWAY */
    115 #endif /* IPFORWARDING */
    116 #ifndef	IPSENDREDIRECTS
    117 #define	IPSENDREDIRECTS	1
    118 #endif
    119 #ifndef IPFORWSRCRT
    120 #define	IPFORWSRCRT	1	/* forward source-routed packets */
    121 #endif
    122 #ifndef IPALLOWSRCRT
    123 #define	IPALLOWSRCRT	1	/* allow source-routed packets */
    124 #endif
    125 #ifndef IPMTUDISC
    126 #define IPMTUDISC	0
    127 #endif
    128 #ifndef IPMTUDISCTIMEOUT
    129 #define IPMTUDISCTIMEOUT (10 * 60)	/* as per RFC 1191 */
    130 #endif
    131 
    132 /*
    133  * Note: DIRECTED_BROADCAST is handled this way so that previous
    134  * configuration using this option will Just Work.
    135  */
    136 #ifndef IPDIRECTEDBCAST
    137 #ifdef DIRECTED_BROADCAST
    138 #define IPDIRECTEDBCAST	1
    139 #else
    140 #define	IPDIRECTEDBCAST	0
    141 #endif /* DIRECTED_BROADCAST */
    142 #endif /* IPDIRECTEDBCAST */
    143 int	ipforwarding = IPFORWARDING;
    144 int	ipsendredirects = IPSENDREDIRECTS;
    145 int	ip_defttl = IPDEFTTL;
    146 int	ip_forwsrcrt = IPFORWSRCRT;
    147 int	ip_directedbcast = IPDIRECTEDBCAST;
    148 int	ip_allowsrcrt = IPALLOWSRCRT;
    149 int	ip_mtudisc = IPMTUDISC;
    150 u_int	ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
    151 #ifdef DIAGNOSTIC
    152 int	ipprintfs = 0;
    153 #endif
    154 
    155 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
    156 
    157 extern	struct domain inetdomain;
    158 extern	struct protosw inetsw[];
    159 u_char	ip_protox[IPPROTO_MAX];
    160 int	ipqmaxlen = IFQ_MAXLEN;
    161 struct	in_ifaddrhead in_ifaddr;
    162 struct	in_ifaddrhashhead *in_ifaddrhashtbl;
    163 struct	ifqueue ipintrq;
    164 struct	ipstat	ipstat;
    165 u_int16_t	ip_id;
    166 int	ip_defttl;
    167 
    168 struct ipqhead ipq;
    169 int	ipq_locked;
    170 
    171 static __inline int ipq_lock_try __P((void));
    172 static __inline void ipq_unlock __P((void));
    173 
    174 static __inline int
    175 ipq_lock_try()
    176 {
    177 	int s;
    178 
    179 	s = splimp();
    180 	if (ipq_locked) {
    181 		splx(s);
    182 		return (0);
    183 	}
    184 	ipq_locked = 1;
    185 	splx(s);
    186 	return (1);
    187 }
    188 
    189 static __inline void
    190 ipq_unlock()
    191 {
    192 	int s;
    193 
    194 	s = splimp();
    195 	ipq_locked = 0;
    196 	splx(s);
    197 }
    198 
    199 #ifdef DIAGNOSTIC
    200 #define	IPQ_LOCK()							\
    201 do {									\
    202 	if (ipq_lock_try() == 0) {					\
    203 		printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
    204 		panic("ipq_lock");					\
    205 	}								\
    206 } while (0)
    207 #define	IPQ_LOCK_CHECK()						\
    208 do {									\
    209 	if (ipq_locked == 0) {						\
    210 		printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
    211 		panic("ipq lock check");				\
    212 	}								\
    213 } while (0)
    214 #else
    215 #define	IPQ_LOCK()		(void) ipq_lock_try()
    216 #define	IPQ_LOCK_CHECK()	/* nothing */
    217 #endif
    218 
    219 #define	IPQ_UNLOCK()		ipq_unlock()
    220 
    221 struct pool ipqent_pool;
    222 
    223 /*
    224  * We need to save the IP options in case a protocol wants to respond
    225  * to an incoming packet over the same route if the packet got here
    226  * using IP source routing.  This allows connection establishment and
    227  * maintenance when the remote end is on a network that is not known
    228  * to us.
    229  */
    230 int	ip_nhops = 0;
    231 static	struct ip_srcrt {
    232 	struct	in_addr dst;			/* final destination */
    233 	char	nop;				/* one NOP to align */
    234 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
    235 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
    236 } ip_srcrt;
    237 
    238 static void save_rte __P((u_char *, struct in_addr));
    239 
    240 /*
    241  * IP initialization: fill in IP protocol switch table.
    242  * All protocols not implemented in kernel go to raw IP protocol handler.
    243  */
    244 void
    245 ip_init()
    246 {
    247 	register struct protosw *pr;
    248 	register int i;
    249 
    250 	pool_init(&ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl",
    251 	    0, NULL, NULL, M_IPQ);
    252 
    253 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
    254 	if (pr == 0)
    255 		panic("ip_init");
    256 	for (i = 0; i < IPPROTO_MAX; i++)
    257 		ip_protox[i] = pr - inetsw;
    258 	for (pr = inetdomain.dom_protosw;
    259 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
    260 		if (pr->pr_domain->dom_family == PF_INET &&
    261 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
    262 			ip_protox[pr->pr_protocol] = pr - inetsw;
    263 	LIST_INIT(&ipq);
    264 	ip_id = time.tv_sec & 0xffff;
    265 	ipintrq.ifq_maxlen = ipqmaxlen;
    266 	TAILQ_INIT(&in_ifaddr);
    267 	in_ifaddrhashtbl =
    268 	    hashinit(IN_IFADDR_HASH_SIZE, M_IFADDR, M_WAITOK, &in_ifaddrhash);
    269 	if (ip_mtudisc != 0)
    270 		ip_mtudisc_timeout_q =
    271 		    rt_timer_queue_create(ip_mtudisc_timeout);
    272 #ifdef GATEWAY
    273 	ipflow_init();
    274 #endif
    275 }
    276 
    277 struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
    278 struct	route ipforward_rt;
    279 
    280 /*
    281  * Ip input routine.  Checksum and byte swap header.  If fragmented
    282  * try to reassemble.  Process options.  Pass to next level.
    283  */
    284 void
    285 ipintr()
    286 {
    287 	register struct ip *ip = NULL;
    288 	register struct mbuf *m;
    289 	register struct ipq *fp;
    290 	register struct in_ifaddr *ia;
    291 	register struct ifaddr *ifa;
    292 	struct ipqent *ipqe;
    293 	int hlen = 0, mff, len, s;
    294 #ifdef PFIL_HOOKS
    295 	struct packet_filter_hook *pfh;
    296 	struct mbuf *m0;
    297 	int rv;
    298 #endif /* PFIL_HOOKS */
    299 
    300 next:
    301 	/*
    302 	 * Get next datagram off input queue and get IP header
    303 	 * in first mbuf.
    304 	 */
    305 	s = splimp();
    306 	IF_DEQUEUE(&ipintrq, m);
    307 	splx(s);
    308 	if (m == 0)
    309 		return;
    310 #ifdef	DIAGNOSTIC
    311 	if ((m->m_flags & M_PKTHDR) == 0)
    312 		panic("ipintr no HDR");
    313 #endif
    314 	/*
    315 	 * If no IP addresses have been set yet but the interfaces
    316 	 * are receiving, can't do anything with incoming packets yet.
    317 	 */
    318 	if (in_ifaddr.tqh_first == 0)
    319 		goto bad;
    320 	ipstat.ips_total++;
    321 	if (m->m_len < sizeof (struct ip) &&
    322 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
    323 		ipstat.ips_toosmall++;
    324 		goto next;
    325 	}
    326 	ip = mtod(m, struct ip *);
    327 	if (ip->ip_v != IPVERSION) {
    328 		ipstat.ips_badvers++;
    329 		goto bad;
    330 	}
    331 	hlen = ip->ip_hl << 2;
    332 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
    333 		ipstat.ips_badhlen++;
    334 		goto bad;
    335 	}
    336 	if (hlen > m->m_len) {
    337 		if ((m = m_pullup(m, hlen)) == 0) {
    338 			ipstat.ips_badhlen++;
    339 			goto next;
    340 		}
    341 		ip = mtod(m, struct ip *);
    342 	}
    343 	if (in_cksum(m, hlen) != 0) {
    344 		ipstat.ips_badsum++;
    345 		goto bad;
    346 	}
    347 
    348 	/*
    349 	 * Convert fields to host representation.
    350 	 */
    351 	NTOHS(ip->ip_len);
    352 	NTOHS(ip->ip_off);
    353 	len = ip->ip_len;
    354 
    355 	/*
    356 	 * Check for additional length bogosity
    357 	 */
    358 	if (len < hlen)
    359 	{
    360 	 	ipstat.ips_badlen++;
    361 		goto bad;
    362 	}
    363 
    364 	/*
    365 	 * Check that the amount of data in the buffers
    366 	 * is as at least much as the IP header would have us expect.
    367 	 * Trim mbufs if longer than we expect.
    368 	 * Drop packet if shorter than we expect.
    369 	 */
    370 	if (m->m_pkthdr.len < len) {
    371 		ipstat.ips_tooshort++;
    372 		goto bad;
    373 	}
    374 	if (m->m_pkthdr.len > len) {
    375 		if (m->m_len == m->m_pkthdr.len) {
    376 			m->m_len = len;
    377 			m->m_pkthdr.len = len;
    378 		} else
    379 			m_adj(m, len - m->m_pkthdr.len);
    380 	}
    381 
    382 	/*
    383 	 * Assume that we can create a fast-forward IP flow entry
    384 	 * based on this packet.
    385 	 */
    386 	m->m_flags |= M_CANFASTFWD;
    387 
    388 #ifdef PFIL_HOOKS
    389 	/*
    390 	 * Run through list of hooks for input packets.  If there are any
    391 	 * filters which require that additional packets in the flow are
    392 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
    393 	 * Note that filters must _never_ set this flag, as another filter
    394 	 * in the list may have previously cleared it.
    395 	 */
    396 	m0 = m;
    397 	for (pfh = pfil_hook_get(PFIL_IN); pfh; pfh = pfh->pfil_link.tqe_next)
    398 		if (pfh->pfil_func) {
    399 			rv = pfh->pfil_func(ip, hlen, m->m_pkthdr.rcvif, 0, &m0);
    400 			if (rv)
    401 				goto next;
    402 			m = m0;
    403 			if (m == NULL)
    404 				goto next;
    405 			ip = mtod(m, struct ip *);
    406 		}
    407 #endif /* PFIL_HOOKS */
    408 
    409 	/*
    410 	 * Process options and, if not destined for us,
    411 	 * ship it on.  ip_dooptions returns 1 when an
    412 	 * error was detected (causing an icmp message
    413 	 * to be sent and the original packet to be freed).
    414 	 */
    415 	ip_nhops = 0;		/* for source routed packets */
    416 	if (hlen > sizeof (struct ip) && ip_dooptions(m))
    417 		goto next;
    418 
    419 	/*
    420 	 * Check our list of addresses, to see if the packet is for us.
    421 	 */
    422 	INADDR_TO_IA(ip->ip_dst, ia);
    423 	if (ia != NULL) goto ours;
    424 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
    425 		for (ifa = m->m_pkthdr.rcvif->if_addrlist.tqh_first;
    426 		    ifa != NULL; ifa = ifa->ifa_list.tqe_next) {
    427 			if (ifa->ifa_addr->sa_family != AF_INET) continue;
    428 			ia = ifatoia(ifa);
    429 			if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
    430 			    in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
    431 			    /*
    432 			     * Look for all-0's host part (old broadcast addr),
    433 			     * either for subnet or net.
    434 			     */
    435 			    ip->ip_dst.s_addr == ia->ia_subnet ||
    436 			    ip->ip_dst.s_addr == ia->ia_net)
    437 				goto ours;
    438 			/*
    439 			 * An interface with IP address zero accepts
    440 			 * all packets that arrive on that interface.
    441 			 */
    442 			if (in_nullhost(ia->ia_addr.sin_addr))
    443 				goto ours;
    444 		}
    445 	}
    446 	if (IN_MULTICAST(ip->ip_dst.s_addr)) {
    447 		struct in_multi *inm;
    448 #ifdef MROUTING
    449 		extern struct socket *ip_mrouter;
    450 
    451 		if (m->m_flags & M_EXT) {
    452 			if ((m = m_pullup(m, hlen)) == 0) {
    453 				ipstat.ips_toosmall++;
    454 				goto next;
    455 			}
    456 			ip = mtod(m, struct ip *);
    457 		}
    458 
    459 		if (ip_mrouter) {
    460 			/*
    461 			 * If we are acting as a multicast router, all
    462 			 * incoming multicast packets are passed to the
    463 			 * kernel-level multicast forwarding function.
    464 			 * The packet is returned (relatively) intact; if
    465 			 * ip_mforward() returns a non-zero value, the packet
    466 			 * must be discarded, else it may be accepted below.
    467 			 *
    468 			 * (The IP ident field is put in the same byte order
    469 			 * as expected when ip_mforward() is called from
    470 			 * ip_output().)
    471 			 */
    472 			if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
    473 				ipstat.ips_cantforward++;
    474 				m_freem(m);
    475 				goto next;
    476 			}
    477 
    478 			/*
    479 			 * The process-level routing demon needs to receive
    480 			 * all multicast IGMP packets, whether or not this
    481 			 * host belongs to their destination groups.
    482 			 */
    483 			if (ip->ip_p == IPPROTO_IGMP)
    484 				goto ours;
    485 			ipstat.ips_forward++;
    486 		}
    487 #endif
    488 		/*
    489 		 * See if we belong to the destination multicast group on the
    490 		 * arrival interface.
    491 		 */
    492 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
    493 		if (inm == NULL) {
    494 			ipstat.ips_cantforward++;
    495 			m_freem(m);
    496 			goto next;
    497 		}
    498 		goto ours;
    499 	}
    500 	if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
    501 	    in_nullhost(ip->ip_dst))
    502 		goto ours;
    503 
    504 	/*
    505 	 * Not for us; forward if possible and desirable.
    506 	 */
    507 	if (ipforwarding == 0) {
    508 		ipstat.ips_cantforward++;
    509 		m_freem(m);
    510 	} else
    511 		ip_forward(m, 0);
    512 	goto next;
    513 
    514 ours:
    515 	/*
    516 	 * If offset or IP_MF are set, must reassemble.
    517 	 * Otherwise, nothing need be done.
    518 	 * (We could look in the reassembly queue to see
    519 	 * if the packet was previously fragmented,
    520 	 * but it's not worth the time; just let them time out.)
    521 	 */
    522 	if (ip->ip_off & ~(IP_DF|IP_RF)) {
    523 		/*
    524 		 * Look for queue of fragments
    525 		 * of this datagram.
    526 		 */
    527 		IPQ_LOCK();
    528 		for (fp = ipq.lh_first; fp != NULL; fp = fp->ipq_q.le_next)
    529 			if (ip->ip_id == fp->ipq_id &&
    530 			    in_hosteq(ip->ip_src, fp->ipq_src) &&
    531 			    in_hosteq(ip->ip_dst, fp->ipq_dst) &&
    532 			    ip->ip_p == fp->ipq_p)
    533 				goto found;
    534 		fp = 0;
    535 found:
    536 
    537 		/*
    538 		 * Adjust ip_len to not reflect header,
    539 		 * set ipqe_mff if more fragments are expected,
    540 		 * convert offset of this to bytes.
    541 		 */
    542 		ip->ip_len -= hlen;
    543 		mff = (ip->ip_off & IP_MF) != 0;
    544 		if (mff) {
    545 		        /*
    546 		         * Make sure that fragments have a data length
    547 			 * that's a non-zero multiple of 8 bytes.
    548 		         */
    549 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
    550 				ipstat.ips_badfrags++;
    551 				IPQ_UNLOCK();
    552 				goto bad;
    553 			}
    554 		}
    555 		ip->ip_off <<= 3;
    556 
    557 		/*
    558 		 * If datagram marked as having more fragments
    559 		 * or if this is not the first fragment,
    560 		 * attempt reassembly; if it succeeds, proceed.
    561 		 */
    562 		if (mff || ip->ip_off) {
    563 			ipstat.ips_fragments++;
    564 			ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
    565 			if (ipqe == NULL) {
    566 				ipstat.ips_rcvmemdrop++;
    567 				IPQ_UNLOCK();
    568 				goto bad;
    569 			}
    570 			ipqe->ipqe_mff = mff;
    571 			ipqe->ipqe_m = m;
    572 			ipqe->ipqe_ip = ip;
    573 			m = ip_reass(ipqe, fp);
    574 			if (m == 0) {
    575 				IPQ_UNLOCK();
    576 				goto next;
    577 			}
    578 			ipstat.ips_reassembled++;
    579 			ip = mtod(m, struct ip *);
    580 			hlen = ip->ip_hl << 2;
    581 			ip->ip_len += hlen;
    582 		} else
    583 			if (fp)
    584 				ip_freef(fp);
    585 		IPQ_UNLOCK();
    586 	}
    587 
    588 	/*
    589 	 * Switch out to protocol's input routine.
    590 	 */
    591 #if IFA_STATS
    592 	ia->ia_ifa.ifa_data.ifad_inbytes += ip->ip_len;
    593 #endif
    594 	ipstat.ips_delivered++;
    595 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
    596 	goto next;
    597 bad:
    598 	m_freem(m);
    599 	goto next;
    600 }
    601 
    602 /*
    603  * Take incoming datagram fragment and try to
    604  * reassemble it into whole datagram.  If a chain for
    605  * reassembly of this datagram already exists, then it
    606  * is given as fp; otherwise have to make a chain.
    607  */
    608 struct mbuf *
    609 ip_reass(ipqe, fp)
    610 	register struct ipqent *ipqe;
    611 	register struct ipq *fp;
    612 {
    613 	register struct mbuf *m = ipqe->ipqe_m;
    614 	register struct ipqent *nq, *p, *q;
    615 	struct ip *ip;
    616 	struct mbuf *t;
    617 	int hlen = ipqe->ipqe_ip->ip_hl << 2;
    618 	int i, next;
    619 
    620 	IPQ_LOCK_CHECK();
    621 
    622 	/*
    623 	 * Presence of header sizes in mbufs
    624 	 * would confuse code below.
    625 	 */
    626 	m->m_data += hlen;
    627 	m->m_len -= hlen;
    628 
    629 	/*
    630 	 * If first fragment to arrive, create a reassembly queue.
    631 	 */
    632 	if (fp == 0) {
    633 		MALLOC(fp, struct ipq *, sizeof (struct ipq),
    634 		    M_FTABLE, M_NOWAIT);
    635 		if (fp == NULL)
    636 			goto dropfrag;
    637 		LIST_INSERT_HEAD(&ipq, fp, ipq_q);
    638 		fp->ipq_ttl = IPFRAGTTL;
    639 		fp->ipq_p = ipqe->ipqe_ip->ip_p;
    640 		fp->ipq_id = ipqe->ipqe_ip->ip_id;
    641 		LIST_INIT(&fp->ipq_fragq);
    642 		fp->ipq_src = ipqe->ipqe_ip->ip_src;
    643 		fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
    644 		p = NULL;
    645 		goto insert;
    646 	}
    647 
    648 	/*
    649 	 * Find a segment which begins after this one does.
    650 	 */
    651 	for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
    652 	    p = q, q = q->ipqe_q.le_next)
    653 		if (q->ipqe_ip->ip_off > ipqe->ipqe_ip->ip_off)
    654 			break;
    655 
    656 	/*
    657 	 * If there is a preceding segment, it may provide some of
    658 	 * our data already.  If so, drop the data from the incoming
    659 	 * segment.  If it provides all of our data, drop us.
    660 	 */
    661 	if (p != NULL) {
    662 		i = p->ipqe_ip->ip_off + p->ipqe_ip->ip_len -
    663 		    ipqe->ipqe_ip->ip_off;
    664 		if (i > 0) {
    665 			if (i >= ipqe->ipqe_ip->ip_len)
    666 				goto dropfrag;
    667 			m_adj(ipqe->ipqe_m, i);
    668 			ipqe->ipqe_ip->ip_off += i;
    669 			ipqe->ipqe_ip->ip_len -= i;
    670 		}
    671 	}
    672 
    673 	/*
    674 	 * While we overlap succeeding segments trim them or,
    675 	 * if they are completely covered, dequeue them.
    676 	 */
    677 	for (; q != NULL && ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len >
    678 	    q->ipqe_ip->ip_off; q = nq) {
    679 		i = (ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len) -
    680 		    q->ipqe_ip->ip_off;
    681 		if (i < q->ipqe_ip->ip_len) {
    682 			q->ipqe_ip->ip_len -= i;
    683 			q->ipqe_ip->ip_off += i;
    684 			m_adj(q->ipqe_m, i);
    685 			break;
    686 		}
    687 		nq = q->ipqe_q.le_next;
    688 		m_freem(q->ipqe_m);
    689 		LIST_REMOVE(q, ipqe_q);
    690 		pool_put(&ipqent_pool, q);
    691 	}
    692 
    693 insert:
    694 	/*
    695 	 * Stick new segment in its place;
    696 	 * check for complete reassembly.
    697 	 */
    698 	if (p == NULL) {
    699 		LIST_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
    700 	} else {
    701 		LIST_INSERT_AFTER(p, ipqe, ipqe_q);
    702 	}
    703 	next = 0;
    704 	for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
    705 	    p = q, q = q->ipqe_q.le_next) {
    706 		if (q->ipqe_ip->ip_off != next)
    707 			return (0);
    708 		next += q->ipqe_ip->ip_len;
    709 	}
    710 	if (p->ipqe_mff)
    711 		return (0);
    712 
    713 	/*
    714 	 * Reassembly is complete.  Check for a bogus message size and
    715 	 * concatenate fragments.
    716 	 */
    717 	q = fp->ipq_fragq.lh_first;
    718 	ip = q->ipqe_ip;
    719 	if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
    720 		ipstat.ips_toolong++;
    721 		ip_freef(fp);
    722 		return (0);
    723 	}
    724 	m = q->ipqe_m;
    725 	t = m->m_next;
    726 	m->m_next = 0;
    727 	m_cat(m, t);
    728 	nq = q->ipqe_q.le_next;
    729 	pool_put(&ipqent_pool, q);
    730 	for (q = nq; q != NULL; q = nq) {
    731 		t = q->ipqe_m;
    732 		nq = q->ipqe_q.le_next;
    733 		pool_put(&ipqent_pool, q);
    734 		m_cat(m, t);
    735 	}
    736 
    737 	/*
    738 	 * Create header for new ip packet by
    739 	 * modifying header of first packet;
    740 	 * dequeue and discard fragment reassembly header.
    741 	 * Make header visible.
    742 	 */
    743 	ip->ip_len = next;
    744 	ip->ip_src = fp->ipq_src;
    745 	ip->ip_dst = fp->ipq_dst;
    746 	LIST_REMOVE(fp, ipq_q);
    747 	FREE(fp, M_FTABLE);
    748 	m->m_len += (ip->ip_hl << 2);
    749 	m->m_data -= (ip->ip_hl << 2);
    750 	/* some debugging cruft by sklower, below, will go away soon */
    751 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
    752 		register int plen = 0;
    753 		for (t = m; t; t = t->m_next)
    754 			plen += t->m_len;
    755 		m->m_pkthdr.len = plen;
    756 	}
    757 	return (m);
    758 
    759 dropfrag:
    760 	ipstat.ips_fragdropped++;
    761 	m_freem(m);
    762 	pool_put(&ipqent_pool, ipqe);
    763 	return (0);
    764 }
    765 
    766 /*
    767  * Free a fragment reassembly header and all
    768  * associated datagrams.
    769  */
    770 void
    771 ip_freef(fp)
    772 	struct ipq *fp;
    773 {
    774 	register struct ipqent *q, *p;
    775 
    776 	IPQ_LOCK_CHECK();
    777 
    778 	for (q = fp->ipq_fragq.lh_first; q != NULL; q = p) {
    779 		p = q->ipqe_q.le_next;
    780 		m_freem(q->ipqe_m);
    781 		LIST_REMOVE(q, ipqe_q);
    782 		pool_put(&ipqent_pool, q);
    783 	}
    784 	LIST_REMOVE(fp, ipq_q);
    785 	FREE(fp, M_FTABLE);
    786 }
    787 
    788 /*
    789  * IP timer processing;
    790  * if a timer expires on a reassembly
    791  * queue, discard it.
    792  */
    793 void
    794 ip_slowtimo()
    795 {
    796 	register struct ipq *fp, *nfp;
    797 	int s = splsoftnet();
    798 
    799 	IPQ_LOCK();
    800 	for (fp = ipq.lh_first; fp != NULL; fp = nfp) {
    801 		nfp = fp->ipq_q.le_next;
    802 		if (--fp->ipq_ttl == 0) {
    803 			ipstat.ips_fragtimeout++;
    804 			ip_freef(fp);
    805 		}
    806 	}
    807 	IPQ_UNLOCK();
    808 #ifdef GATEWAY
    809 	ipflow_slowtimo();
    810 #endif
    811 	splx(s);
    812 }
    813 
    814 /*
    815  * Drain off all datagram fragments.
    816  */
    817 void
    818 ip_drain()
    819 {
    820 
    821 	/*
    822 	 * We may be called from a device's interrupt context.  If
    823 	 * the ipq is already busy, just bail out now.
    824 	 */
    825 	if (ipq_lock_try() == 0)
    826 		return;
    827 
    828 	while (ipq.lh_first != NULL) {
    829 		ipstat.ips_fragdropped++;
    830 		ip_freef(ipq.lh_first);
    831 	}
    832 
    833 	IPQ_UNLOCK();
    834 }
    835 
    836 /*
    837  * Do option processing on a datagram,
    838  * possibly discarding it if bad options are encountered,
    839  * or forwarding it if source-routed.
    840  * Returns 1 if packet has been forwarded/freed,
    841  * 0 if the packet should be processed further.
    842  */
    843 int
    844 ip_dooptions(m)
    845 	struct mbuf *m;
    846 {
    847 	register struct ip *ip = mtod(m, struct ip *);
    848 	register u_char *cp;
    849 	register struct ip_timestamp *ipt;
    850 	register struct in_ifaddr *ia;
    851 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
    852 	struct in_addr *sin, dst;
    853 	n_time ntime;
    854 
    855 	dst = ip->ip_dst;
    856 	cp = (u_char *)(ip + 1);
    857 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
    858 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
    859 		opt = cp[IPOPT_OPTVAL];
    860 		if (opt == IPOPT_EOL)
    861 			break;
    862 		if (opt == IPOPT_NOP)
    863 			optlen = 1;
    864 		else {
    865 			optlen = cp[IPOPT_OLEN];
    866 			if (optlen <= 0 || optlen > cnt) {
    867 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
    868 				goto bad;
    869 			}
    870 		}
    871 		switch (opt) {
    872 
    873 		default:
    874 			break;
    875 
    876 		/*
    877 		 * Source routing with record.
    878 		 * Find interface with current destination address.
    879 		 * If none on this machine then drop if strictly routed,
    880 		 * or do nothing if loosely routed.
    881 		 * Record interface address and bring up next address
    882 		 * component.  If strictly routed make sure next
    883 		 * address is on directly accessible net.
    884 		 */
    885 		case IPOPT_LSRR:
    886 		case IPOPT_SSRR:
    887 			if (ip_allowsrcrt == 0) {
    888 				type = ICMP_UNREACH;
    889 				code = ICMP_UNREACH_NET_PROHIB;
    890 				goto bad;
    891 			}
    892 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
    893 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
    894 				goto bad;
    895 			}
    896 			ipaddr.sin_addr = ip->ip_dst;
    897 			ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
    898 			if (ia == 0) {
    899 				if (opt == IPOPT_SSRR) {
    900 					type = ICMP_UNREACH;
    901 					code = ICMP_UNREACH_SRCFAIL;
    902 					goto bad;
    903 				}
    904 				/*
    905 				 * Loose routing, and not at next destination
    906 				 * yet; nothing to do except forward.
    907 				 */
    908 				break;
    909 			}
    910 			off--;			/* 0 origin */
    911 			if (off > optlen - sizeof(struct in_addr)) {
    912 				/*
    913 				 * End of source route.  Should be for us.
    914 				 */
    915 				save_rte(cp, ip->ip_src);
    916 				break;
    917 			}
    918 			/*
    919 			 * locate outgoing interface
    920 			 */
    921 			bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
    922 			    sizeof(ipaddr.sin_addr));
    923 			if (opt == IPOPT_SSRR) {
    924 #define	INA	struct in_ifaddr *
    925 #define	SA	struct sockaddr *
    926 			    ia = (INA)ifa_ifwithladdr((SA)&ipaddr);
    927 			} else
    928 				ia = ip_rtaddr(ipaddr.sin_addr);
    929 			if (ia == 0) {
    930 				type = ICMP_UNREACH;
    931 				code = ICMP_UNREACH_SRCFAIL;
    932 				goto bad;
    933 			}
    934 			ip->ip_dst = ipaddr.sin_addr;
    935 			bcopy((caddr_t)&ia->ia_addr.sin_addr,
    936 			    (caddr_t)(cp + off), sizeof(struct in_addr));
    937 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
    938 			/*
    939 			 * Let ip_intr's mcast routing check handle mcast pkts
    940 			 */
    941 			forward = !IN_MULTICAST(ip->ip_dst.s_addr);
    942 			break;
    943 
    944 		case IPOPT_RR:
    945 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
    946 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
    947 				goto bad;
    948 			}
    949 			/*
    950 			 * If no space remains, ignore.
    951 			 */
    952 			off--;			/* 0 origin */
    953 			if (off > optlen - sizeof(struct in_addr))
    954 				break;
    955 			bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
    956 			    sizeof(ipaddr.sin_addr));
    957 			/*
    958 			 * locate outgoing interface; if we're the destination,
    959 			 * use the incoming interface (should be same).
    960 			 */
    961 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
    962 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
    963 				type = ICMP_UNREACH;
    964 				code = ICMP_UNREACH_HOST;
    965 				goto bad;
    966 			}
    967 			bcopy((caddr_t)&ia->ia_addr.sin_addr,
    968 			    (caddr_t)(cp + off), sizeof(struct in_addr));
    969 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
    970 			break;
    971 
    972 		case IPOPT_TS:
    973 			code = cp - (u_char *)ip;
    974 			ipt = (struct ip_timestamp *)cp;
    975 			if (ipt->ipt_len < 5)
    976 				goto bad;
    977 			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
    978 				if (++ipt->ipt_oflw == 0)
    979 					goto bad;
    980 				break;
    981 			}
    982 			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
    983 			switch (ipt->ipt_flg) {
    984 
    985 			case IPOPT_TS_TSONLY:
    986 				break;
    987 
    988 			case IPOPT_TS_TSANDADDR:
    989 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
    990 				    sizeof(struct in_addr) > ipt->ipt_len)
    991 					goto bad;
    992 				ipaddr.sin_addr = dst;
    993 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
    994 							    m->m_pkthdr.rcvif);
    995 				if (ia == 0)
    996 					continue;
    997 				bcopy((caddr_t)&ia->ia_addr.sin_addr,
    998 				    (caddr_t)sin, sizeof(struct in_addr));
    999 				ipt->ipt_ptr += sizeof(struct in_addr);
   1000 				break;
   1001 
   1002 			case IPOPT_TS_PRESPEC:
   1003 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
   1004 				    sizeof(struct in_addr) > ipt->ipt_len)
   1005 					goto bad;
   1006 				bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
   1007 				    sizeof(struct in_addr));
   1008 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
   1009 					continue;
   1010 				ipt->ipt_ptr += sizeof(struct in_addr);
   1011 				break;
   1012 
   1013 			default:
   1014 				goto bad;
   1015 			}
   1016 			ntime = iptime();
   1017 			bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
   1018 			    sizeof(n_time));
   1019 			ipt->ipt_ptr += sizeof(n_time);
   1020 		}
   1021 	}
   1022 	if (forward) {
   1023 		if (ip_forwsrcrt == 0) {
   1024 			type = ICMP_UNREACH;
   1025 			code = ICMP_UNREACH_SRCFAIL;
   1026 			goto bad;
   1027 		}
   1028 		ip_forward(m, 1);
   1029 		return (1);
   1030 	}
   1031 	return (0);
   1032 bad:
   1033 	icmp_error(m, type, code, 0, 0);
   1034 	ipstat.ips_badoptions++;
   1035 	return (1);
   1036 }
   1037 
   1038 /*
   1039  * Given address of next destination (final or next hop),
   1040  * return internet address info of interface to be used to get there.
   1041  */
   1042 struct in_ifaddr *
   1043 ip_rtaddr(dst)
   1044 	 struct in_addr dst;
   1045 {
   1046 	register struct sockaddr_in *sin;
   1047 
   1048 	sin = satosin(&ipforward_rt.ro_dst);
   1049 
   1050 	if (ipforward_rt.ro_rt == 0 || !in_hosteq(dst, sin->sin_addr)) {
   1051 		if (ipforward_rt.ro_rt) {
   1052 			RTFREE(ipforward_rt.ro_rt);
   1053 			ipforward_rt.ro_rt = 0;
   1054 		}
   1055 		sin->sin_family = AF_INET;
   1056 		sin->sin_len = sizeof(*sin);
   1057 		sin->sin_addr = dst;
   1058 
   1059 		rtalloc(&ipforward_rt);
   1060 	}
   1061 	if (ipforward_rt.ro_rt == 0)
   1062 		return ((struct in_ifaddr *)0);
   1063 	return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
   1064 }
   1065 
   1066 /*
   1067  * Save incoming source route for use in replies,
   1068  * to be picked up later by ip_srcroute if the receiver is interested.
   1069  */
   1070 void
   1071 save_rte(option, dst)
   1072 	u_char *option;
   1073 	struct in_addr dst;
   1074 {
   1075 	unsigned olen;
   1076 
   1077 	olen = option[IPOPT_OLEN];
   1078 #ifdef DIAGNOSTIC
   1079 	if (ipprintfs)
   1080 		printf("save_rte: olen %d\n", olen);
   1081 #endif
   1082 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
   1083 		return;
   1084 	bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
   1085 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
   1086 	ip_srcrt.dst = dst;
   1087 }
   1088 
   1089 /*
   1090  * Retrieve incoming source route for use in replies,
   1091  * in the same form used by setsockopt.
   1092  * The first hop is placed before the options, will be removed later.
   1093  */
   1094 struct mbuf *
   1095 ip_srcroute()
   1096 {
   1097 	register struct in_addr *p, *q;
   1098 	register struct mbuf *m;
   1099 
   1100 	if (ip_nhops == 0)
   1101 		return ((struct mbuf *)0);
   1102 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1103 	if (m == 0)
   1104 		return ((struct mbuf *)0);
   1105 
   1106 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
   1107 
   1108 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
   1109 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
   1110 	    OPTSIZ;
   1111 #ifdef DIAGNOSTIC
   1112 	if (ipprintfs)
   1113 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
   1114 #endif
   1115 
   1116 	/*
   1117 	 * First save first hop for return route
   1118 	 */
   1119 	p = &ip_srcrt.route[ip_nhops - 1];
   1120 	*(mtod(m, struct in_addr *)) = *p--;
   1121 #ifdef DIAGNOSTIC
   1122 	if (ipprintfs)
   1123 		printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
   1124 #endif
   1125 
   1126 	/*
   1127 	 * Copy option fields and padding (nop) to mbuf.
   1128 	 */
   1129 	ip_srcrt.nop = IPOPT_NOP;
   1130 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
   1131 	bcopy((caddr_t)&ip_srcrt.nop,
   1132 	    mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
   1133 	q = (struct in_addr *)(mtod(m, caddr_t) +
   1134 	    sizeof(struct in_addr) + OPTSIZ);
   1135 #undef OPTSIZ
   1136 	/*
   1137 	 * Record return path as an IP source route,
   1138 	 * reversing the path (pointers are now aligned).
   1139 	 */
   1140 	while (p >= ip_srcrt.route) {
   1141 #ifdef DIAGNOSTIC
   1142 		if (ipprintfs)
   1143 			printf(" %x", ntohl(q->s_addr));
   1144 #endif
   1145 		*q++ = *p--;
   1146 	}
   1147 	/*
   1148 	 * Last hop goes to final destination.
   1149 	 */
   1150 	*q = ip_srcrt.dst;
   1151 #ifdef DIAGNOSTIC
   1152 	if (ipprintfs)
   1153 		printf(" %x\n", ntohl(q->s_addr));
   1154 #endif
   1155 	return (m);
   1156 }
   1157 
   1158 /*
   1159  * Strip out IP options, at higher
   1160  * level protocol in the kernel.
   1161  * Second argument is buffer to which options
   1162  * will be moved, and return value is their length.
   1163  * XXX should be deleted; last arg currently ignored.
   1164  */
   1165 void
   1166 ip_stripoptions(m, mopt)
   1167 	register struct mbuf *m;
   1168 	struct mbuf *mopt;
   1169 {
   1170 	register int i;
   1171 	struct ip *ip = mtod(m, struct ip *);
   1172 	register caddr_t opts;
   1173 	int olen;
   1174 
   1175 	olen = (ip->ip_hl << 2) - sizeof (struct ip);
   1176 	opts = (caddr_t)(ip + 1);
   1177 	i = m->m_len - (sizeof (struct ip) + olen);
   1178 	bcopy(opts  + olen, opts, (unsigned)i);
   1179 	m->m_len -= olen;
   1180 	if (m->m_flags & M_PKTHDR)
   1181 		m->m_pkthdr.len -= olen;
   1182 	ip->ip_len -= olen;
   1183 	ip->ip_hl = sizeof (struct ip) >> 2;
   1184 }
   1185 
   1186 int inetctlerrmap[PRC_NCMDS] = {
   1187 	0,		0,		0,		0,
   1188 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
   1189 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
   1190 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
   1191 	0,		0,		0,		0,
   1192 	ENOPROTOOPT
   1193 };
   1194 
   1195 /*
   1196  * Forward a packet.  If some error occurs return the sender
   1197  * an icmp packet.  Note we can't always generate a meaningful
   1198  * icmp message because icmp doesn't have a large enough repertoire
   1199  * of codes and types.
   1200  *
   1201  * If not forwarding, just drop the packet.  This could be confusing
   1202  * if ipforwarding was zero but some routing protocol was advancing
   1203  * us as a gateway to somewhere.  However, we must let the routing
   1204  * protocol deal with that.
   1205  *
   1206  * The srcrt parameter indicates whether the packet is being forwarded
   1207  * via a source route.
   1208  */
   1209 void
   1210 ip_forward(m, srcrt)
   1211 	struct mbuf *m;
   1212 	int srcrt;
   1213 {
   1214 	register struct ip *ip = mtod(m, struct ip *);
   1215 	register struct sockaddr_in *sin;
   1216 	register struct rtentry *rt;
   1217 	int error, type = 0, code = 0;
   1218 	struct mbuf *mcopy;
   1219 	n_long dest;
   1220 	struct ifnet *destifp;
   1221 
   1222 	dest = 0;
   1223 #ifdef DIAGNOSTIC
   1224 	if (ipprintfs)
   1225 		printf("forward: src %2.2x dst %2.2x ttl %x\n",
   1226 		    ntohl(ip->ip_src.s_addr),
   1227 		    ntohl(ip->ip_dst.s_addr), ip->ip_ttl);
   1228 #endif
   1229 	if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
   1230 		ipstat.ips_cantforward++;
   1231 		m_freem(m);
   1232 		return;
   1233 	}
   1234 	if (ip->ip_ttl <= IPTTLDEC) {
   1235 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
   1236 		return;
   1237 	}
   1238 	ip->ip_ttl -= IPTTLDEC;
   1239 
   1240 	sin = satosin(&ipforward_rt.ro_dst);
   1241 	if ((rt = ipforward_rt.ro_rt) == 0 ||
   1242 	    !in_hosteq(ip->ip_dst, sin->sin_addr)) {
   1243 		if (ipforward_rt.ro_rt) {
   1244 			RTFREE(ipforward_rt.ro_rt);
   1245 			ipforward_rt.ro_rt = 0;
   1246 		}
   1247 		sin->sin_family = AF_INET;
   1248 		sin->sin_len = sizeof(struct sockaddr_in);
   1249 		sin->sin_addr = ip->ip_dst;
   1250 
   1251 		rtalloc(&ipforward_rt);
   1252 		if (ipforward_rt.ro_rt == 0) {
   1253 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
   1254 			return;
   1255 		}
   1256 		rt = ipforward_rt.ro_rt;
   1257 	}
   1258 
   1259 	/*
   1260 	 * Save at most 68 bytes of the packet in case
   1261 	 * we need to generate an ICMP message to the src.
   1262 	 */
   1263 	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 68));
   1264 
   1265 	/*
   1266 	 * If forwarding packet using same interface that it came in on,
   1267 	 * perhaps should send a redirect to sender to shortcut a hop.
   1268 	 * Only send redirect if source is sending directly to us,
   1269 	 * and if packet was not source routed (or has any options).
   1270 	 * Also, don't send redirect if forwarding using a default route
   1271 	 * or a route modified by a redirect.
   1272 	 */
   1273 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
   1274 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
   1275 	    !in_nullhost(satosin(rt_key(rt))->sin_addr) &&
   1276 	    ipsendredirects && !srcrt) {
   1277 		if (rt->rt_ifa &&
   1278 		    (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
   1279 		    ifatoia(rt->rt_ifa)->ia_subnet) {
   1280 			if (rt->rt_flags & RTF_GATEWAY)
   1281 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
   1282 			else
   1283 				dest = ip->ip_dst.s_addr;
   1284 			/*
   1285 			 * Router requirements says to only send host
   1286 			 * redirects.
   1287 			 */
   1288 			type = ICMP_REDIRECT;
   1289 			code = ICMP_REDIRECT_HOST;
   1290 #ifdef DIAGNOSTIC
   1291 			if (ipprintfs)
   1292 				printf("redirect (%d) to %x\n", code,
   1293 				    (u_int32_t)dest);
   1294 #endif
   1295 		}
   1296 	}
   1297 
   1298 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
   1299 	    (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)), 0);
   1300 	if (error)
   1301 		ipstat.ips_cantforward++;
   1302 	else {
   1303 		ipstat.ips_forward++;
   1304 		if (type)
   1305 			ipstat.ips_redirectsent++;
   1306 		else {
   1307 			if (mcopy) {
   1308 #ifdef GATEWAY
   1309 				if (mcopy->m_flags & M_CANFASTFWD)
   1310 					ipflow_create(&ipforward_rt, mcopy);
   1311 #endif
   1312 				m_freem(mcopy);
   1313 			}
   1314 			return;
   1315 		}
   1316 	}
   1317 	if (mcopy == NULL)
   1318 		return;
   1319 	destifp = NULL;
   1320 
   1321 	switch (error) {
   1322 
   1323 	case 0:				/* forwarded, but need redirect */
   1324 		/* type, code set above */
   1325 		break;
   1326 
   1327 	case ENETUNREACH:		/* shouldn't happen, checked above */
   1328 	case EHOSTUNREACH:
   1329 	case ENETDOWN:
   1330 	case EHOSTDOWN:
   1331 	default:
   1332 		type = ICMP_UNREACH;
   1333 		code = ICMP_UNREACH_HOST;
   1334 		break;
   1335 
   1336 	case EMSGSIZE:
   1337 		type = ICMP_UNREACH;
   1338 		code = ICMP_UNREACH_NEEDFRAG;
   1339 		if (ipforward_rt.ro_rt)
   1340 			destifp = ipforward_rt.ro_rt->rt_ifp;
   1341 		ipstat.ips_cantfrag++;
   1342 		break;
   1343 
   1344 	case ENOBUFS:
   1345 		type = ICMP_SOURCEQUENCH;
   1346 		code = 0;
   1347 		break;
   1348 	}
   1349 	icmp_error(mcopy, type, code, dest, destifp);
   1350 }
   1351 
   1352 void
   1353 ip_savecontrol(inp, mp, ip, m)
   1354 	register struct inpcb *inp;
   1355 	register struct mbuf **mp;
   1356 	register struct ip *ip;
   1357 	register struct mbuf *m;
   1358 {
   1359 
   1360 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
   1361 		struct timeval tv;
   1362 
   1363 		microtime(&tv);
   1364 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
   1365 		    SCM_TIMESTAMP, SOL_SOCKET);
   1366 		if (*mp)
   1367 			mp = &(*mp)->m_next;
   1368 	}
   1369 	if (inp->inp_flags & INP_RECVDSTADDR) {
   1370 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
   1371 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
   1372 		if (*mp)
   1373 			mp = &(*mp)->m_next;
   1374 	}
   1375 #ifdef notyet
   1376 	/*
   1377 	 * XXX
   1378 	 * Moving these out of udp_input() made them even more broken
   1379 	 * than they already were.
   1380 	 *	- fenner (at) parc.xerox.com
   1381 	 */
   1382 	/* options were tossed already */
   1383 	if (inp->inp_flags & INP_RECVOPTS) {
   1384 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
   1385 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
   1386 		if (*mp)
   1387 			mp = &(*mp)->m_next;
   1388 	}
   1389 	/* ip_srcroute doesn't do what we want here, need to fix */
   1390 	if (inp->inp_flags & INP_RECVRETOPTS) {
   1391 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
   1392 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
   1393 		if (*mp)
   1394 			mp = &(*mp)->m_next;
   1395 	}
   1396 #endif
   1397 	if (inp->inp_flags & INP_RECVIF) {
   1398 		struct sockaddr_dl sdl;
   1399 
   1400 		sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]);
   1401 		sdl.sdl_family = AF_LINK;
   1402 		sdl.sdl_index = m->m_pkthdr.rcvif ?
   1403 		    m->m_pkthdr.rcvif->if_index : 0;
   1404 		sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0;
   1405 		*mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len,
   1406 		    IP_RECVIF, IPPROTO_IP);
   1407 		if (*mp)
   1408 			mp = &(*mp)->m_next;
   1409 	}
   1410 }
   1411 
   1412 int
   1413 ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
   1414 	int *name;
   1415 	u_int namelen;
   1416 	void *oldp;
   1417 	size_t *oldlenp;
   1418 	void *newp;
   1419 	size_t newlen;
   1420 {
   1421 	extern int subnetsarelocal;
   1422 
   1423 	int error, old;
   1424 
   1425 	/* All sysctl names at this level are terminal. */
   1426 	if (namelen != 1)
   1427 		return (ENOTDIR);
   1428 
   1429 	switch (name[0]) {
   1430 	case IPCTL_FORWARDING:
   1431 		return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
   1432 	case IPCTL_SENDREDIRECTS:
   1433 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1434 			&ipsendredirects));
   1435 	case IPCTL_DEFTTL:
   1436 		return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
   1437 #ifdef notyet
   1438 	case IPCTL_DEFMTU:
   1439 		return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
   1440 #endif
   1441 	case IPCTL_FORWSRCRT:
   1442 		/* Don't allow this to change in a secure environment.  */
   1443 		if (securelevel > 0)
   1444 			return (sysctl_rdint(oldp, oldlenp, newp,
   1445 			    ip_forwsrcrt));
   1446 		else
   1447 			return (sysctl_int(oldp, oldlenp, newp, newlen,
   1448 			    &ip_forwsrcrt));
   1449 	case IPCTL_DIRECTEDBCAST:
   1450 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1451 		    &ip_directedbcast));
   1452 	case IPCTL_ALLOWSRCRT:
   1453 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1454 		    &ip_allowsrcrt));
   1455 	case IPCTL_SUBNETSARELOCAL:
   1456 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1457 		    &subnetsarelocal));
   1458 	case IPCTL_MTUDISC:
   1459 		error = sysctl_int(oldp, oldlenp, newp, newlen,
   1460 		    &ip_mtudisc);
   1461 		if (ip_mtudisc != 0 && ip_mtudisc_timeout_q == NULL) {
   1462 			ip_mtudisc_timeout_q =
   1463 			    rt_timer_queue_create(ip_mtudisc_timeout);
   1464 		} else if (ip_mtudisc == 0 && ip_mtudisc_timeout_q != NULL) {
   1465 			rt_timer_queue_destroy(ip_mtudisc_timeout_q, TRUE);
   1466 			ip_mtudisc_timeout_q = NULL;
   1467 		}
   1468 		return error;
   1469 	case IPCTL_ANONPORTMIN:
   1470 		old = anonportmin;
   1471 		error = sysctl_int(oldp, oldlenp, newp, newlen, &anonportmin);
   1472 		if (anonportmin >= anonportmax || anonportmin > 65535
   1473 #ifndef IPNOPRIVPORTS
   1474 		    || anonportmin < IPPORT_RESERVED
   1475 #endif
   1476 		    ) {
   1477 			anonportmin = old;
   1478 			return (EINVAL);
   1479 		}
   1480 		return (error);
   1481 	case IPCTL_ANONPORTMAX:
   1482 		old = anonportmax;
   1483 		error = sysctl_int(oldp, oldlenp, newp, newlen, &anonportmax);
   1484 		if (anonportmin >= anonportmax || anonportmax > 65535
   1485 #ifndef IPNOPRIVPORTS
   1486 		    || anonportmax < IPPORT_RESERVED
   1487 #endif
   1488 		    ) {
   1489 			anonportmax = old;
   1490 			return (EINVAL);
   1491 		}
   1492 		return (error);
   1493 	case IPCTL_MTUDISCTIMEOUT:
   1494 		error = sysctl_int(oldp, oldlenp, newp, newlen,
   1495 		   &ip_mtudisc_timeout);
   1496 		if (ip_mtudisc_timeout_q != NULL)
   1497 			rt_timer_queue_change(ip_mtudisc_timeout_q,
   1498 					      ip_mtudisc_timeout);
   1499 		return (error);
   1500 #ifdef GATEWAY
   1501 	case IPCTL_MAXFLOWS:
   1502 	    {
   1503 		int s;
   1504 
   1505 		error = sysctl_int(oldp, oldlenp, newp, newlen,
   1506 		   &ip_maxflows);
   1507 		s = splsoftnet();
   1508 		ipflow_reap(0);
   1509 		splx(s);
   1510 		return (error);
   1511 	    }
   1512 #endif
   1513 	default:
   1514 		return (EOPNOTSUPP);
   1515 	}
   1516 	/* NOTREACHED */
   1517 }
   1518