ip_input.c revision 1.82.2.1 1 /* $NetBSD: ip_input.c,v 1.82.2.1 1999/04/07 23:20:42 proff Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Public Access Networks Corporation ("Panix"). It was developed under
9 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1988, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by the University of
55 * California, Berkeley and its contributors.
56 * 4. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
73 */
74
75 #include "opt_gateway.h"
76 #include "opt_pfil_hooks.h"
77 #include "opt_mrouting.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/malloc.h>
82 #include <sys/mbuf.h>
83 #include <sys/domain.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/errno.h>
88 #include <sys/time.h>
89 #include <sys/kernel.h>
90 #include <sys/proc.h>
91 #include <sys/pool.h>
92
93 #include <vm/vm.h>
94 #include <sys/sysctl.h>
95
96 #include <net/if.h>
97 #include <net/if_dl.h>
98 #include <net/route.h>
99 #include <net/pfil.h>
100
101 #include <netinet/in.h>
102 #include <netinet/in_systm.h>
103 #include <netinet/ip.h>
104 #include <netinet/in_pcb.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip_var.h>
107 #include <netinet/ip_icmp.h>
108
109 #ifndef IPFORWARDING
110 #ifdef GATEWAY
111 #define IPFORWARDING 1 /* forward IP packets not for us */
112 #else /* GATEWAY */
113 #define IPFORWARDING 0 /* don't forward IP packets not for us */
114 #endif /* GATEWAY */
115 #endif /* IPFORWARDING */
116 #ifndef IPSENDREDIRECTS
117 #define IPSENDREDIRECTS 1
118 #endif
119 #ifndef IPFORWSRCRT
120 #define IPFORWSRCRT 1 /* forward source-routed packets */
121 #endif
122 #ifndef IPALLOWSRCRT
123 #define IPALLOWSRCRT 1 /* allow source-routed packets */
124 #endif
125 #ifndef IPMTUDISC
126 #define IPMTUDISC 0
127 #endif
128 #ifndef IPMTUDISCTIMEOUT
129 #define IPMTUDISCTIMEOUT (10 * 60) /* as per RFC 1191 */
130 #endif
131
132 /*
133 * Note: DIRECTED_BROADCAST is handled this way so that previous
134 * configuration using this option will Just Work.
135 */
136 #ifndef IPDIRECTEDBCAST
137 #ifdef DIRECTED_BROADCAST
138 #define IPDIRECTEDBCAST 1
139 #else
140 #define IPDIRECTEDBCAST 0
141 #endif /* DIRECTED_BROADCAST */
142 #endif /* IPDIRECTEDBCAST */
143 int ipforwarding = IPFORWARDING;
144 int ipsendredirects = IPSENDREDIRECTS;
145 int ip_defttl = IPDEFTTL;
146 int ip_forwsrcrt = IPFORWSRCRT;
147 int ip_directedbcast = IPDIRECTEDBCAST;
148 int ip_allowsrcrt = IPALLOWSRCRT;
149 int ip_mtudisc = IPMTUDISC;
150 u_int ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
151 #ifdef DIAGNOSTIC
152 int ipprintfs = 0;
153 #endif
154
155 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
156
157 extern struct domain inetdomain;
158 extern struct protosw inetsw[];
159 u_char ip_protox[IPPROTO_MAX];
160 int ipqmaxlen = IFQ_MAXLEN;
161 struct in_ifaddrhead in_ifaddr;
162 struct in_ifaddrhashhead *in_ifaddrhashtbl;
163 struct ifqueue ipintrq;
164 struct ipstat ipstat;
165 u_int16_t ip_id;
166 int ip_defttl;
167
168 struct ipqhead ipq;
169 int ipq_locked;
170
171 static __inline int ipq_lock_try __P((void));
172 static __inline void ipq_unlock __P((void));
173
174 static __inline int
175 ipq_lock_try()
176 {
177 int s;
178
179 s = splimp();
180 if (ipq_locked) {
181 splx(s);
182 return (0);
183 }
184 ipq_locked = 1;
185 splx(s);
186 return (1);
187 }
188
189 static __inline void
190 ipq_unlock()
191 {
192 int s;
193
194 s = splimp();
195 ipq_locked = 0;
196 splx(s);
197 }
198
199 #ifdef DIAGNOSTIC
200 #define IPQ_LOCK() \
201 do { \
202 if (ipq_lock_try() == 0) { \
203 printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
204 panic("ipq_lock"); \
205 } \
206 } while (0)
207 #define IPQ_LOCK_CHECK() \
208 do { \
209 if (ipq_locked == 0) { \
210 printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
211 panic("ipq lock check"); \
212 } \
213 } while (0)
214 #else
215 #define IPQ_LOCK() (void) ipq_lock_try()
216 #define IPQ_LOCK_CHECK() /* nothing */
217 #endif
218
219 #define IPQ_UNLOCK() ipq_unlock()
220
221 struct pool ipqent_pool;
222
223 /*
224 * We need to save the IP options in case a protocol wants to respond
225 * to an incoming packet over the same route if the packet got here
226 * using IP source routing. This allows connection establishment and
227 * maintenance when the remote end is on a network that is not known
228 * to us.
229 */
230 int ip_nhops = 0;
231 static struct ip_srcrt {
232 struct in_addr dst; /* final destination */
233 char nop; /* one NOP to align */
234 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
235 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
236 } ip_srcrt;
237
238 static void save_rte __P((u_char *, struct in_addr));
239
240 /*
241 * IP initialization: fill in IP protocol switch table.
242 * All protocols not implemented in kernel go to raw IP protocol handler.
243 */
244 void
245 ip_init()
246 {
247 register struct protosw *pr;
248 register int i;
249
250 pool_init(&ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl",
251 0, NULL, NULL, M_IPQ);
252
253 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
254 if (pr == 0)
255 panic("ip_init");
256 for (i = 0; i < IPPROTO_MAX; i++)
257 ip_protox[i] = pr - inetsw;
258 for (pr = inetdomain.dom_protosw;
259 pr < inetdomain.dom_protoswNPROTOSW; pr++)
260 if (pr->pr_domain->dom_family == PF_INET &&
261 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
262 ip_protox[pr->pr_protocol] = pr - inetsw;
263 LIST_INIT(&ipq);
264 ip_id = time.tv_sec & 0xffff;
265 ipintrq.ifq_maxlen = ipqmaxlen;
266 TAILQ_INIT(&in_ifaddr);
267 in_ifaddrhashtbl =
268 hashinit(IN_IFADDR_HASH_SIZE, M_IFADDR, M_WAITOK, &in_ifaddrhash);
269 if (ip_mtudisc != 0)
270 ip_mtudisc_timeout_q =
271 rt_timer_queue_create(ip_mtudisc_timeout);
272 #ifdef GATEWAY
273 ipflow_init();
274 #endif
275 }
276
277 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
278 struct route ipforward_rt;
279
280 /*
281 * Ip input routine. Checksum and byte swap header. If fragmented
282 * try to reassemble. Process options. Pass to next level.
283 */
284 void
285 ipintr()
286 {
287 register struct ip *ip = NULL;
288 register struct mbuf *m;
289 register struct ipq *fp;
290 register struct in_ifaddr *ia;
291 register struct ifaddr *ifa;
292 struct ipqent *ipqe;
293 int hlen = 0, mff, len, s;
294 #ifdef PFIL_HOOKS
295 struct packet_filter_hook *pfh;
296 struct mbuf *m0;
297 int rv;
298 #endif /* PFIL_HOOKS */
299
300 next:
301 /*
302 * Get next datagram off input queue and get IP header
303 * in first mbuf.
304 */
305 s = splimp();
306 IF_DEQUEUE(&ipintrq, m);
307 splx(s);
308 if (m == 0)
309 return;
310 #ifdef DIAGNOSTIC
311 if ((m->m_flags & M_PKTHDR) == 0)
312 panic("ipintr no HDR");
313 #endif
314 /*
315 * If no IP addresses have been set yet but the interfaces
316 * are receiving, can't do anything with incoming packets yet.
317 */
318 if (in_ifaddr.tqh_first == 0)
319 goto bad;
320 ipstat.ips_total++;
321 if (m->m_len < sizeof (struct ip) &&
322 (m = m_pullup(m, sizeof (struct ip))) == 0) {
323 ipstat.ips_toosmall++;
324 goto next;
325 }
326 ip = mtod(m, struct ip *);
327 if (ip->ip_v != IPVERSION) {
328 ipstat.ips_badvers++;
329 goto bad;
330 }
331 hlen = ip->ip_hl << 2;
332 if (hlen < sizeof(struct ip)) { /* minimum header length */
333 ipstat.ips_badhlen++;
334 goto bad;
335 }
336 if (hlen > m->m_len) {
337 if ((m = m_pullup(m, hlen)) == 0) {
338 ipstat.ips_badhlen++;
339 goto next;
340 }
341 ip = mtod(m, struct ip *);
342 }
343 if (in_cksum(m, hlen) != 0) {
344 ipstat.ips_badsum++;
345 goto bad;
346 }
347
348 /*
349 * Convert fields to host representation.
350 */
351 NTOHS(ip->ip_len);
352 NTOHS(ip->ip_off);
353 len = ip->ip_len;
354
355 /*
356 * Check for additional length bogosity
357 */
358 if (len < hlen)
359 {
360 ipstat.ips_badlen++;
361 goto bad;
362 }
363
364 /*
365 * Check that the amount of data in the buffers
366 * is as at least much as the IP header would have us expect.
367 * Trim mbufs if longer than we expect.
368 * Drop packet if shorter than we expect.
369 */
370 if (m->m_pkthdr.len < len) {
371 ipstat.ips_tooshort++;
372 goto bad;
373 }
374 if (m->m_pkthdr.len > len) {
375 if (m->m_len == m->m_pkthdr.len) {
376 m->m_len = len;
377 m->m_pkthdr.len = len;
378 } else
379 m_adj(m, len - m->m_pkthdr.len);
380 }
381
382 /*
383 * Assume that we can create a fast-forward IP flow entry
384 * based on this packet.
385 */
386 m->m_flags |= M_CANFASTFWD;
387
388 #ifdef PFIL_HOOKS
389 /*
390 * Run through list of hooks for input packets. If there are any
391 * filters which require that additional packets in the flow are
392 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
393 * Note that filters must _never_ set this flag, as another filter
394 * in the list may have previously cleared it.
395 */
396 m0 = m;
397 for (pfh = pfil_hook_get(PFIL_IN); pfh; pfh = pfh->pfil_link.tqe_next)
398 if (pfh->pfil_func) {
399 rv = pfh->pfil_func(ip, hlen, m->m_pkthdr.rcvif, 0, &m0);
400 if (rv)
401 goto next;
402 m = m0;
403 if (m == NULL)
404 goto next;
405 ip = mtod(m, struct ip *);
406 }
407 #endif /* PFIL_HOOKS */
408
409 /*
410 * Process options and, if not destined for us,
411 * ship it on. ip_dooptions returns 1 when an
412 * error was detected (causing an icmp message
413 * to be sent and the original packet to be freed).
414 */
415 ip_nhops = 0; /* for source routed packets */
416 if (hlen > sizeof (struct ip) && ip_dooptions(m))
417 goto next;
418
419 /*
420 * Check our list of addresses, to see if the packet is for us.
421 */
422 INADDR_TO_IA(ip->ip_dst, ia);
423 if (ia != NULL) {
424 if (ia->ia_ifp->if_flags & IFF_UP)
425 goto ours;
426 }
427 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
428 for (ifa = m->m_pkthdr.rcvif->if_addrlist.tqh_first;
429 ifa != NULL; ifa = ifa->ifa_list.tqe_next) {
430 if (ifa->ifa_addr->sa_family != AF_INET) continue;
431 ia = ifatoia(ifa);
432 if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
433 in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
434 /*
435 * Look for all-0's host part (old broadcast addr),
436 * either for subnet or net.
437 */
438 ip->ip_dst.s_addr == ia->ia_subnet ||
439 ip->ip_dst.s_addr == ia->ia_net)
440 goto ours;
441 /*
442 * An interface with IP address zero accepts
443 * all packets that arrive on that interface.
444 */
445 if (in_nullhost(ia->ia_addr.sin_addr))
446 goto ours;
447 }
448 }
449 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
450 struct in_multi *inm;
451 #ifdef MROUTING
452 extern struct socket *ip_mrouter;
453
454 if (m->m_flags & M_EXT) {
455 if ((m = m_pullup(m, hlen)) == 0) {
456 ipstat.ips_toosmall++;
457 goto next;
458 }
459 ip = mtod(m, struct ip *);
460 }
461
462 if (ip_mrouter) {
463 /*
464 * If we are acting as a multicast router, all
465 * incoming multicast packets are passed to the
466 * kernel-level multicast forwarding function.
467 * The packet is returned (relatively) intact; if
468 * ip_mforward() returns a non-zero value, the packet
469 * must be discarded, else it may be accepted below.
470 *
471 * (The IP ident field is put in the same byte order
472 * as expected when ip_mforward() is called from
473 * ip_output().)
474 */
475 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
476 ipstat.ips_cantforward++;
477 m_freem(m);
478 goto next;
479 }
480
481 /*
482 * The process-level routing demon needs to receive
483 * all multicast IGMP packets, whether or not this
484 * host belongs to their destination groups.
485 */
486 if (ip->ip_p == IPPROTO_IGMP)
487 goto ours;
488 ipstat.ips_forward++;
489 }
490 #endif
491 /*
492 * See if we belong to the destination multicast group on the
493 * arrival interface.
494 */
495 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
496 if (inm == NULL) {
497 ipstat.ips_cantforward++;
498 m_freem(m);
499 goto next;
500 }
501 goto ours;
502 }
503 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
504 in_nullhost(ip->ip_dst))
505 goto ours;
506
507 /*
508 * Not for us; forward if possible and desirable.
509 */
510 if (ipforwarding == 0) {
511 ipstat.ips_cantforward++;
512 m_freem(m);
513 } else
514 ip_forward(m, 0);
515 goto next;
516
517 ours:
518 /*
519 * If offset or IP_MF are set, must reassemble.
520 * Otherwise, nothing need be done.
521 * (We could look in the reassembly queue to see
522 * if the packet was previously fragmented,
523 * but it's not worth the time; just let them time out.)
524 */
525 if (ip->ip_off & ~(IP_DF|IP_RF)) {
526 /*
527 * Look for queue of fragments
528 * of this datagram.
529 */
530 IPQ_LOCK();
531 for (fp = ipq.lh_first; fp != NULL; fp = fp->ipq_q.le_next)
532 if (ip->ip_id == fp->ipq_id &&
533 in_hosteq(ip->ip_src, fp->ipq_src) &&
534 in_hosteq(ip->ip_dst, fp->ipq_dst) &&
535 ip->ip_p == fp->ipq_p)
536 goto found;
537 fp = 0;
538 found:
539
540 /*
541 * Adjust ip_len to not reflect header,
542 * set ipqe_mff if more fragments are expected,
543 * convert offset of this to bytes.
544 */
545 ip->ip_len -= hlen;
546 mff = (ip->ip_off & IP_MF) != 0;
547 if (mff) {
548 /*
549 * Make sure that fragments have a data length
550 * that's a non-zero multiple of 8 bytes.
551 */
552 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
553 ipstat.ips_badfrags++;
554 IPQ_UNLOCK();
555 goto bad;
556 }
557 }
558 ip->ip_off <<= 3;
559
560 /*
561 * If datagram marked as having more fragments
562 * or if this is not the first fragment,
563 * attempt reassembly; if it succeeds, proceed.
564 */
565 if (mff || ip->ip_off) {
566 ipstat.ips_fragments++;
567 ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
568 if (ipqe == NULL) {
569 ipstat.ips_rcvmemdrop++;
570 IPQ_UNLOCK();
571 goto bad;
572 }
573 ipqe->ipqe_mff = mff;
574 ipqe->ipqe_m = m;
575 ipqe->ipqe_ip = ip;
576 m = ip_reass(ipqe, fp);
577 if (m == 0) {
578 IPQ_UNLOCK();
579 goto next;
580 }
581 ipstat.ips_reassembled++;
582 ip = mtod(m, struct ip *);
583 hlen = ip->ip_hl << 2;
584 ip->ip_len += hlen;
585 } else
586 if (fp)
587 ip_freef(fp);
588 IPQ_UNLOCK();
589 }
590
591 /*
592 * Switch out to protocol's input routine.
593 */
594 #if IFA_STATS
595 ia->ia_ifa.ifa_data.ifad_inbytes += ip->ip_len;
596 #endif
597 ipstat.ips_delivered++;
598 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
599 goto next;
600 bad:
601 m_freem(m);
602 goto next;
603 }
604
605 /*
606 * Take incoming datagram fragment and try to
607 * reassemble it into whole datagram. If a chain for
608 * reassembly of this datagram already exists, then it
609 * is given as fp; otherwise have to make a chain.
610 */
611 struct mbuf *
612 ip_reass(ipqe, fp)
613 register struct ipqent *ipqe;
614 register struct ipq *fp;
615 {
616 register struct mbuf *m = ipqe->ipqe_m;
617 register struct ipqent *nq, *p, *q;
618 struct ip *ip;
619 struct mbuf *t;
620 int hlen = ipqe->ipqe_ip->ip_hl << 2;
621 int i, next;
622
623 IPQ_LOCK_CHECK();
624
625 /*
626 * Presence of header sizes in mbufs
627 * would confuse code below.
628 */
629 m->m_data += hlen;
630 m->m_len -= hlen;
631
632 /*
633 * If first fragment to arrive, create a reassembly queue.
634 */
635 if (fp == 0) {
636 MALLOC(fp, struct ipq *, sizeof (struct ipq),
637 M_FTABLE, M_NOWAIT);
638 if (fp == NULL)
639 goto dropfrag;
640 LIST_INSERT_HEAD(&ipq, fp, ipq_q);
641 fp->ipq_ttl = IPFRAGTTL;
642 fp->ipq_p = ipqe->ipqe_ip->ip_p;
643 fp->ipq_id = ipqe->ipqe_ip->ip_id;
644 LIST_INIT(&fp->ipq_fragq);
645 fp->ipq_src = ipqe->ipqe_ip->ip_src;
646 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
647 p = NULL;
648 goto insert;
649 }
650
651 /*
652 * Find a segment which begins after this one does.
653 */
654 for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
655 p = q, q = q->ipqe_q.le_next)
656 if (q->ipqe_ip->ip_off > ipqe->ipqe_ip->ip_off)
657 break;
658
659 /*
660 * If there is a preceding segment, it may provide some of
661 * our data already. If so, drop the data from the incoming
662 * segment. If it provides all of our data, drop us.
663 */
664 if (p != NULL) {
665 i = p->ipqe_ip->ip_off + p->ipqe_ip->ip_len -
666 ipqe->ipqe_ip->ip_off;
667 if (i > 0) {
668 if (i >= ipqe->ipqe_ip->ip_len)
669 goto dropfrag;
670 m_adj(ipqe->ipqe_m, i);
671 ipqe->ipqe_ip->ip_off += i;
672 ipqe->ipqe_ip->ip_len -= i;
673 }
674 }
675
676 /*
677 * While we overlap succeeding segments trim them or,
678 * if they are completely covered, dequeue them.
679 */
680 for (; q != NULL && ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len >
681 q->ipqe_ip->ip_off; q = nq) {
682 i = (ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len) -
683 q->ipqe_ip->ip_off;
684 if (i < q->ipqe_ip->ip_len) {
685 q->ipqe_ip->ip_len -= i;
686 q->ipqe_ip->ip_off += i;
687 m_adj(q->ipqe_m, i);
688 break;
689 }
690 nq = q->ipqe_q.le_next;
691 m_freem(q->ipqe_m);
692 LIST_REMOVE(q, ipqe_q);
693 pool_put(&ipqent_pool, q);
694 }
695
696 insert:
697 /*
698 * Stick new segment in its place;
699 * check for complete reassembly.
700 */
701 if (p == NULL) {
702 LIST_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
703 } else {
704 LIST_INSERT_AFTER(p, ipqe, ipqe_q);
705 }
706 next = 0;
707 for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
708 p = q, q = q->ipqe_q.le_next) {
709 if (q->ipqe_ip->ip_off != next)
710 return (0);
711 next += q->ipqe_ip->ip_len;
712 }
713 if (p->ipqe_mff)
714 return (0);
715
716 /*
717 * Reassembly is complete. Check for a bogus message size and
718 * concatenate fragments.
719 */
720 q = fp->ipq_fragq.lh_first;
721 ip = q->ipqe_ip;
722 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
723 ipstat.ips_toolong++;
724 ip_freef(fp);
725 return (0);
726 }
727 m = q->ipqe_m;
728 t = m->m_next;
729 m->m_next = 0;
730 m_cat(m, t);
731 nq = q->ipqe_q.le_next;
732 pool_put(&ipqent_pool, q);
733 for (q = nq; q != NULL; q = nq) {
734 t = q->ipqe_m;
735 nq = q->ipqe_q.le_next;
736 pool_put(&ipqent_pool, q);
737 m_cat(m, t);
738 }
739
740 /*
741 * Create header for new ip packet by
742 * modifying header of first packet;
743 * dequeue and discard fragment reassembly header.
744 * Make header visible.
745 */
746 ip->ip_len = next;
747 ip->ip_src = fp->ipq_src;
748 ip->ip_dst = fp->ipq_dst;
749 LIST_REMOVE(fp, ipq_q);
750 FREE(fp, M_FTABLE);
751 m->m_len += (ip->ip_hl << 2);
752 m->m_data -= (ip->ip_hl << 2);
753 /* some debugging cruft by sklower, below, will go away soon */
754 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
755 register int plen = 0;
756 for (t = m; t; t = t->m_next)
757 plen += t->m_len;
758 m->m_pkthdr.len = plen;
759 }
760 return (m);
761
762 dropfrag:
763 ipstat.ips_fragdropped++;
764 m_freem(m);
765 pool_put(&ipqent_pool, ipqe);
766 return (0);
767 }
768
769 /*
770 * Free a fragment reassembly header and all
771 * associated datagrams.
772 */
773 void
774 ip_freef(fp)
775 struct ipq *fp;
776 {
777 register struct ipqent *q, *p;
778
779 IPQ_LOCK_CHECK();
780
781 for (q = fp->ipq_fragq.lh_first; q != NULL; q = p) {
782 p = q->ipqe_q.le_next;
783 m_freem(q->ipqe_m);
784 LIST_REMOVE(q, ipqe_q);
785 pool_put(&ipqent_pool, q);
786 }
787 LIST_REMOVE(fp, ipq_q);
788 FREE(fp, M_FTABLE);
789 }
790
791 /*
792 * IP timer processing;
793 * if a timer expires on a reassembly
794 * queue, discard it.
795 */
796 void
797 ip_slowtimo()
798 {
799 register struct ipq *fp, *nfp;
800 int s = splsoftnet();
801
802 IPQ_LOCK();
803 for (fp = ipq.lh_first; fp != NULL; fp = nfp) {
804 nfp = fp->ipq_q.le_next;
805 if (--fp->ipq_ttl == 0) {
806 ipstat.ips_fragtimeout++;
807 ip_freef(fp);
808 }
809 }
810 IPQ_UNLOCK();
811 #ifdef GATEWAY
812 ipflow_slowtimo();
813 #endif
814 splx(s);
815 }
816
817 /*
818 * Drain off all datagram fragments.
819 */
820 void
821 ip_drain()
822 {
823
824 /*
825 * We may be called from a device's interrupt context. If
826 * the ipq is already busy, just bail out now.
827 */
828 if (ipq_lock_try() == 0)
829 return;
830
831 while (ipq.lh_first != NULL) {
832 ipstat.ips_fragdropped++;
833 ip_freef(ipq.lh_first);
834 }
835
836 IPQ_UNLOCK();
837 }
838
839 /*
840 * Do option processing on a datagram,
841 * possibly discarding it if bad options are encountered,
842 * or forwarding it if source-routed.
843 * Returns 1 if packet has been forwarded/freed,
844 * 0 if the packet should be processed further.
845 */
846 int
847 ip_dooptions(m)
848 struct mbuf *m;
849 {
850 register struct ip *ip = mtod(m, struct ip *);
851 register u_char *cp;
852 register struct ip_timestamp *ipt;
853 register struct in_ifaddr *ia;
854 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
855 struct in_addr *sin, dst;
856 n_time ntime;
857
858 dst = ip->ip_dst;
859 cp = (u_char *)(ip + 1);
860 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
861 for (; cnt > 0; cnt -= optlen, cp += optlen) {
862 opt = cp[IPOPT_OPTVAL];
863 if (opt == IPOPT_EOL)
864 break;
865 if (opt == IPOPT_NOP)
866 optlen = 1;
867 else {
868 optlen = cp[IPOPT_OLEN];
869 if (optlen <= 0 || optlen > cnt) {
870 code = &cp[IPOPT_OLEN] - (u_char *)ip;
871 goto bad;
872 }
873 }
874 switch (opt) {
875
876 default:
877 break;
878
879 /*
880 * Source routing with record.
881 * Find interface with current destination address.
882 * If none on this machine then drop if strictly routed,
883 * or do nothing if loosely routed.
884 * Record interface address and bring up next address
885 * component. If strictly routed make sure next
886 * address is on directly accessible net.
887 */
888 case IPOPT_LSRR:
889 case IPOPT_SSRR:
890 if (ip_allowsrcrt == 0) {
891 type = ICMP_UNREACH;
892 code = ICMP_UNREACH_NET_PROHIB;
893 goto bad;
894 }
895 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
896 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
897 goto bad;
898 }
899 ipaddr.sin_addr = ip->ip_dst;
900 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
901 if (ia == 0) {
902 if (opt == IPOPT_SSRR) {
903 type = ICMP_UNREACH;
904 code = ICMP_UNREACH_SRCFAIL;
905 goto bad;
906 }
907 /*
908 * Loose routing, and not at next destination
909 * yet; nothing to do except forward.
910 */
911 break;
912 }
913 off--; /* 0 origin */
914 if (off > optlen - sizeof(struct in_addr)) {
915 /*
916 * End of source route. Should be for us.
917 */
918 save_rte(cp, ip->ip_src);
919 break;
920 }
921 /*
922 * locate outgoing interface
923 */
924 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
925 sizeof(ipaddr.sin_addr));
926 if (opt == IPOPT_SSRR) {
927 #define INA struct in_ifaddr *
928 #define SA struct sockaddr *
929 ia = (INA)ifa_ifwithladdr((SA)&ipaddr);
930 } else
931 ia = ip_rtaddr(ipaddr.sin_addr);
932 if (ia == 0) {
933 type = ICMP_UNREACH;
934 code = ICMP_UNREACH_SRCFAIL;
935 goto bad;
936 }
937 ip->ip_dst = ipaddr.sin_addr;
938 bcopy((caddr_t)&ia->ia_addr.sin_addr,
939 (caddr_t)(cp + off), sizeof(struct in_addr));
940 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
941 /*
942 * Let ip_intr's mcast routing check handle mcast pkts
943 */
944 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
945 break;
946
947 case IPOPT_RR:
948 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
949 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
950 goto bad;
951 }
952 /*
953 * If no space remains, ignore.
954 */
955 off--; /* 0 origin */
956 if (off > optlen - sizeof(struct in_addr))
957 break;
958 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
959 sizeof(ipaddr.sin_addr));
960 /*
961 * locate outgoing interface; if we're the destination,
962 * use the incoming interface (should be same).
963 */
964 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
965 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
966 type = ICMP_UNREACH;
967 code = ICMP_UNREACH_HOST;
968 goto bad;
969 }
970 bcopy((caddr_t)&ia->ia_addr.sin_addr,
971 (caddr_t)(cp + off), sizeof(struct in_addr));
972 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
973 break;
974
975 case IPOPT_TS:
976 code = cp - (u_char *)ip;
977 ipt = (struct ip_timestamp *)cp;
978 if (ipt->ipt_len < 5)
979 goto bad;
980 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
981 if (++ipt->ipt_oflw == 0)
982 goto bad;
983 break;
984 }
985 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
986 switch (ipt->ipt_flg) {
987
988 case IPOPT_TS_TSONLY:
989 break;
990
991 case IPOPT_TS_TSANDADDR:
992 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
993 sizeof(struct in_addr) > ipt->ipt_len)
994 goto bad;
995 ipaddr.sin_addr = dst;
996 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
997 m->m_pkthdr.rcvif);
998 if (ia == 0)
999 continue;
1000 bcopy((caddr_t)&ia->ia_addr.sin_addr,
1001 (caddr_t)sin, sizeof(struct in_addr));
1002 ipt->ipt_ptr += sizeof(struct in_addr);
1003 break;
1004
1005 case IPOPT_TS_PRESPEC:
1006 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1007 sizeof(struct in_addr) > ipt->ipt_len)
1008 goto bad;
1009 bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
1010 sizeof(struct in_addr));
1011 if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1012 continue;
1013 ipt->ipt_ptr += sizeof(struct in_addr);
1014 break;
1015
1016 default:
1017 goto bad;
1018 }
1019 ntime = iptime();
1020 bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
1021 sizeof(n_time));
1022 ipt->ipt_ptr += sizeof(n_time);
1023 }
1024 }
1025 if (forward) {
1026 if (ip_forwsrcrt == 0) {
1027 type = ICMP_UNREACH;
1028 code = ICMP_UNREACH_SRCFAIL;
1029 goto bad;
1030 }
1031 ip_forward(m, 1);
1032 return (1);
1033 }
1034 return (0);
1035 bad:
1036 icmp_error(m, type, code, 0, 0);
1037 ipstat.ips_badoptions++;
1038 return (1);
1039 }
1040
1041 /*
1042 * Given address of next destination (final or next hop),
1043 * return internet address info of interface to be used to get there.
1044 */
1045 struct in_ifaddr *
1046 ip_rtaddr(dst)
1047 struct in_addr dst;
1048 {
1049 register struct sockaddr_in *sin;
1050
1051 sin = satosin(&ipforward_rt.ro_dst);
1052
1053 if (ipforward_rt.ro_rt == 0 || !in_hosteq(dst, sin->sin_addr)) {
1054 if (ipforward_rt.ro_rt) {
1055 RTFREE(ipforward_rt.ro_rt);
1056 ipforward_rt.ro_rt = 0;
1057 }
1058 sin->sin_family = AF_INET;
1059 sin->sin_len = sizeof(*sin);
1060 sin->sin_addr = dst;
1061
1062 rtalloc(&ipforward_rt);
1063 }
1064 if (ipforward_rt.ro_rt == 0)
1065 return ((struct in_ifaddr *)0);
1066 return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
1067 }
1068
1069 /*
1070 * Save incoming source route for use in replies,
1071 * to be picked up later by ip_srcroute if the receiver is interested.
1072 */
1073 void
1074 save_rte(option, dst)
1075 u_char *option;
1076 struct in_addr dst;
1077 {
1078 unsigned olen;
1079
1080 olen = option[IPOPT_OLEN];
1081 #ifdef DIAGNOSTIC
1082 if (ipprintfs)
1083 printf("save_rte: olen %d\n", olen);
1084 #endif
1085 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1086 return;
1087 bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
1088 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1089 ip_srcrt.dst = dst;
1090 }
1091
1092 /*
1093 * Retrieve incoming source route for use in replies,
1094 * in the same form used by setsockopt.
1095 * The first hop is placed before the options, will be removed later.
1096 */
1097 struct mbuf *
1098 ip_srcroute()
1099 {
1100 register struct in_addr *p, *q;
1101 register struct mbuf *m;
1102
1103 if (ip_nhops == 0)
1104 return ((struct mbuf *)0);
1105 m = m_get(M_DONTWAIT, MT_SOOPTS);
1106 if (m == 0)
1107 return ((struct mbuf *)0);
1108
1109 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1110
1111 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1112 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1113 OPTSIZ;
1114 #ifdef DIAGNOSTIC
1115 if (ipprintfs)
1116 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1117 #endif
1118
1119 /*
1120 * First save first hop for return route
1121 */
1122 p = &ip_srcrt.route[ip_nhops - 1];
1123 *(mtod(m, struct in_addr *)) = *p--;
1124 #ifdef DIAGNOSTIC
1125 if (ipprintfs)
1126 printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1127 #endif
1128
1129 /*
1130 * Copy option fields and padding (nop) to mbuf.
1131 */
1132 ip_srcrt.nop = IPOPT_NOP;
1133 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1134 bcopy((caddr_t)&ip_srcrt.nop,
1135 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
1136 q = (struct in_addr *)(mtod(m, caddr_t) +
1137 sizeof(struct in_addr) + OPTSIZ);
1138 #undef OPTSIZ
1139 /*
1140 * Record return path as an IP source route,
1141 * reversing the path (pointers are now aligned).
1142 */
1143 while (p >= ip_srcrt.route) {
1144 #ifdef DIAGNOSTIC
1145 if (ipprintfs)
1146 printf(" %x", ntohl(q->s_addr));
1147 #endif
1148 *q++ = *p--;
1149 }
1150 /*
1151 * Last hop goes to final destination.
1152 */
1153 *q = ip_srcrt.dst;
1154 #ifdef DIAGNOSTIC
1155 if (ipprintfs)
1156 printf(" %x\n", ntohl(q->s_addr));
1157 #endif
1158 return (m);
1159 }
1160
1161 /*
1162 * Strip out IP options, at higher
1163 * level protocol in the kernel.
1164 * Second argument is buffer to which options
1165 * will be moved, and return value is their length.
1166 * XXX should be deleted; last arg currently ignored.
1167 */
1168 void
1169 ip_stripoptions(m, mopt)
1170 register struct mbuf *m;
1171 struct mbuf *mopt;
1172 {
1173 register int i;
1174 struct ip *ip = mtod(m, struct ip *);
1175 register caddr_t opts;
1176 int olen;
1177
1178 olen = (ip->ip_hl << 2) - sizeof (struct ip);
1179 opts = (caddr_t)(ip + 1);
1180 i = m->m_len - (sizeof (struct ip) + olen);
1181 bcopy(opts + olen, opts, (unsigned)i);
1182 m->m_len -= olen;
1183 if (m->m_flags & M_PKTHDR)
1184 m->m_pkthdr.len -= olen;
1185 ip->ip_len -= olen;
1186 ip->ip_hl = sizeof (struct ip) >> 2;
1187 }
1188
1189 int inetctlerrmap[PRC_NCMDS] = {
1190 0, 0, 0, 0,
1191 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1192 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1193 EMSGSIZE, EHOSTUNREACH, 0, 0,
1194 0, 0, 0, 0,
1195 ENOPROTOOPT
1196 };
1197
1198 /*
1199 * Forward a packet. If some error occurs return the sender
1200 * an icmp packet. Note we can't always generate a meaningful
1201 * icmp message because icmp doesn't have a large enough repertoire
1202 * of codes and types.
1203 *
1204 * If not forwarding, just drop the packet. This could be confusing
1205 * if ipforwarding was zero but some routing protocol was advancing
1206 * us as a gateway to somewhere. However, we must let the routing
1207 * protocol deal with that.
1208 *
1209 * The srcrt parameter indicates whether the packet is being forwarded
1210 * via a source route.
1211 */
1212 void
1213 ip_forward(m, srcrt)
1214 struct mbuf *m;
1215 int srcrt;
1216 {
1217 register struct ip *ip = mtod(m, struct ip *);
1218 register struct sockaddr_in *sin;
1219 register struct rtentry *rt;
1220 int error, type = 0, code = 0;
1221 struct mbuf *mcopy;
1222 n_long dest;
1223 struct ifnet *destifp;
1224
1225 dest = 0;
1226 #ifdef DIAGNOSTIC
1227 if (ipprintfs)
1228 printf("forward: src %2.2x dst %2.2x ttl %x\n",
1229 ntohl(ip->ip_src.s_addr),
1230 ntohl(ip->ip_dst.s_addr), ip->ip_ttl);
1231 #endif
1232 if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1233 ipstat.ips_cantforward++;
1234 m_freem(m);
1235 return;
1236 }
1237 if (ip->ip_ttl <= IPTTLDEC) {
1238 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1239 return;
1240 }
1241 ip->ip_ttl -= IPTTLDEC;
1242
1243 sin = satosin(&ipforward_rt.ro_dst);
1244 if ((rt = ipforward_rt.ro_rt) == 0 ||
1245 !in_hosteq(ip->ip_dst, sin->sin_addr)) {
1246 if (ipforward_rt.ro_rt) {
1247 RTFREE(ipforward_rt.ro_rt);
1248 ipforward_rt.ro_rt = 0;
1249 }
1250 sin->sin_family = AF_INET;
1251 sin->sin_len = sizeof(struct sockaddr_in);
1252 sin->sin_addr = ip->ip_dst;
1253
1254 rtalloc(&ipforward_rt);
1255 if (ipforward_rt.ro_rt == 0) {
1256 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1257 return;
1258 }
1259 rt = ipforward_rt.ro_rt;
1260 }
1261
1262 /*
1263 * Save at most 68 bytes of the packet in case
1264 * we need to generate an ICMP message to the src.
1265 */
1266 mcopy = m_copy(m, 0, imin((int)ip->ip_len, 68));
1267
1268 /*
1269 * If forwarding packet using same interface that it came in on,
1270 * perhaps should send a redirect to sender to shortcut a hop.
1271 * Only send redirect if source is sending directly to us,
1272 * and if packet was not source routed (or has any options).
1273 * Also, don't send redirect if forwarding using a default route
1274 * or a route modified by a redirect.
1275 */
1276 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1277 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1278 !in_nullhost(satosin(rt_key(rt))->sin_addr) &&
1279 ipsendredirects && !srcrt) {
1280 if (rt->rt_ifa &&
1281 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1282 ifatoia(rt->rt_ifa)->ia_subnet) {
1283 if (rt->rt_flags & RTF_GATEWAY)
1284 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1285 else
1286 dest = ip->ip_dst.s_addr;
1287 /*
1288 * Router requirements says to only send host
1289 * redirects.
1290 */
1291 type = ICMP_REDIRECT;
1292 code = ICMP_REDIRECT_HOST;
1293 #ifdef DIAGNOSTIC
1294 if (ipprintfs)
1295 printf("redirect (%d) to %x\n", code,
1296 (u_int32_t)dest);
1297 #endif
1298 }
1299 }
1300
1301 error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1302 (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)), 0);
1303 if (error)
1304 ipstat.ips_cantforward++;
1305 else {
1306 ipstat.ips_forward++;
1307 if (type)
1308 ipstat.ips_redirectsent++;
1309 else {
1310 if (mcopy) {
1311 #ifdef GATEWAY
1312 if (mcopy->m_flags & M_CANFASTFWD)
1313 ipflow_create(&ipforward_rt, mcopy);
1314 #endif
1315 m_freem(mcopy);
1316 }
1317 return;
1318 }
1319 }
1320 if (mcopy == NULL)
1321 return;
1322 destifp = NULL;
1323
1324 switch (error) {
1325
1326 case 0: /* forwarded, but need redirect */
1327 /* type, code set above */
1328 break;
1329
1330 case ENETUNREACH: /* shouldn't happen, checked above */
1331 case EHOSTUNREACH:
1332 case ENETDOWN:
1333 case EHOSTDOWN:
1334 default:
1335 type = ICMP_UNREACH;
1336 code = ICMP_UNREACH_HOST;
1337 break;
1338
1339 case EMSGSIZE:
1340 type = ICMP_UNREACH;
1341 code = ICMP_UNREACH_NEEDFRAG;
1342 if (ipforward_rt.ro_rt)
1343 destifp = ipforward_rt.ro_rt->rt_ifp;
1344 ipstat.ips_cantfrag++;
1345 break;
1346
1347 case ENOBUFS:
1348 type = ICMP_SOURCEQUENCH;
1349 code = 0;
1350 break;
1351 }
1352 icmp_error(mcopy, type, code, dest, destifp);
1353 }
1354
1355 void
1356 ip_savecontrol(inp, mp, ip, m)
1357 register struct inpcb *inp;
1358 register struct mbuf **mp;
1359 register struct ip *ip;
1360 register struct mbuf *m;
1361 {
1362
1363 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1364 struct timeval tv;
1365
1366 microtime(&tv);
1367 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1368 SCM_TIMESTAMP, SOL_SOCKET);
1369 if (*mp)
1370 mp = &(*mp)->m_next;
1371 }
1372 if (inp->inp_flags & INP_RECVDSTADDR) {
1373 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1374 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1375 if (*mp)
1376 mp = &(*mp)->m_next;
1377 }
1378 #ifdef notyet
1379 /*
1380 * XXX
1381 * Moving these out of udp_input() made them even more broken
1382 * than they already were.
1383 * - fenner (at) parc.xerox.com
1384 */
1385 /* options were tossed already */
1386 if (inp->inp_flags & INP_RECVOPTS) {
1387 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1388 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1389 if (*mp)
1390 mp = &(*mp)->m_next;
1391 }
1392 /* ip_srcroute doesn't do what we want here, need to fix */
1393 if (inp->inp_flags & INP_RECVRETOPTS) {
1394 *mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1395 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1396 if (*mp)
1397 mp = &(*mp)->m_next;
1398 }
1399 #endif
1400 if (inp->inp_flags & INP_RECVIF) {
1401 struct sockaddr_dl sdl;
1402
1403 sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]);
1404 sdl.sdl_family = AF_LINK;
1405 sdl.sdl_index = m->m_pkthdr.rcvif ?
1406 m->m_pkthdr.rcvif->if_index : 0;
1407 sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0;
1408 *mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len,
1409 IP_RECVIF, IPPROTO_IP);
1410 if (*mp)
1411 mp = &(*mp)->m_next;
1412 }
1413 }
1414
1415 int
1416 ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
1417 int *name;
1418 u_int namelen;
1419 void *oldp;
1420 size_t *oldlenp;
1421 void *newp;
1422 size_t newlen;
1423 {
1424 extern int subnetsarelocal;
1425
1426 int error, old;
1427
1428 /* All sysctl names at this level are terminal. */
1429 if (namelen != 1)
1430 return (ENOTDIR);
1431
1432 switch (name[0]) {
1433 case IPCTL_FORWARDING:
1434 return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
1435 case IPCTL_SENDREDIRECTS:
1436 return (sysctl_int(oldp, oldlenp, newp, newlen,
1437 &ipsendredirects));
1438 case IPCTL_DEFTTL:
1439 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
1440 #ifdef notyet
1441 case IPCTL_DEFMTU:
1442 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
1443 #endif
1444 case IPCTL_FORWSRCRT:
1445 /* Don't allow this to change in a secure environment. */
1446 if (securelevel > 0)
1447 return (sysctl_rdint(oldp, oldlenp, newp,
1448 ip_forwsrcrt));
1449 else
1450 return (sysctl_int(oldp, oldlenp, newp, newlen,
1451 &ip_forwsrcrt));
1452 case IPCTL_DIRECTEDBCAST:
1453 return (sysctl_int(oldp, oldlenp, newp, newlen,
1454 &ip_directedbcast));
1455 case IPCTL_ALLOWSRCRT:
1456 return (sysctl_int(oldp, oldlenp, newp, newlen,
1457 &ip_allowsrcrt));
1458 case IPCTL_SUBNETSARELOCAL:
1459 return (sysctl_int(oldp, oldlenp, newp, newlen,
1460 &subnetsarelocal));
1461 case IPCTL_MTUDISC:
1462 error = sysctl_int(oldp, oldlenp, newp, newlen,
1463 &ip_mtudisc);
1464 if (ip_mtudisc != 0 && ip_mtudisc_timeout_q == NULL) {
1465 ip_mtudisc_timeout_q =
1466 rt_timer_queue_create(ip_mtudisc_timeout);
1467 } else if (ip_mtudisc == 0 && ip_mtudisc_timeout_q != NULL) {
1468 rt_timer_queue_destroy(ip_mtudisc_timeout_q, TRUE);
1469 ip_mtudisc_timeout_q = NULL;
1470 }
1471 return error;
1472 case IPCTL_ANONPORTMIN:
1473 old = anonportmin;
1474 error = sysctl_int(oldp, oldlenp, newp, newlen, &anonportmin);
1475 if (anonportmin >= anonportmax || anonportmin > 65535
1476 #ifndef IPNOPRIVPORTS
1477 || anonportmin < IPPORT_RESERVED
1478 #endif
1479 ) {
1480 anonportmin = old;
1481 return (EINVAL);
1482 }
1483 return (error);
1484 case IPCTL_ANONPORTMAX:
1485 old = anonportmax;
1486 error = sysctl_int(oldp, oldlenp, newp, newlen, &anonportmax);
1487 if (anonportmin >= anonportmax || anonportmax > 65535
1488 #ifndef IPNOPRIVPORTS
1489 || anonportmax < IPPORT_RESERVED
1490 #endif
1491 ) {
1492 anonportmax = old;
1493 return (EINVAL);
1494 }
1495 return (error);
1496 case IPCTL_MTUDISCTIMEOUT:
1497 error = sysctl_int(oldp, oldlenp, newp, newlen,
1498 &ip_mtudisc_timeout);
1499 if (ip_mtudisc_timeout_q != NULL)
1500 rt_timer_queue_change(ip_mtudisc_timeout_q,
1501 ip_mtudisc_timeout);
1502 return (error);
1503 #ifdef GATEWAY
1504 case IPCTL_MAXFLOWS:
1505 {
1506 int s;
1507
1508 error = sysctl_int(oldp, oldlenp, newp, newlen,
1509 &ip_maxflows);
1510 s = splsoftnet();
1511 ipflow_reap(0);
1512 splx(s);
1513 return (error);
1514 }
1515 #endif
1516 default:
1517 return (EOPNOTSUPP);
1518 }
1519 /* NOTREACHED */
1520 }
1521