ip_input.c revision 1.85 1 /* $NetBSD: ip_input.c,v 1.85 1999/05/03 21:14:47 hwr Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Public Access Networks Corporation ("Panix"). It was developed under
9 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1988, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by the University of
55 * California, Berkeley and its contributors.
56 * 4. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
73 */
74
75 #include "opt_gateway.h"
76 #include "opt_pfil_hooks.h"
77 #include "opt_mrouting.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/malloc.h>
82 #include <sys/mbuf.h>
83 #include <sys/domain.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/errno.h>
88 #include <sys/time.h>
89 #include <sys/kernel.h>
90 #include <sys/proc.h>
91 #include <sys/pool.h>
92
93 #include <vm/vm.h>
94 #include <sys/sysctl.h>
95
96 #include <net/if.h>
97 #include <net/if_dl.h>
98 #include <net/route.h>
99 #include <net/pfil.h>
100
101 #include <netinet/in.h>
102 #include <netinet/in_systm.h>
103 #include <netinet/ip.h>
104 #include <netinet/in_pcb.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip_var.h>
107 #include <netinet/ip_icmp.h>
108
109 #ifndef IPFORWARDING
110 #ifdef GATEWAY
111 #define IPFORWARDING 1 /* forward IP packets not for us */
112 #else /* GATEWAY */
113 #define IPFORWARDING 0 /* don't forward IP packets not for us */
114 #endif /* GATEWAY */
115 #endif /* IPFORWARDING */
116 #ifndef IPSENDREDIRECTS
117 #define IPSENDREDIRECTS 1
118 #endif
119 #ifndef IPFORWSRCRT
120 #define IPFORWSRCRT 1 /* forward source-routed packets */
121 #endif
122 #ifndef IPALLOWSRCRT
123 #define IPALLOWSRCRT 1 /* allow source-routed packets */
124 #endif
125 #ifndef IPMTUDISC
126 #define IPMTUDISC 0
127 #endif
128 #ifndef IPMTUDISCTIMEOUT
129 #define IPMTUDISCTIMEOUT (10 * 60) /* as per RFC 1191 */
130 #endif
131
132 /*
133 * Note: DIRECTED_BROADCAST is handled this way so that previous
134 * configuration using this option will Just Work.
135 */
136 #ifndef IPDIRECTEDBCAST
137 #ifdef DIRECTED_BROADCAST
138 #define IPDIRECTEDBCAST 1
139 #else
140 #define IPDIRECTEDBCAST 0
141 #endif /* DIRECTED_BROADCAST */
142 #endif /* IPDIRECTEDBCAST */
143 int ipforwarding = IPFORWARDING;
144 int ipsendredirects = IPSENDREDIRECTS;
145 int ip_defttl = IPDEFTTL;
146 int ip_forwsrcrt = IPFORWSRCRT;
147 int ip_directedbcast = IPDIRECTEDBCAST;
148 int ip_allowsrcrt = IPALLOWSRCRT;
149 int ip_mtudisc = IPMTUDISC;
150 u_int ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
151 #ifdef DIAGNOSTIC
152 int ipprintfs = 0;
153 #endif
154
155 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
156
157 extern struct domain inetdomain;
158 extern struct protosw inetsw[];
159 u_char ip_protox[IPPROTO_MAX];
160 int ipqmaxlen = IFQ_MAXLEN;
161 struct in_ifaddrhead in_ifaddr;
162 struct in_ifaddrhashhead *in_ifaddrhashtbl;
163 struct ifqueue ipintrq;
164 struct ipstat ipstat;
165 u_int16_t ip_id;
166 int ip_defttl;
167
168 struct ipqhead ipq;
169 int ipq_locked;
170
171 static __inline int ipq_lock_try __P((void));
172 static __inline void ipq_unlock __P((void));
173
174 static __inline int
175 ipq_lock_try()
176 {
177 int s;
178
179 s = splimp();
180 if (ipq_locked) {
181 splx(s);
182 return (0);
183 }
184 ipq_locked = 1;
185 splx(s);
186 return (1);
187 }
188
189 static __inline void
190 ipq_unlock()
191 {
192 int s;
193
194 s = splimp();
195 ipq_locked = 0;
196 splx(s);
197 }
198
199 #ifdef DIAGNOSTIC
200 #define IPQ_LOCK() \
201 do { \
202 if (ipq_lock_try() == 0) { \
203 printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
204 panic("ipq_lock"); \
205 } \
206 } while (0)
207 #define IPQ_LOCK_CHECK() \
208 do { \
209 if (ipq_locked == 0) { \
210 printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
211 panic("ipq lock check"); \
212 } \
213 } while (0)
214 #else
215 #define IPQ_LOCK() (void) ipq_lock_try()
216 #define IPQ_LOCK_CHECK() /* nothing */
217 #endif
218
219 #define IPQ_UNLOCK() ipq_unlock()
220
221 struct pool ipqent_pool;
222
223 /*
224 * We need to save the IP options in case a protocol wants to respond
225 * to an incoming packet over the same route if the packet got here
226 * using IP source routing. This allows connection establishment and
227 * maintenance when the remote end is on a network that is not known
228 * to us.
229 */
230 int ip_nhops = 0;
231 static struct ip_srcrt {
232 struct in_addr dst; /* final destination */
233 char nop; /* one NOP to align */
234 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
235 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
236 } ip_srcrt;
237
238 static void save_rte __P((u_char *, struct in_addr));
239
240 /*
241 * IP initialization: fill in IP protocol switch table.
242 * All protocols not implemented in kernel go to raw IP protocol handler.
243 */
244 void
245 ip_init()
246 {
247 register struct protosw *pr;
248 register int i;
249
250 pool_init(&ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl",
251 0, NULL, NULL, M_IPQ);
252
253 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
254 if (pr == 0)
255 panic("ip_init");
256 for (i = 0; i < IPPROTO_MAX; i++)
257 ip_protox[i] = pr - inetsw;
258 for (pr = inetdomain.dom_protosw;
259 pr < inetdomain.dom_protoswNPROTOSW; pr++)
260 if (pr->pr_domain->dom_family == PF_INET &&
261 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
262 ip_protox[pr->pr_protocol] = pr - inetsw;
263 LIST_INIT(&ipq);
264 ip_id = time.tv_sec & 0xffff;
265 ipintrq.ifq_maxlen = ipqmaxlen;
266 TAILQ_INIT(&in_ifaddr);
267 in_ifaddrhashtbl =
268 hashinit(IN_IFADDR_HASH_SIZE, M_IFADDR, M_WAITOK, &in_ifaddrhash);
269 if (ip_mtudisc != 0)
270 ip_mtudisc_timeout_q =
271 rt_timer_queue_create(ip_mtudisc_timeout);
272 #ifdef GATEWAY
273 ipflow_init();
274 #endif
275 }
276
277 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
278 struct route ipforward_rt;
279
280 /*
281 * Ip input routine. Checksum and byte swap header. If fragmented
282 * try to reassemble. Process options. Pass to next level.
283 */
284 void
285 ipintr()
286 {
287 register struct ip *ip = NULL;
288 register struct mbuf *m;
289 register struct ipq *fp;
290 register struct in_ifaddr *ia;
291 register struct ifaddr *ifa;
292 struct ipqent *ipqe;
293 int hlen = 0, mff, len, s;
294 #ifdef PFIL_HOOKS
295 struct packet_filter_hook *pfh;
296 struct mbuf *m0;
297 int rv;
298 #endif /* PFIL_HOOKS */
299
300 next:
301 /*
302 * Get next datagram off input queue and get IP header
303 * in first mbuf.
304 */
305 s = splimp();
306 IF_DEQUEUE(&ipintrq, m);
307 splx(s);
308 if (m == 0)
309 return;
310 #ifdef DIAGNOSTIC
311 if ((m->m_flags & M_PKTHDR) == 0)
312 panic("ipintr no HDR");
313 #endif
314 /*
315 * If no IP addresses have been set yet but the interfaces
316 * are receiving, can't do anything with incoming packets yet.
317 */
318 if (in_ifaddr.tqh_first == 0)
319 goto bad;
320 ipstat.ips_total++;
321 if (m->m_len < sizeof (struct ip) &&
322 (m = m_pullup(m, sizeof (struct ip))) == 0) {
323 ipstat.ips_toosmall++;
324 goto next;
325 }
326 ip = mtod(m, struct ip *);
327 if (ip->ip_v != IPVERSION) {
328 ipstat.ips_badvers++;
329 goto bad;
330 }
331 hlen = ip->ip_hl << 2;
332 if (hlen < sizeof(struct ip)) { /* minimum header length */
333 ipstat.ips_badhlen++;
334 goto bad;
335 }
336 if (hlen > m->m_len) {
337 if ((m = m_pullup(m, hlen)) == 0) {
338 ipstat.ips_badhlen++;
339 goto next;
340 }
341 ip = mtod(m, struct ip *);
342 }
343 /*
344 * we drop packets that have a multicast address as source
345 * as wanted by rfc 1112
346 */
347 if (IN_MULTICAST(ip->ip_src.s_addr)) {
348 ipstat.ips_odropped++;
349 goto bad;
350 }
351
352 if (in_cksum(m, hlen) != 0) {
353 ipstat.ips_badsum++;
354 goto bad;
355 }
356
357 /*
358 * Convert fields to host representation.
359 */
360 NTOHS(ip->ip_len);
361 NTOHS(ip->ip_off);
362 len = ip->ip_len;
363
364 /*
365 * Check for additional length bogosity
366 */
367 if (len < hlen) {
368 ipstat.ips_badlen++;
369 goto bad;
370 }
371
372 /*
373 * Check that the amount of data in the buffers
374 * is as at least much as the IP header would have us expect.
375 * Trim mbufs if longer than we expect.
376 * Drop packet if shorter than we expect.
377 */
378 if (m->m_pkthdr.len < len) {
379 ipstat.ips_tooshort++;
380 goto bad;
381 }
382 if (m->m_pkthdr.len > len) {
383 if (m->m_len == m->m_pkthdr.len) {
384 m->m_len = len;
385 m->m_pkthdr.len = len;
386 } else
387 m_adj(m, len - m->m_pkthdr.len);
388 }
389
390 /*
391 * Assume that we can create a fast-forward IP flow entry
392 * based on this packet.
393 */
394 m->m_flags |= M_CANFASTFWD;
395
396 #ifdef PFIL_HOOKS
397 /*
398 * Run through list of hooks for input packets. If there are any
399 * filters which require that additional packets in the flow are
400 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
401 * Note that filters must _never_ set this flag, as another filter
402 * in the list may have previously cleared it.
403 */
404 m0 = m;
405 for (pfh = pfil_hook_get(PFIL_IN); pfh; pfh = pfh->pfil_link.tqe_next)
406 if (pfh->pfil_func) {
407 rv = pfh->pfil_func(ip, hlen, m->m_pkthdr.rcvif, 0, &m0);
408 if (rv)
409 goto next;
410 m = m0;
411 if (m == NULL)
412 goto next;
413 ip = mtod(m, struct ip *);
414 }
415 #endif /* PFIL_HOOKS */
416
417 /*
418 * Process options and, if not destined for us,
419 * ship it on. ip_dooptions returns 1 when an
420 * error was detected (causing an icmp message
421 * to be sent and the original packet to be freed).
422 */
423 ip_nhops = 0; /* for source routed packets */
424 if (hlen > sizeof (struct ip) && ip_dooptions(m))
425 goto next;
426
427 /*
428 * Check our list of addresses, to see if the packet is for us.
429 */
430 INADDR_TO_IA(ip->ip_dst, ia);
431 if (ia != NULL) {
432 if (ia->ia_ifp->if_flags & IFF_UP)
433 goto ours;
434 }
435 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
436 for (ifa = m->m_pkthdr.rcvif->if_addrlist.tqh_first;
437 ifa != NULL; ifa = ifa->ifa_list.tqe_next) {
438 if (ifa->ifa_addr->sa_family != AF_INET) continue;
439 ia = ifatoia(ifa);
440 if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
441 in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
442 /*
443 * Look for all-0's host part (old broadcast addr),
444 * either for subnet or net.
445 */
446 ip->ip_dst.s_addr == ia->ia_subnet ||
447 ip->ip_dst.s_addr == ia->ia_net)
448 goto ours;
449 /*
450 * An interface with IP address zero accepts
451 * all packets that arrive on that interface.
452 */
453 if (in_nullhost(ia->ia_addr.sin_addr))
454 goto ours;
455 }
456 }
457 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
458 struct in_multi *inm;
459 #ifdef MROUTING
460 extern struct socket *ip_mrouter;
461
462 if (m->m_flags & M_EXT) {
463 if ((m = m_pullup(m, hlen)) == 0) {
464 ipstat.ips_toosmall++;
465 goto next;
466 }
467 ip = mtod(m, struct ip *);
468 }
469
470 if (ip_mrouter) {
471 /*
472 * If we are acting as a multicast router, all
473 * incoming multicast packets are passed to the
474 * kernel-level multicast forwarding function.
475 * The packet is returned (relatively) intact; if
476 * ip_mforward() returns a non-zero value, the packet
477 * must be discarded, else it may be accepted below.
478 *
479 * (The IP ident field is put in the same byte order
480 * as expected when ip_mforward() is called from
481 * ip_output().)
482 */
483 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
484 ipstat.ips_cantforward++;
485 m_freem(m);
486 goto next;
487 }
488
489 /*
490 * The process-level routing demon needs to receive
491 * all multicast IGMP packets, whether or not this
492 * host belongs to their destination groups.
493 */
494 if (ip->ip_p == IPPROTO_IGMP)
495 goto ours;
496 ipstat.ips_forward++;
497 }
498 #endif
499 /*
500 * See if we belong to the destination multicast group on the
501 * arrival interface.
502 */
503 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
504 if (inm == NULL) {
505 ipstat.ips_cantforward++;
506 m_freem(m);
507 goto next;
508 }
509 goto ours;
510 }
511 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
512 in_nullhost(ip->ip_dst))
513 goto ours;
514
515 /*
516 * Not for us; forward if possible and desirable.
517 */
518 if (ipforwarding == 0) {
519 ipstat.ips_cantforward++;
520 m_freem(m);
521 } else
522 ip_forward(m, 0);
523 goto next;
524
525 ours:
526 /*
527 * If offset or IP_MF are set, must reassemble.
528 * Otherwise, nothing need be done.
529 * (We could look in the reassembly queue to see
530 * if the packet was previously fragmented,
531 * but it's not worth the time; just let them time out.)
532 */
533 if (ip->ip_off & ~(IP_DF|IP_RF)) {
534 /*
535 * Look for queue of fragments
536 * of this datagram.
537 */
538 IPQ_LOCK();
539 for (fp = ipq.lh_first; fp != NULL; fp = fp->ipq_q.le_next)
540 if (ip->ip_id == fp->ipq_id &&
541 in_hosteq(ip->ip_src, fp->ipq_src) &&
542 in_hosteq(ip->ip_dst, fp->ipq_dst) &&
543 ip->ip_p == fp->ipq_p)
544 goto found;
545 fp = 0;
546 found:
547
548 /*
549 * Adjust ip_len to not reflect header,
550 * set ipqe_mff if more fragments are expected,
551 * convert offset of this to bytes.
552 */
553 ip->ip_len -= hlen;
554 mff = (ip->ip_off & IP_MF) != 0;
555 if (mff) {
556 /*
557 * Make sure that fragments have a data length
558 * that's a non-zero multiple of 8 bytes.
559 */
560 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
561 ipstat.ips_badfrags++;
562 IPQ_UNLOCK();
563 goto bad;
564 }
565 }
566 ip->ip_off <<= 3;
567
568 /*
569 * If datagram marked as having more fragments
570 * or if this is not the first fragment,
571 * attempt reassembly; if it succeeds, proceed.
572 */
573 if (mff || ip->ip_off) {
574 ipstat.ips_fragments++;
575 ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
576 if (ipqe == NULL) {
577 ipstat.ips_rcvmemdrop++;
578 IPQ_UNLOCK();
579 goto bad;
580 }
581 ipqe->ipqe_mff = mff;
582 ipqe->ipqe_m = m;
583 ipqe->ipqe_ip = ip;
584 m = ip_reass(ipqe, fp);
585 if (m == 0) {
586 IPQ_UNLOCK();
587 goto next;
588 }
589 ipstat.ips_reassembled++;
590 ip = mtod(m, struct ip *);
591 hlen = ip->ip_hl << 2;
592 ip->ip_len += hlen;
593 } else
594 if (fp)
595 ip_freef(fp);
596 IPQ_UNLOCK();
597 }
598
599 /*
600 * Switch out to protocol's input routine.
601 */
602 #if IFA_STATS
603 ia->ia_ifa.ifa_data.ifad_inbytes += ip->ip_len;
604 #endif
605 ipstat.ips_delivered++;
606 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
607 goto next;
608 bad:
609 m_freem(m);
610 goto next;
611 }
612
613 /*
614 * Take incoming datagram fragment and try to
615 * reassemble it into whole datagram. If a chain for
616 * reassembly of this datagram already exists, then it
617 * is given as fp; otherwise have to make a chain.
618 */
619 struct mbuf *
620 ip_reass(ipqe, fp)
621 register struct ipqent *ipqe;
622 register struct ipq *fp;
623 {
624 register struct mbuf *m = ipqe->ipqe_m;
625 register struct ipqent *nq, *p, *q;
626 struct ip *ip;
627 struct mbuf *t;
628 int hlen = ipqe->ipqe_ip->ip_hl << 2;
629 int i, next;
630
631 IPQ_LOCK_CHECK();
632
633 /*
634 * Presence of header sizes in mbufs
635 * would confuse code below.
636 */
637 m->m_data += hlen;
638 m->m_len -= hlen;
639
640 /*
641 * If first fragment to arrive, create a reassembly queue.
642 */
643 if (fp == 0) {
644 MALLOC(fp, struct ipq *, sizeof (struct ipq),
645 M_FTABLE, M_NOWAIT);
646 if (fp == NULL)
647 goto dropfrag;
648 LIST_INSERT_HEAD(&ipq, fp, ipq_q);
649 fp->ipq_ttl = IPFRAGTTL;
650 fp->ipq_p = ipqe->ipqe_ip->ip_p;
651 fp->ipq_id = ipqe->ipqe_ip->ip_id;
652 LIST_INIT(&fp->ipq_fragq);
653 fp->ipq_src = ipqe->ipqe_ip->ip_src;
654 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
655 p = NULL;
656 goto insert;
657 }
658
659 /*
660 * Find a segment which begins after this one does.
661 */
662 for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
663 p = q, q = q->ipqe_q.le_next)
664 if (q->ipqe_ip->ip_off > ipqe->ipqe_ip->ip_off)
665 break;
666
667 /*
668 * If there is a preceding segment, it may provide some of
669 * our data already. If so, drop the data from the incoming
670 * segment. If it provides all of our data, drop us.
671 */
672 if (p != NULL) {
673 i = p->ipqe_ip->ip_off + p->ipqe_ip->ip_len -
674 ipqe->ipqe_ip->ip_off;
675 if (i > 0) {
676 if (i >= ipqe->ipqe_ip->ip_len)
677 goto dropfrag;
678 m_adj(ipqe->ipqe_m, i);
679 ipqe->ipqe_ip->ip_off += i;
680 ipqe->ipqe_ip->ip_len -= i;
681 }
682 }
683
684 /*
685 * While we overlap succeeding segments trim them or,
686 * if they are completely covered, dequeue them.
687 */
688 for (; q != NULL && ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len >
689 q->ipqe_ip->ip_off; q = nq) {
690 i = (ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len) -
691 q->ipqe_ip->ip_off;
692 if (i < q->ipqe_ip->ip_len) {
693 q->ipqe_ip->ip_len -= i;
694 q->ipqe_ip->ip_off += i;
695 m_adj(q->ipqe_m, i);
696 break;
697 }
698 nq = q->ipqe_q.le_next;
699 m_freem(q->ipqe_m);
700 LIST_REMOVE(q, ipqe_q);
701 pool_put(&ipqent_pool, q);
702 }
703
704 insert:
705 /*
706 * Stick new segment in its place;
707 * check for complete reassembly.
708 */
709 if (p == NULL) {
710 LIST_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
711 } else {
712 LIST_INSERT_AFTER(p, ipqe, ipqe_q);
713 }
714 next = 0;
715 for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
716 p = q, q = q->ipqe_q.le_next) {
717 if (q->ipqe_ip->ip_off != next)
718 return (0);
719 next += q->ipqe_ip->ip_len;
720 }
721 if (p->ipqe_mff)
722 return (0);
723
724 /*
725 * Reassembly is complete. Check for a bogus message size and
726 * concatenate fragments.
727 */
728 q = fp->ipq_fragq.lh_first;
729 ip = q->ipqe_ip;
730 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
731 ipstat.ips_toolong++;
732 ip_freef(fp);
733 return (0);
734 }
735 m = q->ipqe_m;
736 t = m->m_next;
737 m->m_next = 0;
738 m_cat(m, t);
739 nq = q->ipqe_q.le_next;
740 pool_put(&ipqent_pool, q);
741 for (q = nq; q != NULL; q = nq) {
742 t = q->ipqe_m;
743 nq = q->ipqe_q.le_next;
744 pool_put(&ipqent_pool, q);
745 m_cat(m, t);
746 }
747
748 /*
749 * Create header for new ip packet by
750 * modifying header of first packet;
751 * dequeue and discard fragment reassembly header.
752 * Make header visible.
753 */
754 ip->ip_len = next;
755 ip->ip_src = fp->ipq_src;
756 ip->ip_dst = fp->ipq_dst;
757 LIST_REMOVE(fp, ipq_q);
758 FREE(fp, M_FTABLE);
759 m->m_len += (ip->ip_hl << 2);
760 m->m_data -= (ip->ip_hl << 2);
761 /* some debugging cruft by sklower, below, will go away soon */
762 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
763 register int plen = 0;
764 for (t = m; t; t = t->m_next)
765 plen += t->m_len;
766 m->m_pkthdr.len = plen;
767 }
768 return (m);
769
770 dropfrag:
771 ipstat.ips_fragdropped++;
772 m_freem(m);
773 pool_put(&ipqent_pool, ipqe);
774 return (0);
775 }
776
777 /*
778 * Free a fragment reassembly header and all
779 * associated datagrams.
780 */
781 void
782 ip_freef(fp)
783 struct ipq *fp;
784 {
785 register struct ipqent *q, *p;
786
787 IPQ_LOCK_CHECK();
788
789 for (q = fp->ipq_fragq.lh_first; q != NULL; q = p) {
790 p = q->ipqe_q.le_next;
791 m_freem(q->ipqe_m);
792 LIST_REMOVE(q, ipqe_q);
793 pool_put(&ipqent_pool, q);
794 }
795 LIST_REMOVE(fp, ipq_q);
796 FREE(fp, M_FTABLE);
797 }
798
799 /*
800 * IP timer processing;
801 * if a timer expires on a reassembly
802 * queue, discard it.
803 */
804 void
805 ip_slowtimo()
806 {
807 register struct ipq *fp, *nfp;
808 int s = splsoftnet();
809
810 IPQ_LOCK();
811 for (fp = ipq.lh_first; fp != NULL; fp = nfp) {
812 nfp = fp->ipq_q.le_next;
813 if (--fp->ipq_ttl == 0) {
814 ipstat.ips_fragtimeout++;
815 ip_freef(fp);
816 }
817 }
818 IPQ_UNLOCK();
819 #ifdef GATEWAY
820 ipflow_slowtimo();
821 #endif
822 splx(s);
823 }
824
825 /*
826 * Drain off all datagram fragments.
827 */
828 void
829 ip_drain()
830 {
831
832 /*
833 * We may be called from a device's interrupt context. If
834 * the ipq is already busy, just bail out now.
835 */
836 if (ipq_lock_try() == 0)
837 return;
838
839 while (ipq.lh_first != NULL) {
840 ipstat.ips_fragdropped++;
841 ip_freef(ipq.lh_first);
842 }
843
844 IPQ_UNLOCK();
845 }
846
847 /*
848 * Do option processing on a datagram,
849 * possibly discarding it if bad options are encountered,
850 * or forwarding it if source-routed.
851 * Returns 1 if packet has been forwarded/freed,
852 * 0 if the packet should be processed further.
853 */
854 int
855 ip_dooptions(m)
856 struct mbuf *m;
857 {
858 register struct ip *ip = mtod(m, struct ip *);
859 register u_char *cp;
860 register struct ip_timestamp *ipt;
861 register struct in_ifaddr *ia;
862 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
863 struct in_addr *sin, dst;
864 n_time ntime;
865
866 dst = ip->ip_dst;
867 cp = (u_char *)(ip + 1);
868 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
869 for (; cnt > 0; cnt -= optlen, cp += optlen) {
870 opt = cp[IPOPT_OPTVAL];
871 if (opt == IPOPT_EOL)
872 break;
873 if (opt == IPOPT_NOP)
874 optlen = 1;
875 else {
876 optlen = cp[IPOPT_OLEN];
877 if (optlen <= 0 || optlen > cnt) {
878 code = &cp[IPOPT_OLEN] - (u_char *)ip;
879 goto bad;
880 }
881 }
882 switch (opt) {
883
884 default:
885 break;
886
887 /*
888 * Source routing with record.
889 * Find interface with current destination address.
890 * If none on this machine then drop if strictly routed,
891 * or do nothing if loosely routed.
892 * Record interface address and bring up next address
893 * component. If strictly routed make sure next
894 * address is on directly accessible net.
895 */
896 case IPOPT_LSRR:
897 case IPOPT_SSRR:
898 if (ip_allowsrcrt == 0) {
899 type = ICMP_UNREACH;
900 code = ICMP_UNREACH_NET_PROHIB;
901 goto bad;
902 }
903 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
904 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
905 goto bad;
906 }
907 ipaddr.sin_addr = ip->ip_dst;
908 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
909 if (ia == 0) {
910 if (opt == IPOPT_SSRR) {
911 type = ICMP_UNREACH;
912 code = ICMP_UNREACH_SRCFAIL;
913 goto bad;
914 }
915 /*
916 * Loose routing, and not at next destination
917 * yet; nothing to do except forward.
918 */
919 break;
920 }
921 off--; /* 0 origin */
922 if (off > optlen - sizeof(struct in_addr)) {
923 /*
924 * End of source route. Should be for us.
925 */
926 save_rte(cp, ip->ip_src);
927 break;
928 }
929 /*
930 * locate outgoing interface
931 */
932 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
933 sizeof(ipaddr.sin_addr));
934 if (opt == IPOPT_SSRR) {
935 #define INA struct in_ifaddr *
936 #define SA struct sockaddr *
937 ia = (INA)ifa_ifwithladdr((SA)&ipaddr);
938 } else
939 ia = ip_rtaddr(ipaddr.sin_addr);
940 if (ia == 0) {
941 type = ICMP_UNREACH;
942 code = ICMP_UNREACH_SRCFAIL;
943 goto bad;
944 }
945 ip->ip_dst = ipaddr.sin_addr;
946 bcopy((caddr_t)&ia->ia_addr.sin_addr,
947 (caddr_t)(cp + off), sizeof(struct in_addr));
948 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
949 /*
950 * Let ip_intr's mcast routing check handle mcast pkts
951 */
952 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
953 break;
954
955 case IPOPT_RR:
956 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
957 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
958 goto bad;
959 }
960 /*
961 * If no space remains, ignore.
962 */
963 off--; /* 0 origin */
964 if (off > optlen - sizeof(struct in_addr))
965 break;
966 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
967 sizeof(ipaddr.sin_addr));
968 /*
969 * locate outgoing interface; if we're the destination,
970 * use the incoming interface (should be same).
971 */
972 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
973 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
974 type = ICMP_UNREACH;
975 code = ICMP_UNREACH_HOST;
976 goto bad;
977 }
978 bcopy((caddr_t)&ia->ia_addr.sin_addr,
979 (caddr_t)(cp + off), sizeof(struct in_addr));
980 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
981 break;
982
983 case IPOPT_TS:
984 code = cp - (u_char *)ip;
985 ipt = (struct ip_timestamp *)cp;
986 if (ipt->ipt_len < 5)
987 goto bad;
988 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
989 if (++ipt->ipt_oflw == 0)
990 goto bad;
991 break;
992 }
993 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
994 switch (ipt->ipt_flg) {
995
996 case IPOPT_TS_TSONLY:
997 break;
998
999 case IPOPT_TS_TSANDADDR:
1000 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1001 sizeof(struct in_addr) > ipt->ipt_len)
1002 goto bad;
1003 ipaddr.sin_addr = dst;
1004 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1005 m->m_pkthdr.rcvif);
1006 if (ia == 0)
1007 continue;
1008 bcopy((caddr_t)&ia->ia_addr.sin_addr,
1009 (caddr_t)sin, sizeof(struct in_addr));
1010 ipt->ipt_ptr += sizeof(struct in_addr);
1011 break;
1012
1013 case IPOPT_TS_PRESPEC:
1014 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1015 sizeof(struct in_addr) > ipt->ipt_len)
1016 goto bad;
1017 bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
1018 sizeof(struct in_addr));
1019 if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1020 continue;
1021 ipt->ipt_ptr += sizeof(struct in_addr);
1022 break;
1023
1024 default:
1025 goto bad;
1026 }
1027 ntime = iptime();
1028 bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
1029 sizeof(n_time));
1030 ipt->ipt_ptr += sizeof(n_time);
1031 }
1032 }
1033 if (forward) {
1034 if (ip_forwsrcrt == 0) {
1035 type = ICMP_UNREACH;
1036 code = ICMP_UNREACH_SRCFAIL;
1037 goto bad;
1038 }
1039 ip_forward(m, 1);
1040 return (1);
1041 }
1042 return (0);
1043 bad:
1044 icmp_error(m, type, code, 0, 0);
1045 ipstat.ips_badoptions++;
1046 return (1);
1047 }
1048
1049 /*
1050 * Given address of next destination (final or next hop),
1051 * return internet address info of interface to be used to get there.
1052 */
1053 struct in_ifaddr *
1054 ip_rtaddr(dst)
1055 struct in_addr dst;
1056 {
1057 register struct sockaddr_in *sin;
1058
1059 sin = satosin(&ipforward_rt.ro_dst);
1060
1061 if (ipforward_rt.ro_rt == 0 || !in_hosteq(dst, sin->sin_addr)) {
1062 if (ipforward_rt.ro_rt) {
1063 RTFREE(ipforward_rt.ro_rt);
1064 ipforward_rt.ro_rt = 0;
1065 }
1066 sin->sin_family = AF_INET;
1067 sin->sin_len = sizeof(*sin);
1068 sin->sin_addr = dst;
1069
1070 rtalloc(&ipforward_rt);
1071 }
1072 if (ipforward_rt.ro_rt == 0)
1073 return ((struct in_ifaddr *)0);
1074 return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
1075 }
1076
1077 /*
1078 * Save incoming source route for use in replies,
1079 * to be picked up later by ip_srcroute if the receiver is interested.
1080 */
1081 void
1082 save_rte(option, dst)
1083 u_char *option;
1084 struct in_addr dst;
1085 {
1086 unsigned olen;
1087
1088 olen = option[IPOPT_OLEN];
1089 #ifdef DIAGNOSTIC
1090 if (ipprintfs)
1091 printf("save_rte: olen %d\n", olen);
1092 #endif
1093 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1094 return;
1095 bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
1096 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1097 ip_srcrt.dst = dst;
1098 }
1099
1100 /*
1101 * Retrieve incoming source route for use in replies,
1102 * in the same form used by setsockopt.
1103 * The first hop is placed before the options, will be removed later.
1104 */
1105 struct mbuf *
1106 ip_srcroute()
1107 {
1108 register struct in_addr *p, *q;
1109 register struct mbuf *m;
1110
1111 if (ip_nhops == 0)
1112 return ((struct mbuf *)0);
1113 m = m_get(M_DONTWAIT, MT_SOOPTS);
1114 if (m == 0)
1115 return ((struct mbuf *)0);
1116
1117 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1118
1119 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1120 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1121 OPTSIZ;
1122 #ifdef DIAGNOSTIC
1123 if (ipprintfs)
1124 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1125 #endif
1126
1127 /*
1128 * First save first hop for return route
1129 */
1130 p = &ip_srcrt.route[ip_nhops - 1];
1131 *(mtod(m, struct in_addr *)) = *p--;
1132 #ifdef DIAGNOSTIC
1133 if (ipprintfs)
1134 printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1135 #endif
1136
1137 /*
1138 * Copy option fields and padding (nop) to mbuf.
1139 */
1140 ip_srcrt.nop = IPOPT_NOP;
1141 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1142 bcopy((caddr_t)&ip_srcrt.nop,
1143 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
1144 q = (struct in_addr *)(mtod(m, caddr_t) +
1145 sizeof(struct in_addr) + OPTSIZ);
1146 #undef OPTSIZ
1147 /*
1148 * Record return path as an IP source route,
1149 * reversing the path (pointers are now aligned).
1150 */
1151 while (p >= ip_srcrt.route) {
1152 #ifdef DIAGNOSTIC
1153 if (ipprintfs)
1154 printf(" %x", ntohl(q->s_addr));
1155 #endif
1156 *q++ = *p--;
1157 }
1158 /*
1159 * Last hop goes to final destination.
1160 */
1161 *q = ip_srcrt.dst;
1162 #ifdef DIAGNOSTIC
1163 if (ipprintfs)
1164 printf(" %x\n", ntohl(q->s_addr));
1165 #endif
1166 return (m);
1167 }
1168
1169 /*
1170 * Strip out IP options, at higher
1171 * level protocol in the kernel.
1172 * Second argument is buffer to which options
1173 * will be moved, and return value is their length.
1174 * XXX should be deleted; last arg currently ignored.
1175 */
1176 void
1177 ip_stripoptions(m, mopt)
1178 register struct mbuf *m;
1179 struct mbuf *mopt;
1180 {
1181 register int i;
1182 struct ip *ip = mtod(m, struct ip *);
1183 register caddr_t opts;
1184 int olen;
1185
1186 olen = (ip->ip_hl << 2) - sizeof (struct ip);
1187 opts = (caddr_t)(ip + 1);
1188 i = m->m_len - (sizeof (struct ip) + olen);
1189 bcopy(opts + olen, opts, (unsigned)i);
1190 m->m_len -= olen;
1191 if (m->m_flags & M_PKTHDR)
1192 m->m_pkthdr.len -= olen;
1193 ip->ip_len -= olen;
1194 ip->ip_hl = sizeof (struct ip) >> 2;
1195 }
1196
1197 int inetctlerrmap[PRC_NCMDS] = {
1198 0, 0, 0, 0,
1199 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1200 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1201 EMSGSIZE, EHOSTUNREACH, 0, 0,
1202 0, 0, 0, 0,
1203 ENOPROTOOPT
1204 };
1205
1206 /*
1207 * Forward a packet. If some error occurs return the sender
1208 * an icmp packet. Note we can't always generate a meaningful
1209 * icmp message because icmp doesn't have a large enough repertoire
1210 * of codes and types.
1211 *
1212 * If not forwarding, just drop the packet. This could be confusing
1213 * if ipforwarding was zero but some routing protocol was advancing
1214 * us as a gateway to somewhere. However, we must let the routing
1215 * protocol deal with that.
1216 *
1217 * The srcrt parameter indicates whether the packet is being forwarded
1218 * via a source route.
1219 */
1220 void
1221 ip_forward(m, srcrt)
1222 struct mbuf *m;
1223 int srcrt;
1224 {
1225 register struct ip *ip = mtod(m, struct ip *);
1226 register struct sockaddr_in *sin;
1227 register struct rtentry *rt;
1228 int error, type = 0, code = 0;
1229 struct mbuf *mcopy;
1230 n_long dest;
1231 struct ifnet *destifp;
1232
1233 dest = 0;
1234 #ifdef DIAGNOSTIC
1235 if (ipprintfs)
1236 printf("forward: src %2.2x dst %2.2x ttl %x\n",
1237 ntohl(ip->ip_src.s_addr),
1238 ntohl(ip->ip_dst.s_addr), ip->ip_ttl);
1239 #endif
1240 if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1241 ipstat.ips_cantforward++;
1242 m_freem(m);
1243 return;
1244 }
1245 if (ip->ip_ttl <= IPTTLDEC) {
1246 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1247 return;
1248 }
1249 ip->ip_ttl -= IPTTLDEC;
1250
1251 sin = satosin(&ipforward_rt.ro_dst);
1252 if ((rt = ipforward_rt.ro_rt) == 0 ||
1253 !in_hosteq(ip->ip_dst, sin->sin_addr)) {
1254 if (ipforward_rt.ro_rt) {
1255 RTFREE(ipforward_rt.ro_rt);
1256 ipforward_rt.ro_rt = 0;
1257 }
1258 sin->sin_family = AF_INET;
1259 sin->sin_len = sizeof(struct sockaddr_in);
1260 sin->sin_addr = ip->ip_dst;
1261
1262 rtalloc(&ipforward_rt);
1263 if (ipforward_rt.ro_rt == 0) {
1264 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1265 return;
1266 }
1267 rt = ipforward_rt.ro_rt;
1268 }
1269
1270 /*
1271 * Save at most 68 bytes of the packet in case
1272 * we need to generate an ICMP message to the src.
1273 */
1274 mcopy = m_copy(m, 0, imin((int)ip->ip_len, 68));
1275
1276 /*
1277 * If forwarding packet using same interface that it came in on,
1278 * perhaps should send a redirect to sender to shortcut a hop.
1279 * Only send redirect if source is sending directly to us,
1280 * and if packet was not source routed (or has any options).
1281 * Also, don't send redirect if forwarding using a default route
1282 * or a route modified by a redirect.
1283 */
1284 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1285 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1286 !in_nullhost(satosin(rt_key(rt))->sin_addr) &&
1287 ipsendredirects && !srcrt) {
1288 if (rt->rt_ifa &&
1289 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1290 ifatoia(rt->rt_ifa)->ia_subnet) {
1291 if (rt->rt_flags & RTF_GATEWAY)
1292 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1293 else
1294 dest = ip->ip_dst.s_addr;
1295 /*
1296 * Router requirements says to only send host
1297 * redirects.
1298 */
1299 type = ICMP_REDIRECT;
1300 code = ICMP_REDIRECT_HOST;
1301 #ifdef DIAGNOSTIC
1302 if (ipprintfs)
1303 printf("redirect (%d) to %x\n", code,
1304 (u_int32_t)dest);
1305 #endif
1306 }
1307 }
1308
1309 error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1310 (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)), 0);
1311 if (error)
1312 ipstat.ips_cantforward++;
1313 else {
1314 ipstat.ips_forward++;
1315 if (type)
1316 ipstat.ips_redirectsent++;
1317 else {
1318 if (mcopy) {
1319 #ifdef GATEWAY
1320 if (mcopy->m_flags & M_CANFASTFWD)
1321 ipflow_create(&ipforward_rt, mcopy);
1322 #endif
1323 m_freem(mcopy);
1324 }
1325 return;
1326 }
1327 }
1328 if (mcopy == NULL)
1329 return;
1330 destifp = NULL;
1331
1332 switch (error) {
1333
1334 case 0: /* forwarded, but need redirect */
1335 /* type, code set above */
1336 break;
1337
1338 case ENETUNREACH: /* shouldn't happen, checked above */
1339 case EHOSTUNREACH:
1340 case ENETDOWN:
1341 case EHOSTDOWN:
1342 default:
1343 type = ICMP_UNREACH;
1344 code = ICMP_UNREACH_HOST;
1345 break;
1346
1347 case EMSGSIZE:
1348 type = ICMP_UNREACH;
1349 code = ICMP_UNREACH_NEEDFRAG;
1350 if (ipforward_rt.ro_rt)
1351 destifp = ipforward_rt.ro_rt->rt_ifp;
1352 ipstat.ips_cantfrag++;
1353 break;
1354
1355 case ENOBUFS:
1356 type = ICMP_SOURCEQUENCH;
1357 code = 0;
1358 break;
1359 }
1360 icmp_error(mcopy, type, code, dest, destifp);
1361 }
1362
1363 void
1364 ip_savecontrol(inp, mp, ip, m)
1365 register struct inpcb *inp;
1366 register struct mbuf **mp;
1367 register struct ip *ip;
1368 register struct mbuf *m;
1369 {
1370
1371 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1372 struct timeval tv;
1373
1374 microtime(&tv);
1375 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1376 SCM_TIMESTAMP, SOL_SOCKET);
1377 if (*mp)
1378 mp = &(*mp)->m_next;
1379 }
1380 if (inp->inp_flags & INP_RECVDSTADDR) {
1381 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1382 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1383 if (*mp)
1384 mp = &(*mp)->m_next;
1385 }
1386 #ifdef notyet
1387 /*
1388 * XXX
1389 * Moving these out of udp_input() made them even more broken
1390 * than they already were.
1391 * - fenner (at) parc.xerox.com
1392 */
1393 /* options were tossed already */
1394 if (inp->inp_flags & INP_RECVOPTS) {
1395 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1396 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1397 if (*mp)
1398 mp = &(*mp)->m_next;
1399 }
1400 /* ip_srcroute doesn't do what we want here, need to fix */
1401 if (inp->inp_flags & INP_RECVRETOPTS) {
1402 *mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1403 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1404 if (*mp)
1405 mp = &(*mp)->m_next;
1406 }
1407 #endif
1408 if (inp->inp_flags & INP_RECVIF) {
1409 struct sockaddr_dl sdl;
1410
1411 sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]);
1412 sdl.sdl_family = AF_LINK;
1413 sdl.sdl_index = m->m_pkthdr.rcvif ?
1414 m->m_pkthdr.rcvif->if_index : 0;
1415 sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0;
1416 *mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len,
1417 IP_RECVIF, IPPROTO_IP);
1418 if (*mp)
1419 mp = &(*mp)->m_next;
1420 }
1421 }
1422
1423 int
1424 ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
1425 int *name;
1426 u_int namelen;
1427 void *oldp;
1428 size_t *oldlenp;
1429 void *newp;
1430 size_t newlen;
1431 {
1432 extern int subnetsarelocal;
1433
1434 int error, old;
1435
1436 /* All sysctl names at this level are terminal. */
1437 if (namelen != 1)
1438 return (ENOTDIR);
1439
1440 switch (name[0]) {
1441 case IPCTL_FORWARDING:
1442 return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
1443 case IPCTL_SENDREDIRECTS:
1444 return (sysctl_int(oldp, oldlenp, newp, newlen,
1445 &ipsendredirects));
1446 case IPCTL_DEFTTL:
1447 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
1448 #ifdef notyet
1449 case IPCTL_DEFMTU:
1450 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
1451 #endif
1452 case IPCTL_FORWSRCRT:
1453 /* Don't allow this to change in a secure environment. */
1454 if (securelevel > 0)
1455 return (sysctl_rdint(oldp, oldlenp, newp,
1456 ip_forwsrcrt));
1457 else
1458 return (sysctl_int(oldp, oldlenp, newp, newlen,
1459 &ip_forwsrcrt));
1460 case IPCTL_DIRECTEDBCAST:
1461 return (sysctl_int(oldp, oldlenp, newp, newlen,
1462 &ip_directedbcast));
1463 case IPCTL_ALLOWSRCRT:
1464 return (sysctl_int(oldp, oldlenp, newp, newlen,
1465 &ip_allowsrcrt));
1466 case IPCTL_SUBNETSARELOCAL:
1467 return (sysctl_int(oldp, oldlenp, newp, newlen,
1468 &subnetsarelocal));
1469 case IPCTL_MTUDISC:
1470 error = sysctl_int(oldp, oldlenp, newp, newlen,
1471 &ip_mtudisc);
1472 if (ip_mtudisc != 0 && ip_mtudisc_timeout_q == NULL) {
1473 ip_mtudisc_timeout_q =
1474 rt_timer_queue_create(ip_mtudisc_timeout);
1475 } else if (ip_mtudisc == 0 && ip_mtudisc_timeout_q != NULL) {
1476 rt_timer_queue_destroy(ip_mtudisc_timeout_q, TRUE);
1477 ip_mtudisc_timeout_q = NULL;
1478 }
1479 return error;
1480 case IPCTL_ANONPORTMIN:
1481 old = anonportmin;
1482 error = sysctl_int(oldp, oldlenp, newp, newlen, &anonportmin);
1483 if (anonportmin >= anonportmax || anonportmin > 65535
1484 #ifndef IPNOPRIVPORTS
1485 || anonportmin < IPPORT_RESERVED
1486 #endif
1487 ) {
1488 anonportmin = old;
1489 return (EINVAL);
1490 }
1491 return (error);
1492 case IPCTL_ANONPORTMAX:
1493 old = anonportmax;
1494 error = sysctl_int(oldp, oldlenp, newp, newlen, &anonportmax);
1495 if (anonportmin >= anonportmax || anonportmax > 65535
1496 #ifndef IPNOPRIVPORTS
1497 || anonportmax < IPPORT_RESERVED
1498 #endif
1499 ) {
1500 anonportmax = old;
1501 return (EINVAL);
1502 }
1503 return (error);
1504 case IPCTL_MTUDISCTIMEOUT:
1505 error = sysctl_int(oldp, oldlenp, newp, newlen,
1506 &ip_mtudisc_timeout);
1507 if (ip_mtudisc_timeout_q != NULL)
1508 rt_timer_queue_change(ip_mtudisc_timeout_q,
1509 ip_mtudisc_timeout);
1510 return (error);
1511 #ifdef GATEWAY
1512 case IPCTL_MAXFLOWS:
1513 {
1514 int s;
1515
1516 error = sysctl_int(oldp, oldlenp, newp, newlen,
1517 &ip_maxflows);
1518 s = splsoftnet();
1519 ipflow_reap(0);
1520 splx(s);
1521 return (error);
1522 }
1523 #endif
1524 default:
1525 return (EOPNOTSUPP);
1526 }
1527 /* NOTREACHED */
1528 }
1529